
Received April 9, 2020, accepted April 18, 2020, date of publication April 21, 2020, date of current version May 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989371

An Adaptive Anti-Noise Neural Network for
Bearing Fault Diagnosis Under Noise and Varying
Load Conditions

GUOQIANG JIN , TIANYI ZHU , MUHAMMAD WAQAR AKRAM ,
YI JIN , (Member, IEEE), AND CHANGAN ZHU
Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230026, China

Corresponding authors: Yi Jin (jinyi08@ustc.edu.cn) and Changan Zhu (changan@ustc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51605464, and in part by the

National Major Scientific Instruments and Equipments Development Project of the National Natural Science Foundation of China under

Grant 61727809.

ABSTRACT Fault diagnosis in rolling bearings is an indispensable part of maintaining the normal operation

ofmodernmachinery, especially under the varying operating conditions. In this paper, an end-to-end adaptive

anti-noise neural network framework (AAnNet) is proposed to solve the bearing fault diagnosis problem

under heavy noise and varying load conditions, which takes the raw signal as input without requiring manual

feature selection or denoising procedures. The proposed AAnNet employs the random sampling strategy

and enhanced convolutional neural networks with the exponential linear unit as the activation function

to increase the adaptability of the neural network. Moreover, the gated recurrent neural networks with

attention mechanism improvement are further adopted to learn and classify the features processed by the

convolutional neural networks part. Besides, we try to explain how the network works by visualizing the

intrinsic features of the proposed framework. And we explore the effect of the attention mechanism in the

proposed framework. Experiments show that the proposed framework achieves state-of-the-art results on

two datasets under varying operating conditions.

INDEX TERMS Bearing fault diagnosis, convolutional neural network, deep learning, load domain

adaptation, noisy conditions, recurrent neural network.

I. INTRODUCTION

Fault diagnosis in mechanical equipment has gained signif-

icant attention in the modern industry. Failures of mechan-

ical equipment could result in economic loss and casualties

[1]. Rolling element bearings are the critical target for fault

diagnosis in mechanical equipment, especially in rotating

machinery, which accounts for a large proportion of failures

[2]. In the past few decades, fault diagnosis in rolling bear-

ings has been widely studied. Data-driven based methods are

commonly used in bearing fault diagnosis [3].

Recently, with the development of training optimization

algorithms of the deeper neural networks, the difficulty

of training more complex networks decreases; and various

deeper neural networks begin to be widely studied [4]. Con-

volutional neural networks (CNNs) [5] and recurrent neural

networks (RNNs) [6] are themost commonly used deep learn-
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ing networks nowadays, which have been well-developed

and widely applied in various tasks including bearing fault

diagnosis [7]–[9]. The gated recurrent unit (GRU) [10] is one

of the improved versions of RNN, which could capture time-

dependent characteristics from the signals and is widely used

in sequence-based tasks like language and speech-related

works [11]. The vibration signal from the bearing is similar

to the sentence and language with time-dependent character-

istics. Thus, it is reasonable to apply the gated recurrent unit

for the diagnosis of the bearing fault.

In early applications of CNNs or RNNs for bearing fault

diagnosis, it was common to employ preprocessing procedure

to extract features from the raw signal and then use the

networks to classify bearing fault types. Abed et al. [12] pro-

posed an RNN for bearing fault classification using selected

discrete wavelet transforms features as the input. In [13],

the author employed the discrete Fourier transform (DFT) to

extract features from raw signals and then used CNN to learn

features for bearing fault diagnosis. In [14], statistical features
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were manually extracted from the vibration data and then

used as input to a CNN based classifier. In [15], the proposed

deep neural network (DNN) employed the frequency spectra

of the raw signal as the input. The proposed method could

classify not only the fault type but also the fault severity. Xie

and Zhang [16] used the discrete wavelet transform (DWT)

as the feature extractor for CNN and classified not only

the types of bearing fault but also the severity of the fault.

In [17], the proposed method took the wavelet packet energy

(WPE) image from the raw signal as the input of CNN, which

could perform multiclass classification for spindle bearing

fault diagnosis regardless of the load fluctuation. In [18],

the proposed method used stacked RNNs and long short-

term memory (LSTM) networks that took frequency spec-

trum sequences as the input and adopted an adaptive learning

rate. The proposed method could classify not only the types

of bearing fault but also the severity of the fault. In [19],

the proposed two-stage cross-domain fault diagnosis method

based on deep generative neural networks took the frequency

domain data as input. The proposed method could artifi-

cially generate fake samples on the target domain for domain

adaptation missions, which performed well under varying

load conditions and could classify both the types of bearing

fault and the severity of the fault. In [20], the proposed

deep fully convolutional neural network (DFCNN) took the

spectrogram as the input and obtained classification results

under seven different signals, including the fault type and

corresponding severity. However, these aforementioned early

studies require complicated manual feature extraction and

selection processes, which increases the difficulty of bearing

fault diagnosis.

With the development of deep learning and the increase

in the depth of the neural network, the feature representation

and learning ability of CNNs have been greatly improved.

More and more networks use simple preprocessing and

data augmentation methods to directly take raw signals as

the input instead of complex feature selection algorithms.

Qian et al. [21] proposed an adaptive overlapping convolu-

tional neural network (AOCNN) that took data segmen-

tation with overlapping as the data augmentation method

and adopted an adaptive layer to overcome the shift variant

and marginal problems. The proposed method performed

well under a small-sized training dataset. In [22], the pro-

posed deep convolutional neural network found that the data

augmentation method of signal translation could effectively

improve the performance of bearing fault diagnosis. Since

RNNs can better obtain the intrinsic characteristics of time

series data, and the bearing signal is also a time-dependent

sequence, so the application of RNNs in bearing fault diag-

nosis has gainedmore attention in recent years. Pan et al. [23]

implemented CNN as the feature extractor for the LSTM.

The proposed end-to-end network could classify not only the

fault type but also the fault severity. Zhao et al. [24] proposed

the local feature-based gated recurrent unit (LFGRU) net-

works that used handcrafted local-feature extraction scheme

to generate features for the bidirectional GRU network. Then,

additional center-biased averaging features from the input

were used as the supplementary information together with

the output of GRU to compute the final result. Yu et al.

[25] proposed a stacked LSTM network that employed the

raw signal with data augmentation as the input, which could

classify the fault type and fault severity. However, the afore-

mentioned algorithms do not consider bearing fault diagnosis

under noisy conditions.

Background noise is a common and unavoidable distur-

bance in industrial sites. Application of deep learning in bear-

ing fault diagnosis under noisy environments has received

more and more attention in recent years. Lu et al. [26] pro-

posed a four-layer CNN with the time-frequency features

extracted from training set as the input, which could perform

the bearing fault classification under noisy conditions with

the signal-to-noise ratio (SNR) between 10 dB to 50 dB.

In [27], the proposed CNN based neural network employed

the distance metric learning method to increase the domain

adaptation ability, which took the frequency features of the

raw signal as input and performed the bearing fault classi-

fication with SNR between −8 dB to 8 dB and under vary-

ing load conditions. In [28], the proposed GRU-based non-

linear predictive denoising autoencoders (GRU-NP-DAEs)

employed the length loss method to enhance the robustness

of models, which could utilize information from multiple

sensors and achieved good accuracy with the SNR between

1 dB to 10 dB. In [29], the proposed neural network employed

the residual structure to reduce the training difficulty of a

deeper neural network, which performed the bearing fault

classification with SNR between 0 dB to 8 dB. Qiao et al.

[30] proposed an adaptive weighted multiscale convolutional

neural network (AWMSCNN) that could adaptively extract

multiscale features from raw signals, which was tested with

the SNR between −3 dB to 7 dB. Li et al. [31] proposed a

novel transfer learning method based on domain adversar-

ial training to extract the underlying shared features across

multiple source domains to diagnose the target domain. The

proposed method was tested under noisy conditions with the

SNR between −4 dB to 8 dB. Zhang et al. [32] proposed

a DCNN with wide first-layer kernels (WDCNN) that took

the raw signal with data augmentation as the input, which

performed well with the SNR between −4 dB to 10 dB and

tested under varying load conditions. In [33], our previous

work proposed a structure optimized DCNN that achieved

similar performance compared to the WDCNN, using less

than half parameters. Zhang et al. [34] proposed a CNN with

training interference (TICNN) with data augmentation, that

achieved higher accuracy with the SNR between −4 dB to

10 dB and tested under varying load conditions. However,

there is still room for improvement, especially under higher

noise conditions.

After the above comprehensive review, we can conclude

that although many algorithms can achieve a good classifi-

cation result of bearing fault types, not all algorithms can

achieve the classification of bearing fault severity. More-

over, many algorithms require sophisticated manual fea-
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ture design and selection procedures, denoising procedures,

and data augmentation, which increase the difficulty of

bearing fault diagnosis. Furthermore, researches in com-

plex environments, especially under noisy and varying load

conditions, are still relatively few, and these methods still

have room for improvement. The bearing fault classifica-

tion in varying operating conditions is still a challenging

task.

In this paper, we proposed an end-to-end adaptive anti-

noise neural network framework (AAnNet) to address the

above problems, which combines the advantages of multiple

structures, which can distinguish not only the different bear-

ing fault types but also the severity of the corresponding fault.

In order to address the noise problem in the bearing fault diag-

nosis, the AAnNet employs the random sampling and expo-

nential linear unit in CNN to improve the adaptability against

varying levels of noise. Moreover, the proposed method com-

bines the advantages of multiple structures, including the

powerful feature extraction capability of CNN, the innate

timing-dependent sequence processing capability of GRU,

and the feature abstraction and fusion ability of attention

mechanism. The combination improves the adaptability and

generality of the neural network in complex environments.

The proposedAAnNet is an end-to-end neural network that

automatically extracts features from raw signals instead of

using handicraft features. It does not require expert knowl-

edge for manual filter design and manual feature selection

procedures. The main contributions of this article are listed

as follows:

1) We proposed an end-to-end AAnNet that could adapt-

ably perform the classification of bearing fault and cor-

responding severity without requiring manual feature

selection and denoising procedures and achieved state-

of-the-art results on two datasets.

2) We proposed random sampling as the data input strat-

egy and a combination of CNN, GRU, and the attention

mechanism to improve the anti-noise and domain adap-

tation of the network.

3) The proposed AAnNet has great performance under

heavy noise conditions and has strong domain adapta-

tion against varying load conditions.

4) We investigated the effect of using the attention mech-

anism and tried to explore the intrinsic features of the

neural network by visualizing the kernel weight distri-

bution and activation values of the proposed AAnNet.

The rest of this paper is organized as follows: The basic

theory of the neural network is provided in Section II. The

details of the proposed AAnNet is provided in Section III.

In Section IV, several experiments are conducted on two

datasets under noisy conditions and varying load con-

ditions to validate the proposed framework. Then, net-

work visualization and comprehensive analysis are per-

formed to analyze and evaluate the applicability of the

proposed method. Finally, Section V concludes the whole

paper.

II. BASIC THEORY OF NEURAL NETWORK

A. CONVOLUTIONAL NEURAL NETWORK

Inspired by biological neural processes, a convolutional neu-

ral network is composed of multiple connected neurons,

and each neuron is only responsible for a small partially

overlap receptive field, which greatly reduces the number

of parameters and the training difficulty [4], [35]. Another

advantage of a convolutional neural network is that it can

handle inputs with variable lengths, whereas the traditional

neural network could not handle variable lengths of input.

Batch normalization (BN) [36] has been widely used in the

deep neural networks together with the convolutional layer.

The BN layer could improve the accuracy and training speed

of a deep neural network by solving the internal covariate

shift problem. Dropout reduces the overfitting problem by

temporarily dropping units from the neural network accord-

ing to a certain probability during training [37]. This random

dropping method effectively prevents units from co-adapting.

Dropout could make the model more robust and reduce the

impact of noise on the model, which improves the accuracy

of the model under noisy conditions.

In this paper, we proposed to use a noise-robust activa-

tion to increase the adaptability under noise conditions. The

activation function in the neural network gives neurons a

nonlinear expression of the convolution result with the input

signal. The exponential linear unit (ELU) [38] inherits the

advantages of the Rectified linear unit (ReLU) [39] that

solves the well-known vanishing gradients problem, whereas

overcoming the ‘‘dying ReLU" problem [40]. Moreover,

the ELU has non-zero activation value and gradient at the left

side, which decreases the bias shift problem by pushing mean

unit activations closer to zero. This operation is like batch

normalization but with lower computational complexity. The

ELU is defined as follows:

ELU (x) =

{

α(exp(x) − 1) for x < 0

x for x ≥ 0,
(1)

where α is a positive hyper-parameter that controls saturation

for negative input values. The ELU is noise-robust under

deactivation state, thanks to the saturation when inputting

small negative value. We will later compare the effects of

ReLU and ELU on the proposed method.

B. GATED RECURRENT UNIT NEURAL NETWORK

The gated recurrent unit (GRU) is an improved version of

RNN that could retain the context of the input sequence via

internal states to capture long-term dependence by the struc-

tures of gates, whereas overcoming the well-known vanish-

ing or exploding gradient problem of RNN [42]. These gates

are used to remove or add information to the hidden state

to decide whether to remember long-term dependence or use

short-term information. As shown in Fig.1, the workflow of

the GRU is described as follows:

At time step t , the reset gate rt is computed by

rt = σ (W rxt + Urht−1 + br ), (2)
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FIGURE 1. The basic structure of a GRU cell [41].

where xt is the input, W r and Ur are the weight matrices to

be learned, br is bias weight, ht−1 is the previous activation,

σ is a logistic sigmoid function. The reset gate rt decides how

much the past activation to be kept for the computation of the

candidate activation h̃t which is computed by

h̃t = tanh(Whxt + rt ⊙ (Uhht−1) + bh), (3)

where ⊙ represents an element-wise multiplication, Wh and

Uh are the weight matrices. The candidate activation h̃t is

computed by the input xt and previous step ht−1, which is

modulated by the reset gates rt . The update gate zt controls

the proportion of the past activation and the candidate activa-

tion, expressed by

zt = σ (W zxt + Uzht−1 + bz), (4)

whereW z and Uz are the weight matrices, bz is bias weights,

ht−1 is the previous activation. Finally, the new activation ht
is computed by

ht = (1 − zt−1) ⊙ ht−1 + zt ⊙ h̃t , (5)

where zt−1 is the previous update gate status. The new acti-

vation is mixed from the past activation and the current

candidate activation, where the update gate controls the mix

proportion.

When an important feature in the signal is detected,

the update gate zt will adaptively adjust to allow the mem-

ory content to transfer across multiple time steps to capture

information at different time scales, thus easily carrying the

feature over a long distance, i.e., preserving the long-term

dependencies. The reset gate rt helps the GRU to ignore the

previous hidden states to capture the new short-term depen-

dencies whenever the detected feature is not necessary any-

more [43]. Thanks to the application of these control gates,

a GRU could adaptively generate output based on the long-

term relationship and current short-term information, thus has

better performance with the time-depended sequence.

FIGURE 2. The basic structure of the attention mechanism.

C. ATTENTION MECHANISM

The attention mechanism [44] can automatically focus on

relevant information and pay more attention to the inherent

characteristics of the feature. Since not all features have the

same contribution to the final classification result, the atten-

tion mechanism is employed to automatically select the most

relevant features, thereby improving the performance of the

proposed network.

As shown in Fig.2, the attention mechanism takes advan-

tage of full information by using all time steps, which

employs the weighting method for each time step to get the

final result, instead of manually selecting a time step as the

final output. The main calculation process of the attention

mechanism is described as follows:

Given all the hidden source states hs and the current tar-

get state ht , the attention weights vector at is calculated as

follows:

at (s) =
exp(score(ht ,hs))

∑

s′
exp(score(ht ,hs′ ))

, (6)

where the function score is designed to compare the current

target hidden state ht with each source hidden state hs to

calculate the contribution of each time step to the final output,

which is denoted as follows:

score(ht ,hs) = h
⊤
t W shs, (7)

where W s is the trainable weight matrix. Then, by having

the attention weight vector at and each time step hs, the con-

text vector ct , i.e., the weighted time steps vector is computed

by:

ct =
∑

s

at (s)hs. (8)

Finally, we concatenate the context vector ct and the target

hidden state ht to get the output attentional hidden state h̃t ,

denoted as

h̃t = tanh(W c[ct ;ht ]), (9)

where theW c is the trainable weight matrix.

The attention mechanism could combine high-dimensional

information and select the most important features to improve

the classification result, which utilizes the information of

different time steps from the output of an RNN. Then,

the weighted time steps are processed as the final output.
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The weight matrix is automatically obtained by learning

without manual selection, which could reduce the difficulty

of parameter selection and improve the robustness of the

proposed network. Through the attentionmechanism, the net-

work could pay more attention to the discriminative features,

and the bearing health features can be effectively captured

[45]. Further discussion of the attention mechanism will be

present in Section IV-E.3.

III. THE PROPOSED AAnNet NEURAL NETWORK

The main framework of the proposed AAnNet is shown

in Fig.3. The proposed end-to-end adaptive anti-noise neu-

ral network mainly consists of four parts: data input strat-

egy based on random sampling; feature extractor based on

enhanced CNN that employs ELU as the activation function;

feature classifier based on GRU; and feature post-processor

based on attention mechanism and DNN. The proposed

method combines the advantages of multiple structures to

improves adaptability and generality in complex environ-

ments.

The input of the AAnNet is a fixed-length segment of raw

data without handcrafted features or denoising procedures.

The output of the AAnNet depends on the type of tasks. It can

be only the types of bearing fault, which have a small number

of categories, or it can be fault types with the correspond-

ing severity, which have a large number of categories. The

details of the proposedAAnNet are described in the following

section.

A. ENHANCED NETWORK GENERALITY UNDER NOISY

CONDITION

The proposed AAnNet uses CNN as the feature extractor to

take raw signals as the input instead of manually selected fea-

tures. The random sampling strategy in the proposed network

is similar to the bootstrap sampling [46] in statistics, which

is a simple way of getting an estimated distribution of an

uncertain dataset. The bearing fault signals with noise can be

regarded as an uncertain dataset. By employing the random

sampling strategy, we can have a relatively easier way to

estimate the bearing fault characteristics from noisy signals.

On the other hand, random sampling could be regarded as

the simulation of noise interference in the training process,

which improves the adaptability of the neural network under

noise conditions. Thus we can have a good test result from

the noise-added data but only using the data that is not added

with noise to train the network.

The random sampling procedure is shown in Fig.4. The

sampling of each point in the data obeys the Bernoulli dis-

tribution with probability p, where p is 0.5 in this paper.

The perceptual neurons in the input layer are randomly shut

down to simulate the random sampling procedure to the input

signal. In order to have a fixed input length, the randomly

chosen data points will be set to zero, denoted as red points

in Fig.4(b).

In each convolutional layer, the ELU is adopted as the

activation function. Unlike the widely used ReLU, the ELU

could push mean unit activations closer to zero to reduce the

bias shift effect. The ELU preserves negative information and

provides more information for subsequent calculations and

ensures a noise-robust deactivation state that leads to higher

generality under noisy conditions. Furthermore, inspired by

[32], [47], larger receptive field size comes with more useful

context information from noisy signals, we use wide layer

kernels in the convolutional layers to enhance the visual

range of the network to extract more features from the raw

signal. Batch normalization is implemented to improve sta-

bility and speed up network convergence. The dropout is also

implemented to make the model more robust under noisy

conditions as well as to prevent the over-fitting problem.

The GRU could capture the time-dependent features from

the input, unlike the traditional CNN.We use GRU to capture

the latent information of the preprocessed features from CNN

to generalize the classification result. The combination of

CNN and GRU could better capture the latent information

of the sequence and enhance the ability of the network to

deal with more complex situations, especially the heavy noise

conditions and varying load conditions. Compared with the

network composed entirely of CNNs, the combination of

CNN and GRU could take advantage of CNN’s powerful

feature extraction capabilities and GRU’s information pro-

cessing ability with time-dependent signals.

The attention mechanism and the following DNN part are

employed to make full use of the output from the GRU.

Usually, we need to manually specify the time step of the

GRU output as the final output, which requires more param-

eter selection operations and increases the training difficulty.

By employing the attention mechanism, the network can be

automatically trained to find the appropriate time step as

the final output, furthermore, focusing more on the intrinsic

characteristics of the signal. The DNN part with the softmax

is used to generate the final classification result.

B. IMPLEMENTATION DETAILS OF THE PROPOSED

AAnNet

A typical structure of the proposed AAnNet is mainly

composed of one input layer, two convolutional layers,

two GRU layers, the attention mechanism layer, and the

DNN layers. The proposed network uses a fixed-length

input. We implement the random sampling strategy by using

dropout in the input layer. After the input layer, there are

two convolutional layers as the feature extractor which uses

ELU as the activation function. After each convolutional

layer, the batch normalization layer and dropout layer are

adopted to improve stability and generality. Then, two GRU

layers come after the CNN part, followed by another dropout

layer. The attention mechanism layer is after the dropout

layer. Finally, comes the two fully-connected layers and one

softmax layer to generate the classification result. Assuming

the input length is 1670, and the final output is 10 categories,

the detailed network parameters are shown in Table.1.

The dropout rate is fixed to 0.5. The convolution kernel

size is 128 ∗ 1, and the numbers of filters are 64 and 72 in the
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FIGURE 3. Architecture of the proposed AAnNet.

FIGURE 4. Data input methods: (a) without random sampling, (b) with
random sampling.

TABLE 1. Parameters of a typical structure of the proposed AAnNet.

first and second convolutional layers, respectively. The stride

in the convolutional layer is 1, and no padding is used in the

convolutional layer. The numbers of neurons in the GRU are

64 and 128 in the first and second GRU layers, respectively.

There are 128 neurons in the attentional hidden state vector.

Then followed by the two fully-connected layers which have

64 and 32 neurons each. Finally comes the softmax layer with

10 neurons.We use Adam [48] as the optimizer and train each

model for 10000 epochs.

To test the performance of the proposed framework to the

maximum extent, each data used in training is independent.

Therefore, the original signal is directly divided into the spec-

ified length without overlapping, and no data augmentation

method is used. Thus, every sample of the segmented data

will not have an overlapped part. Each training data will be

independent. We use the minimum number of samples from

the complete dataset to train the neural network. In order to

verify the generality of models under noisy data, we train

all the models on the original data without the addition of

noise and test them on the data having different levels of noise

added.

IV. VALIDATION OF PROPOSED AAnNet

In this paper, we tested our proposed algorithm on two

different datasets separately. The first dataset is from the

Case Western Reserve University (CWRU) Bearing Data

Center [49], which has been a benchmark dataset for bearing

fault diagnosis in recent years. The second dataset is from

our bearing fault diagnosis experimental platform QPZZ-II .

We conducted the bearing fault diagnosis experiment to col-

lect four types of bearing vibration signals. We verified the

performance of the proposed method on these two datasets

and compared it with other methods. Each model has been

trained five times with a fixed random seed. The experiments

were run on anNVIDIATITANXpGPU using the Keras [50]

and TensorFlow frameworks.

A. PREPROCESSING SIGNAL

Since the input length of the proposed algorithm is a fixed

value, so the original signal needs to be segmented into

fixed-length signals. As the vibration signal is periodic, and

the period is related to the motor speed, it is reasonable to

segment the signal according to the period. In this paper,

the input length of the signal is the number of points collected
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within one complete motor rotation cycle. This kind of signal

segmentation method is the smallest division of the com-

plete useful information. For example, if the sampling rate

is 48000 Hz, and the motor speed is 1724 rpm, then the

accelerometer will collect about 1670 points within a motor

rotation cycle. In this paper, the amplitude of the input signal

is normalized to [−1,+1].

Typically, a feasible approach to data augmentation is to

segment the raw data with overlapping, as described in [34].

In this paper, we use independent samples from the dataset,

i.e., no overlapping between each sample to verify the adapt-

ability of the proposed model.

1) ADDING NOISE TO THE SIGNAL

Additive white Gaussian noise (AWGN) [51] is widely

present in real situations, which mimics the effect of many

random processes that occur in nature. In order to study the

impact of noise on the classification of bearing fault, we gen-

erated different levels of noisy signals by adding AWGN to

the raw signals. The generated noisy signals are measured by

the signal-to-noise ratio (SNR)which is defined as the ratio of

the power of a meaningful signal to the power of background

noise [52]. The decibel form (dB) of SNR is expressed as:

SNRdB = 10 log10

(

Psignal

Pnoise

)

, (10)

where P is the average power of a periodic signal x(t) in

period T , which is defined as:

Pavg =
1

T

∫ T

0

p(t)dt =
1

T

∫ T

0

|x(t)|2dt. (11)

When the signal is in discrete form, the average power can

be calculated as:

Pavg =
1

length(x)

∑

t∈length(x)

|x(t)|2. (12)

For a signal with zero mean and known variance, its power

can be expressed by the variance σ
2
N , so for standard normal

distributed noise, the power of the signal is 1. Thus we first

calculate the power of the original signal using (12), then

calculate the power of the noise signal Pnoise to be gener-

ated using (10) with the desired SNR. Finally, we generate

the additive white Gaussian noise by the following formula,

then add it to the original signal to compose the signal with

the desired SNR. The standard normal distribution noise is

generated by randn(), as denoted in

N =
√

Pnoise × randn(length(x)). (13)

In order to demonstrate the noised signal, we generated a

0 dB SNR signal using the above method based on the signal

of outer race fault from the CWRU dataset. The original

signal of the outer race fault, the 0 dB SNR signal after adding

Gaussian noise, and the corresponding spectra are shown

in Fig.5. In the frequency domain on the right part of the

figure, it can be seen that the noise spectrum is superimposed

FIGURE 5. Visualization of original and 0 dB SNR noise-added signals of
outer race fault from the CWRU dataset.

on the original spectrum. The whole spectrum from low fre-

quency to high frequency is addedwith a uniform noise which

is called the additivewhiteGaussian noise. In the time domain

on the left part of the figure, it can be seen that the signal

with added noise is more difficult to recognize in the time

domain by a human. However, an algorithm needs to work

successfully under different noise conditions due to the noisy

environment. Thus, to simplify the difficulty, we are going

to evaluate the proposed method under noisy conditions with

different SNRs. We train the neural network on the training

data without noise added, and evaluate the neural network

with the noise-added test data.

B. BASELINE ALGORITHMS

We compared the proposed algorithm with the following

baseline algorithms in the experiment: 1) the TICNN with

the changing random rate in dropout during training as

described in the paper, which is consist of 6-layer convolu-

tional networks; 2) the 5-layer convolutional networks named

WDCNN; 3) the GRU neural networks which share the same

parameters of the GRU structures in the proposed method;

4) and the support vector machine (SVM) with the Gaussian

radial basis kernel. The input signal of all baseline methods

is processed in the same way as the input of the proposed

method, without further feature extraction procedure.

C. CASE STUDY I: CWRU DATA UNDER NOISY

ENVIRONMENT

In the first case, we performed a benchmark experiment on

the well-known CWRU dataset. Since there have been lots of

studies on this dataset [53], it is reasonable and convenient

to validate the proposed algorithm on it. The test rig of the

CWRU dataset is shown in Fig.6. The vibration signal we

used is collected from the drive end by the accelerometer with

the sample rate of 48000 Hz. We constructed three datasets

under loads of 1 hp, 2 hp, and 3 hp. As for the load at 3 hp,
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FIGURE 6. Test rig of the CWRU dataset.

the average motor speed is 1724 rpm is used in this paper.

The bearing at the drive end is the deep groove ball bearing

(6205-2RS JEM SKF).

The test bearings have four types of health conditions:

(1) normal condition; (2) inner race fault; (3) ball fault; and

(4) outer race fault. Each fault condition has three types of

fault diameters with 7 mils, 14 mils, and 21 mils (1 mil

= 0.001 inches), which are generated by electro-discharge

machining. So, there are one normal condition and three fault

types, each with three kinds of severity leads to 10 different

classes in the dataset.

According to the preprocessing procedure aforementioned,

the CWRU dataset has 10 different categories, and the length

of each segment is 1670. Because we do not segment the

signal with overlapping and there are fewer data in 1 hp

condition, so the total number of samples is less than other

loads. We randomly permutate the data and divide it into

training data and test data with the ratio of 8:2. These two

parts of the dataset are independent of each other. We only

add noise to the test data in order to evaluate the perfor-

mance of the proposed method under noisy conditions. There

are 289 samples in 2 hp and 3 hp load conditions in each

health condition, of which 231 are training samples, and the

remaining 58 are test samples. As for the 1 hp condition, there

are 181 training samples and 46 test samples in each health

condition. All the samples have no overlapping parts with

each other, nor other data augment methods. The 3 hp load

data is used in the following experiments. Details are shown

in Table 2.

1) DIAGNOSIS RESULTS AND ANALYSIS

As described before, we trained all the models on the original

data without noise added, and test on the data that are added

with different levels of noise. In order to study the contribu-

tion of each part in the framework to the final result, we divide

the proposed AAnNet into two parts based on the network

structure: (1) the backbone part and (2) the attention mecha-

nism (AM) part. Note that these major parts have further sub-

parts. The Backbone mainly consists of the random sampling

part, the CNN part, and the GRU part. And the last time step

of GRU is manually specified as output, then the Backbone

is followed by a fully-connected layer that uses the Softmax

as the activation function. The AM part includes not only

the attention mechanism layer but also the following DNN

part because there are additional fully-connected layers after

the attention layer to help to generate the final output. Thus

FIGURE 7. Comparison of different methods with different SNR values on
the CWRU dataset.

fully-connected layers are slightly different in Backbone and

the proposed whole network framework (Backbone + AM).

We will compare the effects of each part in the Ablation study

section.

The comparison of the proposed method with different

batch sizes under different SNRs is shown in Table 3. As seen

from the table, when the SNR of signals is below −6 dB,

the classification accuracy of AAnNet with batch size 128 is

the highest. When the SNR is between −4 dB and 0 dB,

the accuracy with batch size 64 is the highest. When the SNR

is above 2 dB, the accuracy with all batch sizes is almost the

same. For each batch size, the proposed AAnNet outperforms

the Backbone, providing that the attention mechanism could

improve the classification accuracy. As for the Backbone,

when the batch size is 256, the classification accuracy is

lowest compared with the batch size of 128 and 64, while the

classification accuracywith the batch size of 128 is almost the

same as with the batch size of 64. One explanation is that a

larger batch size tends to converge to sharp minimizers in the

training process, which leads to lower accuracy [54]. How-

ever, employing a relatively larger batch size would improve

the training speed because the number of iteration in each

epoch decreases, which can make full use of graphics card

with large memory. We choose the batch size of 128 for the

subsequent experiments as the trade-off between the accuracy

and training time.

The comparison of different methods with different SNR

values trained on the CWRU dataset is shown in Fig.7.

As shown in the figure, the proposed AAnNet and the back-

bone part of the AAnNet achieve the highest accuracy among

all other baseline methods. The accuracy of Backbone is up

to 16.85 percentage higher than the baseline model TICNN,

and the accuracy of AAnNet is up to 38.37 percent higher

than baseline model TICNN with very low variance, which

indicates that the proposed method significantly outperforms

other baseline methods under high noise conditions.

The accuracy of SVM is 98.07% when the SNR is 10 but

drops quickly when the noise increases. When the SNR is

below −2 dB, the classification results of SVM are no longer

valid. The accuracy of GRU without random sampling and
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TABLE 2. Description of the CWRU dataset.

TABLE 3. Classification accuracy of the proposed AAnNet and the backbone part of the AAnNet with different batch sizes and SNR values.

CNN part is the lowest among the neural network-based

methods. In contrast, the performance of the Backbone with

the random sampling and enhanced CNN feature extractor

is better than the original GRU with the accuracy up to

38.66 percent higher. The random sampling and enhanced

CNN feature extractor could automatically select the latent

features from the raw signal without manual selection and

improve the anti-noise performance. Then the processed

features by the CNN part could be used more efficiently

by the GRU with higher accuracy. Moreover, by employ-

ing the attention mechanism and the subsequent DNN lay-

ers, the classification accuracy of AAnNet is signification

improved, and the accuracy variance is very small, the result

remains highly consistent. This competent result proves that

the proposed framework is effective in bearing fault diagnosis

under high noise conditions.

2) ABLATION STUDY

In order to validate the enhancement schemes used in the

proposed methods, we conducted experiments on several

models with different structures to verify and select the

optimal model. The comparison results are shown in Fig.8,

where Backbone stands for the backbone part of the AAnNet

as described before, Backbone(NoRS) stands for the back-

bone part without random sampling in the input layer, Back-

bone(ReLU) stands for the backbone part that uses ReLU

as the activation function in the CNN layer, Backbone(One

CNN) stands for the backbone part that only uses one CNN

layer as the feature extraction part, Backbone+AM stands

for the network with all parts, i.e., the random sampling part,

the backbone part, and the attention mechanism part.

FIGURE 8. Comparison of different structures with different SNR values
on the CWRU dataset.

As shown in Fig.8, when there is no random sampling

in the input layer, the classification accuracy drops quickly

when the noise rises. The accuracy of the model decreases

up to 35.38 percent compared to the backbone part. This

proves that random sampling can effectively improve the

noise-robust performance of the network. When there is only

one CNN layer before the GRU part, the accuracy decreases

up to 15.03 percentage points compared to the backbone part.

It is worth noting that Backbone(One CNN) has nearly the

same performance as the TICNN when the SNR is below

−6 dB and outperforms the TICNNwhen the SNR is between

−4 dB and 2 dB. When using the commonly used ReLU

activation function in the feature extractor, i.e., the CNN

part, the accuracy decreases up to 7.96 percentage points and

has lower variance compared to the ELU version, i.e., the

Backbone. This proves that ELU has better performance than
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the ReLU, especially under high noise conditions. When

using the proposed AAnNet, the result achieves the highest

accuracy, which is up to 21.52 percentage points compared to

the backbone part and the lowest variance compared to other

structures, providing that this framework is suitable for the

bearing fault classification task, especially under high noise

conditions.

3) NETWORKS VISUALIZATIONS

To better understand the intrinsic characteristics of the neural

network, we demonstrate the kernel weight distribution of the

proposed neural network. The feature extraction layers based

on CNN play an important role in the proposed model, which

can automatically extract features from the signal. Each con-

volution kernel in CNN is equivalent to a filter, and the weight

of the convolution kernel is equivalent to the parameter of the

filter. Therefore, figuring out the kernel weight distribution

of a trained network is very important for understanding how

the neural network works. Because the kernel size in the

convolutional layer is 128×1, so we can visualize each kernel

by plotting the kernel weight. To make it more clear to show

how each kernel works, we demonstrate the kernel weight of

the CNN part in frequency form, using the power spectrum.

Note that the kernel weights are the internal parameters of the

neural network, not the features extracted from the input.

As shown in Fig.9, each subgraph represents the kernel

weight spectrum of a convolution kernel in the convolutional

layer. Since the frequency value in each subgraph does not

have actual meaning, we only show the curve in the graph and

hide the coordinate axis to illustrate the frequency distribution

differences among convolution kernels more clearly. Specif-

ically, there are 64 convolution kernels in the first convolu-

tional layer, and all of them are included in Fig.9(a), whereas

only part of the kernels from the second convolutional layer

are included in Fig.9(b).

It can be seen that the convolution kernel weight dis-

tribution corresponding to different convolutional layers is

different. In the first layer, the filters pay more attention

to multiple frequency bands, and each spectrum looks like

the FFT spectrum of bearing fault signal, which composes

of unique signal frequency and uniformly distributed noise

spectrum, as shown in Fig.5. Therefore, the first layer can

be seen as a transform from the time domain to the feature

domain of the signal, somehow like the way FFT works.

In the second layer, the spectrum is more sparse with less

characteristic frequency. Each kernel is only interested in

some particular frequency and can be regarded as a specific

filter for the signal. Besides, the noise spectrum in the second

layer is suppressed compared to the first layer, indicating

that the effect of noise has been reduced in the second layer

after the first layer’s feature extraction. Therefore, the second

convolutional layer can be regarded as a feature selector in the

feature domain. By visualizing the kernel weight distribution

of the convolutional layers, we can see that the CNN part

has good effects on feature selection and noise suppression.

Besides, the parameters of convolutional layers are automat-

FIGURE 9. Visualization of kernel weights of 1st and 2nd convolutional
layers by power spectrum. Each subgraph in (a) and (b) represents the
power spectrum of the kernel weight in the respective convolutional layer.

ically learned by the network, which does not require expert

knowledge for complex filtering and feature selection design.

To better understand how the neural networks process

the raw signal, we visualize the process of bearing fault

signals been coding and processing by the neural network

via t-distributed stochastic neighbor embedding (t-SNE)

[55]. The t-SNE is a common method for visualizing high-

dimensional data. In this study, we first use the principal

component analysis (PCA) to reduce the high-dimensional

features into 100 dimensions to speed up the subsequent

calculation. Then the t-SNE algorithm is adopted to map the

100 dimensions features to 2 dimensions to demonstrate the

relationship between each feature. We use the bearing signals

of −4 dB SNR as the input of the proposed network, then

use t-SNE to visualize the output of the neural network layer

by layer, as shown in Fig.10. There are 10 different classes

of data named C1 to C10 in figure with different colors,

respectively.

As shown in Fig.10(a), the raw signal is almost insepara-

ble in the feature space. In contrast, the output features of

each layer become more and more separable as the hierar-

chical goes deeper. This means that the proposed network

has an excellent ability to extract useful features from the

raw signal that could distinguish different types of bearing

faults under noisy conditions. It is obvious that after pro-

cessed by the GRU layers, the features are well separated,

whereas just similar features are aggregated after the CNN

layers. This proves that GRU works as the decoder or the

classifier to do the feature classification task, whereas the

CNN works as the encoder to extract and encode the fea-

tures from the raw signals. Furthermore, by applying the

attention mechanism and DNN after the GRU part, the out-

put features become more separable and stable, as shown

in Fig.10(e,h).

It is worth noting that similar classes are first aggregated

and then separated, as shown in Fig.10(b,c,d,e). This indicates

the network firstly puts inputs with similar characteristics

together and then separates them step by step. Similar to

human operation, it is a classification method from large to

small, from whole to part, which could relatively reduce the

difficulty of classification. By visualizing the workflow of

the neural network layer by layer, it would be helpful to

understand how the neural network works.
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FIGURE 10. Feature visualization of neural network layer by layer via t-SNE at −4 dB SNR.

D. CASE STUDY II: CWRU DATA UNDER VARYING LOAD

CONDITIONS

In order to verify the domain adaptive ability of the proposed

method under varying load conditions, we trained eachmodel

with one load condition and tested with other load conditions.

There are 3 load conditions in the CWRU dataset, which are

1 hp, 2 hp, and 3 hp.We did not add noise to the data nor using

the manually selected features in this study. In the original

CWRU dataset, there are fewer data in 1 hp condition than

in other conditions, and we do not segment the signal with

overlapping nor using other data augment methods. Thus the

final data under 1 hp condition is less than in other conditions.

The training data and test data are randomly selected with

the ratio of 8:2. A detailed description of the data is shown

in Table.2.

The comparison result is shown in Fig.11. We conducted

6 different experiments to cover all situations with domain

adaptation under three loads conditions. The 1 → 2 stands for

these models are trained on 1 hp load condition and tested on

2 hp load condition. The AVG stands for the average accuracy

of each model. As shown in the figure, the SVM, whose aver-

age accuracy is 36.61%, has the worst performance among

these methods, just like it in the noise case study. The baseline

model TICNN, whose average accuracy is 52.87%, unlike it

in the noise case study, performs worse than another baseline

model WDCNN.

The proposed Backbone has the average accuracy

of 61.68% that outperforms all other methods in every

load domain adaptation scenarios providing the proposed

method has good domain adaptive ability under varying

load conditions. The Backbone with attention mechanism

performs worse than Backbone, with an average accuracy

FIGURE 11. Comparison of different models with different loads on the
CWRU dataset.

of 56.26%, even worse than the baseline model WDCNN

with an average accuracy of 56.88%. It is interesting that

Backbone+AM has the best performance against noise inter-

ference but performs worse in load domain adaptation. In the

noise case study, because the proposed random sampling and

the enhanced CNN could already have a strong enough anti-

noise ability, then the intrinsic characteristics of the signal

can be relatively well extracted from the raw signal, so the

attention mechanism can better combine high-dimensional

information and get a good classification accuracy. But in

the load domain adaptation mission, it may be that after

the attention mechanism has been trained under one load

VOLUME 8, 2020 74803



G. Jin et al.: AAnNet for Bearing Fault Diagnosis Under Noise and Varying Load Conditions

FIGURE 12. Test rig of the experiment.

TABLE 4. Specification of the test bearing.

condition, its internal attention weights are fixed, which may

not be suitable for another load condition, thus degenerates

the domain adaptation ability under varying load conditions.

Although employing attention mechanism does not bring

improvement, the proposed method still has the best domain

adaptive ability than other baseline methods.

E. CASE STUDY III: EXPERIMENT DATA UNDER NOISY

ENVIRONMENT

In order to verify the universality and generality of the pro-

posed method, we conducted another bearing fault diagno-

sis experiment on the second dataset. The second dataset

is from our bearing fault diagnosis experimental platform

QPZZ-II . As shown in Fig.12, the test rig is mainly con-

sisting of a motor, some couplings, and a load mechanism

with the testing bearing. The vibration signal is collected by

the accelerometer with the sample rate of 20000 Hz under

loading conditions. The average motor speed is 1487 rpm.

We use the signals collected from the accelerometer installed

at 12 o’clock (directly in the load zone) in the following

experiments. The test bearing installed inside the load mech-

anism at the end is the cylindrical roller bearing (N205EM

HRB). The specification of the bearing is shown in Table 4.

The test bearings have four types of health conditions: (1) nor-

mal condition; (2) ball fault; (3) inner race fault; and (4) outer

race fault. The fault conditions of the test bearings are gener-

ated by electro-discharge machining. There are one normal

condition and three types of fault conditions, totally four

different types of data.

By using the preprocessing procedure aforementioned,

we added different levels of AWGN to the signals collected

from the experimental platform to verify the performance of

the proposed algorithm, which is similar to the method of

generating different levels of noise in the case study I. The

outer race fault signal, the 0 dB SNR Gaussian-noise-added

signal, and the corresponding spectra are shown in Fig.13.

It can be seen that, similar to the CWRU data, the noise spec-

FIGURE 13. Visualization of original and 0 dB SNR noise-added signals of
outer race fault from the experiment dataset.

TABLE 5. Description of the experiment bearing dataset.

trum is superimposed on the original spectrum with uniform

distribution. And the noised data is more difficult to recognize

in the time domain by a human compared with the original

data. The length of each segment is 807, according to the

motor speed and the sampling rate of the accelerometer. Each

segment has no overlapping with others. The data is randomly

permuted and divided into training data and test data with the

ratio of 8:2. There are 973 samples in each category, of which

778 are training samples, and the remaining 195 are test

samples. Details are shown in Table 5. Same as the CWRU

experiment, the neural network is trained with the training

data without noise added and evaluated with the noise-added

test data.

1) DIAGNOSIS RESULTS AND ANALYSIS

The classification result of the proposed method under differ-

ent SNRs is shown in Fig.14, where Backbone+AM stands

for the AAnNet with attention mechanism, Backbone stands

for the backbone part of the AAnNet that without attention

mechanism.

From the figure, we can see that the network-based meth-

ods maintain high generality under different levels of noise

compared with the SVM which is no longer valid when the

SNR value is below−4 dB. The accuracy of GRU is similar to

the TICNN. The proposed method significantly outperforms

other methods under high noise conditions with low variance.

The accuracy of Backbone is up to 19.72 percent higher than

the baseline TICNN. Notably, the Backbone outperformed

the Backbone with the attention mechanism that achieves the
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FIGURE 14. Comparison of different methods with different SNR values
on the experiment dataset.

FIGURE 15. Comparison of different structures with different SNR values
on the experiment dataset.

highest score in the CWRU dataset. We will further discuss

the attention mechanism in Section IV-E.3.

2) ABLATION STUDY

We also conducted experiments with different structures to

verify the proposed schemes on the experiment dataset. The

comparison results are shown in Fig.15, where Backbone

stands for the backbone part of the AAnNet as described

before, Backbone+AM stands for the network with all parts,

i.e., the random sampling part, the backbone part, and the

attention mechanism part. Backbone(ReLU) stands for the

backbone part that uses ReLU as the activation function in

the CNN layer, Backbone(One CNN) stands for the backbone

part that only uses one CNN layer as the feature extraction

part, Backbone(NoRS) stands for the backbone part without

random sampling in the input layer.

As shown in Fig.15, when there is no random sampling in

the input layer, the classification accuracy begins to decrease

quickly when the level of noise rises; and has the lowest

accuracy when SNR is−10 dB. This proves that random sam-

pling can effectively improve the noise-robust performance

of the network. When there is only one CNN layer before

the GRU part, the accuracy decreases up to 12.05 percentage

points compared to the backbone part. The performance of

this model is the lowest when SNR above−8 dB.When using

the commonly used ReLU activation function in the feature

extractor, the accuracy decreases up to 3.85 percentage points

compared to the ELU version, providing that ELU is better

FIGURE 16. Comparison of the proposed method with or without
attention mechanism with different SNR values on the 4 class CWRU
dataset.

than ReLU in the bearing fault classification. When using the

Backbone with the attention mechanism, the result accuracy

decreases up to 8.85 percentage points compared to the Back-

bone.

3) DISCUSSION ON THE ATTENTION MECHANISM

Although the proposed model with the attention mechanism

has achieved excellent results in the CWRU experiment under

noise conditions, it does not performwell on the experimental

dataset. One possibility is that the attentionmechanismworks

less efficiently when the number of classes is small. There are

10 classes in the CWRUdataset, while there are only 4 classes

in the experiment dataset.

To verify the conjecture, we conduct another experiment

that only including different fault types of data from the

CWRU dataset, totally 4 classes. This verification dataset

includes the (1) normal condition; (2) inner race fault; (3) ball

fault; and (4) outer race fault. To be specific, each fault type

only contains data with fault diameters of 7 mils. There are

289 samples in each category, of which 231 are training data,

and the remaining 58 are test samples. The classification

results of attention mechanism based method and the method

without attention mechanism are shown in Fig.16.

As shown in Fig.16, when there are only 4 classes from the

CWRU dataset, the accuracy of Backbone is up to 2.84 per-

cent higher compared with the Backbone+AM, which can

prove the conjecture described above. The attention mech-

anism works less efficiently when there are fewer classes.

The classification difficulty decreases when the number of

classes is small, which would cause overfitting that makes

the attention mechanism less efficient. It would be harder

to calculate the appropriate weights in the attention weight

because there are less data when there are fewer classes.

Therefore, the appropriate network structure should be cho-

sen according to the actual task and the complexity of the

task, in order to make full use of the neural network. In the

bearing fault diagnosis, it may be less efficient using the

attention mechanism combined with GRU in the load domain

adaptation tasks and the noise conditions when the number of

the categories is small.
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V. CONCLUSION

In this paper, we proposed an end-to-end neural network

framework that combined the advantages of different struc-

tures of neural networks to classify the bearing fault signals

under heavy noise and varying load conditions. The exper-

iments on the CWRU dataset and our experiment dataset

proved that the proposed neural network framework achieved

state-of-the-art results under heavy noise or varying load

conditions. Furthermore, we have found through experiments

that the attention mechanism combined with GRU is more

suitable when the number of categories is large, whereas

less improvement is observed when the number of categories

is small or in the load domain adaption task. Additionally,

we explored the intrinsic characteristics of the neural network

by visualizing the kernel weight distribution and activation

values of the proposed method, which helps to understand

how neural networks work.

In future work, we will further study the characteristics of

the attention mechanism found in this paper. Since domain

adaptation and transfer learning are promising ways to diag-

nose bearing fault, we will focus on theses methods to handle

more difficult tasks like noise and varying load conditions

occurring at the same time as well as the imbalanced training

data problem.
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