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Abstract— This work considers a mobile service robot which
uses an appearance-based representation of its workplace as a
map, where the current view and the map are used to estimate
the current position in the environment. Due to the nature of
real-world environments such as houses and offices, where the
appearance keeps changing, the internal representation may
become out of date after some time. To solve this problem
the robot needs to be able to adapt its internal representation
continually to the changes in the environment. This paper
presents a method for creating an adaptive map for long-term
appearance-based localization of a mobile robot using long-
term and short-term memory concepts, with omni-directional
vision as the external sensor.

I. INTRODUCTION

For a mobile robot to be able to work with people
in their everyday environment it is essential to have the
ability to localize itself using its internal representation
of the environment. At the same time the robot needs to
maintain this representation in response to the dynamics of
the environment. Most of the work in mobile robot mapping
considers only how to acquire the initial representation of
the environment, but there has been very little work on how
to update the map during long-term operation in changing
environments.

The existing methods in mobile robot localization can
generally be classified into two types: geometric localization,
which aims to estimate and track the absolute position of a
robot inside the map [12], and topological localization, which
uses an appearance-based model of the environment [7]. In
the latter approach, the map represents the environment as a
graph where the nodes of this graph correspond to places in
the real environment.

Topological localization has gained increasing attention in
the last few years, especially the methods based on vision
sensors. Recently a special type of camera, omnidirectional
cameras, has become more popular. The omnidirectional
camera with its 360o field of view has various advantages
over a standard camera. The robot can sense the whole
surrounding environment in one snapshot regardless of its
heading. Places can be recognized using fewer images and
landmarks can be tracked over long distances.

Most of the existing work on visual localization and
mapping assumes that the environment where the robot

works is static (e.g., [4], [5], [15]). However, this assumption
does not hold for many real environments. For example, the
appearance of a room in a house is not static over time: new
objects are sometimes added, existing objects like pictures or
carpets may be changed or moved, and old objects may be
removed. Some of these changes occur very often, such as
moving chairs and cushions, etc. These transient variations
need to be excluded from the long-term representation of the
appearance of the environment.

In this work we use local features extracted from
panoramic images to represent the appearance of a node in a
topological map. Adopting concepts of short-term and long-
term memory inspired by biological systems [1], our method
updates the group of feature points for the reference image
of a particular place. Thus the reference images are adapted
to represent the information about the new appearance of the
location (note that adaptation of the topology in the map is
not considered in this work).

The rest of the paper is structured as follows. Section II
discusses previous work on appearance-based mapping and
localization. Section III describes our method for adaptive
representation of the nodes in a topological map. Section
IV presents the experiments and results obtained. Finally we
draw conclusions and discuss future work in section V.

II. BACKGROUND

An early approach for appearance-based mapping and
localization was published in [15] where the operational area
of the robot is represented as a graph. The nodes in this
graph represent distinctive places and the edges represent
the transitions between places. This approach consists of
two stages: off-line and on-line. In the off-line stage the
robot is driven through its operational area to learn a model
of the environment, by taking a sequence of images in
certain places and then creating a topological map from these
images. In the on-line stage the robot uses the map to find
its current position, i.e. the node which is most similar to
the current view.

Many researches use various methods to create the map
automatically without the need to label the images. Recently,
Zivkovic et al. [18] formalized the topological mapping
problem as an approximate solution for a graph cut problem.



Valgren et al. [16] defined the problem as incremental
spectral clustering. Goedeme et al. [4] applied Dempster-
Shafer probabilistic theory to topological map construction
in environments with self-similarities.

During the localization stage the robot has to find the
node with the most similar appearance to the current view.
To solve this problem probabilistic methods such as Monte
Carlo Localization [14] and Hidden Markov Models [6] can
be used. These methods are based on a recursive Bayesian
filter, which estimates the current position of the robot in the
map given the observations. The probability of the current
state xt given the sequence of observations Zt = {z1, ..., zt}
up to time t is

P (xt|Zt) =
P (zt|xt)P (xt|Zt−1)

P (zt|Zt−1)
, (1)

where the sensor model P (zt|xt) is calculated based on the
similarity between the current view and the nodes in the map.

Two different approaches to measure the similarity be-
tween images have been presented in the literature: global
and local methods. The global methods capture global
properties of the image using approaches based on colour
histograms [5], principal component analysis (PCA) [17],
Fourier transform [10], etc. The local methods extract local
properties from the image and produce a group of land-
mark features. Local feature including SIFT [8], SURF [2],
MSER [9], etc., are used to find the similarity between
images. The local methods have been shown to be more
reliable and robust to illumination and viewpoint changes,
thanks to the feature descriptors that are built using a
local region around selected feature points. Each feature is
described by a high-dimensional vector representation, which
has high invariance to image translation, scaling and rotation,
and partial invariance to illumination changes and affine
projection.

Using local image feature descriptors, the similarity be-
tween two images can be measured by finding the correspon-
dences between the features in the two images. This can be
done by finding the closest feature in the feature descriptor
space. However, the method can be time consuming if the
number of images in the map is large and the search is
done linearly. To speed up the matching process, a Kd-Tree
of the feature descriptors from all the images in the map
could be used. Using a text retrieval approach, Sivic and
Zisserman [13] presented a very fast retrieval system using
a visual vocabulary. Nister and Stewenius [11] extended
the ability of the system by using hierarchical K-means
clustering to improve the performance, so that Fraundorfer
et al. [3] were able to implement global localisation in real-
time.

III. THE METHOD

In the presented topological localization methods, the map
could become out-of-date after some time in a changing
environment. A naive solution to this problem would be
simply to replace the image representation for each node in
the topological map from time to time, in order to reflect the

changed appearance of the corresponding location. Provided
that the robot is correctly localized, this approach would
enable the robot to remove out-of-date information from the
map. However, it could also remove useful features due to
temporary occlusions, and could lead to catastrophic results
in the case of localization errors. A better solution would be
to update the image representation of a node incrementally,
by gradually adding information about new stable features
in the environment, while removing information about fea-
tures that no longer exist. In our approach, each node is
represented by a group of features (using SURF in these
experiments, though other features could be used). This
group of features is updated over time by adding persistent
new features and removing older ones that are no longer
used.

The question here is how the system should choose which
features to add and which features to remove from the stored
image representation for a particular node? To answer this
question we will adopt an information processing model
(see Fig. 1) based on the multi-store model of human
memory proposed by Atkinson and Shiffrin [1]. This model,
which forms the basis of modern memory theories, divides
human memory into three stores:

• sensory memory,
• short-term memory (STM),
• long-term memory (LTM).

The sensory memory contains information perceived by
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Fig. 1. The Information Processing Model.



the senses, and selective attention determines what infor-
mation moves from sensory memory to short-term memory.
Through the process of rehearsal, information in STM can
be committed to LTM to be retained for longer periods of
time. In return, the knowledge stored in LTM affects our
perception of the world, and influences what information we
attend to in the environment.

Applying these concepts to our approach for topological
mapping, the sensory memory will contain the features
extracted from the current image. Then an attentional mech-
anism selects which information to move to STM, which
is used as an intermediate store where new observations
are kept for a short time. Over this time the system uses
a rehearsal mechanism to select features that are more stable
for transfer to LTM. In order to limit the overall storage
requirements and adapt to changes in the environment, the
system also contains a recall mechanism that forgets unused
feature points in LTM by removing these features from the
node. LTM is used in turn by the attentional mechanism for
selecting the new sensory information to update the map.

A. Recall, Rehearsal, Transfer

We assume that an initial map of the whole environment
has already been created by the robot, e.g. using an existing
algorithm for topological mapping of static environments.
(In this work we selected the places by hand.) We model
the world as a set of discrete places. In our experiments,
omni-directional vision is used to provide the features for
localization and mapping. Each place has two memory
stores: STM, which is a temporary stage, and LTM, which
provides the reference views in the map used for self-
localization. We assume that the robot is able to self-localize
by matching features extracted from the current view to the
stored reference views, though the self-localization does not
need to be perfect (we measure the effects of noise and self-
localization error in our experiments). The purpose of our
algorithm presented here is to maintain up-to-date reference
views for the nodes in the map, using recall and rehearsal
concepts inspired by human memory.

To initialise the map, the image data from the robot’s first
tour of the environment is used. One panoramic image is
selected to represent each node in the map. For each node,
local features are extracted using the SURF algorithm [2],
resulting in approximately 500 features per node in our

Algorithm 1 Update the reference view.
Definitions:
CrrNode: The reference view of the current node.
CrrView: The current view for the current node.
CrrSTM: The current STM for the current node.
STMlng: The maximum number of states in the STM.
LTMlng: The maximum number of states in the LTM.
newFP: The difference between the CrrView and CrrNode.
——————————————–
for (every visit to the node ) {

newFP = recall( CrrNode , CurrView , LTMlng )
rehearse( CrrSTM, newFP , STMlng )

}
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Fig. 2. The rehearsal stage in the STM.

Algorithm 2 The rehearsal stage in the STM.
for (every feature in CrrSTM ){

if (feature in newFP){
Move the feature to the next state.
if (feature state > STMlng){

Move the feature to the CrrNode.
Remove the feature from CrrSTM.

}
else if (feature in the first state){

Remove the feature from CrrSTM.
else

Reset the feature to the first state.
}

}
}
for (every feature in newFP ){

if (feature was not in CrrSTM){
Add the feature to CrrSTM in the first state.

}
}

experiments. These features are used directly to initialise
LTM, while STM for each node is initially assigned to be
empty.

Thereafter, every time the robot visits an existing node, the
following steps are carried out. Feature points are extracted
from the current view, using the SURF algorithm. Self-
localization is carried out by comparing the current features
to the reference features of each node (LTM) to estimate the
current node. In our case, we apply global localization by
place recognition, although any appropriate self-localization
algorithm could be applied, e.g. Markov localization. After
localization, the current features are used in the recall stage
for updating the LTM of the current node. Only new features
which do not match any feature in LTM are used in the
rehearsal stage. Algorithm 1 describes the two main stages;
(1) recall, where the difference in appearance between the
reference and current views is computed, and (2) rehearsal,
where this difference is used to update STM and commit
persistent new features of the location to LTM.

Algorithm 2 shows the rehearsal process for a stored
feature in STM, which is also represented as a finite state
machine in Fig. 2. This stage represents what Atkinson and
Schiffrin called rehearsal in their memory model (Fig. 1), i.e.
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Fig. 3. The recall stage in the LTM.

Algorithm 3 The recall stage in the LTM.
newFP = []
for (every feature in CrrNode){

if (feature in CrrView){
Rest the feature to the first state.

else
Move the feature to the next state.

}
if (feature state > LTMlng){

Remove the feature from CrrNode.
}

}
for (every feature in CrrView ){

if (feature not in CrrNode){
Add the feature to newFP.

}
}
return newFP

the process of continually recalling information into the STM
in order to memorise it. In order to transfer a feature point
from STM to LTM the feature has to be seen frequently
in that node. Features enter STM from sensory memory
and must progress through several intermediate states (V1

to Vn) before transfer to LTM. Every time the robot visits
the node and finds the feature (“hit”), the state of the feature
is moved closer to LTM. However if the feature is missing
from the current view (“miss”), it is returned to the first
state (V1) or forgotten if it is already there. This policy
means that spurious features should be quickly forgotten,
while persistent features will be transferred to LTM.

Algorithm 3 shows the recall process for a stored feature
in LTM, which is also represented as finite state machine
in Fig. 3. This process first involves updating the LTM by
matching the reference view to the current view. In order to
remain in the LTM, a feature has to be seen occasionally in
that node. In contrast to rehearsal, features enter LTM from
STM and must progress through several intermediate states
(S1 to Sm) before being forgotten. Stored features which
have been seen in the current view are reset to the first state
(S1), while the state of features which have not been seen is
progressed, and a feature point that passes through all states
without a “hit” is forgotten. Finally, recall returns the list of
new features that were not already present in the LTM.

IV. EXPERIMENTS AND RESULTS

To investigate our method of updating the reference views
in a topological map, we conducted two experiments. In
the first experiment we tested the system for a single node
represented by a view of an office room. In the second exper-
iment we used an image data set recorded over approximately
9 weeks from eight places in the students’ restaurant of
the University of Lincoln. Our experimental platform is an
ActivMedia P3-AT robot equipped with a GigE progressive
camera (Jai TMC-4100GE, 4.2 megapixels) with a curved
mirror from 0-360.com. Using the camera with the mirror we
obtain high-resolution omnidirectional images. The images
in this shape have high order distortions which can affect the
scale and rotation invariance of feature matching. To reduce
these effects and to reduce the complexity of the required
feature descriptor, the images are unwrapped to panoramic
images using a simple transformation. The transformation of
the output coordinates (xp,yp) to coordinates of the omni-
directional image (xo,yo) can be written as

xo = cos (
xp

2πRO
+ offset) ∗ (RI + yp) + centerX , (2)

yo = sin (
xp

2πRO
+ offset) ∗ (RI + yp) + centerY , (3)

where RO, RI are radii of the outer and inner border of
the omni-directional image. The parameters centerX and
centerY specify the circle center. The last parameter offset
defines the origin of the panoramic image.

For local feature extraction we use the SURF algorithm.
This algorithm extracts local features from the scale-space
of the image based on the Hessian matrix and approximates
the second order Gaussian derivatives with box filters. A
fast non-maximum suppression algorithm is also used. The
resulting algorithm has a good performance in the extraction
process and a high accuracy. For more details, see [2].

After the extraction stage, the algorithm creates vector
descriptors for the extracted features using information from
the local surrounding area. This algorithm can create several
types of descriptors. In our experiments we use the U-SURF
descriptor (rotation invariance is removed) with descriptor
length 64, taking into account that the robot is moving on a
plane and that rotation invariance is not required for place
recognition.

To find the similarity score between two groups of feature
points, we use the number of corresponding features Mij

between the two groups based on a nearest neighbour (NN)
matching schema using the value 0.7 as a threshold between
the nearest and second-nearest neighbour, following [2]. The
similarity score between group Gi and another group Gj can
be defined as

Sij =
Mij

Ki
∗ 100, (4)

where Ki is the number of features in Gi.

A. Long-term update of a single node

To illustrate how the changing appearance of the en-
vironment affects the similarity score, we carried out an
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Fig. 4. The similarity score between the reference view and the current
view of the node during 105 visits using the static and the adaptive reference
view.

experiment where images were recorded over time at a
single location. Objects in the environment were manipulated
manually during this experiment. We made three types of
changes. One is the temporary changes such a having a
person standing in the node during the visit or moving chairs,
etc. A second one is to add new objects to become part of
the appearance of this node or to change the arrangement of
some objects in the node. The third type is when we removed
objects from the node permanently.

Fig. 4 shows how the similarity score between the refer-
ence view and the current view of the node changed during
105 visits to the node, using the static and the adaptive
reference view. In this experiment the STM had 4 stages and
the LTM had 5 stages. As we can see the similarity score
is changing from visit to visit due to two factors. The first
one is occlusion, which happens when a part of the image
is blocked by a person near by, and the second factor is the
changing appearance.

In the static reference view scenario, the two factors have
an impact on the similarity score, which drops below 35% in
some visits (e.g. visit 57). But when the adaptive reference
view is used the effect of the second factor is reduced, which
gives a high similarity score when the visit is occlusion free
and a good similarity score in the cases when an occlusion
happened.

B. Long-term topological localization

In the second experiment we created a topological ap-
pearance map of the students’ restaurant in the University
of Lincoln by taking eight omni-directional images from
eight different places to form the reference views for the
nodes. This restaurant is used for various student activities
and between these events the place is generally returned to
its normal appearance by the restaurant staff but with some
differences.

Over a period of approximately 9 weeks we visited the
eight locations 18 times and recorded images for the places
in the map. Fig. 5 shows two panoramic images for the
same place recorded at different times. Using 144 images
generated from these visits we tested our method for adapting

TABLE I
LONG-TERM TOPOLOGICAL LOCALIZATION TEST.

Correct global localization%
Test Static Map Adaptive Map

Mean Std Mean Std
No noise or occlusion 95.83 - 98.61 -
50% occlusion, No noise 93.42 1.25 98.41 0.83
Added noise, No occlusion 89.79 1.89 97.25 0.95
25% occlusion + noise 88.02 1.89 96.21 1.73
50% occlusion + noise 85.60 2.15 93.75 2.41

the reference views inside the map by using a Monte Carlo
simulation technique. We used a global localization method
based on place recognition using the similarity between the
current and the reference views (winner-takes-all). Local-
ization failures were an integral part of this experiment,
i.e., in the case of incorrect place recognition the image
representation for the wrong node would be updated. Monte
Carlo simulation was used to simulate occlusion and added
noise due to illumination changes, etc. in the current view.
100 trials were used for every test to evaluate the localization
performance. We carried out five different tests using the
restaurant dataset with 4 stages in the LTM and 2 stages in
the STM. Results from these tests are illustrated in Table I.

In the first one we tested the localization performance for
the 144 images without any simulated occlusion or added
noise. In the second test we simulated occlusion by removing
50% of randomly chosen extracted features from the current
view before each of the 144 localization attempts. In the
third experiment we tested the localization performance
with noise in the matching schema by adding Gaussian
noise (µ=0,σ=0.1) to the distance threshold between the
nearest and second nearest neighbour. By adding this noise
some of the true matches will be missed and some of the
false matches will be counted. In the fourth experiment we
combined the two factors: 25% of randomly chosen extracted
features were removed from the current view before the
localization stage then the Gaussian noise was also added
into the matching schema. In the last one, 50% of randomly
chosen extracted features were removed then the Gaussian
noise was added.

The observed performance differences between static and
adaptive mapping were tested using Student’s t-test and
shown to be statistically significant (p < 0.01). The results
show that the adaptive map yields better localization perfor-
mance due to its better representation of the real appearance
of the environment. In this experiment, each node contained
an average of 395.3±64.5 features in LTM and 416.4±50.0
features in STM, meaning that the approach should scale well
to large environments.

V. CONCLUSIONS AND FUTURE WORKS

This paper introduced a complimentary component for
topological localization methods that use features extracted
from images to represent the appearance of the nodes in
the map. It updates the reference views of the nodes and
tracks the changing appearance of the environment, while



Fig. 5. Two panoramic views from the same place at different times.

the robot is working over long periods of time. To achieve
this we adopted short-term and long-term memory concepts
to adapt the reference views of the nodes in response to
the dynamics of the environment. To test our method, we
conducted two experiments. The first one was in an office
room where we manually changed the appearance of the
place. For the second experiment we used data recorded from
a real dynamic environment (a students’ restaurant) over 9
weeks. In both experiments the method gave improved results
over static mapping.

In this work, the number of the stages in LTM and STM
were determined empirically based on the recorded sensor
data. As a future work, the number of the stages could be
learned depending on the dynamics of the real environment.
The attention mechanism could be improved by adding real-
time tracking of features in the scene to filter out spurious
features due to noise or temporary occlusion. The adaptive
capability of the map could be further extended to the
topological level, by making the robot able to add or remove
nodes and links from the map.
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