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Abstract—This paper develops a novel control methodology for 

tracking control of robot manipulators based on a novel adaptive 
backstepping nonsingular fast terminal sliding mode control 
(ABNFTSMC). In this approach, a novel backstepping 
nonsingular fast terminal sliding mode controller (BNFTSMC) is 
developed based on an integration of integral nonsingular fast 
terminal sliding mode surface and a backstepping control 
strategy. The benefits of this approach are that the proposed 
controller can preserve the merits of the integral nonsingular fast 
terminal sliding mode control in terms of high robustness, fast 
transient response, and finite time convergence, and of 
backstepping control strategy in terms of globally asymptotic 
stability based on Lyapunov criterion. However, the major 
limitation of the proposed BNFTSMC is that its design procedure 
is dependent on the prior knowledge of the bound value of the 
disturbance and uncertainties. In order to overcome this 
limitation, an adaptive technique is employed to approximate the 
upper bound value; yielding an adaptive backstepping 
nonsingular fast terminal sliding mode control (ABNFTSMC) is 
recommended. The proposed controller is then applied for 
tracking control of a PUMA560 robot and compared with other 
state-of-the-art controllers, such as computed torque controller 
(CTC), PID controller, conventional PID-based sliding mode 
controller (PID-SMC), and nonsingular fast terminal sliding 
mode control (NFTSMC). The comparison results demonstrate 
the superior performance of the proposed approach.   
 

Index Terms—Control of robots, backstepping control, fault 
tolerant control, terminal sliding mode control. 

I. INTRODUCTION 
RACKING CONTROL of robot manipulators, which is 
required to provide high accuracy, stability and safety in 
some applications such as industrial robotics, surgical 

robotics, assistive robotics, in the presence of huge 
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uncertainties, disturbance and faults has been a critical issue in 
both academic and industrial applications [1-3]. How to 
improve the tracking performance and transient response for 
robot manipulators, particularly in the presence of external 
disturbance and possible actuation failures is still a challenge 
in the research community [4-6].    

In order to increase the tracking performance and reliability 
of the robot, fault tolerant control (FTC) strategies have been 
developed [7-9]. Generally, FTC approaches can be 
categorized into two classes: passive FTC (PFTC) and active 
FTC (AFTC). In AFTC, the control input is adapted according 
to the fault estimation feedback, which is obtained from a fault 
diagnosis observer [10-12]. This approach, therefore, requires 
a design of an additional observer, which will increase the 
computational burden of the system. In addition, due to the 
delay of the fault information feedback from the fault 
diagnosis observer, the fault compensational time of the 
system is delayed and consequently, the system may become 
unstable. In contrast, in PFTC approach, one robust controller 
is designed for both normal and fault operation without 
requiring any feedback from the fault diagnosis (FD) observer 
[13-14]. Since the PFTC does not need to wait for the fault 
information feedback, it can compensate the fault effects much 
faster. However, since the fault effects imposed on the PFTC 
system are heavier than that of the active approach, the PFTC 
requires a control technique with higher robustness. 

In the literature, several methodologies have been developed 
to improve the tracking performance of the robot manipulators 
in the presence of disturbance, uncertainties and faults. In the 
initial approaches, PID or PD controller [15-16], computed 
torque controller (CTC) [6], intelligent and learning control 
[17-20], optimal control [21-22] and robust control [23-25], 
etc., have been developed. Among them, robust control 
techniques have been shown to provide higher robustness and 
disturbance and fault rejection capability. Sliding mode control 
(SMC) is a well-known robust control technique and has been 
widely utilized in real applications due to its strong robustness 
against uncertainties and disturbance [26]. This great feature 
of SMC has been applied in the design of FTC systems [27-
29]. However, the traditional SMC still has four major 
drawbacks that limit its performance in real applications: 1) it 
does not provide a finite time convergence, 2) although it 
possesses a good transient response in normal operation, it is 
worst to tackle the fast variation effects of the disturbance 
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and/or faults, 3) it generates a big chattering in the system, and 
4) the design procedure requires a prior knowledge of the 
upper bound value of the uncertainties, disturbance and faults.   

Due to the benefits and limitations of the SMC, many great 
efforts have been spent on finding effective solutions to 
preserve the benefits and reduce or eliminate the drawbacks of 
the conventional SMC. First, in order to obtain a finite time 
convergence, terminal sliding mode control (TSMC) has been 
investigated [30-32]. However, the conventional TSMC has a 
drawback that provides a slow convergence speed and singular 
problem. In order to tackle the problems of SMC, fast terminal 
sliding mode control (FTSMC) [33-35] and nonsingular 
terminal sliding mode control (NTSMC) [36-40] have been 
developed separately. Unfortunately, the individual 
approaches based on FTSMC or NTSMC have just only 
solved one aspect and ignored the other problems of the 
conventional SMC. In order to obtain both fast finite time 
convergence and singular elimination, nonsingular fast 
terminal sliding mode control (NFTSMC) has been proposed 
[41-43].  Second, in order to enhance the transient response of 
the conventional SMC, integral sliding mode control (ISMC) 
or PID-based SMC (PID-SMC) has been developed [44-47]. 
The basic idea behind this approach is to mimic the property 
of the integral component in the PID controller to enhance the 
transient response of the system [48]. In order to obtain both 
fast transient response and finite time convergence, integral 
terminal sliding mode control (ITSMC), which combines the 
benefits of the ISMC and TSMC, have been developed [49-
50]. However, the conventional ITSMC used the conventional 
TSMC in the design, and hence the aforementioned 
weaknesses of the SMC were still present. Third, in order to 
eliminate the chattering, several approaches have been 
developed by using either boundary method [51-53] or 
disturbance observer [54-55] or high-order sliding mode 
control (HOSMC) [56-60]. Among them, HOSMC is preferred 
to be used in wide applications since it provides both higher 
tracking accuracy and chattering elimination. In summary, 
each drawback of the conventional SMC has been tackled by a 
corresponding suitable approach, however, there are no 
approaches in the literature that intended to design a single 
controller that considers all the drawbacks of SMC together 
and solve them simultaneously. That is, for the FTC system, 
the design of SMC needs to guarantee three major demands: 
fast transient response, finite time convergence and chattering 
elimination.  

Motivated by the above issues, this paper develops a PFTC 
to tackle the effects of the faults for uncertain robot 
manipulators using a novel adaptive backstepping nonsingular 
fast terminal sliding mode control (ABNFTSMC). Starting 
from the selection of an integral nonsingular fast terminal 
sliding surface (INFTS), the second-order dynamics model of 
the robot manipulators based on the position variable is 
transferred into a third-order dynamics model based on the 
selected sliding surface. In this way, the control output can be 
reconstructed such that it can provide a continuous control 

output like a manner to HOSMC. Since the proposed approach 
used the integral nonsingular fast terminal sliding mode 
control and the control output can be reconstructed in a similar 
manner to the HOSMC, it can preserve the merits of the 
ITSMC, NFTSMC and HOSMC simultaneously. Therefore the 
proposed approach will provide a finite time convergence 
without singular problem, fast transient response, high tracking 
precision and less chattering. In addition, the proposed design 
topology follows the design procedure of backstepping control 
technique [61-64], and thus the globally asymptotic stability of 
the system can be guaranteed based on the Lyapunov criterion. 
In summary, the main contributions of this paper are as 
follows: 

 A novel integral nonsingular fast terminal sliding 
mode surface is proposed. 

 A third-order dynamics model of the system is 
reconstructed based on the selected sliding surface. 

 A backstepping design procedure is employed to 
derive the control output of the third-order 
dynamics system so that it can achieve a finite time 
convergence, fast transient response, low steady 
state error and globally asymptotic stability. 

 In comparison with other state-of-the-art methods, 
such as CTC, PID, PID-SMC and conventional 
NFTSMC, the proposed approach provides a 
superior performance.  

The remainder of this paper is organized as follows. Section 
II introduces the problem. Section III presents the robust fault 
tolerant control based on an adaptive backstepping nonsingular 
fast terminal sliding mode control (ABNFTSMC). The 
performance of the controller is verified in Section IV. Section 
V provides conclusions.  
 
Remark 1: Beside the references cited and discussed above, 
there are several other approaches in the literature that were 
developed for fault tolerant control systems for different 
applications using different control techniques. For example, 
in [61-68], FTCs have been established using intelligent 
learning techniques such as neural network or fuzzy logic. 
However, the approaches require a huge computational burden 
due to the weight learning procedure of neural network or 
fuzzy logic. In [69], an adaptive FTC technique has been 
developed for uncertain nonlinear time delay systems. In [70], 
a prescribed performance FTC has been developed. In [71], a 
FTC scheme has been developed for uncertain linear system 
over networks with quantization, and so on. However, the 
focuses of these approaches are out of or far away from the 
scope of this paper. The focus of this paper is to develop a 
robust PFTC scheme for uncertain robot manipulators using an 
advanced robust sliding mode control. 

II. PROBLEM STATEMENT 

A. Problem statement 
Consider the robot dynamics described by [10, 42]: 
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where nq , nq  and nq   denotes the position, 

velocity and acceleration, respectively. n   stands for the 
actuator inputs. ( ) nxnM q   is the positive and definite 

inertia matrix. ( , ) nH q q   includes the Coriolis and 

centripetal forces. ( ) nF q   is the friction matrix. d  is a 

load disturbance matrix and ( ) nG q   is the vector of gravity 

terms. ( , , ) nq q    represents the fault components 

affecting on the system, ( ) n
ft T  

 
represents the time 

profile of the faults, and fT  is the time of occurrence of the 

faults. 
    The following standard property is satisfied for the robot 
dynamics (1):  
0 { ( )} { ( )} , 0m MM q M M q         (2) 

where   M M  and  m M  are the maximum and minimum 
eigenvalues of matrix M . 

The term ( )   is a diagonal matrix having the form below 

 1 2( ) ( ), ( ),..., ( )f f f n ft T diag t T t T t T         (3) 

where i  indicates the effects of fault on the ith state equation 
due to a fault function. 

The model of the fault function is introduced by [10, 42]: 
0
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where 0ia   represents the unknown fault evolution rate. The 
fault is called as incipient fault when the value of ia  is small. 
The fault becomes abrupt fault when the value of ia  is large.  

Rearranging the dynamics model (1), we have: 
 
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1 1
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Define 1x q  and 2x q  , the equation (5) can be 
transformed into a second-order state space model as follows: 

1 2
1

2 1 1 2

1

( ) ( , )

x x

x M x u f x x
y x
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
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  (6) 

where  1
1 2( , ) ( ) ( , ) ( )f x x M q H q q q G q     denotes the 

lumped known component and 
 1( ) ( ) ( ) ( , , )d fM q F q t T q q           denotes the 

lumped unknown component in the system dynamics.  
The objective of this paper is to design a control input u  

such that the system can provide high tracking performance 
despite the existence of the uncertainties, disturbance and the 
presence of faults. 

III. DESIGN OF ROBUST FAULT TOLERANT CONTROL BASED 
ON ADAPTIVE BACKSTEPPING NONSINGULAR FAST TERMINAL 

SLIDING MODE CONTROL  

A. Design of robust fault tolerant control based on 
backstepping nonsingular fast terminal sliding mode control 

In the design of sliding mode control, the selection of the 
sliding surface has a significant impact on the performance of 
the system. The sliding surface is chosen such that when it 
converges to zero, the desired performance of the system can 
be satisfied. Let 1 de x x   is the trajectory tracking error, 
where dx  denotes a desired trajectory. In order to obtain a fast 
transient response and finite time convergence without singular 
problem, an integral nonsingular fast terminal sliding mode 
(INFTSM) surface is selected as follows: 

 [ ] [ / ]
1 1 2

p qe k e k e      (7) 

where 1  is the sliding variable, 

 1 11 12 1, ,..., n n
nk diag k k k    and 

 2 21 22 2, ,..., n n
nk diag k k k    are positive definite 

matrices, respectively, p  and q  are positive odd numbers 
satisfying the relation 1 / 2p q   and /p q  .  

Remark 2: The proposed sliding surface (7) is proposed to 
combine the properties of the FTSMC [33] and NTSMC [36] 
such that the system can obtain fast finite time convergence 
without singular problem. In addition, the integral component 
is employed for the sliding surface (7) so that the system can 
possess the merits of the ITSMC, which increases the transient 
response and reduces the steady state error of the system. 
When the sliding surface (7) converges to zero, we have: 

[ ] [ / ]
1 2 0p qe k e k e   , where e  is the terminal attractor of 

the system. The defined finite time ct  that is taken to travel 
from   0re t   to   0r ce t t   is given by [40]: 
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where   denotes Gauss’ hypergeometric function. The 
interested readers can refer to [40] for more detail.  

The first and second derivative of the sliding surface can be 
computed as follows: 

[ ] [ / ]
1 1 2

p qe k e k e      (9) 
 / 11
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q
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From (6) and (9)-(10), the second-order state space model 
of the system dynamics based on the state variable can be 
transformed into a third-order state space model based on the 
selected sliding surface, as below: 
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Let 1
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be simplified as below: 
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In order to find an effective control input of the system (12), 
a backstepping design procedure is employed. The following 
change of coordinates is introduced. 

1 1( ) ( )t t   (13) 

2 2 1( ) ( )t t     (14) 

3 3 2( ) ( )t t     (15) 
where i ( 1, 2i  )  is the virtual control in the thi  step. 
 
Step 1: 

Differentiating 1  in (13) with respect to time, we have 

1 1 2 1        (16) 

Define a positive definite Lyapunov function 2
1 1

1
2

V  . 

Based on 1V , virtual control 1  can be chosen as 
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where 1  is a positive design parameter. Differentiating 1V  
with respect to time, we have 
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From (18), we can see that 2
1 1 1V     once 2 0  , and 

consequently, 1  will be asymptotically stable.  
Step 2: 

Differentiating 2  in (14) with respect to time, we have: 
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Consider the following Lyapunov function: 
2
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Based on (19), the virtual control input is chosen as 
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Differentiating the Lyapunov function 2V  with respect to 

time, we have 
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From (22), 2 2
2 1 1 2 2V         can be obtained once 

3 0   is satisfied. Consequently, the states 1  and 2  will be 
asymptotically stable. 
Step 3: 

Consider the following Lyapunov function 
2
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Differentiating 3V   with respect to time and combining with 
the results in (12) and (15), we have: 
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Hence, a backstepping nonsingular fast terminal sliding 
mode control is designed as 
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and 
3( ) ( ) ( )su t sign     (27) 

where  ( )d e
dt

     and   is selected such that    .   

is a positive small constant.  
Adding the proposed controller in (25)-(27) into (24), we 

obtain: 
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Then, 3 0V  , 3V  is negative  semidefinite, which implies that 

1( )t ,  2 ( )t  and  3 ( )t   will converge to zero in a finite 
time. Therefore, it can be concluded that the proposed 
backstepping nonsingular fast terminal sliding mode system is 
asymptotically stable despite the existing of uncertainties, 
disturbance and faults.    

B. Design of robust fault tolerant control based on adaptive 
backstepping nonsingular fast terminal sliding mode control  

In the proposed controller (25)-(27), the design procedure is 
based on the assumption that the upper bound value   of the 
unknown function   can be obtained in advance. However, 
this assumption is too conservative in practical engineering 
applications since it is difficult to estimate the bound value of 



 
 

the uncertainty, disturbance and fault parameters in advance. 
In order to resolve this limitation, a simple adaptive law is 
developed in this subsection, and an adaptive backstepping 
nonsingular fast terminal sliding mode control (ABNFTSMC) 
is proposed as a result. 

Steps 1 and 2 of the ABNFTSMC are designed as the same 
procedure as the BNFTSMC. However, in Step 3, an adaptive 
control law asu  is used to replace the control law su  in (27), 
which requires an upper bound value of the disturbance and 
faults. That is: 

 1
1( ) ( ) ( ) ( ) ( )n asu t e M x u t u t    (29) 

where ( )nu t  is designed just like in (26), and the adaptive 
reaching law can be designed as 

3
ˆ( ) ( ) ( )asu t sign    (30) 

where ̂  is used to approximate the upper bound value  . It 
is adapted using the following law: 

3
1ˆ 


   (31) 

where   is a user defined constant. 
Let ˆ     is the estimation error. We consider the 

following Lyapunov function for Step 3: 
2

4 3
1
2

V V     (32) 

In combination with the result in (24), the derivative of the 
Lyapunov function (32) can be obtained as 

4 3
2 2

1 1 2 2 2 3

1
1

3 2
1 2

ˆ ˆ( )
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( )( , ) ( )
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 
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 (33) 

Adding the controller (29)-(31) into (33), we obtain 

 
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dt

dsign e
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        

   






 (34) 

Then, 4 0V  , 4V  is negative  semidefinite, which implies that 

1( )t ,  2 ( )t  and  3 ( )t   will converge to zero in a finite 
time. Therefore, it can be concluded that the proposed 
backstepping nonsingular fast terminal sliding mode system is 
asymptotically stable despite the existing of uncertainties, 
disturbance and faults.   
Remark 3: In order to eliminate the parameter drift problem 
when implementing the adaptive law (31), the following dead-
zone technique is employed: 

 
Fig. 1. Illustration of the control structure of the system. 
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where   is the dead zone size. 
Remark 4: The design of the proposed controller requires the 
measurements of position, velocity and acceleration. However, 
in practical robot, only position is measureable based on the 
encoder information. To estimate the velocity and acceleration 
measurement, the second-order exact differentiation (SOED) 
[57] is employed in this paper: 
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 (36) 

Then, the estimates of the position, velocity and acceleration 
can be obtained as 

0 1 1 2 2 2, ,x x x       (37) 

Remark 5: The design procedure of the proposed controller is 
based on the assumption that the derivative of the unknown 
component   are bounded by an unknown constant. However, 
this assumption may not be obtained in some conditions when 
the change of fault are fast, and thus the system will be 
unstable. Fortunately, due to the faster transient response of 
the proposed control method, which combines the 
backstepping and integral nonsingular fast terminal sliding 
mode control, the unstable condition may occur only for a very 
short time and the system will be stable quickly after then. 
This symptom will be illustrated in section IV. 
Remark 6: The approximation learning techniques based on 
neural network and fuzzy logic can be used to approximate the 
unknown component   as a similar design procedure to [59-
66]. However, the design of approximation techniques based 
on neural network or fuzzy logic are computational expensive.  

IV. RESULTS AND DISCUSSIONS 
In order to verify the performance of the prosed approach, 

we employ it for a PUMA560 robot [72]. For simplicity in 
analyzing and presenting the results, only the first three joints 
of the robot are used. The dynamic and kinematic model of the 
PUMA560 robot are described as in [72]. 

The friction and disturbance term are modeled as 

1 1 1

2 2 2

3 3 3

0.5 sin(3 ) 0.5sin( )
( ) 1.3 1.8sin(2 ) 1.1sin( )

1.8 2sin(3 ) 0.15sin( )
d

q q q
F q q q q

q q q


  
     
    

 
 
 

 (38) 



 
 

TABLE I 
SELECTED PARAMETERS OF THE CONTROLLERS 

Controller Parameters Value 
CTC ,p dK K  200,10 
PID , ,p i dK K K  200, 100, 10 
PID-SMC , ,p i dK K K  200, 100, 10 

, ,   20, 1, 0.1 
NFTSMC 1k , 2k ,  , p , q   10, 5, 1.4, 9, 7 

, ,   20, 1, 0.1 
ABNFTSMC 1k , 2k ,  , p , q   10, 5, 1.4, 9, 7 

1 , 2 , 3  200,100,10 
 ,   0.5, 0.01 

 

TABLE II 
TRACKING ERRORS AN ELAPSED TIME (ET) OF THE SYSTEM 

UNDER THE INPUT OF THE CONTROLLERS 
            Error 
Controller 

1E  2E  3E  ET(s) 

CTC 0.4580 0.5938 0.2696 2.50 
PID 0.2417 0.3698 0.1768 2.04 
PID-SMC 0.0593 0.0478 0.0472 3.83 
NFTSMC 0.1119 0.2453 0.0768 4.07 
ABNFTSMC 0.0248 0.0219 0.0118 4.85 

 

The desired trajectory of the system is selected as follows: 

cos( / 5 ) 1, cos( / 5 ), sin( / 5 ) 1
2 2

T

dx t t t          
 (39)  

The Matlab/Simulink environment using Runge-Kutta 
algorithm are used to conduct experiments. The sampling time 
is set as 0.005s .  

In this paper, we consider the performance of the proposed 
method in both normal and fault operations. In order to 
demonstrate the superior performance of the proposed 
ABNFTSMC controller, we compare it with the state-of-the-
art controllers, which have been proposed for improving 
trajectory tracking performance of robot manipulators such as 
computed torque control (CTC) [6], PID controller [15-16], 
conventional PID-based SMC controller (PID-SMC) [48], and 
conventional nonsingular fast terminal sliding mode control 
(NFTSMC) [41- 43]. The design of the CTC, PID, PID-based 
SMC (PID-SMC) and NFTSMC are represented in Appendix 
A, B, C and D, respectively. The selected parameters of these 
controllers are reported in TABLE I.  

First, we assume that the system is operated in normal 
working condition with the assumed uncertainties and 
disturbance. The tracking performance of the system in 
Cartesian space under the controllers are shown in Fig. 2. For 
an easier comparison, the joint tracking errors ( 1 de x x  ) of 
the system are shown in Fig. 3. From Figs. 2 and 3, we can see 
that the CTC provides worst tracking performance for the 
system in case of the presence of the disturbance and 
uncertainties.  The   PID  controller  provides  better   tracking 
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Fig. 2. Desired position trajectory and actual position trajectory of the system 
under (a) CTC, (b) PID, (c) PID-based SMC, (d) NFTSMC and (e) 
ABNFTSMC controllers. 

 
performance compared to the CTC. However, the convergence 
times and steady state errors of these controllers are very large. 
Due to the robustness property of the SMC against the effects 
of the disturbance and uncertainties, the PID-SMC, NFTSMC 
and ABNFTSMC provide better performance compared to the 
CTC and PID controllers. Interestingly, due to the benefits of 
the integral component in the design, the PID-SMC and 
ABNFTSMC provide lower steady state error and faster 
transient response than the NFTSMC. In addition, the 
ABNFTSMC provides the best performance since it possesses 
low steady state error and fast transient response properties of 
the NFTSMC and ITSMC.  

Then, we consider the fault tolerant capability of these 
controllers. To model the effects of faults in the system, we 
assume that the following fault function exits in the system: 

1 2 1 2
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It means that we assume an abrupt fault 
1 1 2 1 2 1 230sin( ) 4 cos( ) 15cos( )q q q q q q       occurs in the 

first actuator from the time 20t s , while the second actuator 
losses 80% its effectiveness from the time 30t s . The third 
actuator is assumed to be healthy. The tracking errors of the 
system under the controllers are reported in Fig. 4. For an 
easier comparison, the averaged tracking error defined in   (41)  
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Fig. 3. Joint trajectory tracking error when the system is in normal operation. 
(a) Joint 1, (b) Joint 2, and (c) Joint 3. 
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where N  is the number of simulation step, and the elapsed 
time (ET) defined in Remark 7 are also reported in TABLE II. 

From the results shown in Fig. 4 and TABLE II, we can see 
that the CTC and PID provide worst tracking performances for 
the system in the presence of fault; the system becomes 
unstable immediately when the faults occur. Even though the 
NFTSMC provides better tracking performance, the system is 
easily to be unstable due to the effects of faults, as shown in 
Fig. 4b). In the presence of faults, the benefits of the integral 
component are crucially significant, as shown in the 
performance of the PID-SMC and ABNFTSMC; using the 
PID-SMC and ABNFTSMC, the system provides very fast 
transient response and low tracking error. In addition, as 
shown in Fig. 4, the proposed ABNFTMC provides superior 
performance compared to the PID-SMC. However, as shown 
in TABLE II, the elapsed time (ET) of the PID (2.04), CTC 
(2.50) and PID-SMC (3.83) is smaller compared to the 
NFTSMC (4.07) and ABNFTSMC (4.85). Fortunately, 
compared to the elapsed time of the PID, which is known as 
the simplest control method, the computational time of the 
proposed method is not significantly higher. Therefore, with 
the current advance hardware technologies, it is possible to 
apply the proposed technique in practical applications.  

The control efforts of the NFTSMC, PID-SMC and 
ABNFTSMC are shown in Fig. 5. From Fig. 5(c), we can see 
that the proposed ABNFTSMC provides a continuous control 
input. As shown in Fig. 5(a) and (b), the PID-SMC and 
NFTSMC controllers also provide continuous control input 
due to the used boundary function (49). However, these 
approaches, as mentioned above, reduce the robustness and 
increase the steady state error of the system. The variation of 
the adaptive gains of the proposed ABNFTSMC for normal 
and fault operations are shown in Figs. 6 and 7, respectively. 
From the Figs. 6 and 7 we can see that the adaptive gains are 
variant due to the change of the effects of the uncertainties, 
disturbance and faults, and they will converge to some stable 
values when the systems are stable. In addition, the 
comparison results between Fig. 6 and Fig. 7 show that the 
adapted gains do not change much when the faults occur; the 
gains are just slightly increased when the faults occur. This is 
because the fault effects have been compensated by the gain 
component of the backstepping control (  2 3 3 2     ) in 
the design. This is also one of the major merits of the proposed 
approach. 

From the above results we can conclude that the proposed 
controller, ABNFTSMC, provides the best performance 
compared to other controllers such as CTC, PID, SMC-PID 
and NFTSMC in terms of tracking accuracy, transient 
response, chattering elimination, and low steady state error.  
Remark 7: The elapsed time shown in TABLE II in this paper 
is the time that the Matlab has used to complete 50second 
simulation time. This may not reflect the true computational 
burden of the controllers but it can be used to provide a 
general idea about the comparison in computational time 
among the controllers.     



 
 

Remark 8: From the developed control law, i.e., 
ABNFTSMC, in (26) and (29-31) and the selected control 
parameters in TABLE I, we can see that the system’s 
performance is dependent on the selection of the sliding 
surface parameters 1k , 2k ,  , p , q , the adaptive gain 
parameters  ,   and the backstepping gains 1 , 2 , 3 . While 
the sliding surface parameters and the adaptive gain 
parameters have been discussed widely in the literature, the 
backstepping gains are new defined parameters in this paper 
and their effects on the system performance are significant. 
Therefore, these parameters need to be effectively selected. In 
this paper, the backsteeping gain parameters are chosen based 
on experiments. However, the values chosen based on the 
experiments are usually not optimal. Hence, there is a need to 
investigate a tuning mechanism to tune the parameters such 
that the system can get good approximation response. This will 
be studied in our future works.     
Remark 9: From the proof for the stability of the system 
described in Section III, the stability of the system can be 
guaranteed when the sliding gain is selected such that its value 
is bigger than the value  , which is the bound value of the 
unknown function  . Therefore, the stability of the system 
can be guaranteed when the adaptive gain is adapted to be 
bigger than the value  . In Figs. (6) and (7) we can see that 
the adaptive sliding gains of joints 2 and 3 converge after 
some transient time. The sliding gain of joint 1 is increased 
very slightly after some transient time. This symptom is caused 
due to the parameter drift problem as discussed in Remark 2. 
The convergence speed of the adaptive parameters can be 
obtained faster if we increase the dead zone size  . However, 
there is a tradeoff between the steady state error and the 
convergence speed of the system when the dead zone size   is 
changed. When the value of   is high, the convergence speed 
is fast but the steady state error is high, and vice versa. 
Remark 10: In this simulation study, we simulate the effects 
of abrupt faults only since its effects in the system are heavier 
than the incipient faults. Since the proposed method can 
compensate the abrupt faults well, it would absolutely be able 
to tackle the effects of the incipient faults well. 
Remark 11: In this paper, we design a robust fault tolerant 
control to compensate for the effects of actuator or component 
faults only. The proposed method may not be able to 
compensate for the sensor faults. The effects of the 
measurement noise and the sensor faults to the performance of 
the system will be studied in our future work. 
Remark 12: From the viewpoint of control engineering, it 
would be good to use experimental results to verify the 
effectiveness of the proposed control scheme in practical 
applications. However, simulation of different fault effects in 
the practical experiments are difficult, dangerous and possibly 
damage the system. Therefore, almost every approaches for 
fault tolerant control systems in the literatures [59-62] and the 
work in this paper used the simulation environment to verify 
the effectiveness of the methods. However, verifying the 
proposed approach in practical experiments by using effective 
manners without damaging the system and the environment 
surrounds is necessary and this will be investigated in our 
future works. 
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Fig. 4. Joint trajectory tracking error when the system is in fault operation. (a) 
Joint 1, (b) Joint 2, and (c) Joint 3. 
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Fig. 5. Control input of the system under: (a) PID-SMC, (b) NFTSMC, and 
(c) ABNFTSMC. 
 

 
Fig. 6. Variation of the adaptive gains in (35) of the proposed ABNFTSMC 
when the system is in normal operation. 
 

 
Fig. 7. Variation of the adaptive gains in (35) of the proposed ABNFTSMC 
when the system is in fault operation. 
 

V. CONCLUSIONS 
This paper develops a novel robust tracking control 

algorithm for robot manipulators with an enhancing on 
uncertainties and disturbance rejection and faults 
compensation capability. The proposed approach combines a 
novel integral nonsingular fast terminal sliding mode control 
(INFTSMC) and a backstepping design mechanism. The 
outstanding feature of the developed INFTSMC is that it can 
integrate the benefits of the integral sliding mode control, 
nonsingular fast terminal sliding mode control and high order 
sliding mode control using an effective way so that a single 
controller could provide many great features such as fast 

transient response, low tracking error and low chattering. In 
addition, the proposed controller is designed based on the 
backstepping control procedure, and thus it can provide 
globally asymptotic stability based on Lyapunov criteria. The 
proposed controller is then applied for a PUMA560 robot and 
compared with other state-of-the-art controllers such as CTC, 
PID, PID-SMC and NFTSMC. The simulation results verify 
the superior performance of the proposed method in terms of 
uncertainties and disturbance rejection in normal operation and 
fault compensation in fault operation.  

For future work, the effects of the measurement noises and 
sensor faults to the system control performance will be studied. 
Tuning mechanisms will also be developed to obtain the 
optimal values for the major parameters of the proposed 
controller.      

APPENDIX A 
The following is the design procedure of the computed 

torque controller: 
The computed torque controller can be designed as 

    1 1 2 1 2( ) ( , )d p d d du M x x K x x K x x f x x        (42) 

where pK  is the proportional gain matrix and  dK  is the 
derivative gain matrix.                                          

APPENDIX B 
The following is the design procedure of the PID controller: 
Let 1 de x x   is the tracking error. Then, the PID 

controller law is designed as 

0
( )

t

p d iu K e K e K e t dt     (43) 

where pK  is the proportional gain matrix, dK  is the 

derivative gain matrix and iK  is the integral gain matrix.      

APPENDIX C 
The following is the design procedure of the PID-based 

SMC (PID-SMC) controller: 
Let 1 de x x   is the tracking error. Then, the sliding 

surface is selected as 

( )
t

p d i
o

K e K e K e t dt      (44) 

where pK  is the proportional gain matrix, dK  is the 

derivative gain matrix and iK  is the integral gain matrix.      
The derivative of the sliding surface is obtained as 

 1
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From (45), the PID-SMC is selected as 



 
 

( ) ( ) ( )eq su t u t u t   (46) 

where, the equivalent control law is reconstructed when 0   
and 0  : 

1 1 2( ) ( ( , ) )pi
eq d

d d

KK
u M x e e f x x x

K K
 
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 

   (47) 

and, the reaching law is designed as 

 1( ) ( )su M x sign     (48) 

where   is chosen such that the unknown component is 
bounded by     .  

In order to alleviate the chattering phenomenon due to the 
use of ( )sign s  function. The continuous function below is used 
instead: 

 1( ) ( )s
su t M x

s



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
 (49) 

where    is a small positive scalar. 

APPENDIX D 
The following is the design procedure of the nonsingular 

fast terminal sliding mode controller (NFTSMC). 
Let 1 de x x   is the tracking error. Then, the NFTSMC 

sliding surface is selected as 
[ ] [ / ]

1 2e e e p qk k      (50) 

where   is the sliding variable, 

 1 11 12 1, ,..., n n
nk diag k k k    and 

 2 21 22 2, ,..., n n
nk diag k k k    are positive definite 

matrices, respectively, p  and q  are positive odd numbers 
satisfying the relation 1 / 2p q   and /p q  .  

The first derivative of the sliding surface can be computed 
as follows: 
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Based on (51), the NFTSMC controller is designed as 
( ) ( ) ( )eq su t u t u t   (52) 

where, the equivalent control law is reconstructed when 0   
and 0  : 
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and the reaching law is designed as 
 1( ) ( )su M x sign     (54) 

In order to reduce the chattering, the boundary method in 
(49) is also used to replace the (54). 
Remark 13: The stability proofs for the controllers in the 
Appendixes are omitted to reduce the length of the paper. 
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