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An Adaptive Cascaded ILA- and DLA-Based

Digital Predistorter for Linearizing

an RF Power Amplifier

Han Le Duc , Bruno Feuvrie, Matthieu Pastore, and Yide Wang

Abstract— This paper presents a novel adaptive digital pre-
distortion (DPD) technique based on a cascade of an adaptive
indirect learning architecture (ILA) and a static direct learning
architecture (DLA) using a linear interpolation look-up-table
(LILUT). The static LILUT-DLA-based DPD is designed to
identify the inverse of a radio-frequency power amplifier (PA)
model. The cascaded system of the DLA-based predistorter (PD)
and PA is theoretically linear. However, in real-time applications,
the PA characteristics change with time due to process, supply
voltage, and temperature variations, making this cascaded system
not strictly linear, which results in some residual nonlinear
distortion at the PA output. This residual distortion is effectively
compensated by an additional adaptive ILA-based PD using
least mean squares or recursive least squares. Thanks to the
incorporation of the static DLA, the proposed DPD approach is
less sensitive to the PA output noise, ensuring a better preinverse
of the PA and also requiring a smaller number of adaptive coef-
ficients than either the adaptive stand-alone DLA- or ILA-based
DPDs. The experimental results show that the proposed DPD
technique effectively linearizes the PA, even if its characteristics
change, and obtains better linearization performance than either
the classical stand-alone DLA- or stand-alone ILA-based DPDs.

Index Terms— Nonlinear systems, power amplifier, adaptive
digital predistortion (DPD), indirect learning architecture (ILA),
direct learning architecture (DLA), adaptive algorithm.

I. INTRODUCTION

M
ODERN communication systems are continuously

evolving to satisfy the requirement of high data rate

for multimedia communications. The signals of these systems

have high peak-to-average power ratio (PAPR) and wide band-

width, leading to stringent linearity requirements for signal

amplification.
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Fig. 1. DPD concept. (a) Block diagram. (b) Transfer functions of DPD unit,
PA, and DPD+PA system.

Two key quality factors of radio frequency (RF) power

amplifiers (PAs) in modern wireless communication systems

are efficiency and linearity. Unfortunately, it is hard to simulta-

neously obtain the above two requirements due to the inherent

characteristics of PAs. In order to maximize the efficiency,

PAs should operate close to saturation, producing strong

nonlinear distortion in the amplified signal. This distortion

increases the error vector magnitude (EVM) and also results

in spectral regrowth, causing interference to neighboring chan-

nels and increasing the adjacent channel power ratio (ACPR).

By operating the PA far below saturation, its nonlinear behav-

ior can be reduced. However, this leads to low power efficiency

because of the high PAPR of modern communication signals.

As a result, the PA design has to make a tradeoff between

efficiency and linearity. In order to fulfill the efficiency require-

ment without sacrificing linearity, PA linearization techniques

are required [1]. Thanks to its highly cost-effective and

easy implementation, baseband digital predistortion (DPD)

is a popular and widely used linearizion technique [2]–[11].

Its principle is shown in Fig. 1. The DPD concept places a

predistorter (PD) block in front of the PA. Ideally, the nonlin-

ear transfer function of the PD is the inverse of that of the PA.

Consequently, the cascaded PD and PA system becomes linear

and the original input is amplified by a constant gain. The

PD is added in the baseband, working entirely in the digital

domain. The performance of the DPD is controlled by a set of

complex coefficients ωkm that can be estimated either offline,

based on a block of measured input and output samples of

https://orcid.org/0000-0002-1941-5754
https://orcid.org/0000-0002-1461-2003
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Fig. 2. Block diagram of conventional ILA-based DPD.

the PA, or online in an adaptive way based on real-time mea-

surements of the PA input and output signals [9], [12]. Since

the characteristics of the PA are usually unknown, learning

architectures and adaptive algorithms are employed to estimate

its inverse function. There are two commonly used learning

architectures for identifying the parameters of a PD: indi-

rect learning architecture (ILA) [12]–[17] and direct learning

architecture (DLA) [8]–[11], [18]–[20]. The ILA-based DPD

computes an inverse model of the PA via the post-distorter

(or training) block, whose input is the output of the PA as

illustrated in Fig. 2, where G0 is the gain of the linearized PA.

The PD transfer function is an exact duplicate of that of the

training block. At convergence, the identified coefficients of

the post-distorter are copied to the PD, making the cascaded

PD and PA system behave linearly. The ILA-based DPD archi-

tecture can be performed either in an offline manner using least

squares (LS) [3] or in an adaptive manner using an adaptive

algorithm such as least mean squares (LMS) or recursive

least squares (RLS) [4], [21]. The key advantage of the ILA-

based DPD is its implementation simplicity [15]. However,

it suffers from two typical drawbacks [12], [16], [17]. Firstly,

the adaptive algorithm may converge to a biased solution due

to the presence of noise in the measured PA output. Secondly,

the efficiency of the ILA-based PD performance is poor when

the PA works near its saturation region [4], [17]. To cope with

the ILA-based PD noise-induced bias problem, the output of

a forward model of the PA can be used instead of using the

real noisy PA output to identify the inverse model [14], [16].

Although these approaches yield better linearity performance

than the original ILA-based PD, their performance depends on

the accuracy of the PA forward model [4].

The above mentioned drawbacks are not present in

DLA-based DPD techniques, which can be performed either

online [9]–[11], as shown in Fig. 3(a), or offline [8], [22], as

illustrated in Fig. 3(b). In the adaptive case, the PD parame-

ters are identified by comparing the wanted signal G0 u(n)

with the PA output y(n). The error produced at the PA

output is minimized by using an adaptive algorithm such as

LMS or RLS [10], [12], [14], [17], [21]. For these approaches,

the computation of an instantaneous estimate of the gradient

of mean square error with respect to the PD coefficients

is complex and computationally expensive. Thus, most of

Fig. 3. Block diagram of DLA-based DPD. (a) Online. (b) Offline.

these are complex in structure, and also suffer from slow

convergence [4]. In the offline case, the coefficients of the PA

model are extracted using the LS method after gathering a set

of input and output samples of the PA. The PD identification

techniques proposed in [8], [22], and [23] use a look-up-

table (LUT) to significantly reduce the computational time

required in a conventional memory-polynomial-based DPD.

However, the crucial drawback of these DLA-based DPD

techniques is to require a sufficiently large LUT in order to

obtain good linearization performance. To cope with this draw-

back, the DLA-based linearization technique in [8] proposes

a linearly interpolated LUT (LILUT) algorithm, increasing

the indexing efficiency of the LUT, and hence reducing

the LUT size. This is actually an improved solution of the

LUT-DLA-based DPD proposed in [22]. Although the LILUT-

DLA-based DPD proposed in [8] shows good performance

with low complexity and fast convergence, it is limited to

applications where the PAs are operating under relatively

stable conditions, e.g., the PA characteristics remain almost

constant over time. However, in practice, the PA characteristics

may change rapidly with time due to process, supply voltage,

and temperature (PVT) variations. If the static DPD in [8] is

employed, the different DPD functions or coefficients must be

readapted to changes in the PA characteristics, which is more

difficult than an ILA-based DPD.

Considering the aforementioned pros and cons of conven-

tional learning architectures (DLA and ILA) and the offline

LILUT-DLA-based DPD proposed in [8], we propose in

this paper, a novel adaptive DPD architecture cascading the

adaptive ILA-based PD and offline (or static) LILUT-DLA-

based PD. The static LILUT-DLA-based PD is designed to

linearize the PA for a specific condition such that the cascaded

system of the DLA-based PD and PA, named as CDPA

in the rest of the paper, is theoretically linear. As the PA

characteristics change with time due to PVT variations, the

CDPA is no longer linear, causing some residual nonlinear
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distortion at the PA output. Since the most significant part

of the PA nonlinear memory effects is compensated by the

static DLA-based PD, this residual distortion can be effectively

mitigated by the proposed adaptive ILA-based PD placed in

front of the CDPA. Thanks to the incorporation of the static

DLA-based PD with the PA, the CDPA is much less nonlinear

than the PA and the proposed additional adaptive ILA-based

PD will be less complex and easier to design than either the

adaptive stand-alone DLA- or ILA-based PDs. As a result,

the proposed DPD solves several problems that arise when

using either the stand-alone DLA- or ILA-based DPDs to

linearize a PA whose characteristics change due to PVT drifts.

The rest of the paper is organized as follows. Section II

reviews the offline (or static) stand-alone LILUT-DLA-based

DPD. Section III describes the proposed adaptive linearization

technique. Experimental validation results are presented in

Section IV. Conclusions are drawn in Section V.

II. REVIEW OF THE OFFLINE STAND-ALONE

LILUT-DLA-BASED DPD

This section reviews the offline (or static) stand-alone

DLA-based DPD using the LILUT proposed in [8]. A simple

block diagram is shown in Fig. 3(b). Due to its simple

implementation, the MP-based model is widely applied for

behavioral modeling and predistortion of PAs and transmitters

exhibiting nonlinear memory effects [1], [2].

Let ckm denote the coefficients of the MP-based model of

a PA. These coefficients can be identified by the LS technique

using the input and output data measured from the PA as

in [24]. The input and output of the PA model can be expressed

as [3]

y(n) =

N
∑

k=1

M
∑

m=0

ckm x(n − m)|x(n − m)|k−1, (1)

where N and M are, respectively, the nonlinear order and

memory depth of the MP-based model of the PA, and y(n)

and x(n) denote, respectively, the output and input samples of

the PA. Ideally, the output of the CDPA system is

y(n) = G0u(n), (2)

where u(n) denotes the input of the CDPA system. The

output y(n) can be decomposed into two parts: the static

part s(n) depending only on the current input sample (m = 0)

and the dynamic part d(n) formed by only the previous input

samples (m = 1, · · · , M ) as

y(n) = s(n) + d(n) = G0u(n), (3)

where

s(n) =

N
∑

k=1

ck0x(n)|x(n)|k−1, (4)

and

d(n) =

N
∑

k=1

M
∑

m=1

ckm x(n − m)|x(n − m)|k−1, (5)

TABLE I

INPUT AND OUTPUT OF LILUT

where |x(n)| denotes the amplitude of the predistorted sig-

nal x(n). Given linear gain G0 and the baseband input

u(n), the goal of identification is to determine the predistorted

signal x(n) at the PD output such that the CDPA system

behaves linearly. To solve this optimization problem, (4) is

rewritten as

s(n) = e jα
N

∑

k=1

ck0|x(n)|k = G0u(n) − d(n), (6)

where α is the phase of the predistorted signal x(n). The

rightmost side of (6) can be computed at time instant n.

Taking absolute value of both sides of (6), the amplitude of

the predistorted signal is then the real positive root (which

always exists [25]) of the following polynomial:

∣

∣

∣

∣

∣

N
∑

k=1

ck0|x(n)|k

∣

∣

∣

∣

∣

− |G0u(n) − d(n)| = 0. (7)

The roots of the polynomial of the left-hand side of (7) can

be determined by a classical root-finding process [25].

Although the root-finding process shows good lineariza-

tion performance, it is very time-consuming. Thus, it is not

applicable in a real-time application. Therefore, in [8], the

root-finding process is substituted by a LILUT algorithm,

which estimates the amplitude |x(n)| and phase α of x(n)

based on (6). Firstly, the dynamic range of |x(n)| is estimated

according to the characteristics of the PA [26]. Secondly,

the determined dynamic range of |x(n)| is divided into K inter-

vals with equal length |1x |. The LILUT is then constructed

and shown in Table I, where its input E(k) is computed as

E(k) =

∣

∣

∣

∣

∣

N
∑

i=1

ci0|k1x |i

∣

∣

∣

∣

∣

, (8)

and its two outputs, corresponding to the amplitude R(k) and

amplitude slope SR(k), are calculated as

R(k) = k1x, (9)

SR(k) =
R(k + 1) − R(k)

E(k + 1) − E(k)
, 0 ≤ k ≤ K − 1. (10)

Finally, the amplitude and phase of the predistorted signal

x(n) are determined by Algorithm 1, where L is the number

of training samples.
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Fig. 4. Proposed adaptive DPD using a combined learning architecture.

Algorithm 1 Offline Stand-Alone LILUT-DLA-Based DPD

1: Initialize: n = 0, d(0) = 0

2: for n = 1 to L − 1 do

3: Compute the static part:

s(n) = G0u(n) − d(n)

4: Find the index m of LUT such that two

adjacent values E(m) and E(m + 1)

in Table I, are the closest to |s(n)|

5: Compute the corresponding amplitude

|x(n)| by

|x(n)| = R(m) + [|s(n)| − E(m)] SR(m)

6: Calculate the corresponding phase by

α = arg

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s(n)

N
∑

k=1

ck0|x(n)|k

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

7: Calculate the predistorted signal

x(n) = |x(n)| e jα

8: end for

III. PROPOSED ONLINE DPD ARCHITECTURE

The offline LILUT-DLA-based DPD presented in Section II

is limited to applications where the PA characteristics do not

change with time. However, this scenario is not the case

in practice, especially in reconfigurable systems where the

signal type, modulation, power, etc., can change completely.

Furthermore, the adaptive stand-alone ILA-based DPD has a

noise problem.

When the PA works close to its saturation region, the cor-

relation matrix used to determine the inverse model of the

PA is badly conditioned. As a result, the identified model

parameters are very sensitive to noise at the PA output. Thus,

we propose a novel adaptive DPD technique shown in Fig. 4,

where a combined DLA and ILA architecture is designed.

The proposed architecture consists of an adaptive ILA-based

PD followed by a static LILUT-DLA-based PD. The static

LILUT-DLA-based PD uses the LILUT algorithm presented in

Algorithm 1, where a static LILUT in Table I is first computed

for the PA working under a specific condition (temperature).

The static CDPA system shown in Fig. 4 is theoretically linear

if the PA characteristics do not change. However, if the PA

characteristics change, the CDPA is no longer linear, resulting

in some residual nonlinear distortion at the PA output. The

proposed additional ILA-based PD using LMS or RLS can

effectively mitigate this residual nonlinear distortion. Thanks

to the incorporation of the static DLA-based PD with the

PA, the correlation matrix of the CDPA output samples is

better conditioned than that of the uncompensated PA output

samples. Thus, the proposed DPD is more robust to noise at

the PA output than the stand-alone ILA-based DPD, and can

efficiently track coefficient fluctuations of the PA due to PVT

drift.

A. Cascaded Architecture of the LMS-ILA-Based PD and

Static LILUT-DLA-Based PD

The standard ILA-based DPD proposed in [3], [12], [13],

[21], and [27] is applied in our solution, shown in Fig. 4. The

postinverse of the CDPA is identified using a post-distorter (or

training) block, where z(n) and zp(n) are the input and output

of the post-distorter, respectively. The PD transfer function is

an exact duplicate of that of the training block. The ILA-based

PD has input u(n) and output xILA(n).

We assume that both the ILA-based PD and post-distorter

are modeled by a MP. The MP-based model of the ILA-based

PD is expressed as [3], [23]

xILA(n) =

Q
∑

k=1

P
∑

m=0

ωkm u(n − m)|u(n − m)|k−1, (11)

where Q and P are the nonlinear order and memory depth of

the MP-based model, respectively, and ωkm are the coefficients

of the model. The input and output of the post-distorter are

expressed as

zp(n) =

Q
∑

k=1

P
∑

m=0

ωkm z(n − m)|z(n − m)|k−1, (12)

with

z(n) =
y(n)

G0
. (13)

Let us define a new sequence as

zkm(n) = z(n − m)|z(n − m)|k−1, (14)

In matrix form, the output of the post-distorter (12), can be

expressed as

zp(n) = zT(n)ω, (15)

where symbol T indicates matrix transpose and

z(n) =
[

z10(n), . . . , zQ0(n), . . . , z1P(n), . . . , zQ P

]T
. (16)

The coefficient vector ω is denoted by

ω =
[

ω10, . . . , ωQ0, . . . , ω1P , . . . , ωQ P

]T
. (17)

The error signal is defined by

e(n) = xILA(n) − zp(n) = xILA(n) − zT(n)ω. (18)
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The LMS algorithm minimizes the mean square error

E
{

|e(n)|2
}

to identify the coefficients ωkm . The updating

equation is expressed as [28], [29]

ω̂(n) = ω̂(n − 1) −
1

2
µ

∂|e(n)|2

∂ω̂(n)

= ω̂(n − 1) + µe(n)z(n), (19)

where µ is the step-size parameter of the LMS technique.

Finally, the proposed adaptive DPD technique is described

in Algorithm 2 where FPA {· · · } is the PA transfer function,

modeled by a MP function.

Algorithm 2 Proposed Adaptive DPD by Cascading the

LMS-ILA-Based PD and Static LILUT-DLA-Based PD

1: Initialize: n = 0, ω̂(0), µ.

2: for n = 1 to L − 1 do

3: compute xILA(n) expressed in (11).

4: Execute Algorithm 1 ⇒ xDLA(n)

5: y(n) = FPA {xDLA(n)} .

6: z(n) =
y(n)
G0

7: zp(n) = zT(n)ω̂(n − 1).

8: Compute the error signal:

e(n) = xILA(n) − zp(n).

9: Update the coefficients:

ω̂(n) = ω̂(n − 1) + µe(n)z(n).

10: End For

The key advantage of the LMS algorithm is its low compu-

tational complexity. The price paid for this simplicity is slow

convergence since LMS uses only the step-size to govern its

convergence speed and steady-state misadjustment. Thus, it is

hard to make an optimal trade-off between them [29].

B. Cascaded Architecture of the RLS-ILA-Based PD and

Static LILUT-DLA-Based PD

In order to obtain faster convergence, the RLS algorithm

[28], [29] is applied in our framework, to minimize the

following weighted sum of magnitude-squared errors:

ζ =

n
∑

l=0

λn−l |e(l)|2, (20)

where 0 < λ < 1 is the “forgetting factor”. An adaptive

cascaded architecture of ILA and DLA using RLS is shown

in Algorithm 3, where δ is a positive scalar determined by

experimentation in order to balance the stability with the

convergence rate. Typically, δ > 100σ 2
x , where σ 2

x is the

variance of the input. The value of λ is commonly chosen

in the range 0.95 < λ < 1 [28], [29].

To simplify the notation, the proposed adaptive DPD archi-

tecture of the cascaded ILA- and DLA-based PDs using

LMS is denoted as Design+LMS, and likewise using RLS

as Design+RLS.

Algorithm 3 Proposed Adaptive DPD by Cascading the

RLS-ILA-Based PD and Static LILUT-DLA-Based PD

1: Initialize: n = 0, ω̂(0), P0 = δI

2: for n = 1 to L − 1 do

3: compute xILA(n) expressed in (11).

4: Execute Algorithm 1 ⇒ xDLA(n)

5: y(n) = FPA {xDLA(n)} .

6: z(n) =
y(n)
G0

7: zp(n) = zT(n)ω̂(n − 1).

8: Compute the error signal:

e(n) = xILA(n) − zp(n).

9: Compute the Kalman gain vector:

k(n) =
P(n − 1)z(n)

λ + zT(n)P(n − 1)z(n)

10: Update the inverse of the correlation

matrix:

P(n) =
1

λ

[

P(n − 1) − k(n)zT(n)P(n − 1)
]

11: 5. Update the coefficients of the

post-distorter:

ω̂(n) = ω̂(n − 1) + k(n)e(n)

12: End For

Fig. 5. Setup of measurement testbench.

IV. EXPERIMENTAL RESULTS

A. Description of Setup and Measurements

To evaluate the efficiency of the proposed adaptive DPD

technique, some measurements are made on the testbench

shown in Fig. 5. High power amplifiers AMPV fabricated by

Telerad, are used for our targeted applications, such as the

airborne VHF Digital Link (VDL) Model-2 system. On the

transmit side, the baseband signal is generated by a PC and

sent to a field-programmable gate array (FPGA) Zedboard for

digital signal processing (DSP) and frequency up-conversion.

An RF board (FMC150) converts the signal after FPGA

into the analog domain. The signal is then sent to a low

noise amplifier (LNA) and finally fed into the main PA.

On the receive side, the feedback loop, consisting of an



A
cc

ep
te

d 
m

an
us

cr
itp

t
Fig. 6. Measured AM/AM characteristics of the PA at various temperatures.

Fig. 7. Measured gain of the PA at various temperatures.

attenuator (Att), the FMC150, and FPGA Zedboard, is used

to capture the PA output signal, down-convert it to baseband

signal, which is then sent to a PC from FPGA Zedboard for

model extraction and DPD design.

The measured input signal is a quadrature phase shift

keying (QPSK) modulated signal with 16.8 kHz bandwidth

at carrier frequency of 118 MHz. The measured output

power is 75 W. Let us denote ACPRU1 and ACPRU2 as the

ACPR values measured at the first and second upper adja-

cent channels, corresponding to frequency offsets of 25 kHz

and 50 kHz, respectively. Our targeted applications impose

strong constraints on ACPRs (ACPRU1 < −65 dB and

ACPRU1 < −75 dB) and EVM < 6%. Accurate time-

delay alignment between the input and output samples is

executed using the cross-correlation technique [30]. After a

time-alignment process, the obtained data are used to compute

the instantaneous complex gain of the PA. The measured

AM/AM characteristics and gain of the PA are shown in

Figs. 6 and 7, respectively, for various temperatures. From

these figures, one can observe that the AM/AM characteristics

and gain curve are altered as the measured temperature

is varied. The gain of the PA decreases as the temperature

increases. Thus, a new model of the PA should be re-extracted

and used for the corresponding PD identification for each

different temperature. This process makes the DPD system

too cumbersome and complex. In order to linearize the PA

Fig. 8. NMSE performance vs. nonlinear order (N ) and memory depth (M)
measured at 50oC. (a) NMSE vs. M. (b) NMSE vs. N .

more efficiently, the adaptive DPD is instead required to track

the coefficient fluctuation of the PA.

B. MP-Based Model Optimization

Due to its low computational cost, satisfactory accuracy, and

easy hardware implementation [1], [2], [14], [24], MP-based

models have been widely applied for behavioral modeling

and predistortion of PAs exhibiting nonlinear memory effects.

Since the PA output in a real measurement is limited to

the frequency band of interest, most published DPD tech-

niques [2]–[4], [8], [14], [21] consider only odd-order terms of

the polynomial. However, it is worth noting that all the terms in

the polynomial, including both odd- and even-order terms for

the models, should be used to achieve the best representation

of the PA magnitude and phase responses [31]. Moreover,

if taking only odd-order terms for the models, the required

nonlinear order may be higher in order to better model the

nonlinear behavior of the PA.

In this framework, we thus use the MP-based model

including both odd- and even-order terms. After capturing a

particular set of input and output samples measured at different

temperatures, each MP-based model of the PA is determined

using the LS method [3]. In order to reduce the computational

complexity, the orders (N and M) of the MP-based models

are determined using a performance-based sweeping method.

Obviously, the nonlinear order and memory depth parameters

affect the normalized mean square error (NMSE) and ACPR

performance [32]. We additionally define ACPR deviation,

based on which, the optimal orders of the models are deter-

mined. The ACPR deviation σ is the normalized difference

between ACPRs of the MP-based model output and PA output,

expressed as

σ(%) =

∣

∣

∣

∣

ACPRmodel − ACPRDUT

ACPRDUT

∣

∣

∣

∣

× 100 (21)

where ACPRmodel and ACPRDUT are the ACPRs of the

model output and the device under test (DUT) PA output,

respectively. Designations σU1 and σU2 will be used to denote

the measured σ in the first and second upper adjacent channels,

respectively. The NMSE and ACPR deviation of each model

are evaluated as a function of the nonlinear order and memory

depth over a wide range of nonlinear orders from 1 to 7

and memory depths from 0 to 6. The results reported in

Figs. 8 and 9 show that the optimal values of M and N ,
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TABLE II

PERFORMANCE OF THE OPTIMAL MP-BASED

MODELS AT DIFFERENT TEMPERATURES

Fig. 10. Power spectral density (PSD) at 50oC: a) PA input, b) PA output,
c) MP-based model output.

to achieve the best NMSE and ACPR deviation, are 1 and 5,

respectively. Analogously, the above mentioned performance-

based sweeping method is applied to determine optimal mod-

els for different temperatures. As can be seen from Table II

(bottom three rows), the optimal values of the nonlinear order

and memory depth remain constant for all models when the

temperature changes. The MP-based models exactly describe

the nonlinear behavior of the PA, i.e., the ACPR values of the

MP model output are identical to those of the PA output. As a

result, the output spectrum of the model coincides with that

of the PA, as shown in Fig. 10.

Fig. 11 shows the coefficient variation of the optimal MP-

based models, which all have the same optimal nonlinear order

and memory depth. It is clear that the values of their coeffi-

cients change in a relatively smooth way over temperature.

Therefore, the proposed additional ILA-based DPD can easily

follow these variations.

Fig. 11. Coefficient variation of the optimal MP-based models. (a) Real part.
(b) Imaginary part.

C. Validation of Proposed Digital Predistortion

Without loss of generality, the offline LILUT-DLA-based

PD designed for the PA model at 25◦C can be used to compen-

sate the nonlinear behavior of the PA at various temperatures.

The coefficients of the optimal PA models are first extracted

using the LS technique with data measured from the input

and output of the PA at multiple temperatures. We test vari-

ous DPDs, including offline LILUT-DLA-based DPD, offline

LS-ILA-based DPD, adaptive LMS- or RLS-ILA-based DPD,

and our proposed DPD, when the temperature changes.

As presented in Table II, the optimal values of the nonlinear

order and memory depth of the PA model are selected as

5 and 1, respectively. In the stand-alone DLA-based DPD,

we also select N = 5 and M = 1. The LUT size is chosen

by simulation to be 32 in order to achieve a good trade-off

between performance and complexity [32].

In our approach (Design+LMS and Design+RLS), the

initial weight vector is chosen such that the first element

is 1 and the others are zero, i.e., ω̂(0) = [1, 0, · · · , 0]T.

In Design+LMS, the step-size µ is chosen to be 0.001 in order

to obtain a good compromise between convergence speed

and parameter estimation precision [29]. In Design+RLS,

the initial inverse correlation matrix is a diagonal matrix

whose diagonal elements are set at 106. The forgetting factor

λ is selected as 0.995. After the orders of the PA model
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Fig. 12. ACPR vs. Q for P = 1.

Fig. 13. ACPR vs. NILA for different values of MILA .

and DLA-based PD model have been optimized, the orders

(Q, P) of the proposed ILA-based PD model are analogously

optimized based on the ACPR performance. ACPR values

versus Q are shown in Fig. 12 for P = 1. Obviously,

the optimal value of Q is 3, at which ACPRU1 and ACPRU2

are equal to −70 dB and −82 dB, respectively. These ACPR

values are almost equal to those of the PA input.

In the adaptive stand-alone ILA-based DPD, the initial

weight vector, step-size, and initial inverse correlation

matrix are chosen to be the same as those in our approach.

The nonlinear order NILA and memory depth MILA of the

MP-based models of both PD and training block are optimally

selected as 6 and 1, respectively, in order to achieve the

minimum ACPR, as shown in Fig. 13.

We first investigate the performance of the offline

LILUT-DLA-based DPD presented in Section II and the offline

LS-ILA-based DPD proposed in [3], using a model of a

PA operating at 25oC. We observe a significant reduction in

spectral regrowth for both linearizion techniques, as shown

in Fig. 14. However, the offline DLA-based PD suppresses

most of the spectral regrowth and shows better performance

than the offline ILA-based PD. This is due to the fact that

the measurement noise appears at the PA output and the ILA-

based DPD is more sensitive to noise than the DLA-based

DPD [12].

We next investigate the performance of various DPDs,

including the offline LILUT-DLA-based DPD and the

proposed adaptive DPD, when the temperature changes.

Fig. 14. Effectiveness of offline DPDs in suppressing spectral regrowth for
the PA model at 25oC: a) output, b) offline stand-alone LS-ILA-based DPD,
c) offline stand-alone LILUT-DLA-based DPD, d) input.

Fig. 15. Effectiveness of various DPDs in suppressing spectral regrowth
for the PA at 50oC: a) PA Output, b) PA Input, c) Offline LILUT-DLA-based
DPD, d) Design+LMS, e) Design+RLS.

Fig. 15 shows the obtained results, for instance, at 50oC.

Obviously, the offline LILUT-DLA-based DPD does not

completely suppress the spectral regrowth because the PA

characteristics change with temperature drift. A further reduc-

tion in the residual spectral regrowth can be achieved by

Design+LMS because the adaptation loop updates the coeffi-

cients of the ILA-based PD to compensate the residual spectral

regrowth. Design+RLS outperforms the others. It can fully

mitigate the spectral regrowth due to the major advantages

of the RLS algorithm in obtaining faster convergence and

lower mean-square error, as clearly shown in Fig. 16. The RLS

algorithm converges in about 1700 samples, while the LMS

algorithm has not fully converged after about 5000 samples.

As presented above, some residual nonlinear distortion will

appear after executing the offline LILUT-DLA-based PD when

the PA characteristics change due to the temperature drift. As

a result, the static DLA-based DPD obtains around −60 dB

and −70 dB of ACPRU1 and ACPRU2, respectively over

temperature variation, as shown in Fig. 17, which does not

satisfy the ACPR requirements. In other words, it can not

effectively follow changes in the PA characteristics. In con-

trast, by employing the proposed approach, the distortion

of the PA at each temperature can be effectively corrected.
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Fig. 16. Learning curves for Design+LMS and Design+RLS.

Fig. 17. ACPR performance when PA temperature changes: a) PA output,
b) Input, c) Offline LILUT-DLA-based DPD, d) Design+LMS, and
e) Design+RLS. (a) ACPRU1. (b) ACPRU2.

TABLE III

EVM PERFORMANCE OF OUR PROPOSED DESIGN+RLS

The proposed Design+RLS achieves −70 dB and −83 dB of

ACPRU1 and ACPRU2, respectively, which are almost equal

to the ACPR values of the input signal. Therefore, the ACPR

requirements are fully satisfied. Moreover, the obtained EVM

values are always less than 1%, as presented in Table III. This

shows that the proposed solution is able to accurately follow

changes in the PA characteristics due to temperature shift.

In order to show that the proposed DPD is more robust than

the stand-alone ILA-based DPD with respect to the noise at the

PA output, we analyze the condition number of the correlation

matrix of the output samples of both the CDPA in the proposed

DPD and the tested PA in the stand-alone LS-ILA-based DPD.

Fig. 18 shows the condition number of these two approaches.

Thanks to the incorporation of DLA, the CDPA is much more

linear than the tested PA, leading to a lower condition number

of its correlation matrix than that of the PA in the stand-alone

ILA-based DPD. This indicates that the proposed architecture

is more robust than the ILA-based DPD with respect to the

measurement noise.

Fig. 18. Condition number at various temperatures.

Fig. 19. Effectiveness of adaptive DPDs in suppressing spectral regrowth:
a) PA output, b) stand-alone LMS-ILA-based DPD, c) stand-alone RLS-ILA-
based DPD, d) Design+LMS, e) Design+RLS, f) PA input.

D. Comparison of Proposed Adaptive DPD With the

Stand-Alone LMS-ILA- and RLS-ILA-Based DPDs

This section makes a comparison of the effectiveness of

predistortion in suppressing spectral regrowth between the

proposed adaptive DPD and adaptive stand-alone ILA-based

DPD. Fig. 19 shows an efficiency comparison in canceling the

spectral regrowth at 50◦C. Obviously, the stand-alone RLS-

ILA-based DPD shows better spectral regrowth suppressing

than the LMS-ILA-based DPD. Neither of the stand-alone

ILA-based DPDs is able to completely suppress the spectral

regrowth due to measurement noise at the PA output. Noisy

measurements seriously influence the efficiency of the ILA-

based DPD [12], [17], [33]. The stand-alone RLS-ILA-based

DPD has performance in reducing the spectral regrowth

as good as the proposed Design+LMS. As previously

presented, the proposed DPD architecture is more robust

than the stand-alone ILA-based DPD with respect to the PA

output noise. Moreover, thanks to the smaller mean-square

error of RLS, the proposed Design+RLS almost fully

reduces the out-of-band distortion to the noise floor. As a

result, it effectively compensates the PA distortion at each

temperature, obtaining −70 dB and −83 dB of ACPRU1 and

ACPRU2, respectively, which are almost equal to the ACPRs
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b) stand-alone LMS-ILA-based DPD, c) stand-alone RLS-ILA-based DPD,
d) Design+LMS, e) Design+RLS, and f) PA input. (a) ACPRU1.
(b) ACPRU2.

of the input signal and better than the ACPRs obtained

by the stand-alone ILA-based DPD, as shown in Fig. 20.

It also uses a smaller number of adaptive coefficients than

the adaptive stand-alone ILA-based DPD, which makes the

proposed approach converge more quickly. In other words,

the proposed Design+RLS significantly outperforms the other

compared techniques. It is worth pointing out that although

the experimental results for narrowband signals are presented,

we have checked the applicability of the proposed method to

wideband signals/PAs by simulation using a Wiener model for

the PA. The obtained results show that the proposed method

has excellent performance in linearizing wideband PAs with

significant nonlinear memory effects. As a result, the proposed

approach should be applicable for wideband PA linearization.

V. CONCLUSION

In this paper, a novel adaptive DPD architecture has been

proposed in order to track nonlinear behavior changes in

PA characteristics. The proposed architecture is constructed

by cascading the adaptive ILA-based PD and the static

LILUT-DLA-based PD. The static LILUT-DLA-based PD is

designed to linearize the PA for a specific condition such that

the cascaded system of the DLA-based PD and PA, named

CDPA, is theoretically linear. In real-time applications, when

PA characteristics change due to PVT drifts, the CDPA is no

longer linear, which causes some residual nonlinear distortion

at the PA output. The proposed additional adaptive ILA-based

PD placed in front of the CDPA can effectively compensate

this residual nonlinear distortion. Thanks to the static DLA-

based PD, most of the nonlinear memory effects of the PA are

mitigated, making the CDPA much more linear than the PA.

As a result, the correlation matrix of the PA output samples

is better conditioned. The proposed solution is more robust to

measurement noise and guarantees a better preinverse model

for nonlinear PAs than the classical stand-alone ILA-based

DPD. Moreover, the combined adaptive ILA-based PD in our

DPD design is simpler and requires a smaller number of

adaptive coefficients than the adaptive stand-alone ILA-based

DPD, which makes the proposed approach converge more

quickly. The measurement results confirm that the proposed

Design+RLS fully compensates the spectral regrowth of the

PA output even if the PA characteristics change, and obtains

−70 dB and −83 dB of ACPRU1 and ACPRU2, respectively,

which are almost equal to the ACPRs of the input signals.

Consequently, It shows better linearization performance than

both the stand-alone DLA- and stand-alone ILA-based DPDs.
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