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Abstract

Large, sparse nonsymmetric systems of linear equations with a matrix whose eigenvalues lie in
the right half plane may be solved by an iterative method based on Chebyshev polynomials for
an interval in the complex plane. Knowledge of the convex hull of the spectrum of the matrix is
required in order to choose parameters upon which the iteration depends. Adaptive Chebyshev
algorithms, in which these parameters are determined by using eigenvalue estimates computed by
the power method or modifications thereof, have been described by Manteuffel [16].  This paper
presents adaptive Chebyshev iterative methods, in which eigenvalue estimates are computed from
modified moments determined during the iterations. The computation of eigenvalue estimates from
modified moments requires less computer storage than when eigenvalue estimates are computed by
a power method and yields faster convergence for many problems.

-.
1 Introduction

The problem of solving a linear system of equations

A x = b, A E RNxN, x,b E RN, (1 1).

with a large, sparse and nonsymmetric matrix A arises in many applications. A Chebyshev iterative

method based on scaled Chebyshev polynomials p, for an interval in the complex plane can be used to

solve (1.1) when the spectrum of A lies in the right half plane. This includes matrices with a positive

definite symmetric part. Manteuffel [l5,  161  discusses such Chebyshev iterative schemes and shows

that the iterations depend on two parameters only, the center d and the focal length c of an ellipse

in the complex plane 4: with foci at d f c. In these schemes, the p, are Chebyshev polynomials for

the interval between the foci, and are scaled so that p,(O) = 1. The three-term recurrence relation .:
for the p, yields an inexpensive recurrence relation for computing a sequence of approximate solutions
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Xn7  n = 1,2,... ) of (1.1). Let x0 denote a given initial approximate solution of (l.l), and introduce

the residual vectors rn := b - Ax,, n > 0. The iterates 2, determined by the Chebyshev iterative_

method are such that

en = pn(A)eo,

where en denotes the error in xn, i.e.,

en I= 2 *
- Xn 7 x* := A-lb. (13).

Let the matrix A be diagonalizable and have spectral decomposition

A = WAW-l, A =  diag[&,&,...,&& w = [‘W/W,--,wN], (14).

where the eigenvectors wj are scaled so that ]]mj]]  = 1. Throughout this paper ]I l ]I denotes the

Euclidean vector norm or the corresponding induced matrix norm. Let S(A) denote the spectrum of

A. It follows from (1.4) that the error e, can be bounded by

(15).

We obtain from (1.2) that
- Tn = pn(A)ro, n > 0, (16).

and, therefore, a bound similar to (1.5) holds for the residual vectors, also. Because of relation (1.6),

the p, are sometimes referred to as residual polynomials. If the parameters d and c are chosen so that

the quantity

(1 7).

decreases rapidly with n, then, by (I$), the norm Ilen]] decreases  rapidly as n increases; see, e.g., [15]  for

details, where the case when A cannot be diagonalized is treated, also. For pronouncedly nonnormal

matrices A, i.e., when ]I WIIIIW-‘II is “huge”, it may be meaningful to consider pseudospectra of A

instead of the spectrum; see [l7] for a discussion. For simplicity, we will in the present paper only discuss

convergence in terms of the spectrum S(A). For n sufficiently large, the scaled Chebyshev polynomials

p, for the interval between the foci at d f c are of nearly constant magnitude on the boundary of any

ellipse, which is not an interval, with foci at cf d. Chebyshev iteration is an attractive solution method

if parameters d and c exist, such that there is an ellipse with foci at d f c which contains S(A) and

is not very close to the origin. In particular, this ellipse must not contain the origin. Assuming that

such an ellipse exists, its center d and focal length c can be determined if S(A) is explicitly known.

However, in general, S(A) is neither known nor easy to determine.
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In [16] Manteuffel describes algorithms for dynamic estimation of the parameters d and c based

on the power method applied to A, or modifications thereof. The parameters d and c are chosen so

that d f c are the foci of the the smallest ellipse containing available estimates of eigenvalues of A. As

new estimates of the eigenvalues of A become available during the iterations, it may be necessary to

refit the ellipse so that it encloses all available eigenvalue estimates of A. Manteuffel [16]  proposes a

combinatorial approach for fitting the ellipse. More recently other schemes have also been suggested;

see [4, 14. We review Manteuffel’s adaptive Chebyshev algorithms in 92.

A modification of Manteuffel’s adaptive schemes is proposed by Elman et al. [7], who replace the

power method and its modifications by the Arnoldi process and the GMRES algorithm. The Arnoldi

process is applied to compute eigenvalue estimates of A, and these estimates are used to determine new

parameters d and c. Having computed eigenvalue estimates by the Arnoldi process, the best available

approximate solution of (l.l), say xn, can be improved quite inexpetisively by the GMRES algorithm..:
before restarting Chebyshev iteration with the new parameters d and c. The scheme proposed by

Elman et al. [7] is a hybrid iterative method because it combines Chebyshev iteration with the GMRES

algorithm. A recent survey of hybrid iterative schemes can be found in [17].

This paper presents two adaptive Chebyshev algorithms that use modified moments to compute

approximations of eigenvalues of A. The computed modified moments and the recursion coefficients of

the p, are input to the modified Chebyshev algorithm, which determines a nonsymmetric tridiagonal

matrix. We compute the eigenvalues of this tridiagonal matrix and consider them as estimates of

eigenvalues of A. These estimates are used to compute parameters d and c by determining the smallest

ellipse that contains the estimates. From the location of the foci at d f c of this ellipse, the parameters

d and c can easily be computed.

The computation of each modified moment requires the evaluation of an inner product of two

N-vectors. The adaptive procedure that we describe in this paper requires 2~ modified moments to

estimate K eigenvalues of A. The simultaneous calculation of iterates x, and modified moments makes

it possible to compute new eigenvalue estimates from modified moments and refit the ellipse in order

to determine new values for the parameters d and c as soon as the rate of convergence of the computed

residual vectors r,, falls below a certain tolerance.

Our numerical experiments indicate that modified moments only have to be computed during the

first couple of iterations in order to determine parameters d and c that yield a high rate of convergence.

When such parameters have been found, the iterations can proceed without computing further modified

moments, and therefore without computing further inner products, until an accurate approximate
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solution of (1.1) has been found. Typically, the vast majority of the iterations can be carried out

without computing modified moments and ‘inner products. The simplicity of Chebyshev iteration

with fixed parameters d and c allows eficient implementations on parallel and vector computers; see

Dongarra et al. [5, Chapter 7.1.61  for a recent discussion.

Our schemes for computing modified moments and eigenvalue estimates for a nonsymmetric matrix

A are extensions of an algorithm described by Golub and Kent [12] for the computation of modified

moments and eigenvalue estimates for a symmetric matrix. The computation of modified moments

requires the residual vector TO be available. This is the only N-vector that our adaptive Chebyshev al-

gorithms require stored, in addition to the N-vectors required by nonadaptive Chebyshev iteration. We

note that the adaptive Chebyshev algorithms proposed by Manteuffel and Ashby [16, 21 and by Elman

et al., [i’] require more N-vectors to be stored than our schemes. Details of the storage requirements

are discussed in $2. i

This paper is organized in the following way. In $2 we outline nonadaptive Chebyshev iteration

and schemes used by Manteuffel [16] and Elman et al. [7] for determining eigenvalue estimates of A.

The problem of determining the ellipse that encloses the eigenvalue estimates and yields the smallest

convergence factor is treated in $3. This section follows the presentation by Manteuffel [16].  In $4 we

discuss how modified moments can be used to reduce the problem of estimating the spectrum of A to the

computation of the eigenvalues of a certain tridiagonal matrix. This section extends results by Golub

and Kent [l2].  In $5 we study some properties of modified moments with respect to a complex measure

with support in C*, and derive the modified Chebyshev algorithm. Our presentation follows Golub and

Gutknecht [12]. We use the modified Chebyshev algorithm to compute the elements of a tridiagonal

matrix from the modified moments and the recurrence coefficients of the residual polynomials. These

elements are recurrence coefficients of a family of orthogonal polynomials associated with the modified

moments. The eigenvalues of this tridiagonal matrix approximate eigenvalues of A and are used to

determine suitable parameters d and c for Chebyshev iteration.

Manteuffel [16] reports numerical experiments with a modified power method for estimating the

spectrum of A. In this scheme the power method is applied to a matrix a obtained by shifting and

scaling A. Eigenvalue estimates obtained by the power method are known to generally converge most

quickly to the eigenvalues of A of largest magnitude. The purpose of applying the power method to ;*

the shifted and scaled matrix a is to make eigenvalue estimates important for determining suitable

parameters d and c converge quickly to eigenvalues of A. In $6 we describe how to use modified

moments for a instead of for A. The results of numerical experiments comparing our adaptive schemes
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. with schemes due to Manteuffel as implemented by Ashby and Manteuffel [2] are presented in $7.

2 Adaptive Chebyshev algorithms

In this section we outline the adaptive Chebyshev algorithms by Manteuffel [15, 161  and Elman

et al. [7]  and introduce notation that will be used in the remainder of the paper. A more detailed

discussion of the material presented can be found in [2, 7, 15, 161.  Given the two parameters c and d,

Chebyshev iteration for (1.1) can be defined as follows. Let x0 be the initial approximate solution, let

r0 := b - Ax0 and A0 := 3~0. The iterates x, for n = 1,2,.  . . are defined by

2, := X,-I  + 4-l  7

rn := b - A x , ,

A,, := anrn t BraAn-1,

(2 1).

where
2 n$ T $

Cyn I= - To pn := n-1 0
’ Tn+l $ ’0

T $’n+l 0

(2 2).

and Tn(A) is the Chebyshev polynomial

T,(X)  := cash (n cash-‘(X)) .

The residual polynomials pn in (1.2) and (1.6) are given by

p (A) Tn (3
n =

To
d *

n c
(2 3).

Let d and c be the center and focal length, respectively, of the smallest ellipse containing S(A). The

assumption that S(A) lies in the right half plane and is symmetric with respect to the real axis implies

that d > 0 and d* > c*. It therefore suffices to consider pairs of real numbers (d,c*) that lie in

7Z := {(d,c*)  : d > 0, d* > c*}. ( 4)3Y.

For each A E 43 define the asymptotic convergence factor

r(X, d, c*) :=
d - X + ((d - A)* - c*)l’*

d + (d* - c*)l/* ’ (2 5).

It can be shown that for large n the component of the error en in the direction of the eigenvectors

wj, cf. (1.4),  in each iteration is multiplied by a factor of magnitude roughly equal to T(X~,  d,c2).

Therefore, for sufficiently large n, the dominating eigenvector components of en are in the directions of
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eigenvectors wj associated with eigenvalues Xj with largest convergence factor (2.5). From the relation

rn = Aen,  it follows that for n sufficiently large the residual error r,, also is dominated by the same

eigenvector components. It is desirable to choose d and c so that the the asymptotic convergence factor

(2.5) associated with each eigenvalue of A is small. This suggests to let the parameters d and c be the

solution of the mini-max problem

min max r&d, c”) .
(d,c2)GZ XES(A)

(2 6).

The eigenvalues of A with largest convergence factors are vertices of the convex hull of S(A). Let

7f(A)  denote the set of vertices of the convex hull of S(A). The solution of (2.6) is a function only

of the eigenvalues of A in %(A). Therefore, Manteuffel’s adaptive Chebyshev schemes, as well as our

algorithms, seek to determine estimates of the elements of E(A).

In one of the adaptive schemes described in [16],  the power metPod is applied to A in order to

approximate eigenvalues of the matrix. When the power method is applied to A, eigenvalues of large

magnitude are typically determined most accurately. Therefore, it may be difficult to determine the

vertices of ‘H(A) that are closest to the origin with high accuracy in this manner. Manteuffel [16]

suggests the following approach to circumvent this problem. Let

B(t) :=
d - z + ((d - z)* - c*)l/*

d + (d* - c*)l/* (2 7).

and apply the power method to B(A) in order to estimate the eigenvalues of largest magnitude of this

operator. If bj is an eigenvalue of B(A) and

9 := d + (d* - c2)l/*, (2 s>.
then

is an eigenvalue of A and r(Aj, d, c*) = I.B(bj)l. There ore,f the power method applied to B(A) typically

yields highest accuracy for eigenvalues of A with largest convergence factor. In order to avoid the

nonlinearity of the relation (2.9) between Xj and bj, Manteuffel [16]  also proposed to apply the power

method to the matrix

a := 2g(dl-  A) = g*S - c*S-? (2.10)

The linearity of the relation between A and a makes it simple to compute the eigenvalues of A from

those of A, and, moreover, the power method applied to a typically yields highest accuracy for eigen-

values with largest convergence factor.
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In the implementation of adaptive Chebyshev iteration by Ashby and Manteuffel [2], the power

method is applied to A, B(A) or A in order to determine four estimates of eigenvalues. The imple-

mentation [2] based on the power method applied to A or B(A) requires the storage of four N-vectors

in addition to the vectors used for nonadaptive Chebyshev iteration (2.1). The implementation [2]

based the power method applied to a requires the storage of five additional N-vectors. The adaptive

schemes based on the different power methods also differ in their operation count. The power method

applied to A is, generally, the most expensive scheme; it requires four matrix-vector products with the

matrix A for the computation of each set of four eigenvalue estimates, in addition to the matrix-vector

products needed to compute the iterates xn by Chebyshev iteration.

An alternative to the power methods for computing estimates of eigenvalues of A is provided by the

Arnoldi process [l]. This method is a Galerkin scheme for approximating m eigenvalues of A, in which

the test and trial spaces are a Krylov subspace K,(A, V) := span@, Av, . . . , Amwlv},  where v is a

vector in RN. The scheme requires the storage of an orthonormal basis of l<m (A, v), and the operation

count is O(m*N). In the application of the Arnoldi process to computing eigenvalue estimates for

Chebyshev iteration discussed in [7] m is chosen to be four. See [7]  for further details.

3 Fitting of the ellipse

In this section we discuss how to compute the parameters d and c for Chebyshev iteration. Let

3(d, c, a) denote the ellipse with center d, focal length c and semi-major axis a > 0, i.e.,

3(d,c,a):={tEC:lz-d+cl+lz-d-cl<2a}.

Let II, be the set of polynomials of degree at most n, and also define the subset fin := {q : Q E

II,, q(0)  = 1). The

with parameters d

S(A) := 3(d, c, a).

Theorem 1 ([15])

and let pn be given

Moreover,

following theorem shows that the residual polynomials pn for Chebyshev iteration

and c minimize the limit as n + CO of the nth root of the quantity (1.7) when

Assume that 0 # 3(d, C, a). Let tn E fin satisb

x$(g,a, Pn(X)I =
by (2.3). Then

min max W>l 7
qElL XEF(ka)

1 1 l/n
= lim max IPn(X)I *n+ca  XEF(d,c,a)

(3 1).

lim Ipn(A)(‘l” = r()c,d, c*)
n-a3
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for any A E C, and, in particular,

lim
C2

n-cm
lpn(  X)1’/”  = r(d t ma, d, c2) < 1 (3 2).

for any X on the boundary of 3(d, c,a). cl

In the terminology used, e.g., in [15,  201,  equality (3.1) hs ows that the residual polynomials pn given

by (2.3) yield an asymptotically optimal rate of convergence with respect to 3(d, c,a). We note that

this result can be improved in several ways. Since the polynomials pn are scaled Faber polynomials for

3(d, c, a) results by Eiermann [6] on Faber polynomials imply that

(3 3).

for some constant y independent of n. Moreover, Fischer and Freund [8] have recently shown that for

-‘many ellipses the right hand side of (3.3) can be replaced by one.

Formula (3.2) shows that, if d and c are the center and focal length of a small ellipse enclosing

the spectrum of A, and if this ellipse is not very close to the origin, then maxxes(A)  lpn(X)I  converges

rapidly to zero as n increases. Moreover, if the matrix A is not very far from normal, then (1.5) shows

- that the norm Ile,ll al so converges rapidly to zero with increasing n.

We now outline the scheme of Manteuffel [15] for computing the best ellipse with respect to the

spectrum S(A), i.e., we compute the best parameters d and c for Chebyshev iteration, when the

spectrum S(A) is given. However, we remark that when carrying out Chebyshev iteration, S(A) is

generally not known. The adaptive Chebyshev algorithm therefore computes the best ellipse with

respect to a set of eigenvalue estimates computed during the iterations. This set is typically updated

a few times during the iterations.

Since A is real, the set ‘H(A) is symmetric with respect to the real axis, and the foci of the smallest

ellipse enclosing 7f( A) are either real or complex conjugate. The center d and focal length c of the

smallest ellipse containing X(A) are such that (d,c2)  E 72.  Thus, the mini-max problem (2.6) can be

replaced by the simpler mini-max problem

min max
(d,c2)cR AM+ (A)

r(X, d, c2), (3.4)

where B+(A)  := {X E ‘H(A)  : Im(A) > 0). The theorem below is helpful for the solution of (3.4).

Theorem 2 ([3, 151)  Let the set M c 72 be closed and bounded, and let S(A) = {X;}z,  . Then

wi, 4 c2,>:, is a finite set of real-valued functions of two variables (d, c2), continuous on M. Let
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m(d,c2)  := max; r(X;,d,c2).  Then m(d,c2)  has a minimum at some point (do,%).  If (4,~:)  is in the

interior of M then one of the following statements holds:

1. The point (do, ci) is a local minimum of r(Xi, d, c2) for some i such that r(/\i, do,ci)  = m(do,ci).

. 2. The point (do, ci) is a local minimum among the loci ((d, c2) E M : r(A;, d, c2) = r(Xj,  d, c2)}  for

some i and j such that m(do,ci)  = r(Xj,  &,c;) = r(&, do, c:).

3. The point (do,  ci) is such that for some  i, j and k, rn(dol  ci) = r(Xi,  do, d> = r(Xj,  do, c:) =

qk, do, cg>.

Manteuffel [15]  presents an algorithm for the solution of (3.4) based on the following observations that

are a consequence of Theorem 2. .-

1. If E+(A)  = {Xl}, then d = x1 and c2 = -yf, where Ar = x1 + iyl, i := &i.

2. If N+(A) = {&, &}, then the optimal parameters (d, c2) correspond to a point lying on the i
E

intersection of the two surfaces

- +l,4C2) = r(A2,  d, c2).

The point corresponding to the optimal parameters when the positive convex hull contains only

two points is called the pairwise best point, and the associated ellipse passing through X1 and X2

is called the pairwise  best ellipse.

3. If B+(A) contains three or more eigenvalues, then the solution to (3.4) must be either a pairwise

best point or it is the intersection of three surfaces. Given the pairwise best point for two

eigenvalues X1 and X2, this is the best point if the associated pairwise best ellipse contains all

eigenvalues in the closure of its interior. If no pairwise best point is the solution to (3.4) then

determine the three-way point on the intersection of the three surfaces:

@l, 4C2) = r-(X2,  d, c2) = r(X3,  d, c2)

and the associated three-way ellipse. If the associated three-way ellipse contains all eigenvalues of

A in the closure of its interior then the three-way point is a feasible point. The three-way feasible

point with smallest convergence factor is the solution to the mini-max problem (3.4).

A detailed description, and some further simplifications, of the scheme for fitting the ellipse outlined

above are presented in [ 151.
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.
4 Modified moments

In this section we define moments and modified moments and discuss how they can be used to

gain spectral information about the matrix A while computing approximate solutions 8, of (1.1) by

Chebyshev iteration (2.1). Let A have spectral resolution (1.4),  let pn be residual polynomials (2.3)

and express TO in the basis of eigenvectors {wj}jN,1,  i.e.,

N
r0 = c CYiWi a

i=l

Then it follows from p,(A) = Wp,(A)W-’ that

Tn = 5 Qipn(h)wi -
i=l

Introduce the inner product

@k-T/) := T+'l = E 5 aiajw?wj pk( k)P1( xj) 7
i=l j=l

and let y(X, q) be the complex symmetric measure with support in C2 and with ‘jumps’ of height

Yij := oiojw:wj at the points (Ai, Aj) E C2, for Ai, Aj E S(A). Then the inner product can be written
-

as

(rk,Tl) = IE IfI pk(xi)Pl(Ajh’ij  = J, J, Pk(X)P1(q)dy(&Q)  - (4 1).
i=l j=l

We remark that if the matrix A is symmetric, then its eigenvalues are all real and we can choose

the eigenvector matrix W to be orthogonal. In this case (4.1) simplifies to

(rky ‘1) = 5 a?Pk(Xi)P/(Ai)  = lR pk(X)pl(X)da(A)  ,
i=l

where a is a real measure with support on R and with jumps of height of at Ai E S(A).

Let
Nyi := c Yij, l<i<N,
j=l

and introduce the linear functional q5 associated with the measure y by

(4 2).

N

(4 3).

where q is a polynomial. We are now in a position to define moments associated with the measure y

bY

Pk := 4(X”>, k=0,1,2 ,... , (4 4).

1 0



as well as modified moments with respect to the residual polynomials

vk := +(pk), k = 0,1,2  ,... .

For future reference, we note that

uk = (Tk, TO), k=O,1,2  ,... .

(4 5).

(4 6).

Let < a, l >> denote the bilinear form generated by q+,

< f,g B:= 4(fgL (4 7).

where f and g are polynomials, and assume that there is a family of manic formal orthogonal polyno-

mials {ri}Eo associated with the measure y, i.e.,

<< rk,rl >>
- 0 ,  i f  k#l, O<k,l<SN,
g 0, if k = 1, 0 < k < N.-

The bilinear form (4.7) has the property that

< tf,g>>=<f,q>,-

and this implies that the nk satisfy a three-term recurrence relation

rk+l(z) = (2 - bk)rk(z) - jkrk-l(z), O<k<N,

To(Z)  = 1, K-l(Z)  = 0,

(4 8).

see, e.g., [9] for a proof. It follows from (4.3) that the zeros of TN(z) are the eigenvalues of the matrix A.

The eigenvalues of A can therefore be computed as the eigenvalues of the tridiagonal matrix defined by

the coefficients in the three- term recurrence relation for the rk. In the following two sections we show

how to construct the tridiagonal matrix containing the recurrence coefficients for the polynomials nk

from the modified moments and the parameters d and c of Chebyshev iteration. A discussion based on

formula (4.2) on how modified moments can be applied to estimate eigenvalues of a symmetric positive

definite matrix can be found in [12].

5 Computing eigenvalue estimates

This section derives a matrix identity that connects modified moments associated with a complex

measure with the recurrence coefficients of a family of orthogonal polynomials associated with this

measure. This identity is the basis of the modified Chebyshev algorithm for computing recursion
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coefficients for the orthogonal polynomials, and has been discussed in more detail, also including

degenerate cases, by Golub and Gutknecht [ll]. The recursion coefficients determine a tridiagonal

matrix, whose eigenvalues are estimates of eigenvalues of A. We discuss the computation of these

estimates in the end of this section. Throughout this section we assume that N = 00 in the formulas of

54, and, in particular, that the measure y has infinitely many points of support, that the moments pk

given by (4.4) are defined and finite for all k >_ 0, and that there is a complete family of manic formal

orthogonal polynomials {‘ITk}r&  associated with y.

Let {rn},“=o be a family of polynomials that satisfy a three-term recurrence relation. In particular,

we are interested in the case when the rn are the residual polynomials p,-,,  given by (2.3), for Chebyshev

iteration. It is easy to show that the pn satisfy the three-term recurrence relation

1
;PTa+1(A) =

(

Pn 1
Cy, + - - x J-h(A)

>

Pn

an
- ;Pn-l(q n 2 1, (5 1).

Pi(X) = l-i,
4

PO(X) = 1,

where the coefficients on and /?n are defined by (2.2). Introduce the quantities

grnn := 4( 7,rn) *

- It follows from (4.5) that, if rk = pk, then

OrnO = urn9 m= 0,1,2  ,... , (5 2).

and the orthogonality of the rn yields +(rmrn) = 0 for m < n, thus

ornn =O f o r m < n . (5 3).

In order to derive matrix relations that will be used in the calculation of the recurrence coefficients ok

and pk for the polynomials rk, we introduce the following semi-infinite vectors

7r = [~OJl,... ]
T 7= [~O,%..~ I

T
, 7

and semi-infinite matrices

!

ho 81 0
1

H

hl 82

.- .-

1 h2 b3

0 a., -.* ..*

r> - -.-
020 *21 022

. . . .. . . .. . . .

1 T . -7 . -

700 To1 0
710 711 712

T21 722 --.
0 **. '*.
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where H and T are tridiagonal  and S is lower triangular. The nonvanishing entries of the matrix H

are recurrence coefficients for the polynomials rk, see (4.8),  and are to be computed. The nontrivial

entries Tjk of the matrix T are recurrence coefficients of the polynomials rj and are assumed to be

explicitly known. In particular, if rj = pj, then we obtain from (5.1) that

TOO = 4 flo =  - d ,

Pn Pn t 1 1
rn-l,n = - - ? rnn =-7 =-- n 1.

an an
rn+l,n

an'
1

We write the three-term recurrence relations for the xk and rk in the form

znT(z)  = HUH, zrT(z)  = TUT. (5 4).

Define the functional 4 on the set of vectors of polynomials by

,.4Qo,ql,'* l IT) := MQO),  $(a), . l * IT ) $3 E nn.

Applying 4 to the rank-one matrix r7rT yields &rnT) = S, and it follows from (5.4) that

SH = +rT)H  = &7rTH)  = $(Tz?T~)  = cj((z~~)~?r~)  = &TT~rT)  = TT&&j  = TTS. (5.5)
-

This matrix identity is the basis of the modified Chebyshev algorithm, described in [lo, 11, 18, 211,  for

computing the recurrence coefficients for the polynomials rk from the recurrence coefficients for the rk

and the modified moments &. Let HK denote the K x K leading principal submatrix of H. We derive

the modified Chebyshev algorithm for computing the entries of HK. Equating elements in the left and

right hand sides of equation (5.5) yields

ai,j+l t Gjgij t fijoij-1 = fi-l,iOi-1,j t  riiaij t  ?+l,igi+l,j- (5 6).

If i < j - 1, then both the right hand side and left hand side of (5.6) vanish, because S is lower

triangular. When i = j - 1, formula (5.6) yields

Pjaj-l,j-1 = Tj,j-lOjj, (5 7).

and for i = j we obtain 5i
GJajj + bjOj,j-1 = TjjOjj + fj+l,jOj+l j .

s
, (5 8).

The coefficients 6j and fij are computed by (5.7) and (5.8), and we note that this requires only the

diagonal and subdiagonal elements of the matrix S. These entries of S can be generated recursively
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starting from {~jo}~~~l  defined by (5.2). The computations proceed as follows. Initialize

&() :=
Vl

700 t 710- 7
UO

Ojo I= uj, O<j<ZK-1,
.

ajl := Tj+l,j"j+l,O  t (Tjj - bO)ajO t Tj-l,joj-l,O, lLj<ZK-2.

Then compute for j = 1,2, . . . , K - 1:

~j := Tj,j-1 ajj ,
oj-l,j-1

A
Cyj I= Tjj t rj+l,j

fij %j- 1 ,Oj+l,j

Ojj aji

ai,j+l := fi+l,iOi+l,j + @ii - bj)aij t ri-l,iai-l$ - bjaij-1 7 j<i<ZK-j,

where we use the property (5.3). Thus, the computation of the entries of HK requires 2~ modified

moments {Uj}:2i1. We compute these uj from the residual vectors {Tj}3zz1  by (4.6). The eigenvalues

of H, are estimates of eigenvalues of A, and in the computed examples of $7 we computed them by the

E I S P A C K  [19] bsu routine HQR. Our computational experience indicates that IC often should be chosen

fairly small, e.g., K = 5. After each 2~ - 1 iterations by the Chebyshev method (Z.l), we can determine
-

a new matrix H, and compute its spectrum. Let S(H) denote the union of sets of eigenvalues of all the

computed matrices H,. We determine the parameters d and c by fitting an ellipse to the available set

S(H) using the scheme outlined in $3 with S(A) replaced by S(H). The spectrum of each computed

matrix HK increases the set S(H). If during the iteration with the adaptive Chebyshev method one

finds that the parameters d and c change insignificantly when eigenvalues of new matrices H, are

included in the set S(H), then Chebyshev iteration can typically proceed until convergence with fixed

values of d and c and without computing further modified moments.

6 Modified modified moments

This section describes an alternative way of estimating the spectrum of A by using modified mo-

ments. Manteuffel [16]  points out that estimating the spectrum of A by the power method can give

.

estimates biased towards eigenvalues of large magnitude. However, since eigenvalues of large magnitude

are not necessarily associated with large convergence factors, they might not be the most important

ones for determining good parameters d and c. Manteuffel [16]  proposes to apply the power method to

the matrix a, defined by (2X)), to circumvent this problem; see the discussion in $2. In this section we

show how eigenvalue estimates of A can be computed from modified moments associated with a. These

modified moments are computed by modifying the modified moments associated with A. The work

14



. and storage required for computing these modified modified moments of A exceed the requirements for

the scheme based on modified moments of A only by a negligible amount.

The matrix A has spectral decomposition A = WhW-l,  where

A = diag[il, AZ,. . . , XN] := Zg(dI - A). (6 11.

Introduce the vectors

+k : =  pk(A)+O, &-J : =  To, (6 2).

where the polynomials pk are given by (2.3). Similarly as in $4, we introduce a complex symmetric

measure 7 associated with A and io, i.e., y has jumps of height yij := oiojw?wj at the points

(x^i,);j)  E C2. Then

+;+I = J Jc c pk@)&?)d?(&  q> l (6 3)
.

In view of (6.1),  we can replace y in (6.3) by the measure y introduced in 94 in the following way. Let

Ijk(+=  pr;(2gd - 2gx).

Then

In particular, we can define modified moments associated with a by

(6 4).

We now write @k as a linear combination of residual polynomials pj of degree j < k. Substituting

this linear combination into (6.4) yields a formula for expressing the modified moment tik in terms of

modified moments uj for j < k. The uj are as usual computed by (4.6). In the remainder of this section

we determine the coefficients in this linear combination.

Let & := -2g and ii := Zgd. We would like to compute constants ckj, such that

Pk(’ •I &A) = 5 CkjPj(X).
j=O

It follows from

that the coefficients Ckj in (6.5) are easily determined from the coefficients ?kj in

(6 5).

(6.6)
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In order to simplify the notation, we introduce

t
d-J+ d:= - a . -

c ’
. - -7 b := b

C
=  -2g .

Then
Tk (d-(dtbA))  =Tk(a+-bt).

The coefficients Zkj can be computed recursively. Assume that the &j are known for 0 5 i, j 5 k.

Combining the three- term recurrence relation

Tk+l(d + b[) = 2(a t b[)Tk(a  t bt) - Tk-l(a  + bt)

with (6.6) yields

k+l
c ?k+l,jTj(t) = e zahjTj([)  t 6 zkjbZ(T’(<)  - ‘2 &-l,jTj([) (6 7).
j=O j=O j=O j=O b

= 5 zackjTj(()  t '2 bk,j-IT'([)  t '2 btk,j+lT'([)  - '2 Ek-l,jTj(s)  . (6.8)
j=O j=l j=O j=O

Identifying coefficients on the left and right hand sides of (6.7) or (6.8) gives

?k+l,O = 2a&)  + b&l - t&1,0,

ek+l,l = 2atkl + 2bi&  + b&2  - &l,l, k 2 2,

zk+l,j = 2atkj -I btk,j-1 •I- btk,j+l - ek-l,j, Zsj<k, k 2 3, (6 9).

tk+l,k = k&k  + b&k-l,

tk+l,k+l = b&k  .

It follows from To(X) = 1, Tl( ;\) = A and from (6.6) that

bo = 1,
d

210 = -, i!ll  =  -2g .
C

Recalling that the residual polynomials pk( a) satisfy

Pk(A) =
T&d + i(dI  - A))

Tk(<) ’

we obtain

where

pk(A)  = 5 &j -
Tj(:) Tj($(dI  - A))

Tk(:) T,O
= 6 ckjPj(A) 7

j=O j=O

ckj

1 6
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and the ?kj can be computed recursively from (6.9) and (6.10). We remark that the coefficients ?kj are

real when k + j is even, and purely imaginary when k + j is odd. Therefore, since Tj(d/c)  is real for j

even, and purely imaginary for j odd, the coefficients Ckj are real for all k and j.

It follows from the definition of the modified moments and (6.11) that

k

i)rc = c CkjUj a (6.12)
j=O

Formula (6.12) allows us to compute the first 2~ modified moments associated with a from the first 2~

modified moments associated with A. Eigenvalue estimates for a can be computed from the modified

moments for a and the recursion coefficients of the residual polynomials pl, in a similar manner as the

eigenvalue estimates for A are computed from modified moments of A and recursion coefficients of the

pk. We finally note that eigenvalue estimates for A are easily obtained from eigenvalue estimates for

ii by (6.1).

7 Numerical examples

This section presents numerical experiments, in which the performance of our two new adaptive

_ Chebyshev algorithms for nonsymmetric linear systems based on modified moments are compared with

the adaptive Chebyshev method based on the power methods applied to the matrices A and a by

Manteuffel [ 161 as implemented by CHEBYCODE [Z], where a is defined by (2.10). All programs used

are written in FORTRAN 77. Our new adaptive schemes have been implemented by using parts of

CHEBYCODE [Z], e.g., the subroutines for computing the Chebyshev iterates and for determining and

updating the smallest ellipse containing all computed eigenvalue estimates of the matrix A.

We carried out the numerical experiments on an IBM RISC 6000/550  workstation using double

precision arithmetic, i.e., with approximately 15 significant digits. The test problems are derived by

discretizing the elliptic partial differential equation

- Au + zplu,  + 2p2uy  - p3u = f (7.1)

with constant coefficients pl, p2 and p3 on the unit square R := ((2, y) : 0 5 x,y 5 l}, and with

boundary condition u(x, y) = 0 on da. The function f is chosen so that u(x, y) = xe”ysin(7rx)  sin(ny)

solves (7.1). We discretize (7.1) by symmetric finite differences on a uniform (n + 2) x (n + 2) grid,

including boundary points, and use the standard five-point stencil to approximate Au. This yields a

linear system of N := n2 equations for n2 unknowns uij, 1 5 i, j 2 n, where uij approximates the

solution u of (7.1) at the grid point (ih, jh), h := A. We scale the linear system obtained in this

1 7
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manner by h2 and write it as Aa: = b. A typical equation of this system reads

(4- mh2)Uij  - (1 f Plh)ui-l,j  - (1 -Plh)ui+l,j  - (1 t P2h)ui,j-l  - (1 - P2h)Ui,j+l = h2fij,

where fij = f(ih, jh). In order to keep the issues of interest clear, no preconditioner is used. In

practical applications, however, the use of a preconditioner is often desirable. To obtain systems of

equations with different properties, we modify the matrix A by adding a multiple of the identity, i.e.,

we solve Ax = b, where A := A + SI and S 1 0 is a constant. As the value of 6 increases, the spectrum

of the matrix A is shifted away from the origin.

In the following tables “pm(A)” and “pm(@’ denote the adaptive Chebyshev algorithm based on

the power methods applied to the matrices A and a, respectively, as implemented by the code [Z]. We

recall that the number of matrix-vector products required by pm(A) exceeds the number of iterations,

because each fitting of the ellipse requires 4 matrix-vector products $hat are not used to update the

iterates. The number of iterations required by the methods is listed in the column labeled “steps”. We

denote our adaptive scheme based on modified moments associated with the matrix A by “mm(A)“,

and “mm(~)” stands for our adaptive scheme based on modified moments associated with the matrix

a. The column in the tables labeled “maxadapt” shows the maximum number of times the ellipse

is fitted in the schemes mm(A) and mm(A). The column labeled “frequency” show how often the

ellipse is fitted. For instance, if maxadapt  = 10 and frequency = 20, then the ellipse is fitted after

every 20 iterations until the ellipse has been fitted 10 times. In all the examples, we choose K = 5,

i.e., the computed eigenvalue estimates of A are eigenvalues of 5 x 5 tridiagonal matrices. After each

fitting of the ellipse only 2% = 10 modified moments (4.6) have to be computed, and therefore only 10

inner products are computed, independently of the frequency 1 10 chosen. Moreover, after the ellipse

has been fitted maxadapt times no more modified moments, and therefore no more inner products, are

computed. We remark that our code for the adaptive Chebyshev algorithm based on modified moments

is a research code and lacks the sophistication of a production code. We believe that its performance

can be improved by careful coding and by implementation of strategies for choosing the frequency and

maxadapt parameters.

In the derivation of the modifed Chebyshev algorithm of Section 5 we assumed that the tridiagonal

matrix H exists. If during the computations it would turn out that the KXK leading principal submatrix

HIE of H does not exist, then the modified Chebyshev algorithm is curtailed and a submatrix of H, is

determined, whose spectrum yields eigenvalue estimates of A.

Example 7.1. We select pl = 60, p2 = 80, p3 = 40 and 6 = 0.05.  Table 7.1 shows that the adaptive
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adaptive method maxad,apt  frequency

pm(A)
mm(A) 15 10
mm(A) 10 20
mm(A) 6 30
mm(A) 7 35
ml-44 7 40

steps I Il~h8tlllllmll  1
276 .59D-lo
275 .60D-10
242 .48D-10
235 .56D-10
229 .60D-10
229 .6OD-10

Table 7.1: pr = 60, p2 = 80, pa = 40; 6 = 0.05; N = 10,000

adaptive method m=adapt frequency steps  Ilatll/ll~~ll

pm(A) 271 .63D-10
mm(A) 4 40 224 .32D-10
mm(A) 4 45 224 .32D-10

Table 7.2: pl = 60, p2 = 80,~~ = 40; S = 0.05; N = 25,600

schemes mm(A) and pm(A) h’ac ieve convergence in approximately the same number of Chebyshev

iterations when the order of A is N = 10,000 and the adaptive procedure in mm(A) is called every 10

- iterations. It is clear from Table 7.1 that, as we reduce the frequency of calls to the adaptive procedure,

the number of iterations necessary to achieve roughly the same residual error is reduced by up to 17%.

This depends on that Chebyshev iteration is restarted after each fitting of the ellipse. Tables 7.2-7.3

show that a similar decrease in the number of iterations is obtained for larger systems as well. This

example, as well as many of the following ones, illustrates that a careful implementation of the scheme

pm(A) should include strategies for choosing the parameters frequency and maxadapt. cl

Example 7.2. We select pl = 60, p2 = 80, p3 = 40 and 6 = 0.02. We remark that with this choice of

S the spectrum of A is closer to the origin than in Example 7.1. Table 7.4 shows that, as the spectrum

of the matrix A of order N = 10,000 is moved closer to the origin, our adaptive scheme mm(A) requires

significantly fewer iterations than the scheme pm(A). Similar behavior can be seen when N = 40,000;

llflast  IIIII~oll
.60D-10
.60D-10
.24D-10
.42D-10

Table 7.3: pl = 60,~~ = 80,~~ = 40; S = 0.05; N = 40,000
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a d a p t i v e  m e t h o d  maxadapt f r e q u e n c y  s t e p s  Ilr~~StIl/llrell
pm(A) 412 .42D-10
pm(A) 292 .38D- 10
mm(A) 9 20 301 .37D-10
mm(A) 9 30 286 .32D-10
mm(A) 9 40 286 .32D-10

Table 7.4: pl = 60, p2 = 80, p3 = 40; 6 = 0.02; N = 10,000

adaptive method maxadapt frequency steps Ihet Illll~oll
pm(A) 408 .38D-10
pm(A) 352 .35D-10
mm(A) 9 25 321 .12D-10
mm(A) 9 30 306 .14D-10

Table 7.5: pl = 60, p2 = 80, p3 = 40; 6 = 0.02; N = 40,000

see Table 7.5. We have observed that when the matrix A has eigenvalues very close to the origin,

the scheme pm(A) often requires fewer iterations than pm(A). For large such systems, our schemes
A

_ mm(A) and mm(A) typically require even fewer iterations. Table 7.6 provides another illustration of

this performance. In this table method pm(A) requires 67% more iterations and method pm(A) 39%

more iterations than the scheme mm(A). 0

Example 7.3. We select pl = 60, p2 = 80, p3 = 40 and S = 0.01. When N = 10,000 the scheme

pm(A) yields a much larger error after 1000 iterations than mm(A) after only 647 iterations; see Table

7.7. The dominating work required for determining eigenvalue estimates by method mm(A) is the

computation of 90 inner products (4.6). As the size of the linear system increases the scheme mm(A)

performs significantly better than pm(A) and pm(A). Table 7.8 shows that when N = 40,000, the

latter schemes require at least 42% more iterations than mm(A) to achieve a comparable reduction in

the norm of the residual vector. Cl

r-I iadaptive method
I 1 m=adapt 1 frequency 1 steps  1 IlwJ/ll~~llI

pm(A) 902 .19D-12
pm(A) 751 .18D-12
mm(A) 9 35 540 .19D-12

Table  7.6:  pl = 80, p2 = 80, p3 = 40; 6 = 0.015; N = 40,000
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a d a p t i v e  m e t h o d  maxadapt f r e q u e n c y  s t e p s  llr~,,~~~/~~~e~~
pm(A) 1000 .16D-10
mm(A) 9 25 674 .13D-12
mm(A) 9 30 647 .13D-12
mm(A) 9 35 647 .13D-12I

Table 7.7: PI = 60,~~  = 80,p3 = 40;  6 = 0.01; N = 10,000

adaptive method m=acbt frequency steps  Il~~~~t(l/ll~~II

pm(A) 1000 .17D-10
pm(A) 983 .12D-12
mm(A) 9 35 694 .13D-12\

Table 7.8: pl = 60, p2 = 80, p3 = 40; 6 = 0.01; iV = 40,000

Example 7.4. We select pl = 30, p2 = 40, p3 = 40 and S = 0. Let N = 2500. This example

illustrates that the scheme mm(A) can give faster convergence than the method mm(A). Moreover,

both methods mm(A) and mm(A) converge, while the methods pm(A) and pm(A) do not; see Table

7.9. We remark that in most of the previous examples the methods mm(A) and mm(A) display about

the same rate of convergence. cl

8 Conclusions

This paper presents two adaptive Chebyshev algorithms for solving large, sparse nonsymmetric

linear systems based on modified moments. A major advantage of these scheme is that they require

fewer N-vectors be stored in computer memory than adaptive schemes based on the power method.

Moreover, our numerical examples illustrate that the schemes based on modified moments often yield

significantly faster convergence if the matrix has eigenvalues close to the origin. When the eigenvalues

are not close to the origin, adaptive schemes based on the power method can yield as rapid convergence

adaptive method m=adapt f r e q u e n c y  steps  Ilvastll/ll~oll

pm(A) 1000 .43
pm(A) 1000 .39
mm(A) 00 10 1000 .82D-2
mm(A) 00 10 1000 .52D-4

Table 7.9: pl = 30, p2 = 40, p3 = 40; S = 0; N = 2,500
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as our schemes based on modified moments. The choices of how often the ellipse is to be fitted is

important for the performance of our new methods. Computed examples indicate that the ellipse does

not have to be fitted many times, and, therefore, the iterations can be carried out by evaluating only

fairly few inner products. Our scheme therefore is attractive for implementation on parallel MIMD

and SIMD computers. Such implementations should adaptively determine how frequently the ellipse

ought to be fitted, and when an ellipse has been determined that can be used until convergence.

Acknowledgement We would like to thank Steve Ashby for providing the code described in [2].

References
[I] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue

problem, Quart. Appl. Math., 9 (1951), pp. 17-29.

[2] S.F. Ashby,  CHEBYCODE: a FORTRAN implementation of Manteuffel’s adaptive Chebyshev
algorithm, Report UIUCDCS-R-85-1203, Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL, 1985.

[3] R.G. Bartle, Elements of Real Analysis, Wiley, New York, 1964.

[4] F. Chatelin and S. Godet-Thobie, Stability analysis in aeronautical industries, in High Performance
Computing II, eds. M. Durand and F. El Dabaghi, Elsevier Science Publishers, 1991, pp. 415-422.-

[5] J.J. Dongarra, I.S. Duff, D.C. Sorensen and H.A. van der Vorst, Solving Linear Systems on Vector
and Shared Memory Computers, SIAM, Philadelphia, 1991.

[6] M. Eiermann, On semiiterative methods generated by Faber polynomials, Numer. Math., 56
(1989), pp. 139-156.

[7] H.C. Elman, Y. Saad and P.E. Saylor, A hybrid Chebyshev Krylov subspace algorithm for solving
nonsymmetric systems of linear equations, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 840-855.

[8] B. Fischer and R. Freund, Chebyshev polynomials are not always optimal, J. Approx. Theoy, 65
(1991), pp. 261-272.

[9] W. Gautschi, Construction of Gauss-Christoffel quadrature formulas, Math. Comp., 22 (1968),
pp. 251-270.

[lo] W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput., 3 (1982), pp.
289-317.

[ll] G.H. Golub and M.H. Gutknecht, Modified moments for indefinite weight functions, Numer. Math.,
5’7 (1990), pp. 607-624.

[12]  G.H. Golub and M. Kent, Estimates of eigenvalues for iterative methods, Math. Comp., 53 (1989),
pp. 619-626.

[13]  G.H. G 1 bo u and R.S. Varga, Chebyshev semi-iterative methods, successive over-relaxation meth-
ods, and second order Richardson iterative methods I+II, Numer. Math., 3 (1961), pp. 147-168.

22



I’.

:
s-

.

[14] D. Ho, Tchebyshev acceleration technique for large scale nonsymmetric matrices, Numer. M&.,
56 (1990), pp. 721-734. .

[15] T.A. Manteuffel, The Chebyshev iteration for nonsymmetric linear systems, Numer. Math., 28
(1977), pp. 307-327.

[16] T.A. Manteuffel, Adaptive procedure for estimation of parameters for the nonsymmetric Cheby-
shev iteration, Numer. Math., 31 (1978), pp. 187-208.

[17] N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES algorithm for nonsymmetric
linear systems, SIAM J. Mat& Anal. Appl., 13 (1992), to appear.

[18] R.A. Sack and A.F. Donovan, An algorithm for Gaussian quadrature given modified moments,
Numer. Math., 18 (1972), pp. 465-478.

[19] B.T. Smith, J.M. Boyle, Y. Ikebe, V.C. Klema and C.B. Moler, Mutriz Eigewystem Routines:
EISPACK Guide, 2nd ed., Springer-Verlag, New York, NY, 1970.

[20] R.S. Varga, Mutriz Iterntiue Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962..%A
[21] J.C. Wheeler, Modified moments and Gaussian quadratures, Rocky Mountain J. Math., 4 (1974),

pp. 287-295. -e

23




