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Abstract An autonomous agent should possess the ability
to adapt its cognition structure to a dynamically changing
environment. This ability may be achieved when au-
tonomous agents interact with the environment. In this
paper, an adaptive classifier system tree is proposed for
extending genetics-based machine learning in a dynamic
environment. The architecture has the properties of self-
similarity and self-organization. When environmental
changes are inspected, the autonomous agent can adapt its
cognition structure to the new environment so that
cognition can be achieved with great efficiency. After a
description of the dynamic structure and the principle of the
structure’s self-organization, some experiments illustrating
how the architecture works are described and discussed.
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Introduction

The traditional knowledge-based approach to artificial in-
telligence explains the cognitive abilities of the brain by
means of symbol manipulation and reasoning. Although
this approach is successfully applied in domains such as
medical diagnosis and ore exploration,’ it seems to lack the
flexibility and expressiveness of natural cognitive systems.
Much of the work done in behavior-based robotics show
that this may be a better way to achieve this kind of
cognition.>’

Early work in behavior-based robotics focused on the
design of appropriate robot behavior and behavior co-
ordination techniques.® Recent work by Dorigo et al’
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develops an architecture of cognition based on both ethno-
logical and evolutionary considerations. Their work shows
that the introduction of an evolutionary approach to cogni-
tive processes is a plausible and powerful way to develop
intelligent systems.

We point out, however, that an autonomous agent must
possess the ability to adapt its own cognition structure to
the changing environment. In this paper, we intend to
construct an adaptive architecture of cognition based on
this consideration. In this architecture, complex environ-
mental input can be inspected and divided into simple
items; simple cognition units are designed to achieve the
cognition of these simple inputs and pass the cognition
result to a higher-level unit. After coordination by a higher-
level unit, the agent’s final cognition result is obtained. The
architecture has the properties of self-similarity and self-
organization.

In the next section we briefly review the principles
of genetic algorithms, genetics-based machine learning,
and classifier systems. We then describe our adaptive
architecture and the process of the architecture’s self-
organization, including principles and algorithms of width
and depth extension. Some experiments and their results
follow, together with discussion and analysis. Finally, we
give a summary of current architecture and a preview of
future work.

Genetic algorithms, genetics-based machine learning,
and classifier systems

Genetic algorithms are intended to get optimum solutions
of a given problem by the mechanics of natural selection
and natural genetics.® Genetics-based machine learning
(GBML) uses genetic algorithms to find and recombine new
rules based on the hypothesis that new and better rules may
be created by a recombination of old ones.® A classifier
system is a rule-based learning system proposed by Hol-
land.”® Being a common GBMI. architecture, a classifier
system adjusts the strength of each classifier from en-



8

Fig. 1. Schematic of the classifier
system
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vironmental feedback and discovers new rules using genetic
algorithms.®

A classifier system consists of three subsystems: a rules
and message system, a credit assignment system, and a rule
discovery system (Fig. 1).

An environmental message, which is recognized by
detectors, is sent to the rules and message system, where
it is matched with the condition part of each classifier
(normalized condition—action rule). The action part of
those matched classifiers will be sent to effectors where
the corresponding action will be carried out. With the
Bucket Brigade algorithm, the credit assignment system
evaluates classifiers according to their relative usefulness
to the system, ie., their ability to make the system
respond correctly to the environmental messages. In
the rule discovery system, those useful rules will be
used as “building blocks” to generate new and plausibly
better rules under the operations of a genetic
algorithm.’

In order to increase the adaptability of classifier
systems under a dynamic environment, some architec-
tures have been proposed.*” Dorigo et al.> developed an
architecture of cognition based on both ethnological
and evolutionary considerations. Their work shows
that a hierarchical and parallel model is a plausible
and powerful way to develop adaptive intelligent
systems.

Self-organization classifier system tree

The autonomous agent must have the ability to adapt its
cognitive structure to the dynamic environment. In order to
do this, we have proposed an adaptive architecture which
can modify its structure dynamically while interacting with
the environment. In this section, we give an overview of our
adaptive classifier system tree. A complete model will be
given first. Then the dynamic structure of the architecture
and the principle of the structure’s self-organization as

well as two key mechanisms, width extension and depth
extension, will be described in detail.

The complete model

The basic unit of the architecture is referred to as a node that
consists of a classifier system and a control unit. The control
unit can feel the stimulation of the environment and make
decisions; the classifier system is the core of the cognition
(Fig. 2a). There are many nodes working in parallel in the
system. Each node learns a simple unit of knowledge through
interacting with the environment or with other node. The
goal of the whole system is to implement cognition through
the coordination of simple units of knowledge. The whole
architecture is a tree-like one that is fractal and has the
property of self-similarity (Fig. 2b).

We now give definitions of different types of knowledge.

Definition 1: (Behavioral knowledge) Knowledge is
called behavioral if and only if the input message of the
knowledge is directly from the environment.

Definition 2: (Coordination knowledge) Knowledge is
called coordination knowledge if and only if the input
message of the knowledge is from other nodes, not the
environment.

With the above definitions, we can continue our discus-
sion. Typically, only leaf nodes respond to the stimulation of
the environment, so learning how to respond to behavioral
knowledge is the main duty of a leaf node. By contrast,
middle-level nodes and the root node have the responsibility
of coordinating the behavior produced by lower-level nodes,
so learning coordination knowledge is the main duty of
middle-level nodes and the root node. The root node, in
particular, plays the most important role in the architecture,
for all behaviors will ultimately be coordinated by the root
node. The total model is self-organized by the root node by
inspecting the changes in the environment, as described
below.
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Fig. 3a—d. Self-organization of the architecture

Principle of self-organization

The dynamic structure of the architecture and the principle
of the structure’s self-organization are shown in Fig. 3,
where the nodes are referred to as CS.

We now describe the principle of the architecture.

. At the beginning (a), there is just one node - the root
node (CS1) of the system. The node can realize any
stimulation of the environment with its control unit and
learn how to respond to it with its classifier system.

. When the environment changes and a new stimulation is
created (b), the root node can inspect the change. It will
then create two new leaf nodes (CS2 and CS3) to
respond to the stimulation separately, but coordinated
by itself.

. When the environment changes again and a new
stimulation is created (c, d), the root node can again
inspect the change. According to the system’s current
status and the type of new stimulation, the system will
carry out width extension or depth extension. Width
extension (c) is when an appropriate parent node creates
a new leaf node (CS4) in direct response to the
stimulation. Depth extension (d) is when the system
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creates a middle-level node (CS4) and assigns it to create
two leaf nodes (CS2 and CS5) to deal with two sub-type
stimulations belonging to the same type. After exten-
sion, this parent node (CS4) coordinates the child nodes
(CS2 and CS5) and transfers the coordination result to
its upper levels until it reaches the root node, which will
ultimately decide the system’s behavior.

Nodes related to certain stimulations will be deleted by
the system under some special conditions so that infinite
increments of the tree can be avoided.

. Whenever the root node inspects the change in the

environment, the structure of the system will adapt to
the environment by the principles described in points 3
and 4.

We now summarize the main features of our

architecture.

1.

The architecture is a tree-like one that is fractal and has
the property of self-similarity.

. All the nodes in the system work in parallel.
. Leaf nodes learn behavioral knowledge; middle nodes

and the root learn coordination knowledge.

. Once the root node inspects changes in the environment,

it will drive the whole system to reconstruct its
architecture dynamically.

. Once the leaf nodes recognize the stimulation of the

environment, they will learn with their classifier systems
to create related behaviors and transfer them to their
parent nodes.

. Parent nodes at different levels will also learn with their

classifier systems to coordinate the behaviors that are
passed on by their child nodes. The coordination result
will be passed to their upper level until it reaches the
root node, which will ultimately decide the system’s
behavior.

Experiments and discussions

In this section, we explain the experiments conducted with
our tree-like architecture. Our purpose in the experiments
was to make sure the width and depth extensions can be
achieved by the agent itself under various environmental
settings. Firstly, we describe the simulation experiment
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settings, and then we discuss the process of our model learn-
ing a series of increasingly defined problems.

Experimental settings

Wilson® has proposed a simplified version of Holland’s
original classifier system. It is called the zeroth-level
classifier system (ZCS). Inspired by the fact that ZCS has
been successfully used to deal with the animat problem,” we
use a ZCS as the cognition core in our adaptive architec-
ture. Thus the node in our experiment can be illustrated as
in Fig. 4.

Dorigo et al.’ proposed an experiment in which a
simulated robot learns to follow a light source and at the
same time avoid a heat source. Our experiment is based on
Dorigo’s work.

The experiment is about an animat following its food and
avoiding its natural enemy. The settings can be described in
increasing order of complexity as follows:

Problem 1: (Simple following) In this problem, the
animat should follow its food, which may be moving in a set
orbit.

Problem 2: (Following and avoiding) In this problem, the
animat should follow the moving food; at the same time it
should try its best to avoid a moving natural enemy.

Problem 3: (Following and avoiding two things) In this
problem, the animat should follow the moving food, and at
the same time it should try its best to avoid two different
moving natural enemies.

The increasingly complex experimental sefttings will
enable us to test whether our adaptive architecture can
modify its structure progressively, because both width and
depth extensions are needed in this series of problems.

Results and discussion

We first put the simulated autonomous agent in the
environment and let it learn problem 1. Since there is just
one behavior — following food, only one node — the root
node is needed to achieve cognition. It is shown that the
root node can attain this ability in a short time.

The second step is to increase the difficulty of learning.
In order to do this, we add a natural enemy in the
environment and the problem is changed to problem 2.
Since the input messages of food and the natural enemy are
different, the root node inspects the environment and does
a width extension (see Fig. 3b) to adapt to the change. It is
shown that an autonomous agent with a parallel cognition

Fig. 4. A node in the current experiment

structure can attain the ability to avoid while following
quicker than an agent which does not possess this structure.

The third step is to increase the learning difficulty again
and make it even more complex. In order to do this, we add
another natural enemy in the environment. Thus there are
two natural enemies that the agent should avoid while
following its food. The environmental setting is thus
changed to problem 3. Since the input messages of food and
the natural enemies are different, the root node will inspect
the change and do a depth extension (see Fig. 3d) to adapt
to the environment. 1t is shown that the mechanism of using
different simple cognition units to respond to different
kinds of knowledge (following or avoiding) and then
coordinating the result with another unit is a better way to
achieve complex cognition.

Conclusions

In this paper, an adaptive architecture has been proposed
for extending genetics-based machine learning in a dynamic
environment. The architecture has the properties of self-
similarity and self-organization. There are two key
mechanisms when the architecture organizes its structure
progressively. One is width extension, which is used when
the new input message is exclusive. The other is depth
extension, which is used when the new input message is
additive. The experimental result shows that our self-
organizational architecture can achieve cognition with great
efficiency, and this is due to the division of input messages
and the parallel running of the nodes.

There are several things worth considering. First, how
to determine the type of input message. If message types
are predefined, the advantage of a self-organizational
architecture will be limited to a large extent. If all the
message types are new to the architecture, there is a
problem when using the architecture in a real robot because
its sensor must be programmed before running. In a real
robot, there may be a trade-off between the architecture of
cognition and the sensibility to the environment.

Second, although methods of storing and making use of
experience knowledge have been introduced when doing
width and depth extensions, these are not adequate for a
real robot. When constructing a real robot, or in the future
when constructing an artificial life entity, its cognition
architecture must have the ability to plan, schedule and
make decisions as well as respond to the environment. We

Jbelieve that nature is an inexhaustible source to borrow

from. With the coordination of evolution algorithms, a
hybrid architecture including an expert system, a neural
network, and a petri net, as well as our adaptive classifier
system, may be a plausible way to achieve these aims.
Third, our model and experiment only consider one

" autonomous agent. In the real world, the coordination of

multiagents will be a very important research domain.
Whether our self-organization architecture can be extended
and then used in this domain is a problem worth thinking
about.
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