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Abstract
Objective. The article aims at addressing 2 challenges to step motor brain-computer interface (BCI)
out of laboratories: asynchronous control of complex bimanual effectors with large numbers of
degrees of freedom, using chronic and safe recorders, and the decoding performance stability over
time without frequent decoder recalibration. Approach. Closed-loop adaptive/incremental decoder
training is one strategy to create a model stable over time. Adaptive decoders update their
parameters with new incoming data, optimizing the model parameters in real time. It allows
cross-session training with multiple recording conditions during closed loop BCI experiments. In
the article, an adaptive tensor-based recursive exponentially weighted Markov-switching
multi-linear model (REW-MSLM) decoder is proposed. REW-MSLM uses a mixture of expert
(ME) architecture, mixing or switching independent decoders (experts) according to the
probability estimated by a ‘gating’ model. A Hidden Markov model approach is employed as gating
model to improve the decoding robustness and to provide strong idle state support. The ME
architecture fits the multi-limb paradigm associating an expert to a particular limb or action.Main
results. Asynchronous control of an exoskeleton by a tetraplegic patient using a chronically
implanted epidural electrocorticography (EpiCoG) recorder is reported. The stable over a period of
six months (without decoder recalibration) eight-dimensional alternative bimanual control of the
exoskeleton and its virtual avatar is demonstrated. Significance. Based on the long-term
(>36 months) chronic bilateral EpiCoG recordings in a tetraplegic (ClinicalTrials.gov,
NCT02550522), we addressed the poorly explored field of asynchronous bimanual BCI. The new
decoder was designed to meet to several challenges: the high-dimensional control of a complex
effector in experiments closer to real-world behavior (point-to-point pursuit versus conventional
center-out tasks), with the ability of the BCI system to act as a stand-alone device switching
between idle and control states, and a stable performance over a long period of time without
decoder recalibration.

1. Introduction

Brain-computer interfaces (BCIs) create a new com-
munication pathway between the brain and an
effector without neuromuscular activation. Among
the various potential applications, the functional
compensation/restoration of individuals suffering
from severe motor disabilities has always been a focus

for BCI research.Majormilestones have been reached
by the motor-BCI community over the years [1–3].
Nevertheless, many aspects need to be addressed to
translate BCI-driven systems from laboratories into
the patients’ home for daily life applications.

The primary challenge of motor BCIs in clinical
application is the high-dimensional control of effect-
ors using safe, biocompatible and chronic neural
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recording systems. Brain signal recordings should
remain stable and allow accurate neuronal signal
decoding in conditions that aremore demanding than
in laboratories. The control of many degrees of free-
dom (DoF), up to ten, based on microelectrode array
(MEA) recordings have been reported [1, 3]. How-
ever, MEA recording systems are highly invasive, have
biocompatibility issues and poor stability. They suf-
fer from a decrease of signal-to-noise ratio over time
[4, 5], a high across-day variation in the neural signals
[6, 7] and still require wired recording systems despite
recent efforts in this domain. Electrocorticography
(ECoG) provides a good compromise between invas-
iveness and signal resolution [8–10]. Numerous pre-
clinical and clinical studies demonstrated the interest
in ECoG-based BCIs to control effectors [11–22]
and highlighted the good signal-to-noise ratio and
the stability of ECoG signals over months and even
years [23–26]. Clinical results of high-dimensional
(up to 8D) alternative bimanual control of a com-
plex effector by a tetraplegic subject using epidural
ECoG (EpiCoG) arrays have been recently reported
[19]. This study outperformed the previously repor-
ted state-of-the-art ECoG-based BCIs with up to 3D
control [11, 12].

Another requirement to bringmotor BCI into real
life applications is to make the system act as a stand-
alone device which can switch between idle/rest state
(IS) and multiple active states (AS) [27, 28] (referred
to as asynchronous BCI). This is a critical point as the
majority of the reported BCIs are synchronous cue-
based action-oriented systems providing neuronal
control of effector to the user during specific time
intervals defined by an operator. For example, con-
tinuous BCI performance is often evaluated for single
limb center-out experiments which classically reset
the cursor position between trials without including
the rest period. Besides not being representative of
real life applications, it is likely that this may lead to
unwanted activations/movements when the user does
not intend to control the effector [27].

Moreover, single limb applications are limited
compared to daily life actions which commonly
require synchronized or alternative bimanual (or
generally multi-limb) movements. Despite its clear
benefit for patient motor deficit compensation and
rehabilitation, multi-limb decoding has been poorly
explored in the BCI field. Most breakthroughs
involved the control of a single robotic arm or the
movement decoding of one hand. Bimanual exper-
iments have only been tested using MEAs with vir-
tual effectors [29] or during ECoG-based movement
detection experiments [18] in non-human primates
(NHPs). While bimanual and/or asynchronous BCIs
are not very common, several decoding strategies
have been proposed. In particular, the problem
of multi-finger movement trajectory reconstruction
from ECoG recordings was studied. In most of the

cases, hybrid models were employed bymixing classi-
fier outputs to detect finger activations and continu-
ous decoders to predict their respective movements
[30–32].

A BCI decoder must be sufficiently optimized
to enable computation time suitable for real-time
application. Despite promising results, translating the
off-line trajectory reconstruction algorithm to real-
time closed-loop experiments is generally a chal-
lenging task. Even if a decoder meets the real-time
requirements, drops in the decoding performance
have been reported repeatedly when decoders calib-
rated off-line using open-loop experiments were used
for online decoding [4, 33, 34]. Open-and closed-
loop model training lead to distinct decoders[35].
To take the patient feedback into account, BCI
studies employ adaptive decoders which integrate
the decoding model parameters identification into
closed-loop BCI sessions. Adaptive decoders update
their parameters in an incremental manner with
new incoming data, optimizing the model paramet-
ers in real time. While several adaptive linear and
nonlinear regression and classification decoders were
proposed for MEA [7, 36–40] and electroencephalo-
graphy (EEG) [41–45] driven BCI, only a few adapt-
ive decoders were developed for ECoG recordings
[17]. Most adaptive algorithms are restricted to lin-
ear decoders, which may be limiting for complex
effector control with a high number of DoF. Closed-
loop adaptivemodel calibration is one strategy to cre-
ate model stable over time [7, 34] which is a major
challenge, considering the non-stationarity and the
intra-subject variability of the brain’s signals (inat-
tention, habituation). So far, stable long-term BCIs
were only achieved using non-adaptive brain switch
decoders (1D) for a period of four months with
local field potentials[46] and 36 months with ECoG
recordings [25].

In the present article, the recursive exponen-
tially weighted Markov-switching multi-linear model
(REW-MSLM) is proposed to address the lack of
stable asynchronous BCI for bimanual effector con-
trol from EpiCoG recordings in tetraplegics[47]. The
tensor-based piecewise linear REW-MSLM algorithm
is an online adaptive supervised learning algorithm.
It updates a decoder in real time in an incremental
manner during the calibration period of closed-loop
BCI experimental sessions. In this article we report
the case study of a closed-loop 8D control performed
by a tetraplegic patient in an exoskeleton and with a
virtual avatar. These results outperform the 3D con-
trol of previous ECoG-based state-of-the-art BCIs
[11, 12, 16]. We demonstrated the remarkable stabil-
ity of the BCI system and the stable performance of
the REW-MSLM decoder which was not recalibrated
formore than fivemonths when the patient was in the
exoskeleton and for more than 6.5 months using the
virtual avatar. For both effectors, the patient was able
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to switch reliably between discrete states and demon-
strated relevant control for continuous movements.
The decoding performance outperformed the ECoG-
based BCIs state-of-the-art for which such a long-
term robustness was never reported before. Com-
pared to the classic center-out experiments the patient
was able to perform more complicated tasks such as
multiple alternative point-to-point pursuit tasks.

2. Methods

2.1. REW-MSLM decoder
The REW-MSLM is an online tensor-based fully
adaptive mixture of multi-linear experts algorithm
(figure 1). The REW-MSLM inherits the MSLM [15]
mixture of experts (MEs) structure, generalizing the
MSLMmodel to tensor-input tensor-output variables
and introducing the recursive model parameter iden-
tification procedure inspired by the N-way partial
least squares (REW-NPLS) method [17].

2.1.1. MSLM description
The MSLM [15] is a hybrid discrete/continuous
decoder based on a MEmodel structure. A MEmixes
or switches independent decoders, called ‘experts’.
Basic assumption of ME is that each expert decodes
its own specific region of feature space [48]. Experts
are mixed according to the ‘gating’ model which
estimates the probability of an expert to be activ-
ated or inhibited. This probability is used to com-
pute gating coefficients to weight experts’ outputs.
Additionally, MSLM uses dynamic gating assum-
ing a hidden Markov model (HMM) for the state
sequence to improve the decoder robustness. Con-
ventional MSLM is a vector-input-vector-output
model and employs linear experts. Both experts and
gating models are identified offline. Application of
MSLM in motor BCI was limited to offline stud-
ies: 3D-trajectory decoding of single limb wrist from
NHPs ECoG with 2 states separating rest and move-
ment periods, and 1D-trajectory decoding of fingers
movement with states associated to individual fin-
ger activation and rest periods from ECoG record-
ings of abled body patients undergoing pre-surgical
evaluation [15].

2.1.2. REW-NPLS description
Due to the robustness in the computation of high
dimensional data, algorithms of the partial least
squares (PLS) family were frequently used in continu-
ous and discrete BCI decoding experiments. Numer-
ous publications which reported offline ECoG-based
hand trajectory decoding [15, 16, 18, 20, 49, 50], and
EEG-based classification or cursor decoding [51, 52]
confirmed the interest for such algorithms. The clas-
sical PLS regression algorithm is an offline procedure
based on the iterative projection of input xt ∈ Rm and
output yt ∈ Rn variables into a latent variable space of

dimension f ( f is referred as the PLS hyperparameter).
Projectors are estimated by maximizing the covari-
ance between the input and the output latent variables
[53]. The subspace dimension f is typically determ-
ined through cross-validation. For online modeling,
recursive PLS (RPLS) and REW PLS [54–56] were
proposed.

A generalization of the conventional PLS
algorithm to tensor data: the NPLS algorithm, was
proposed by Bro [57, 58]. A tensor is a generaliz-
ation of a matrix to higher order dimensions, also
known as ways or modes. Vectors and matrices are
special cases of tensors with one and two modes
respectively[59]. Tensor-based algorithms emerged
as a promising strategy in the BCI field. They allowed
simultaneous processing of high-dimensional data in
the temporal, frequency and spatial domains [17, 59].
The NPLS algorithm projects the input and output
tensors into low dimensional space of latent variables
using a low rank tensor decomposition. It improves
the stability and robustness of themodel compared to
the classic unfold PLS leading to more accurate and
interpretable predictions [57, 58] while preserving
the structure of the data.

For the online tensor data flow modeling, the
recursive N-way PLS (RNPLS)[54] which is a gener-
alization of the RPLS algorithm to tensor variables,
and the REW-NPLS [17] inspired from kernel REW
PLS [54–56] were proposed. RNPLS still requires
fixing the hyperparameter f from offline prelimin-
ary study whereas the Recursive-Validation proced-
ure used in REW-NPLS for online optimization of the
hyperparameter f enables a fully adaptive algorithm
[17]. The decoder is entirely tuned in real time. The
Kernel REW-NPLS is also more computationally effi-
cient than the RPLS algorithm.

2.1.3. REW-MSLM description
The REW-MSLM inherits the MSLM MEs struc-
ture. A basic assumption of ME is that each expert
decode its own specific region of feature space.
Given Xt ∈ X⊂ RI1×...×Im and Yt ∈ Y⊂ RJ1×...×Jn

the independent and dependentm and n order tensor
variables at time t respectively, the feature space of
independent variables is supposed to be partitioned
into K possibly overlapping regions X= ∪K

k=1Xk. It is
assumed that the space of input variables is mapped
to the space of output variables usingK localmultilin-
ear functions Φ = {φk : Xk → Y, k = 1,2, . . . ,K}.
Let zt ∈ [1;K]⊂ N∗ be a latent state variable which
defines the selected local multilinear function at time
t (expert): Yt = φzt (Xt). Similar to MSLM, dynamic
gating is introduced using a first-order HMM [15].
The latent state variable zt is assumed to follow the
first order Markovian assumption, which states that
the dependence of zt is limited to the past state zt−1.
Yt is estimated as follows:
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Figure 1. Recursive exponentially weighted Markov-switching linear model (REW-MSLM) architecture. The REW-MSLM
includes a mixture of experts model, which can be described as the parallel computation of several predictions from different
regression models (experts) that are weighted (enhanced or inhibited) according to the input variables using a classifier (gate). We
hypothesize that the input feature space X can be divided into several specific local regions Xk and that each sub-space can be
fitted using local multilinear functions φk associated with an expert. Multilinear functions φk are estimated using k independent
REW-NPLS models. The selected expert is determined based on the dynamic gating model. The gating model is a hidden Markov
model (HMM) which computes the probability γk for each expert to be activated. Commands are decoded by the REW-MSLM
and sent to the effector to provide visual feedback to the patient.

Ŷt =
K∑

k = 1

γk,t (BetakXt + biask).

Here, Betak and biask are the kth expert’s
tensor parameters and its associated bias.
γk,t = p(zt = k|X1:t) is the dynamic gating weight
coefficient associated with the kth expert at time t.
REW-MSLM models are entirely defined through
the experts’ parameters θe = {Betak,biask}

K
k = 1

and HMM parameters θg =
{
A,{dk}Kk = 1 ,π

}
,

where A is the transition matrix,A =
(
aij
)
∈

RK×K,aij = p(zt = j|zt−1 = i), {dk}Kk = 1 is the set
of parameters employed to estimate conditional emis-
sion probability of the observed variables p(Xt|zt),
and π ∈ RK is the initial state probability vector at
t = 0.

2.2. REW-MSLM online/incremental training
The proposed REW-MSLM algorithm recurs-
ively estimates Θ =

{
θg,θe

}
with a super-

vised training procedure. At each update u,
the corresponding block of training dataset
{Xu,Yu,zu} is given with Xu ∈ R∆L×I1×...×Im ,Yu ∈
R∆L×J1×...×Jn , zu = (zt1 , . . . , zt1+∆L)

T ⊂ N∗∆L and
∆L the update block size. The K local multilinear
functions φk are estimated using expert’s specific
samples. The kth expert’s parameter update is per-
formed on the training dataset

{
Xk
u,Y

k
u

}
. Xk

u and

Yku are sub-tensors of Xu and Yu formed by samples
labeled as belonging to state k. The kth expert’s para-
meters are updated using the REW-NPLS algorithm:
REW-NPLSe = REW-NPLS

(
Xk
u,Y

k
u

)
with the for-

getting factor λk, 0⩽ λk ⩽ 1.

For online optimization latent variable space
dimension (hyperparameter f ), the REW-NPLSe
algorithm estimates a set of F models for each

expert
{
Beta fu,k,bias

f
u,k

}K,F

k,f = 1
. F ∈ N∗ is the fixed

highest latent space dimension. The optimal hyper-
parameter of the kth expert f∗k ⩽ F is selected fol-
lowing the Recursive-Validation procedure [17].
For the currently available models, the Recursive-
Validation exploits the newly available

{
Xk
u,Y

k
u

}
dataset as testing data to evaluate the best hyper-
perparameters before this dataset is used as a
training dataset for the models updating. The
best models are chosen independently for each

expert:{Betak,biask}
K
k = 1 =

{
Beta

f∗k
u,k,bias

f∗k
u,k

}K

k = 1
,

and are used for real-time decoding of the neural
signals.

Similarly, at each updateu, theHMMgating para-
meter are updated using the update block dataset
{Xu,zu} .TheHMMtransitionmatrixA is approxim-
ated by counting the successive transition of states in
zu and is weighted with the transition matrix estim-
ated during the previous updates with the forgetting
factor λg , 0⩽ λg ⩽ 1. The HMM conditional emis-
sion probabilities p(Xt|zt) are inferred through the
combination of p(zt|Xt) and class prior p(zt) using
the Bayes’ theorem [60]. The REW-NPLS discrim-
inative decoder is embedded into the HMM-based
gating process to evaluatep(zt|X1:t). REW-NPLS was
used because of its online adaptive characteristics
and its relevance for high dimensional input vari-
able. A discriminative decoder is selected instead of
generative ones due to benefits for high dimensional
and complex dependencies of features [61, 62]. The
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decoder is trained on the observation tensor of input
variablesXu and the latent state dummy variablemat-
rix Zu ∈ {0,1}K×∆L where the column-wise (single)
non-zero element depicts the activated state for each
sample (one-hot encoding).

The discriminative REW-NPLS decoder com-

putes a set of F multilinear models
{
B f
u,b

f
u

}F

f = 1
,

where B f
u ∈ RK×I1×...×Im andb f

u ∈ RK are the tensor
of the gating model parameters and its related
bias. The Recursive-Validation procedure selects the
best model based on the estimated gating optimal
hyperparameter f∗g ⩽ F and defines the optimal gat-

ing model as {B,b} =
{
B

f∗g
u ,b

f∗g
u

}
for the dynamic

gatingweight γk,t estimation. The output variable ẑt ∈
RK determines how likely each hidden state is gen-
erated based on Xt. The prediction ẑt is computed
from the discriminative REW-NPLS decoder. Then,
p(zt|Xt) is evaluated with the softmax function [48]
to compute γk,t = p(zt|X1:t) using HMM forward
algorithm.

REW-MSLM uses dynamic HMM gating. The
equivalent ME algorithm using static gating (without
HMM) is referred as REW-SLM. REW-SLM gating is
computed with the REW-NPLS trained on explanat-
ory variables and latent states, using the softmax func-
tion but without the HMM forward algorithm.

2.3. REW-MSLM application
In real time, each expert {Betak,biask}

K
k = 1 output is

estimated for each new input data buffer after fea-
ture extraction Xt. The dynamic gating coefficients
γk,t are estimated using the latent state variable estim-
ator ẑt post-processed with a softmax function [48]
and the HMM forward algorithm [63]. The forward
algorithm evaluates γk,t by considering the past and
current observations:

ẑt = BXt + b,

p(zt = k|Xt) =
exp(ẑk,t)∑K
i = 1 exp(ẑi,t)

,

p(zt = k,X1:t) = p(Xt|zt = k)
K∑

j = 1

akj γk,t−1,

γk,t = p(zt = k|X1:t) =
p(zt = k,X1:t)∑K
j = 1 p(zt = j,X1:t)

.

2.4. Clinical trial description
The REW-MSLM algorithmwas tested and applied as
the neural signal decoder during the ‘BCI and Tetra-
plegia’ clinical trial (ClinicalTrials.gov, NCT02550522
[64, 65]). The clinical trial was approved by the
French authorities: National Agency for the Safety
of Medicines and Health Products (Agence nationale
de sécurité du médicament et des produits de santé:

ANSM), registration Number 2015-A00650-49, and
the ethical Committee for the Protection of Indi-
viduals (Comité de Protection des Personnes—CPP),
registration number 15-CHUG-19. All research
activities were carried out in accordance with the
guidelines and regulations of the ANSM and the CPP.

The REW-MSLM was tested on a single patient.
The patient signed informed consent prior to sur-
gery. Details of the clinical trial protocol are available
in [19]. The subject was a 29 year-old right-handed
male with traumatic sensorimotor tetraplegia caused
by a complete C4–C5 spinal cord injury two years
prior to the study. The patient can perform neck,
shoulder and small upper limb movements by con-
traction of the biceps at the elbow and extensors of the
wrists. American Spinal Injury Association Impair-
ment (ASIA) scores the contraction of the biceps at
the elbow at four and five for the right and left body
side respectively, whereas extensors contractions were
scored at 0 and 3 for the right and left wrists, respect-
ively. With the exception of the cited muscles, all oth-
ers muscles below were scored 0 on the ASIA scale.
Moreover, the sensory-motor deficit was complete.

The patient underwent bilateral implantation of
two chronic wireless WIMAGINE implants [19, 47]
for EpiCoG signal recording. Two WIMAGINE
recording systems were implanted into the skull
within a 25 mm radius craniotomy placed in front
of the sensory motor cortex (SMC) (figure 2). The
electrodes located at the implant lower surface are
in contact with the dura mater. Before surgery, the
subject’s SMC was localized clearly using functional
imaging (fMRI and MEG) as the subject imagined
virtual movements of his limbs or performed real
motor tasks when possible. Details are provided in
[19]. WIMAGINE is an active implantable medical
device composed of 64 plane platinum iridium 90/10
electrodes with a 2.3 mm diameter and 4–4.5 mm
inter-electrodes distance on the lateral and antero-
posterior directions [24] dedicated to ECoG neural
signal recordings. The WIMAGINE implant was
shown to be safe for long-term EpiCoG signal record-
ing [24, 47, 66]. The EpiECoG signals are low and
high pass filtered in a bandwidth from 0.5 Hz to
300 Hz using analog bandpass filter and, after digit-
alization, using a digital low pass FIR filter with a
cutoff frequency 292.8 Hz. The filters are directly
embedded into the implant [47, 67]. Downsampled
to 585.6 Hz, the data are radiotransmitted to a cus-
tom designed base station connected to a computer
[47]. During the experimental sessions presented in
the article, 32 electrodes for each implant were selec-
ted in a checkerboard-like pattern (figure 2) because
of temporarily limited data rates caused by restricted
radio link.

Since the implantation date, the patient was
trained using a custom-made BCI platform to con-
trol multiple real and virtual effectors [19] (figure 2).
The article presents a series of experiments performed

5



J. Neural Eng. 19 (2022) 026021 A Moly et al

Figure 2. BCI platform for the ‘BCI and tetraplegia’ clinical research protocol in CLINATEC. Two wireless WIMAGINE implants
with a 64-electrode array [47] are used to record EpiCoG signals. Implants were placed into the skull above the motor cortex by a
craniotomy. 32 electrodes for each implant were selected in a checkerboard-like pattern for signal recording. BCI decoder
translates the neural signals into decisions at 10 Hz frequency to control effectors. In parallel, the EpiCoG data and the movement
instructions are used to update the model in real time during the closed-loop BCI calibration sessions. The model is updated at
approximately 0.07 Hz (every 150 samples). The exoskeleton is used for training in CLINATEC and the virtual avatar is used for
training at home. Both effectors provide a visual feedback to the patient to adapt and respond in a closed-loop fashion to model
predictions.

in the laboratory with the enhancing mobility (EMY)
[19, 68] exoskeleton and with EMY’s virtual avatar
replica for training at home. EMY is a wearable
fully motorized four-limb robotic neuroprosthesis
(14 joints, 14 actuatedDoFs) equipped by a computer
station receiving radio-emitted EpiCoG signals. The
decoder translates the neuronal signal into the motor
commands which activate the limbs and joints to
producemovements, mimicking natural limbsmove-
ments. During the experiments, effectors were con-
trolled at a 10 Hz frequency rate.

2.5. Experimental setup
The patient underwent bilateral implantation of two
chronic wireless WIMAGINE implants [19, 47] on
21 June 2017 and since, underwent training for more
than 28 months. Experiments were carried out in the
laboratory three successive days per month. During
these sessions, the patient was strapped into the EMY
exoskeleton. For the remaining weeks, experiments
were performed in the patient’s home three days a
week. The patient was installed in his wheelchair in
front of the computer screen (figure 2). During all the
experiments, the patient was allowed tomove and talk
freely during the training and test sessions in order to
create models that are robust to artefacts related to
muscular activities such as head movements.

All the experiments were online closed-loop BCI
experiments. Each experiment was divided into two
phases. The training/calibration phase (optional) was
designed for online updates of the decoder. Depend-
ing on protocol, the decoder was identified from

scratch (initialized by zero), or was updated from the
decoder trained during previous session(s). During
the test phase, themodel was fixed. The test phase was
used for the BCI performance evaluation.

A support/assistance system was optionally
provided to the patient during the early model cal-
ibration phase. The assisted control command yassistt ,
based on the optimal prediction yt, is yassistt = ωcŷt +
ωsyt. Here, ωs is the weight of support provided
by system, and ωc is the patient’s control weight,
ωs = 1−ωc. Assistence decresed progressively dur-
ing the calibration phase. A maximum of 30% assist-
ance was provided. The test phase was unassisted
(figure 3).

Several series of BCI experiments of the asyn-
chronous alternative controls of the two arms are
presented in the article performing 1/ alternative two-
handed reaching tasks in 3D with the virtual avatar
(6D control), and 2/ alternative two-handed reach-
ing in 3D plus 1D wrists rotation in the exoskel-
eton or with the virtual avatar (8D control). 6D
experiments were performed between March and
June 2018. During these experiments, REW NPLS
algorithm previously integrated to the experimental
chain was employed for real time BCI control. In
the current article the 6D datasets was used for off-
line comparison between the generic REW-NPLS and
the newly presented REW-MSLM algorithm. Experi-
mental sessions with the patient performing 8D con-
trol were carried out using the proposed REW-MSLM
algorithm. The experiments were performed between
September, 26th 2018 and May 20th, 2019.
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Figure 3. Examples of 6D alternative multi-limb pursuit tasks. One session is composed of successive tasks. Each active task is
composed of several trials in which the 3D cursor must reach the proposed targets. The cursor position is not reset between tasks,
during task and during idle state. Assistance optionally provided to the patient during the early model calibration phase gradually
decrease during the experiment. The test phase of experiment is unassisted.

Figure 4. Experimental series and decoder update strategies. Experimental series (A)–(C) of 6D avatar control: independent
trining (A), cross-session training (B), model fixed (C). Experimental series of 8D control of the avatar effector (D1), and the
exoskeleton control (D2). Training phases/sessions are shown in blue, testing phase/sessions are depicted in green.

Different decoder update strategies were tested
with 6D control experiments (figure 4). For paradigm
A, the decoder was calibrated from scratch at the
beginning of each session with a small training data-
set. Sessions during the paradigm A (n = 5) were
self-contained experiments. The models were inde-
pendently created (initialized to zero), trained and

tested during the same experiment. Model adapta-
tion with multiple calibration sessions was studied
with the paradigm B. Sessions in series B (n = 4)
were performed to evaluate the importance of cross-
session training. The models were initialized to zero
in the first session. Then, the models created dur-
ing the previous session were used to initialize the
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model parameters of the next session. Finally, the
last model created during experimental series B were
used without adaptation (paradigm C). The C series
of experiments (n = 5) were performed to evalu-
ate model robustness across time and were carried
out from 9 days to 28 days after model calibration.
Series of experiments A–C are closed-loop experi-
ments using virtual avatar as an effector.

Experimental sessions of the 8D control were per-
formed with virtual avatar or exoskeleton (figure 4).
A REW-MSLM decoder was recursively trained dur-
ing 6 closed-loop experiments distributed over two
months and was not reupdated since then. The per-
formance of the models were evaluated during 37
avatar experiments distributed over 5–203 days after
the last model recalibration session and 15 exoskel-
eton experiments distributed over 0–167 days after
the last model recalibration session. Five exoskeleton
experiments conducted between the 62nd and 63rd

days were excluded due to patient health issues unre-
lated to the study. The experimental data bases of 8D
control are refered as data sets D1 andD2, and corres-
pond to the virtual avatar and the exosceletone con-
trol, respectively.

In all the experimental series, each session was
composed by successive series of tasks decided by an
experimenter (figure 3). Each task corresponded to
one of the available states, the IS or one of theASs. The
AS tasks were translation of the left (ASLH) and right
(ASRH) hand in the 3D space in 6D control experi-
ments. It was completed by the 1D angular rotation
of the left (ASLW) and right (ASRW) wrist for 8D con-
trol experiments.

During the IS, no target was presented to the
patient and the patient had to remain in a non-active
state until the next instruction. Each AS task was is
a series point-to-point pursuit trials (figure 3). Dur-
ing several successive trials the patient attempted to
reach the presented target locations. The target loca-
tions were set sequentially with a hand translation or
a wrist rotating to a specific angle value. During a ses-
sion, the hand position was not reset by the system
switching between the different tasks and trials. An
illustration, a session with the three states IS, ASLH
and ASRH is shown in the figure 3.

The targets and the tasks were decided by the
experimenter and was displayed in a random order
to avoid habituation/anticipation. The training/test
duration and the partition of trials and tasks varied
depending on data set. For the data set D1 of 8D vir-
tual avatar control, the total training time of themod-
els was 3 h and 37 min including 189, 194, 181, and
218 trials for the left and right hand translation, and
left and right hand rotation, respectively. For the data
set D2 of 8D exoskeleton control, the calibration of
3 h and 33 min was performed to train the model
including 180, 184, 188, and 226 trials for the left and
right hand translation, and left and right hand rota-
tion, respectively.

A total of 22 targets symmetrically distributed in
two 3D cubes (11 targets per hand) was proposed to
the patient for the left and right hand translation, in
both 6D and 8D control experiments. When using
exoskeleton as a training platform, the target loca-
tion for each trial was given with an LED <0.01 m in
diameter. For the rotation task, the LEDs were blink-
ing in a rotating pattern to cue the direction of the
wrist rotation during experiments with the exoskel-
eton. When training with the avatar, cubic for the left
hand or spherical for the right hand targets of size of
0.1 m were displayed to indicate the destinations of
each translation trial. A gauge indicated the current
and target wrist positions during experiments with
the avatar (figure 2).

The experimenter asked the patient to perform
the mental tasks using upper limb motor imagery/
attempted movements. The patient was not instruc-
ted to perform specific motor imagery, but he was
allowed to define his strategy for each movement. For
a given limb, he was limited to motor imagery com-
bining arms, wrists and fingers movements. During
idle periods, the patientwas asked not performing any
specific tasks but take a break in the experiment. The
patient was also instructed to avoid real movements
using virtual avatar when residual movements were
possible for a given MI. He was asked to use the same
control strategy for both upper limbs. The patient was
urged tomaintain it constant for each task through all
the experiments.

2.5.1. Neuronal feature extraction
During the experimental sessions, at each time step
t, 1 s-long epochs of neural signals for all the elec-
trodes Xt ∈ R586×64 were generated with a 100 ms
sliding step [17]. ECoG epochs were mapped to the
temporal frequency space using a complex continu-
ous wavelet transform (CCWT) (Morlet) with a fre-
quency range from 10 to 150 Hz (10 Hz step) for all
the electrodes. CCWT is a feature extraction strategy
that was widely used in the field of BCIs. Its efficiency
has previously been demonstrated [14, 15, 17, 18, 20].
The absolute value of CCWTwas decimated along the
temporalmodality to obtain a 10-point description of
a 1 s time epoch for each frequency band and for each
channel, resulting in the temporal-frequency-spatial
neural feature tensor Xt ∈ R10×15×64.

2.5.2. Output features
REW-MSLM is a supervised learning algorithm.
Movement (output) features were extracted for
model training. At the time t the optimal continuous
movement yt and the discrete state labels zt ∈ [1;K]⊂
N∗, with K the number of states, were evaluated. The

output feature vector was yt =
((
yLtrt

)T
,
(
yRtrt

)T)T
,

yt ∈ R6, for alternative two-handed 3D reaching

tasks, and yt =
((
yLtrt

)T
,yLrt ,

(
yRtrt

)T
,yRrt

)T
, ytR ∈ 8,

if 1D wrists rotation is additionally considered. Here
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Figure 5. Feature extraction for supervised training. Neural and movement features were extracted during the closed-loop
experiments for the adaptive supervised decoder training. The movement features are the discrete state labels zt, and the optimal
predicted direction yt defined as the 3D cartesian vector between the current position and the target position for the 3D hand
translation, and as the 1D angular vector between the current angle and the target angle for 1D wrist rotation. To extract neural
features at time t, the last second of the neural activity is mapped to the spatial frequency space using a CCWT to create
tensor-shaped neural features Xt. Neural and movement features are stored in a buffer until the next update (every 15 s) of the
REW-MSLM decoder.

yLtrt R ∈ 3 and yRtrt R ∈ 3 are left and right hand trans-
lation components of yt. They are defined as the 3D
Cartesian vector between the current hand position
at the time moment t and the target position. The
left yLrt R ∈ and the right yRrt R ∈ wrist rotation com-
ponents of output feature vector are defined as a 1D
angle between the current angle position and the tar-
get angle position (figure 5) [40]. The discrete state zt
labels are determined by the task instruction. K = 3
in the 6D control experiments (idle state, left hand
translation, and right hand translation states) and
K = 5 (idle state, left hand translation, right hand
translation, left wrist and right wrist rotation states)
in the 8D experiments. Output features were extrac-
ted during experiments at 10 Hz (figure 5).

The decoder prediction (ŷt ∈ R6 for 6D exper-
iments, and ŷt ∈ R8 for 8D experiments) is the
cartesian position increments for 3D hands transla-
tions and angular increments for 1D wrists rotations.

2.5.3. REW-MSLM parameters and structure
REW-MSLM states were associated to particular
tasks. In the present study, an ME structure with
three states: idle (IS), left (ASLH) and right (ASRH)
hand translation states, was considered in the offline
comparison study to decode asynchronous alternat-
ive two-hand 3D reaching tasks. An ME structure
with 5 states: idle (IS), left (ASLH) and right (ASRH)
hand translation, left (ASLW,) and right (ASRW) wrists
rotation states was used during the online closed-
loop experimental sessions using the REW-MSLM

algorithm to control the exoskeleton or the virtual
avatar.

2.6. REW-MSLM decoder integration
The application loop for the online decoding and the
adaptation loop for the REW-MSLM decoder update
were split and implemented in two independent pro-
cesses/threads while communicating through shared
memory. The application loop received the data from
the WIMAGINE implants and decoded the neural
signals in order to control the effector. The input and
output features were stacked in buffers to be sent to
the calibration loop in order to perform the incre-
mental batch update of the gate and expert models of
REW-MSLM decoder. The data was not preselected,
all the data recorded was used in the online calibra-
tion/test of the model. As series of experiment repor-
ted in the article were performed once the patient had
chosen a strategy, a forgetting factor was set to keep all
the data (no forgetting). In this study, neural signals
were decoded at 10 Hz (a prediction was generated
every 0.1 s) while the model was updated at approx-
imately a 0.07 Hz update rate (every 15 s). Each incre-
mental update was based on∆L = 150 samples.

The decoder prediction, the Cartesian position
increments for 3D hand translation and the angular
increments for 1D wrist rotation, was sent to the exo-
skeleton/virtual avatar after post-processing. In both
cases the decoder output was saturated to amaximum
of 0.1 m.s−1 for hand translation and 1 rad.s−1 for
wrist rotation, and post-processed by the exoskeleton
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control system using inverse kinematics to transform
the cartesian predictions into joint movements.

Every analysis and online experiment, including
training and decoding, were performed with Mat-
lab2017b using an Intel Xeon E5-2620v3 computer
with 64 GB RAM.

2.7. REW-MSLM performance evaluation
Experimental sessions of alternative 3D two-hand
reaching tasks (6D) of the virtual avatar effector
(Series A–C) were used for the offline/pseudo-online
models comparison. The datasets were recorded dur-
ing online closed-loop experiments usingREW-NPLS
decoder previously integrated to the BCI system.They
were re-computed with the different algorithms in
a pseudo online manner using sample-wise indicat-
ors for the performance evaluation. Pseudo-online
simulation was conducted using the same training
data, the same parameters (buffer size, batch train-
ing etc) and the same model application procedure
as the one used for online real-time experiments to
reproduce the online experiment conditions. Pseudo-
online comparison is not fully generalizable for the
online case due to the lack of patient’s feedback.
Nevertheless, it allows characterizing to some extent
the algorithms before an integration into the clinical
BCI decoding platform. Both discrete and continuous
decoders of REW-MSLMwere evaluated offline using
the series of experiments A–C.

2.7.1. Comparison study
2.7.1.1. State discrimination
We first highlighted the discrete multi-state decod-
ing performance evaluating the accuracy of switch-
ing between all AS and, especially, the robustness
of IS support. The REW-MSLM discrete decoding
was compared to the REW-NPLS algorithm threshol-
ded in post-processing (referred to as REW-NPLST)
to label the continuous decoding results as discrete
IS and AS states. Such a comparison underlined
the benefits of computing an additional discrete
decoder to inhibit the experts continuous outputs.
The threshold in REW-NPLST was applied to the
norm of groups of DoFs to transform the continuous
output into a discrete one. The DoFs were regrouped
to correspond to the states decoded by the state
decoder in the REW-MSLM. The threshold value was
chosen to maximize the REW-NPLST classification
accuracy. Next, the REW-MSLM was compared to
its own variant without HMM (referred to as REW-
SLM) to determine the benefits of dynamic HMM
gating.

2.7.1.2. Continuous decoding
The REW-MSLM algorithm benefits from the ME
structure which splits the neural space into state-
related subsets associated to independent expert
decoders. The training data are divided into sub-
sets associated with particular experts, allowing

independent expert learning. However, continu-
ous decoder-experts are trained on a smaller spe-
cific subset of the training dataset. This may affect
regression performance. The expert-specific subset
training strategywas evaluated by comparing the con-
tinuous decoding performance of piece-wise linear
REW-MSLM to the state-of-the-art adaptive linear
regression which was trained on the entire dataset.
REW-MSLMexperts trained on specific subsets of the
training dataset were compared to the REW-NPLS
model trained on the entire dataset. Performances
were compared to the REW-NPLS algorithm because
it is a state-of-the-art online adaptive tensor-input
tensor-output algorithm which has been previously
used for closed-loop ECoG-based BCI [17, 19]. A
single multilinear decoder was identified by REW-
NPLS. AnME structurewith three states: idle (IS), left
(ASLH) and right (ASRH) hand translation states, was
considered using REW-MSLM.

Finally, the REW-MSLM algorithm was integ-
rated into the BCI platform to carry out 8D control of
the virtual avatar and the exoceletone (Series D1, D2).
Real-time closed-loop experiments with both effect-
ors were carried out to evaluate the long term REW-
MSLM decoder performance.

All the performance evaluations studies were per-
formed using out of update and unassisted test exper-
iments/periods.

2.7.2. Performance criteria
2.7.2.1. Discrete decoding performance
Discrete decoding performance was evaluated using
the accuracy (acc) and the F-score (fsc) for the multi-
class case (IS versus ASLH versus ASRH versus ASLW
versus ASRW if presented) for all series of experiments.
Additionally, the two binary cases: IS versus ASLH
and ASRH combined (named AS) and the classifica-
tion between active states (ASLH versus ASRH) were
considered for offline Series A–C studies. Accuracy is
generally used in BCI for binary and multi-state clas-
sification [15, 16, 30, 69, 70] and is useful for per-
formance comparison due to its ease of computation
and interpretation. Nevertheless, as accuracy presents
weaknesses in the case of highly imbalanced datasets,
F-score is also computed. The indicators are com-
puted from the confusion matrix, which summarizes
the number of correctly classified samples from one
state (true positives, tp), incorrectly labeled samples
in one state (false negatives, fn), correctly classified
samples not belonging to the state (true negatives, tn)
and incorrectly labeled samples not belonging to the
state (false positives, fp):

Accuracy =
1

K

K∑
k = 1

tpk + tnk
tpk + tnk + fpk + fnk

,

Fscore =
1

K
.

K∑
k = 1

(
β2 + 1

)
Precisionk Recallk

β2Precisionk +Recallk
,
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Precisionk =
tpk

tpk + fpk
, Recallk =

tpk
tpk + fnk

.

The weighting coefficient β was set to one, the
true positives tpk are considered for samples labeled as
belonging to state k, and the true negatives tnk include
those from all the other states (one versus all analysis).

Accuracy and F-score indicators are sample-
based performance estimators and do not reflect the
dynamic behavior of misclassified samples. There-
fore, supplementary indicators were introduced.
Consecutive misclassified samples were counted to
evaluate the error block rate (ErrBrate) and the error
block durations (ErrBtime). A sequence of misclassi-
fied samples is referred as an error block. Error block
durations present mean duration of error blocks in
seconds. The error block rate represents the occur-
rence of blocks of wrong detections perminute. Addi-
tionally, the latency (lat) between the task instruction
initiated by the experimenter and initiation of the
movement by the patient was computed to evaluate
the response time variation introduced by the HMM.
The computed latency includes the patient’s reaction
time and the decoder latencies.

2.7.2.2. Continuous decoding performance
The sample-based cosine similarity (CosSim) was
applied to compare the predictions of several
algorithms for hand translation. At each time
moment CosSimt compares the predicted ŷt and the
optimal prediction yt. The optimal prediction is a 3D
Cartesian vector between the current position and the
target position for 3D translation. CosSimt is defined
as the normalized scalar product of yt.and ŷt

CosSimt =
yt · ŷt

∥yt∥∥ŷt∥
.

CosSim is evaluated for a specific task as the
expectation of CosSimt through related trials. CosSim
varies from −1 to 1 evaluating the algorithm’s global
static prediction performance. CosSim was evaluated
for the left hand (CosSimLH) and the right hand
(CosSimRH) translation tasks. Wrist rotation per-
formance was evaluated using Pearson correlation
coefficientRLW andRRW computed for the left and the
right wrist rotation tasks.

2.7.2.3. Online closed-loop performance evaluation
In addition to indicators previously described, the
closed-loop experiment performance was evaluated
using the success rate (SR) [1, 3, 19] and the R-ratio
[19]. The SR is defined as the percentage of targets hit,
while the R-ratio is defined as the ratio between the
distance realized by the effector to reach a target and
the distance from the initial position of the effector to
the target location. Computed post-experiment, tar-
gets are considered to have a diameter of 10 cm with
the exoskeleton as with the avatar. R-ratio [19] is also
named as the distance ratio [12] and is equivalent to

the inverse of the individual path efficiency [2, 3] of
each task. The SR and R-ratio performance indicators
are defined in the sameway for the evaluation of wrist
rotation performance.

Finally, we evaluated the evolution of the per-
formance indicators across experiments. The linear
fit with a 95% confidence interval was computed
for each indicator to test the zero slope hypo-
thesis and evaluate the performance stability across
time. Supplementary videos (SV1, SV2 and SV3
available online at stacks.iop.org/JNE/19/026021/
mmedia) present examples of sessions 36, 106, 167 days
after the last model calibration using the exoskeleton.

2.7.3. Chance level study
To control for potential experimental biases, the
chance level of the SV performance indicators was
computed and the quality of the neuronal sig-
nal recorded during the experimental sessions was
evaluated.

Discrete states are not uniformly distributed, with
a higher prior probability for idle and hand move-
ments than wrist rotations (for exoskeleton-based
experiments: idle, left and right hand, left and right
wrist states represented 26%, 36%, 27%, 6%, 5%
of the discrete state distribution, respectively). For
the SR and R-ratio, n = 100random hit experi-
ments were repeated. Random movement reaching
tasks were performed with the same target locations
as those used during the exoskeleton-based experi-
ments. A 3D randomly moving cursor must reach
a randomly selected target within a fixed duration
(defined as the 99% of the cumulative distribution of
the experimental time used in the exoskeleton-based
experiments). At each time step, the cursor moved
in a 3D random direction with a speed fixed to the
maximal speed of the exoskeleton. A target was con-
sidered a hit when the distance between the cursor
and the target was less than 5 cm. These random
sessions resulted in an averaged SR of 7.1 ± 5.5%
(R-ratio:24 ± 14) for the left hand translation,
9.5 ± 6.6% (R-ratio: 33 ± 19) for the right hand
translation, 40 ± 7.1% (R-ratio: 15 ± 4.6) for the
left hand rotation and 33 ± 4.9% (R-ratio: 12 ± 2.7)
for the right hand rotation tasks.

2.7.4. Neuronal signal recording quality evaluation
The ECoG recorded at rest prior to each experiment
was analyzed to assess the signal quality over the ses-
sions performed with an avatar or in the exoskeleton.
Because of recording issues, the rest sessions recorded
on day = 168 and day = 167 after the last model cal-
ibration were removed for the virtual and exoskeleton
sessions respectively. A 90 s timewindow (from+ 20 s
to+ 110 s post-recording onset) was used to calculate
the power spectral density on the demeaned 64 elec-
trodes using a 4th order Butterworth, IIR filter. Band-
power values (dB) were computed for the whole fre-
quency range used in the study (10–150 Hz) and for
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the two frequency bands which are generally used in
ECoG-driven BCI studies: 20–40 Hz and 60–110 Hz
[11, 16, 71]. For each frequency band, the bandpower
values were fitted to a linear regression to estimate
the corresponding slope and its error-estimate with
a 95% confidence interval.

2.7.5. Model convergence evaluation
The convergence of the models created during
the online closed-loop asynchronous alternative 8D
experiments using the avatar and the exoskeleton
were studied. The Frobenius distance was evaluated
between consecutive update of the models during the
calibration period for the expert models dedicated
to the 3D left and right hand translation decoding
and 1D left and right wrist rotation decoding. The
Frobenius distance is the generalization of the Euc-
lidian distance applied to tensors.

2.7.6. Activation spectrograms
Motor activation spectrograms are computed from
time frequency feature maps in the [−4,4] s time
interval related to the each motor state onset (t = 0)
by averaging trough corresponding trials. The aver-
aged (along time direction) idle state time frequency
feature map is used as a baseline. The first and the last
2 s intervals of idle state epochs, potentially related
to state modification, are excluded from the base
line evaluation. The intervals with false activation,
or erroneous state activation were removed from the
analysis. The activation spectrograms of each motor
state onset are computed on the sessions performed
between 26 September 2018 and 20 May 2019 with
the exoskeleton.

3. Results

3.1. Pseudo-online REW-MSLM 6D decoding
performance evaluation
3.1.1. Discrete decoding performance
The REW-MSLM demonstrated strong discrim-
inative abilities (figure 6(a)) between all states
(acc = 93 ± 1.8%, fsc = 86 ± 3%), between
IS and AS (acc = 91 ± 3%, fsc = 84 ± 5%)
and between ASLH and ASRH (acc = 99 ± 0.8%,
fsc = 99 ± 0.8%) regardless of the experimental
paradigm. The same performance indicators lead
to acc = 87 ± 2%, fsc = 76 ± 3% between
all states, acc = 86 ± 2%, fsc = 75 ± 3%
between IS and AS and acc = 93 ± 0.3%,
fsc = 93 ± 0.2% between ASLH and ASRH for
REW-SLM algorithm whereas REW-NPLS performs
acc = 62 ± 2%, fsc = 36 ± 5% between all states,
acc = 70 ± 7%, fsc = 49 ± 0.6% between IS and
AS and acc = 59 ± 8%, fsc = 57 ± 9% between
ASLH and ASRH. The REW-MSLM strongly discrim-
inated each state with a particularly robust distinction
between the left and right hand. Significant improve-
ments compared to REW-NPLST and REW-SLM
were evident in the majority of the performance

indicators (figure 6(a)). No significant differences
between the performance in the experimental ses-
sions B and Cwere found (p> 0.1), indicatingmodel
stability in session C, even though the model was not
recalibrated in these experiments.

The latency of the switching state averaged over
the three experimental paradigms (A, B and C) was
higher for the REW-MSLM than for the REW-SLM:
lat = 2.05 ± 0.059 s versus lat = 1.46 ± 0.31
(figure 6(b)). Similarly, the error block duration
increased with the REW-MSLM decoders. The HMM
state decoder error lasted ErrBtime = 4.31 ± 0.88 s,
whereas the discrete static decoder error duration of
the REW-SLMwas ErrBtime = 0.49 ± 0.024 s. How-
ever, the error block rate decreased considerably with
the REW-MSLMdecoders: the error block rate for the
REW-SLM was high (ErrBrate = 20.7 ± 1.95 error
blocks per minute), whereas that of the REW-MSLM
was reduced to ErrBrate = 1.6 ± 0.26 blocks per
minute.

3.1.2. Continuous decoding performance
To evaluate expert-specific subset training strategy,
piece-wise linear continuous REW-MSLM predic-
tions were compared to those of the REW-NPLS
decoder trained on the entire dataset. No statist-
ical differences in the decoding performance were
highlighted between REW-MSLM and REW-NPLS.
For the paradigm A, CosSimLH = 0.095 ± 0.05,
and CosSimRH = −0.03 ± 0.16 in aver-
age for the REW-MSLM decoder com-
pared to CosSimLH = −0.03 ± 0.14, and
CosSimRH = −0.04 ± 0.1 for the REW-NPLS
model (figure 7). Left hand decoding of experimental
sessions B and C demonstrated equivalent average
decoding performance: CosSimLH = 0.21 ± 0.06
and CosSimLH = 0.23 ± 0.13 for exper-
imental sessions B and C for REW-MSLM
decoder and CosSimLH = 0.18 ± 0.05 and
CosSimLH = 0.18 ± 0.11 for experimental
sessions B and C for the REW-NPLS model.
Right hand decoding average performance of
REW-MSLM (B: CosSimRH = 0.15 ± 0.07
and C: CosSimRH = 0.2 ± 0.03) is sim-
ilar to the decoding performance of REW-
NPLS (B: CosSimRH = 0.14 ± 0.09 and C:
CosSimRH = 0.19 ± 0.03) (figure 7). Signific-
ant improvements in performance between dataset
A and datasets B and C highlighted the benefits of
cross-session training for increasing both the train-
ing data length and robustness to signal variability.
No statistically significant performance differences
were observed between datasets B and C, stressing
the model robustness.

3.2. Online closed-loop REW-MSLM 8D control
performance evaluation
When considering the whole frequency range used in
this study (10–150 Hz), the ECoG analysis performed
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Figure 6. State decoding results obtained during pseudo online experiments. (a) Average accuracy and F-score over datasets A, B
and C for 3 different analyses: all states (idle state IS, left hand translation active state ASLH and right hand translation active state
ASRH) considered independently, IS versus AS (both hand translation states merged) performance and ASLH versus ASRH. b)
Time dynamic performance indicators. Latency duration is evaluated as the time required to reach the desired state. Error block
durations show the average time of the consecutive misclassified samples. The error block rate represents the occurrence of blocks
of wrong detections per minute. Standard deviation is represented for each algorithm and each dataset using a vertical bar.
Significance of the differences between the three decoders are computed for datasets A and C (B is excluded because of the sample
size) using the Mann-Whitney U test with Bonferroni corrections (αmulti−class = 0.0167) in the multi-class comparisons.
Otherwise,α = 0.05. Significant values are indicated by an asterisk.

at rest showed a stable bandpower with a slope of
−0.84% (CI=±0.61%) and−0.99% (CI=±0.84%)
for the avatar and the exoskeleton experiments
respectively. A similar trend was observed for the
two frequency ranges which were mostly used by
the decoder: the 20–40 Hz band with the respect-
ive slopes of −0.97% (CI = ±0.58%) and −0.75%
(CI = ±0.59%) for the avatar and the exoskel-
eton experiments, and the 60–110 Hz band with the
respective slopes of −0.23% (CI = ±0.26%) and
−0.13% (CI = ±0.65%) for the avatar and the exo-
skeleton (figure 8).

3.2.1. Virtual avatar control performance
High classification decoding performance discrimin-
ating five states (idle, left and right hands translation

and left and right wrists rotation) was demonstrated
with the REW-MSLM algorithm across all the experi-
ments (figure 9(a)) with an average (across states and
experiments) F-score of fsc = 76 ± 9% and accur-
acy of acc = 93 ± 3% (figure 10).

Mean continuous performances are given in
table 1. It can be observed that the results are very
close for both hands in the case of hand translation.
In the case of wrist rotation SR is very close to 100%
for both hands, R-ratio was higher in the case of left
wrist (4.5 ± 2.2 vs 2.8 ± 1.4) and, coherently, cor-
relation was lower for left wrist (0.391 ± 0.135 vs
0.450 ± 0.0966).

The zero slope hypothesis was not rejected for
20 of the 22 indicators (table TS1 in supplementary
materials). It was rejected for the left wrist rotation
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Figure 7. Continuous decoding performance for each hand for datasets (A)–(C). Statistics of the scalar product between the
predicted hand directions and the optimal prediction (defined as the target-cursor oriented distance) averaged over time and the
experiments of each dataset. The scalar products are represented for the left and right hand performance. The performance
indicators are shown in blue for the state-of-the-art REW-NPLS model and in yellow for the new REW-MSLM. On each box, the
central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the extreme data.

Figure 8. Evolution of the mean bandpower values (dB± sd) over days for the avatar (a) and the exoskeleton (b) experiments,
with day= 0 being the last day the model calibration was updated. The bandpower values were computed for three frequency
ranges of interest: 10–150 Hz, 20–40 Hz and 60–110 Hz.

Figure 9. Confusion matrices corresponding to the evaluation of the avatar (a) and exoskeleton (b) gate models on their
respective test set.
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Figure 10. Online 8 DoF experiment performance (for each state: idle, left and right hand translation and rotation) using virtual
avatar effector across 203 days after last model calibration (a) or using exoskeleton effector across 167 days after last model
calibration (b). Discrete performances are represented for each state with F-score and accuracy. Continuous performances are
given by the success rate (SR) (percentage of targets hit), the R-ratio (ratio between the distance travelled by the effector to reach a
target and the distance from the initial position of the effector to target location), Pearson correlation and cosine similarity.
Standard deviation is represented for each algorithm and each dataset using a vertical bar. In the case of cosine similarity, for
clarity purposes, the vertical bars correspond to standard deviation divided by 2.
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Table 1.Mean continuous performance indicator in the case of avatar.

SR (%) R-ratio Cosine Similarity Pearson Correlation

ASLH 55 ± 18 5.2 ± 3.1 0.146 ± 0.108
ASRH 53 ± 15 5.4 ± 3.5 0.137 ± 0.0599
ASLW 95 ± 9.5 4.5 ± 2.2 0.391 ± 0.135
ASRW 96 ± 6.8 2,8 ± 1,4 0.450 ± 0.0966

Table 2.Mean continuous performance indicator in the case of exoskeleton.

SR (%) R-ratio Cosine Similarity Pearson Correlation

ASLH 69 ± 13 6.7 ± 5.4 0.129 ± 0.0865
ASRH 65 ± 29 13 ± 4.5 0.105 ± 0.140
ASLW 90 ± 14 3.4 ± 1.2 0.556 ± 0.110
ASRW 97 ± 6.2 2.4 ± 0.73 0.562 ± 0.109

R-ratio, which increased by 0.014 daily, and the right
hand translation SR, which reduced daily by 0.07%.
These results highlight the stability of the REW-
MSLM over 6.5 months using a virtual avatar effector
during 8D experiments.

3.2.2. Exoskeleton control performance
The discrete decoding performances of 8D exoskel-
eton control experiments yielded relevant and stable
results across the 167 days. The REW-MSLM’s gating
yielded an average F-score of 75 ± 12% and accur-
acy of 92 ± 4%with high distinctiveness between the
classification of the left and right sides of the body
(less than 1% of misclassified samples) and strong
idle state decoding with an average of 85% accurately
classified idle state samples. The confusion matrix is
depicted at figure 9(b).

Mean continuous performances are given in
table 2. In comparison to left hand translation, right
hand translation had a similar SR but a higher R-ratio
(13 ± 4.5 vs 6.7 ± 5.4) and a lower cosine similar-
ity (0.129 ± 0.0865 vs 0.105 ± 0.140), which means
control of the right arm was less stable. Performances
for both wrist indicates a very high SR and fast target
reaching.

It is worth to note, that for the period 0–37 days
after the last decoder calibration session, the online
sessions using the exoskeleton yielded a decoding
accuracy of 94% averaged across the five classes.
Additionally, an average SR for both hands of 83%
and 97% with an average R-ratio of 6.4 ± 2.3
and 3.3 ± 1.7 for the 3D hand translation and
1D wrist rotation were reported for 8D control on
the same period. This period corresponds or over-
passes the time interval reported generally in ECoG-
based BCI studies. Commonly, ECoG based clin-
ical trials last from several days to 1 or two weeks
of research with an implantation from 3 to 35 days
[8, 10–13, 16, 21, 22, 72–74].

The decoding stability was evaluated with zero
slope hypothesis, which was not rejected for 17 of
the 22 indicators (table TS2 in supplementary mater-
ials). The right side of the body seemed to have a

slow performance decrease across experiments, gath-
ering 5 of the 6 diminishing indicators. The linear fits
demonstrated significant decreases in right limb per-
formance for the discrete right wrist rotation indicat-
ors (−0.25% F-score and −0.04% accuracy per day)
and for the right hand translation F-score (−0.17%)
and SR (−0.48%). Significant decreases were found
in the left hand SR (−0.18% per day). The left hand
SR seemed to decay in the first experiments before
stabilizing.

All the 22 performance indicators had higher val-
ues than those obtained by chance level studies for
all the experiments. Chance level studies highlighted
an averaged SR of 7.1 ± 5.5% (R-ratio:24 ± 14)
and 9.5 ± 6.6% (R-ratio: 33 ± 19) for the left
and right hand translation respectively whereas left
and right hand rotation tasks chance level was eval-
uated at, SR = 40 ± 7.1% (R-ratio: 15 ± 4.6) and
SR = 33 ± 4.9% (R-ratio: 12 ± 2.7).

Figure 11 illustrates the convergence through the
model update iterations during 6 calibration session
of coefficients of the expert models for the left and
right hand translation and left and rightwrist rotation
decoding.

Examples of hand trajectories performed on the
session 106 days after the model calibration are
presented in figures 12(a) and (b) for the left and right
hand translation, respectively. Additional trajectories
are proposed in the supplementary materials (figure
S1) and supplementary videos (SV1, SV2 and SV3)
present examples of sessions 36, 106, 167 days after
the last model calibration. The entire session of the
106th days is represented in figure 12(c). This session
is composed of successive tasks with a total of two
right hand translation tasks and three idle, left hand
translation, left and right hand rotation tasks. Each
tasks is composed of several trials. Trajectories from
figures 12(a) and (b) are trials form the first left hand
and second right hand translation tasks.

Gatingmodels used for exoskeleton control is rep-
resented on the spatial, frequency and temporal mod-
ality in figure 13. For comparison purposes, the avatar
model can be found in the supplementary materials,
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Figure 11. Convergence through the model update iterations of coefficients of the expert decoding models of left hand translation
(a), right hand translation (b), left wrist rotation (c), right wrist rotation (d). The Frobenius distance between consecutive
coefficients update is depicted by coloured lines for a set of updated models including f factors, f = 1, . . . ,100. Models selected
by online validation procedure are depicted by the bold purple line. Calibration sessions are separated by the black vertical dotted
lines.

in figure S2. Variability of the exoskeleton model
coefficients according to the different modalities are
presented in the supplementarymaterials in figure S3.

The presentation of decoding model, using the
sum of the absolute values of coefficients according
to tensor dimensions, allows characterizing at some
extend the decoding model. In the same time, they
are not fully representative. As a complement, the
motor activation spectrograms were computed for
each motor state (figure 14).

4. Discussion

Based on the first successful long-term (more than
36 months) chronic exploitation of bilateral epi-
dural ECoG recordings in a tetraplegic individual
[19], we developed the REW-MSLM decoder to
address the poorly explored field of asynchron-
ous multi-limb effector control. This decoder was
designed to overcome the major issues related to
the translation of BCIs from the laboratory to real-
life applications, such as the high-dimensional con-
trol of effectors based on chronic neural recordings,
experiments closer to real life behavior, and the abil-
ity of the BCI system to act as a stand-alone device
switching between IS and AS phases. ME architec-
ture was employed to handle numerous dimensions
and to decode the robust idle state. We developed
an adaptive/incremental learning algorithm which
allows cross-session training of the decoder with
multiple recording conditions during closed loop
BCI experiments taking into account neuronal feed-
back. The incremental learning algorithm is able to
handle in real-time high-dimensional tensor data
flow. Tensor-based algorithms emerged as a prom-
ising strategy for brain signal processing allowing

simultaneous treatments of high-dimensional data in
the temporal, frequency and spatial domains [17, 59].
Dynamic gating procedure using a HMM was added
to ME decoder to ensure the robustness of states.
The proposed algorithm is fully adaptive. It learns
the model in an incremental manner, including the
hyperparameters.

The REW-MSLM was integrated into a custom-
made BCI adaptive brain signal decoder (ABSD)[19]
software platform to provide a tetraplegic patient
with the control of a virtual avatar and an exoskel-
eton. Volitional alternating rotation and 3D transla-
tion movements of both hands could be executed.
This performancewas achieved using EpiCoG record-
ings which are less invasive than the subdural ECoG
recordings reported in most of the BCI studies. High
dimensional control of complex effectors was stable
for several months. These results were obtained in
the period from 14 to 23 months after the recording
device implantation, demonstrating the longevity of
the implant and the longevity of high quality neural
data recording [66].

4.1. ME structure benefits for multi-limb effectors
control
The REW-MSLM architecture fits the multi-limb
paradigm. Each expert can be associated to a par-
ticular limb or action while the HMM gating model
aims to establish the state selection and handle
robust idle state detection for complex asynchron-
ous state decoding [15]. Moreover, we hypothesized,
based on well-established neurophysiological know-
ledge [18, 29], that neural data associated with each
limb or specific action can be partitioned into dif-
ferent neural regions/patterns. Consequently, each
expert was only trained on a small subset of the entire
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Figure 12. Session realized 106 days after the last model calibration using exoskeleton effector. (A) left hand trajectory across time
and trials. The trajectories are extracted from the first left hand task of the session. (B) right hand trajectory across time and trials.
The trajectories are extracted from the second right hand task of the session. Each color represents one trial, the trajectory to
reach one specific target. (C) Movement on X, Y, Z and θ (angle for wrist rotation) across the sessions performed 106 days after
the last model calibration. Shaded area color correspond to the task that patient must perform. Colored Lines represent left and
right hand coordinates for X, Y and Z-axis and left and right wrist angle for θ axis. Other examples of left and right 3D hand
translation trajectories are available on the supplementary materials.

training dataset. Such training allowed individual
update of the experts, and incrementally appending
new experts to control new dimensions without full
re-training of other experts. To demonstrate the rel-
evance of theMEmodel structure and the importance
of dynamic vs. static gating, we compared the REW-
MSLM to the state-of-the-art adaptive algorithms.

The comparison of several algorithms is a con-
ventional tool to conclude on the improvements
obtained with the proposed algorithms. However,
comparing several online algorithms during closed-
loop experiments is a complicated task as, during

such experiments, the predicted trajectories are
related to the current decoding model and patient’s
feedback. Consequently, it is not possible to com-
pare in online closed-loop experiments several
algorithms that produce different predictions and
feedbacks. Several series of online closed loop ses-
sions are particularly time consuming. In the current
study, offline comparison study was undertaken in
pseudo-online manner with 3 databases. The data-
sets were recorded using 3 different experimental
paradigms (single session decoder training, cross ses-
sion decoder training, fixed decoder) during online

18



J. Neural Eng. 19 (2022) 026021 A Moly et al

Figure 13. Example of a gating model for exoskeleton control. Gating parameter weights (discrete decoding) of the REW-MSLM
according to the spatial (A), frequency (B) or temporal (C) modalities for each state: rest state (IS), left hand 3D translation and
rotation state (ASLH and ASLW) or right hand 3D translation and rotation state (ASRH and ASRW). The sensory sulcus (SS) and
motor sulcus (MS) are represented in the spatial domain in yellow and red curves respectively. The spatial modality shows, as
expected, strong parameter weights on the contralateral electrode array for left and right hand (translation and rotation) states; in
addition, translation and rotation from the same hand seem to activate nearby but distinct electrodes. The frequency modality
highlights the beta and high gamma frequency bands as relevant frequencies for state decoding, whereas the temporal modality
emphasis parameters from 0.5 s to 0.1 s. The variability of the state decoding model coefficients according to the time and
frequency modalities is represented in the supplementary materials (figure S3).

closed-loop experiments using conventional REW-
NPLS algorithm as the decoder. While offline studies
gave an initial overview of the potential REW-MSLM
decoding performance and benefits, they were not
generalizable due to lack of the appropriate user feed-
back. Nevertheless, it allowed characterizing the stud-
ied algorithms before an integration into the clinical
BCI decoding platform.

For discrete decoding, the REW-MSLM out-
performed alternative approaches in discrete
classification regardless of the dataset and paradigm
with an averaged F-score improvement across all
paradigms of 39 ± 4% and 8.3 ± 2% compared

to the REW-NPLS and the REW-SLM respectively.
These results confirmed the benefits to train a spe-
cific model dedicated to state classification and the
improvements related to dynamic classification. The
switching state latency study related to the state
transition delay between the instruction and the dis-
crete decoding response demonstrated an average
increase in duration by 0.45 s, 0.87 s and 0.38 s (over
3 datasets) between the discrete decoder with and
without dynamic HMM processing. However, the
REW-MSLM results show a drastic 92% decrease in
the error block rate between the discrete decoder with
and without dynamic HMM processing, overcoming
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Figure 14. Activation spectrograms. Modulation of the neural signal activity between idle state and each active state for the
electrodes selected with a checkerboard pattern. The sensory sulcus (SS) and motor sulcus (MS) are shown with yellow and red
curves respectively. The dotted squares highlight the electrodes enlarged on the bottom right.

the high frequency misclassified sample issue of static
classifier. For physical effectors, such as an exoskel-
eton, which are in direct contact with the patient and
has a latency of mechanical activation/deactivation

of up to a few seconds, false activation should remain
exceptionally rare events.

For continuous control, REW-MSLM experts
highlighted slight improvement or similar
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performance compared to REW-NPLS, whereas the
training datasets were different. REW-MSLM allows
experts training using independent data sets. This
may be highly profitable for progressive BCI decoder
training increasing the tasks complexity.

In addition, the developed REW-MSLM and the
state of the art REW-NPLS algorithms demonstrated
similar decoding performance. However, numer-
ous non-desired movements of the other limbs are
observed using REW-NPLS. Unintended movements
of a limb that the patient does not want to move
impede the control of complex effectors such as an
exoskeleton, and especially the asynchronous con-
trol with an idle state to decode. In contrast, REW-
MSLM demonstrated similar decoding performance
for the limb to be activated without unintentional
movements from the other limbs thanks to accurate
state classification. The suppression of the uninten-
ded movements leads to better visual feedbacks and
concentration of the patient which may induce bet-
ter model calibration. This is illustrated in the sup-
plementary video SV4.

4.2. EpiCoG based neural decoder for complex
tasks completion
The control tasks, proposed to the patient dur-
ing the experiments are more challenging than the
usual state-of-the-art control tasks. Center-out tasks
require to go from the center of a workspace to one
of the targets localized at equal distances. Moreover,
after each trial (succeeded our failed), the position
is reset to the initial position after few seconds of
rest. In the point-to-point pursuit task experimental
paradigm reported in this article, the patient controls
the effector all along the session and without reset-
ting the hand position. This control task ismore com-
plex because the initial position of the hand changes
constantly, and decodingmistake/drifting of the hand
from one trial affect the following trial. A point-to-
point pursuit task is more complex compared to con-
ventional center-out tasks in terms of explored space
due to multiple (arbitrary under the constraints of
control region) possible starting points and numer-
ous targets. In the current study, 22 target posi-
tions, 11 for each hand, are proposed to the user,
while a majority of center-out experiments consider
8 equally distanced targets [11, 12, 16, 75]. Point-to-
point pursuit tasks are more representative of daily
life applications, and have less restricted experimental
conditions. In addition, asynchronous and altern-
ative bimanual point-to-point pursuit experiments
support rest period as well as asynchronous switch
between active control tasks without external inter-
vention. All dimensions of control (eight in general)
are available to the user at any moment. While not all
DoF may be active simultaneously, any point in the
control region (8D) may be achieved by user at his
own intention.

In the beginning of the experiments (out of exper-
imental sessions presented in the manuscript), the
patient optimized themotor imagery strategy to allow
controlling the effectors. He reported that he was
able after several months of training to control the
effectors unconsciously, without focusing on motor
imagery.

4.3. Closed-loop decoder stability using EpiCoG
recordings
Generally ECoG-based BCI studies are performed
using temporary ECoG subdural grid implantation
from 3 to 35 days post-surgery [8, 10–13, 16, 21,
22, 72–74]. In our experiments, the online closed-
loop SR for both effectors realized from 0 to 37 days
after the last model calibration (figure 10) are sim-
ilar or above current ECoG-based state of the art per-
formance for 3D decoding. Importantly, compared
to these subdural ECoG studies we did not perform
any model recalibration during this time period even
though we used a system which is less invasive [12].

The online closed-loop results presented a high
stability level and were far above the realized chance
level study across all experiments for both effectors.
For the exoskeleton experiments, the left hand trans-
lation SR seemed to decay between the 37thand the
104th day and stabilize until the end, whereas the right
hand translation SR showed higher variability in the
performance (between 17% and 100%). For discrete
decoding, switching from left arm control to right
arm control (and vice versa) produced less than 1%
of the errors. Most of the decoding misclassifications
were related to two issues. First, the majority of the
mistakes were related to false positive idle state activ-
ation. Second, the decoders struggled to differentiate
between rotation and translation from the same limb.
These difficulties may be related to the similarity of
both tasks and may consequently lead to brain neural
signal pattern activations within close areas.

Our results seem to demonstrate higher average
performance to control the exoskeleton than the vir-
tual avatar. This could be explained by the fact that
the exoskeleton provides a more realistic feedback to
the patient than the virtual avatar. However, it is diffi-
cult to make any conclusion due to the small number
of experiments considered in this study.

The online control of both effectors was main-
tained, without recalibration, over sixmonths of clin-
ical experiments (for 167 days and during 203 days for
the exoskeleton and virtual avatar effectors, respect-
ively), indicating the stability of both the REW-
MSLM decoder and the neural activity recording
method with the two WIMAGINE EpiCoG record-
ing implants [47]. These results show that this system
outperforms the state-of-the-art ECoG-based BCIs,
and outperforms both the state-of-the-art ECoG and
MEAs-based BCIs in terms of decoder stability.

The pseudo online study induces the benefits of
cross-session training for obtaining a better decoder,
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more robust to brain and experimental condition
variability. Indeed, continuous performance was low
for dataset A (single session decoder training). Res-
ults fromdataset C (fixed decoder) showed stable per-
formance whereas the model was trained on the basis
of cross-session calibration procedure from dataset
B recorded 9–28 days before. In the online study,
the REW-MSLM was trained for each effector based
on cross-session calibration procedure for 6 experi-
ments over six days, distributed over two months, for
approximately 3.5 h (with in averaged 195 trials). The
duration of the model training periods seems mod-
erate, considering the high number of dimensions to
control and performance obtained compared to those
in similar studies [11, 12]. More training data may
lead to a more generalized model and thus, better
results.

Figure 13 illustrates gating model weights in the
frequency, temporal and spatial modalities for exo-
skeleton control. Spatial modality presents heavy
parameter weights on the contralateral electrode
array for left and right hand (translation and rota-
tion) states. Both translation tasks present sim-
ilar model with dominant frequency band between
20–30 Hz (β-band) and 80 Hz–120 Hz (γ-band).
The same frequency band are relevant for rota-
tion and idle state model, nevertheless, lower fre-
quency band (<20 Hz) significantly contribute to
the decoding, especially for idle state decoding. Para-
meter weights in the temporal modalities are sim-
ilar for all states, emphasizing parameters between
0.5 s and 0.1 s. In the frequency modality the model
coefficients are consistent with the previous stud-
ies which highlighted the significance of β and high
γ-band to decode movements from direct neural sig-
nals [16, 71, 73]. As expected, spatial weights were
higher in the contralateral electrodes of the realized
movement for both left and right hand translation
and rotation which is corroborated by previous stud-
ies [71, 76, 77]. Compared to the exoskeleton gating
model, the avatar gatingmodel focuses on the β-band
and presents a less clear contralateral importance of
the electrodes.

4.4. Limitations and perspectives
The current paper reports the long-term stability
of high dimensional (8D) control of bimanual exo-
skeleton and its avatar. While the study demon-
strates promising results, they were demonstrated for
a single patient. The implantation of 3 more patients
is planned in the ‘BCI and tetraplegia’ clinical trial
protocol and would provide more data to support the
conclusions of this article.

In the paper, the alternative bimanual point-
to-point pursuit experiments supporting asynchron-
ous switch between control tasks without external
intervention is demonstrated. The study reports an
experimental paradigm less restrictive in term of
experimental conditions, compared to traditional

center-out tasks, with a wider exploration of the con-
trol space. In the same time, experiments closer to
domestic, urban, and professional environments are
still needed to move the technology from clinical tri-
als to daily life applications.

During experiments, the patient was able to
switch reliably between idle/rest state and multiple
active states. During idle periods, the patient was
not asked to perform specific tasks but rather take
a break in the experiment, interacting with people
around him for instance, hereby approaching to real-
life situation. In the same time, due to restriction
in experimental session duration, the rest periods
were relatively short. Further studies with longer idle
state periods are still needed to demonstrate the per-
formance required for the real-life asynchronous BCI
applications.

Only alternative bimanual control was performed
due to experimental paradigm. However, simultan-
eous bimanual control is theoretically possible thanks
to REW-MSLM soft gating strategy: the gating is not
a selection of one limb among the others but the mix-
ing of all of themdepending on the probability of limb
activation computed by the HMM gating. Simultan-
eous bimanual effector control is a nearest perspective
of the study.

The REW-MSLM is fully adaptive/incremental
algorithm including online optimization of its hyper-
parameters such as latent space dimension. In the
same time, feature extraction step is fixed from previ-
ous research andmay be further optimized. In partic-
ular, uniform frequency resolution used in the paper
may be suboptimal. An evaluation of the potential
benefits of using a higher frequency resolution is pro-
posed in the supplementary materials (figure S4). We
investigated offline the possible benefits of using a
doubled resolution in frequencies <50 Hz where low
resolution may mostly affect the results. Multilinear
models were optimized with features computed with
wavelets whose central frequency varied of 5 Hz from
5 to 50 Hz and of 10 Hz from 50 to 150 Hz, and com-
pared models computed using features extracted in
frequency bands from 10 to 150 Hz with a step of
10 Hz as it was used in real time online experiments.
Results showed that doubled resolution in frequency
band <50 Hz might slightly improve the cosine sim-
ilarity for hand translations. However, no improve-
ment in correlation was observed for wrists rotation
tasks. Then, a higher frequency resolution might be
beneficial for complex tasks such as 3D hand transla-
tions. For more simple actions models could struggle
to find relevant features using lower frequency resolu-
tion. Optimization of feature extraction for each task
will be further explored.

Faster and straighter reaching trajectories are
likely to be particularly profitable for patients. Vari-
ous post-processing strategies will be investigated in
future studies to provide better control and feedback
to the patient. As the drop of decoding performance
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in the target neighborhood is regularly observed in
BCI studies, alternative ME architecture with states
associated to movement phases will be explored [61].

A restricted dataset was used for decoders train-
ing. Decoding models were fixed without determin-
ing an optimal training time. More training data may
lead to a more generalized model and better results.
The optimization of training paradigm, evaluation
of the impact of a larger dataset on decoding per-
formance, is one of the perspectives of the presented
research. Model interpretation and convergence will
be further investigated. In addition, patients’ adapta-
tions and improvements will be analyzed to evaluate
the impact of experiment frequency on performance
stability.

The REW-MSLM benefits from an MEs archi-
tecture, which splits the dataset to train particular
experts. Continuous decoders are responsible for a
single or group of dimensions. This structure allows
us mixing experts from different training sets and
different models or adding new dimensions without
retraining all the experts. Increasing control complex-
ity by adding dimensions sequentially is highly prof-
itable for patient training. The mixture of experts
decoder architecture favors further increase of control
dimensions. Doubling the resolution of the recording
system is expected in near future and may allow an
increase in number of degrees of freedom, which is
crucial for BCI medical use.
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