
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005 2223

An Adaptive Clustering Approach for the
Management of Dynamic Systems

Carmelo Ragusa, Antonio Liotta, Member, IEEE, and George Pavlou, Member, IEEE

Abstract—Adaptive clustering is one of the fundamental prob-
lems behind autonomic systems and, more generally, an open re-
search issue in the area of networking and distributed systems.
The problem of giving structure to large-scale, dynamic systems
through clustering and of electing centrally located nodes (cluster
heads) is nontrivial. This is in fact an NP-complete problem when
striving for optimality. We propose an innovative strategy based
on code mobility that dynamically computes near-optimal clusters
in linear time. Our approach is autonomic, does not require any
user intervention, is self-configuring, self-optimal, and self-healing.
We demonstrate these features through an extensive set of simula-
tions, discussing the viability of the algorithm based on state-of-the
art technologies, and elaborating on its applicability to distributed
monitoring, peer-to-peer systems, application-level multicast, and
content adaptation networks.

Index Terms—Autonomic communication systems, clustering
methods, code mobility, network partitioning, self-healing,
self-management.

I. INTRODUCTION

T
HE TREMENDOUS developments surrounding Internet-

based systems are making ubiquitous, pervasive commu-

nications a reality. In this context, mobility is a key element

associated with ubiquitous access to multimedia services and

applications. On the other hand, new distributed access tech-

nologies such as Web Services, new computational models such

as Grid computing, and new overlay networking methods such

as peer-to-peer networks are creating the basis for purely dis-

tributed systems.

The ineluctable push toward distribution, mobility, and ubiq-

uity poses new challenges to the management of such systems.

All conventional approaches require a certain degree of cen-

tralized control, exerted via either a single management entity

or an organized set of management entities. Hierarchical and

distributed management approaches have become increasingly

popular in network and systems management. However, when

systems’ size, dynamics and ubiquity are pushed to the limit, the

obvious approach is to dissolve all management functions into

the system itself, creating so-called self-managing systems.

Moving toward this direction, the concept of autonomic sys-

tems has been recently introduced. This refers to communication

Manuscript received November 1, 2004; revised May 4, 2005. This work
was supported in part by the U.K. Engineering and Physical Sciences Research
Council (EPSRC) under Grant GR/S09371/02 (Polymics Project).

C. Ragusa is with the IT-Innovation Centre, University of Southampton,
Southampton SO16 7NP, U.K. (e-mail: cr@it-innovation.soton.ac.uk).

A. Liotta is with the Department of Electronic Systems Engineering, Univer-
sity of Essex, Colchester CO4 3SQ, U.K. (e-mail: aliotta@essex.ac.uk).

G. Pavlou is with the Centre for Communication Systems Research, Univer-
sity of Surrey, Guildford GU2 7XH, U.K. (e-mail: g.pavlou@surrey.ac.uk).

Digital Object Identifier 10.1109/JSAC.2005.857203

and/or computational systems that can “adaptively” self-con-

figure, self-optimize, and self-heal. Autonomic systems do need

to be able to operate autonomously and survive problems in

the absence of any external management intervention. How-

ever, they still have to rely on some sort of “fabric” supporting

fundamental services such as node and path discovery, service

publishing, etc.

In practice, and for scalability reasons, autonomic systems

adopt a clustering approach that involves a certain level of or-

ganization among the various entities (or nodes) of the system.

A good example, in the area of networking, is offered by ad hoc

networks, where terminodes are organized in clusters having a

node with special functions, termed cluster head [1]. Similarly,

peer-to-peer systems are structured in peer groups. Discovery,

publishing, and internode communication are solved, again, via

special nodes termed rendezvous or super-peers [2].

Efficient clustering is a fundamental problem in the area of

networking and distributed services. Because of their peculiar-

ities, autonomic systems are particularly sensitive to the way

clusters are formed and cluster heads are elected. Assuming

that autonomic ubiquitous systems are composed of entities that

move, attach/appear and disconnect/disappear fairly frequently,

autonomic systems must rely on effective means for maintaining

clusters and cluster heads. This includes the ability to partition

the system into an appropriate number of clusters (depending on

the number of system entities) and elect the best possible cluster

heads.

In this paper, we address the clustering problem for auto-

nomic systems, presenting a novel approach that has the fol-

lowing advantages: 1) it is based on a distributed algorithm

that has a low (linear) cost (efficiency); 2) it can satisfy pre-

cise constraints on the number of clusters (self-configuration);

3) it creates provably near-optimal clusters and cluster heads

(self-optimization); and 4) it recalculates near-optimal cluster

heads in face of component failures or congestion (self-healing).

To the best of our knowledge, no existing technique satis-

factorily addresses the combined requirements of efficiency,

scalability, adaptability, and optimality. Our contribution

includes an in-depth simulation-based analysis of the pro-

posed approach, elaborating on its applicability to distributed

monitoring, peer-to-peer systems, network overlays, applica-

tion-level multicast, and content adaptation networks.

II. EXISTING APPROACHES

Clustering algorithms have been the subject of intensive

studies in many different disciplines. For brevity, we focus

on their theoretical foundations originating in graph theory.

The most relevant work has been carried out during the last

0733-8716/$20.00 © 2005 IEEE



2224 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 1. (a) Example system topology. (b) Clustering and cluster heads (rounded boxes) resulting in minimal THD.

30 years under the banner of network location or partitioning.

This involves the optimal placement of service facilities in a

network of nodes, which is equivalent to creating clusters

and electing the optimal cluster head for each of them. Opti-

mality is directly associated to the type of operation conducted

by the cluster head, through the minimization of a given objec-

tive function. For example, the location problem is termed the

-median problem when the objective is to minimize the overall

traffic incurred by the messaging among cluster heads and their

respective cluster nodes. If the objective is to minimize the

maximum response time within clusters (among cluster heads

and cluster nodes), the problem is termed -center.

The -median and -center problems are both -hard in

general network topologies [3]. Numerous approximate polyno-

mial algorithms have been proposed (see extensive survey pre-

sented in [4]–[6]) but none of them suits the aforementioned

combined requirements of efficiency, scalability, adaptability,

and optimality. We mention below some of the most prominent

approaches to network partitioning/clustering.

In the class of enumeration algorithms, Hakimi presented a

simple procedure for determining a single median (or one-me-

dian) in nonoriented networks [5]. The algorithm finds the me-

dian of a single cluster based on the distance matrix. Multiple

optimal medians (clusters) are computed in polynomial time in

[3]. However, their algorithm only works for tree networks.

If we look at graph-theoretic approaches, we also find unac-

ceptable constraints. In this case, all existing algorithms take

advantage of the underlying network structure to determine

the cluster centres (e.g. [3], [7], and [8] work only for tree

networks).

Algorithms valid for general networks are based on heuristic

approaches, which rely on trial-and-error methods (a compre-

hensive review is provided by [4] and [6]). The limitation in

this case is that it is not possible to establish the goodness (op-

timality) of the cluster head locations.

On the other hand, Lagrangian relaxation algorithms are

optimization approaches based on relaxations of the in-

teger-programming formulation of the -median problem

[4]. When coupled with one or more heuristic algorithms,

Lagrangian approaches often give results that are provably

optimal or near optimal. Nevertheless, Lagrangian algorithms

are not viable for our clustering problem because they need to

use the distance matrix.

The approach proposed in this paper belongs to the category

of heuristic algorithms but is completely different from existing

work. We exploit the key features of code mobility to achieve a

fully distributed clustering algorithm that is also adaptive to net-

work conditions. The code mobility paradigm has been broadly

used in the past as an alternative to the client-server model be-

cause of its potential to tackle problems, where scale and dy-

namics assume significant importance [9]. Mobile software en-

tities with particular properties such as autonomy, proactivity or

ability to learn from the environment are commonly referred to

as mobile agents (MAs). In the context of this paper, we adopt a

combination of code mobility with some of the properties typ-

ical of MAs, such as cloning. However, our system does not re-

quire any heavyweight MA platform to operate, as discussed in

Section X-A.

III. PROBLEM FORMULATION

A logical/abstract view of our self-managed system is illus-

trated in Fig. 1(a), where nodes may represent anything from

the software entities of a distributed system (or application)

to networked devices. We consider nodes to be interconnected

through Internet-based networking and transport protocols [i.e.,

transmission control protocol/Internet protocol (TCP/IP)].

Routing information is essential for our clustering approach

and we assume that, typically link-state, routing algorithms op-

erate independently from our system, while the latter has read-

only access to the routing tables [e.g., via the simple network



RAGUSA et al.: AN ADAPTIVE CLUSTERING APPROACH FOR THE MANAGEMENT OF DYNAMIC SYSTEMS 2225

Fig. 2. Algorithm overview (the small diagrams on the right are identical, rescaled versions of the diagram on the left).

management protocol (SNMP) routing management informa-

tion base (MIB)]. It is the responsibility of the routing algorithm

to maintain up-to-date routing tables reflecting current network

connectivity. The system is assumed to be fully dynamic, i.e.,

nodes are generally mobile, connectivity is intermittent, and

new nodes can join or abandon the system at any time. The clus-

tering problem can be formulated as follows.

Given a set of interconnected nodes and an objec-

tive function , create partitions (or clusters) and elect

their cluster head nodes (one per partition) so as to mini-

mize the objective function.

The main requirements on the clustering process are: 1) it

must be scalable with network size; 2) it must be possible to

define an upper bound on clustering time; and 3) cluster heads

should be continuously reelected to maintain optimality as

system conditions change (link failure, node mobility, etc.).

The remainder of this paper refers to a more specific clus-

tering problem, the -median problem. In this case the objective

function is the total hop distance (THD) in the cluster, i.e., the

sum of the distances between cluster heads and their respective

cluster nodes, so that the cluster head is the most “central” node.

Hence, the clustering problem can be formulated as follows.

Given a set of interconnected nodes , compute a

near-optimal -median that self-reconfigures itself ac-

cording to system dynamics and self-heals in case of link

or node failures.

Following again the example of Fig. 1(a), the aim is to

create near-optimal clusters with dynamically reconfigurable

cluster heads. If we assume, for simplicity, a constant message

exchange pattern between cluster heads and cluster nodes, the

configuration shown in

Fig. 1(b) results in minimal overall traffic. In face of topo-

logical changes, our system reelects cluster heads to maintain

optimality (see Section IV-G)

IV. SELF-MANAGED CLUSTERING THROUGH

MOBILE AGENTS (MAs)

A. System Overview

The general principle behind our approach is inspired by

distributed routing algorithms, i.e., Dijkstra or Bellman–Ford,

as used in IP networks. Nodes continuously compute routing

tables based on very simple operations, resulting in a global,

distributed database containing information that reflects the

network status. In the remainder of this paper, we shall demon-

strate how this information can be used by relatively simple

heuristic procedures in order to solve the clustering problem

formulated in Section III.



2226 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Our approach is to use a MA system that actually computes

the clusters following the five-phase process depicted in Fig. 2.

The process can start at any node (see Section VIII for our study

on its independence from starting node) by injecting a single

MA. The starting node is also the cluster head of the whole

system to be partitioned, so effectively there is only one cluster

initially that contains a list of nodes. The agent is setup with

a goal in the form of a simple heuristic procedure that drives the

partitioning process. The input parameters are the following:

• list of nodes to be partitioned (this is a list of node

identifiers, e.g., IP addresses);

• number of target partitions ;

• tolerance margin on , i.e., ; ( is

the absolute variation of );

• initial location of the cluster head .

Starting from its initial location (i.e., the root node), the MA

initiates an iterative, distributed procedure that subsequently

creates new partitions and clones new agents (one per new

partition). Every MA in the system holds exactly the same logic

(i.e., they all go through the process depicted in Fig. 2, and they

all behave in the same fashion). We provide below an overview

of the five-phase procedure performed by each agent—further

details are given in Section IV-B and onwards.

Our stratagem is to obtain the required clusters through a

clone-and-migrate process. The agent performs a matching op-

eration between the local routing table and the list of nodes in-

cluded in its partition. Based on the status of the network and

on the relative distance between cluster head and cluster nodes,

the MA can take four different decisions.

1) Cloning/partitioning: If the cluster has a size consider-

ably larger than , the MA splits the partition in two

or more clusters; clones one agent per partition; initializes

them with their respective list of nodes; sets up their re-

spective initial cluster head location; and spawns them.1

Each new agent initiates the whole process from scratch,

the only difference being the list of cluster nodes and the

initial cluster head location.

2) Migration: If the cluster has a size comparable to

it starts migrating within the cluster until the central point

is found. The metric for centrality may vary—i.e., herein,

we find the median.

3) Aggregation: In some cases, the cloning/partitioning

process may not succeed in creating clusters of size

comparable to . This happens for instance when

cluster nodes are sparsely distributed. In order to meet the

requirements on the target cluster size, the agent creates

an appropriate number of subclusters by subsequently

aggregating nodes on the bases of their distance from the

agent.

4) Self-healing: Once the clustering process is completed

and the cluster head has been elected, the MA gets into

self-healing mode. It periodically rechecks the network

conditions to reenter the migration mode when these

1The operator j:j returns the cardinality of a list of nodes, e.g., jN j is the
number of elements of N .

Fig. 3. Cloning phase flowchart.

change (e.g., due to link failure, congestion, or node

mobility).

The following sections, describe the agent behavior in greater

details, including parameters, thresholds, and heuristics used in

the MA decision process.

B. Parameters and Definitions

In this section, we specify the notation used in the remainder

of the paper. Starting from the aforementioned input parame-

ters, the agent computes the following variables during the setup

phase.

• is the average number of nodes per

partition.

• is the absolute variation admitted on

.

• is the min value of .

The following parameters are used in the cloning and migration

phases.

• is the list of cluster nodes managed by an MA. At

bootstrapping time .

• is the list of cluster nodes reachable through the

neighbor node having identifier .

C. Cluster Generation—Cloning Phase

The cloning process that results in the generation of new

clusters is depicted in Fig. 3. At this point, the MA is sitting

onto a certain node (the tentative cluster head), holds the list

of cluster nodes, , and has to decide how to partition them.

By hashing against the local routing table, the MA discovers

the neighbor nodes—i.e., the next-hop addresses involved in the



RAGUSA et al.: AN ADAPTIVE CLUSTERING APPROACH FOR THE MANAGEMENT OF DYNAMIC SYSTEMS 2227

communication between cluster head and cluster nodes. The de-

cision on whether or not and on how to partition is controlled

by the three conditions specified in Fig. 3. The first condition

makes sure that the main thread of the algorithm gets into the

migration phase only upon considering all neighbor nodes. The

second condition prevents cluster fragmenta-

tion. In fact, we do not want the partitioning process to result

in partitions that do not have at least elements. Also, we

need to prevent the situation in which the original partition is

depleted excessively by the partitioning process.

Having gone through the previous conditions, we know that

the partition under scrutiny is too big. What we have to decide

is whether or not the subpartition is large enough

; but we also have to make sure that, should form a new

partition, the remaining nodes in — i.e., —would

still constitute a sufficiently large cluster.2 The latter holds when

. If the third condition is verified, is

partitioned into two different partitions, and . The

main thread of execution continues the whole process using the

former list and clones a new MA whose task is to take care of

.

Therefore, there are two types of exit conditions from the

cloning phase.

1) One or more new MA clones/clusters are created, de-

pending on the cloning conditions. Each MA is spawned

to its initial location that is set to the relevant neighbor

node .

2) Once all branches of the routing tree rooted at the agent

node have been assessed, the MA leaves the cloning phase

and enters the migration phase, as explained in the next

section.

D. Cluster Head Location—Migration Phase

Starting by its current location, the principle that drives an

agent toward its central location (within its cluster) is based on

the calculation of weighed routing costs for each of the

neighbor nodes , defined as , where

is the list of cluster nodes of the agent, is the subset of

cluster nodes reachable through neighbor , is obtained by

adding the individual routing costs of (these are extracted

from the local routing table), and is the sum of all .

provides an estimate of the global distance (in terms of routing

costs) associated to each neighbor. The aim is to migrate toward

the location with higher associated cost. So the agent elects as

new candidate location, the neighbor having maximum value

of (first box in Fig. 4).

Agents avoid migrating in loops by retaining the highest value

of for all previously visited nodes. So, as soon as the agent

is presented with a candidate node that it had previously visited,

it detects a potential looping condition. In that case, it simply

elects the node having the highest value of (among all historic

values, including that of the new candidate node). At this point,

we have two alternatives. If the newly elected node is in fact

the node where the agent is sitting on, the agent goes to the

aggregation phase (described below). Otherwise, it first disables

2The operator “/” returns the list of nodes resulting when removing list N
from list N .

Fig. 4. Migration phase flowchart.

the migration and cloning flags before migrating. In this way, it

makes sure that upon reaching the new location (and restarting

the whole procedure), those phases are skipped, getting directly

into the aggregation phase.

E. Cluster Consolidation—Aggregation Phase

We have seen how the cloning process is based on simple

heuristics, which means that despite having a relatively simple

and computationally efficient algorithm, we also have to cater

for exceptional conditions. In practice, we have found rare occa-

sions when networks having highly sparse nodes lead to a small

number of clusters that are considerably larger than but

still do not satisfy the cloning conditions of Fig. 3.

In order to meet the requirements on the target cluster size,

the agent creates an appropriate number of subclusters by subse-

quently aggregating nodes on the bases of their distance from the

agent (Fig. 5). Each newly formed partition sparks the cloning

of a new agent whose cloning flag will be set to “disabled” for

obvious reasons (the size of cluster already meets the require-

ments). On the other hand, upon exiting the partitioning loop,

the main agent now has a minimal partition but should again get

into migration mode to consider better locations.

F. Self-Clustering in Operation—An Example

To further illustrate the operation of the self-clustering

algorithm, let us consider again the system topology depicted

in Fig. 1(a). Since clustering is achieved via MA cloning/de-

ployment, its steps can be highlighted by the MA deployment



2228 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 5. Aggregation phase flowchart.

map depicted in Fig. 6, which leads to the clusters illustrated

in Fig. 1(b). We are assuming that the process is initiated

at node 0, where the first (unique) agent starts by assessing

the cloning conditions of Fig. 3 for each of the neighboring

nodes (nodes 1, 2, 6, 13, and 23). Given the input parameters

, , and %, the cloning

conditions are found to be true for all neighbors except node

23. Hence, four new agents are cloned, while the original

agent migrates to node 23. At this point, each agent pro-

ceeds independently from each other. Agents have their own

list of nodes—for instance, the agent sitting at node 1 has

. Let us now see what

happens to this agent (other agents will behave analogously).

The cloning conditions are not satisfied at this point because

the agent is sitting too much in the periphery of the cluster.

So the agent subsequently migrates to 34, 30, and 32. At 32,

the cloning conditions are met, leading to the creation of two

subpartitions, {1, 27, 29, 30, 34} and {28, 31, 32, 33}. The

newly cloned agent subsequently migrates to 30 and 34. At

this point, loop avoidance comes into play, leading to a final

migration to 30. The other agent subsequently migrates to 28

and 31 and, following loop avoidance, settles at node 28.

G. Self-Healing Phase

Upon completing the whole clustering process, the agent

system still has to continuously adapt to network dynamics.

All agents gets into self-healing phase, consisting of a peri-

odic recomputation of the weighed routing costs —as

described in Section IV-D. As network conditions change, so

does —i.e., the maximum value of all . As previously

explained, grows as a result of network degradation or

failure; so by comparing the new value of

with its current counterpart , the agent can decide

whether or not to trigger migration.

The periodic recomputation of assumes the choice of

an “appropriate” period . We recall that agents are meant to

not only maintain location optimality but also perform the tasks

of the cluster head. Consequently, there is no point in setting

to be smaller than the typical agent migration time, risking

otherwise the occurrence of MA system instability. Per contra,

excessively high values of would compromise prompt adapta-

tion. determines system stability, controllability and duration

of transient conditions. However, the choice of is a tradeoff de-

cision driven by the laws of classic control theory, so we do not

delve into this aspect herein. More pragmatically, we have set

to be twice the average migration time, obtaining good overall

controllability.

V. ASSESSMENT METHODOLOGY

The proposed system has been evaluated through an ex-

tensive set of simulations that have provided an insight into

performance, scalability, and autonomy (self-optimization,

self-configuration, and self-healing). For brevity, only the most

significant results are illustrated from Section VI onwards,

focussing on computational complexity, sensitivity to starting

point, optimality, and self-reconfiguration. Other nonreported

results concern system stability. We have verified that the

partitioning process always exits and that agent migration does

not create oscillatory or looping conditions.

The simulation environment and the tools used for our

study are depicted in Fig. 8, where shaded boxes indicate new

software/tools developed by us. The proposed system is built

on top of the NS network simulator [10], a widely used simu-

lator within the research community, which supports the most

common physical, link, network, transport and application layer

protocols for fixed and mobile communication networks. We

had to extend the NS core with the main MA functionality, in-

cluding agent migration, cloning, destruction, and so forth. We

have created a generic framework in which relatively complex

MA systems could run over arbitrarily complex Internetworks.

In this way, our partitioning method was studied under a large

variety of conditions such as network topology type, network

size, communication protocols, and so on. These conditions, or

scenarios, are specified as Tcl scripts.

Another important aspect concerns the generation of network

clusters, or topologies, that resemble real networks. Realistic

Internet-like topologies where generated with the GT-ITM

topology generator [11], following a well-established method-

ology by Calvert and Zegura [12], [13]. Transit-stub topologies

having 51, 102, 147, 198, 258, and 303 nodes were generated

in order to assess the algorithm sensitivity to network size.

For statistical significance, we produced families of at least

ten topologies each. When the variance of the results was not

satisfactory we produced 20 topologies for family.

Since NS is an event-driven simulator, the analysis is carried

out on the output traces. Given the large amount of simulations

(the project took over three years worth of simulations), we had

to automate the conversion of NS traces in a format that could

be fed to statistical tools. We produced scripts in Tcl, Perl, and



RAGUSA et al.: AN ADAPTIVE CLUSTERING APPROACH FOR THE MANAGEMENT OF DYNAMIC SYSTEMS 2229

Fig. 6. Clustering process for the topology of Fig. 1(a), including the MA deployment map resulting in the optimal configuration of Fig. 1(b).

Fig. 7. Self-healing algorithm.

Matlab for this purpose. The data was analyzed using Microcal

Origin [14]. The NAM network animator [15] was also used for

debugging, verification, and validation.

Another important aspect was the study of the optimality

of our approach. This was done by a comparison with the

well-known Lagrangian algorithm [4], which computes prov-

ably near-optimal -medians. Despite computing -medians

in polynomial time, the Lagrangian algorithm relies on the

whole network topology (i.e., the distance matrix), so it is not

a viable (scalable) solution in practice. It can only be used as a

benchmark for other algorithms, like in our case. We used the

SITATION simulation package [16] to compute Lagrangian

-medians and their total hop distance.

VI. COMPUTATIONAL TIME

An important requirement of the clustering problem defined

in Section III is scalability, which is the ability to increase the

size of the problem domain with a small or negligible increase

in the solution’s complexity. In our case, the main scalability

factors are the size of the initial cluster the cluster diam-

eter (i.e., the maximum distance between any two nodes in the

cluster), and the number of target partitions . Initial simula-

tions, not shown here for brevity, gave a clear indication that in

practice and were related and could be assimilated to a

single factor—i.e., their ratio.

Our initial hypothesis was that, because of its distributed na-

ture, the complexity of our algorithm would be affected mainly

by network diameter. The cloning process of Fig. 3 guarantees a

good level of parallelism, while the migration process of Fig. 4

stops, in most cases, well before visiting the whole network dis-

tribution tree. In order to assess our hypothesis and determine

the computational time of our algorithm, we have computed the

clustering time (i.e., the MA deployment time) in all combina-

tions of the parameters depicted in Table I. Fig. 9 depicts the

results obtained for a subset of the simulation cases. However,

all other cases gave equivalent results. The most eminent result

is linearity with network diameter, which makes the algorithm

suitable for large-scale systems.

It may be worth mentioning that in all cases, the slope of

the clustering line is relatively small in comparison to the inter-

cept between the line and the axis. The reason for that is that

MA migration time dominates the clustering process. In most

common general purpose MA platform, the time to hop between

two nodes is in the order of hundreds of milliseconds. This

means that our algorithm would not be able to compete with

conventional partitioning algorithms in the case of small-scale

networks. On the other hand, the linearity and relatively small



2230 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 8. Simulation environment and tools.

Fig. 9. Clustering time versus diameter for 102-node topologies.

TABLE I
SIMULATION DESIGN FOR THE STUDY OF SCALABILITY

slope, ensure that the algorithm is well suited to very large-scale

systems.

It may be worth mentioning that, in typical Internet-like net-

works, a small increase in network diameter results in a rela-

tively large increase of especially for large networks. That

is why when we studied clustering time versus , we found

that the former increases when an increase of is also accom-

panied by an increment in network diameter. In other words, an

increase in with constant diameter, does not affect clustering

time.

A second important set of simulation results is depicted in

Fig. 10, which captures the effect that the number of target clus-

ters has on computational time. In this case, we notice an even

better behavior. Computational time gradually increases only in

the lower range of but plateaus when the number of target



RAGUSA et al.: AN ADAPTIVE CLUSTERING APPROACH FOR THE MANAGEMENT OF DYNAMIC SYSTEMS 2231

Fig. 10. Clustering time versus p=jN j for 102-node topologies.

partitions is greater than about 15% of the initial cluster. This

result shows, once more, the high level of parallelism and dis-

tribution of our algorithm. In fact, the more partitions we want

to create, the larger will be the number of MA’s operating in

parallel.

VII. ACCURACY

A. Location Optimality

Having verified the viability (scalability) of our clustering al-

gorithm, we then studied its ability to produce “good” parti-

tions and cluster heads, according to the problem formulated

in Section III. We recall that our objective function is to mini-

mize the THD—this is equivalent to saying that we need to as-

sess the “distance from optimality” of the clusters and cluster

heads found by the algorithm. As mentioned in Section V, we

have carried out a comparative study using the Lagrangian al-

gorithm as benchmark. We have computed the THD of both

algorithms in all combinations of the parameters depicted in

Table II. Fig. 11 depicts just one of the cases, having

nodes. The most interesting and, to a great extent unexpected,

TABLE II
SIMULATION DESIGN FOR THE STUDY OF OPTIMALITY AND

ERROR ON COMPUTED NUMBER OF PARTITIONS

result is that the THD of our algorithm has been found to be al-

ways smaller than the THD of the Lagrangian algorithm, which

proves that our solution is al least near-optimal too. We should

stress, again, that this means that we have a clustering algorithm

that is computationally viable (the Lagrangian algorithm is not)

and near-optimal.

B. Accuracy on Number of Clusters

Being based on simple heuristics, the algorithm will generally

work better under certain conditions. Unexpectedly, the



2232 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

Fig. 11. Location optimality comparison.

Fig. 12. Error on number of clusters produced by the algorithm.

algorithm has produced near-optimal -medians under all tested

cases (as discussed in the previous section). We also assessed its

accuracy in the generation of the required number of clusters.

We have seen that one of the input parameters is , which is

the tolerance on expressed in percentage. We have assessed

the error on in all combinations of the parameters depicted in

Table II, using the following formula:

if

if

if

where is the actual number of clusters computed by the al-

gorithm. A representative sample of all cases of Table II is de-

picted in Fig. 12. We can see that the accuracy increases con-

siderably (i.e., Err diminishes) as we relax the constraints on

tolerance on (i.e., when increases). The algorithm is not

particularly accurate in the generation of the exact number of

clusters. It does compute near-optimal clusters, but it can only

meet relatively relaxed constraints on the exact number of clus-

ters. Nevertheless, in practical applications, the latter property

TABLE III
SIMULATION DESIGN FOR THE STUDY OF SENSITIVITY TO STARTING NODE

is far less important than the former. One is most commonly

interested in creating optimal clusters rather than determining

their exact number a priori. What is typically needed in the ap-

plications described in Section X-B is the ability to partition a

large system into smaller systems for efficiency reasons. Given

the results of Fig. 12 (typical errors are of the order of 10%), we

can conclude that the algorithm provides a good control of the

order of magnitude of .

VIII. SENSITIVITY TO STARTING CONDITIONS

Another important requirement of the algorithm is its inde-

pendence from the input parameters specified in Section IV. The

results reported below demonstrate that the algorithm provides

comparable results in all the cases of Table III—we have com-

puted clustering time, number of computed partitions, and THD.

A representative sample of all results is illustrated in Fig. 13 that

depicts mean values and standard errors. Noticeably, all mean

values are comparable, demonstrating that the algorithm works

equally well regardless of the starting node.

IX. SELF-HEALING

Large-scale, dynamic systems cannot rely on consistent as-

sumptions on traffic, congestion or fault patterns. Being au-

tonomic, our system has to be adaptive to loading conditions

without the need of any manual intervention. We report here the

results of our study of adaptation to network link failure, which

is also indicative of its ability to adapt to network congestion,

node mobility, and so forth. We have simulated all combinations

of the parameters of Table IV. For each family of topologies, we



RAGUSA et al.: AN ADAPTIVE CLUSTERING APPROACH FOR THE MANAGEMENT OF DYNAMIC SYSTEMS 2233

Fig. 13. Sample of results on sensitivity to starting node.

TABLE IV
SIMULATION DESIGN FOR THE STUDY OF SELF-HEALING

have randomly created an increasing number of link faults (from

0% to 25%)—for statistical significance, faulty conditions were

randomized 20 times per topology.

Link failure does result into a change of topology—it is the

responsibility of the IP protocol to update the routing tables

accordingly. As the faults percentage increases, the probability

to obtain unconnected nodes increases too. We have created

a very large number of scenarios, selecting only the cases in

which full connectivity is maintained. To benchmark the ability

to self-heal, we have first measured the THD in the absence of

any failure. Link failure results into new paths (between cluster

heads and cluster nodes) that are generally equal or longer

than the paths established before the failure. As a result, THD

generally increases upon failure and the cluster head locations

may become nonoptimal. To quantify the degradation in THD,

we have measured its value immediately after link failure but

just before triggering our self-healing procedure. We have also

recalculated the theoretically near-optimal set of new cluster

heads (using the Lagrangian algorithm) and, correspondingly,

the new near-optimal THD. Finally, we have recalculated

THD after self-healing, i.e., after MAs migrate to the newly

calculated cluster heads. An indicative sample of the results is

depicted in Fig. 14. Most eminently, self-healing succeeds to

bringing the system back to optimality.

Fig. 14. Sample of results on self-healing.

X. DISCUSSION

A. Practical Deployment of the Algorithm

Our simulation-based study provides an insight into the vi-

ability of the clustering algorithm in the context of Internet-

based networked systems—the simulation design described in

Section V covers a broad range of cases. We discuss here other

practical issues toward a full deployment of the algorithm, fo-

cussing on the infrastructure requirements.

The first important question regards the level of maturing

of frameworks supporting code mobility. Our system assumes

the presence of lightweight means for transporting and exe-

cuting code throughout the network. However, it does not dictate

code mobility support in every node—that assumption would

be unrealistic. On the other hand, code transport and execu-

tion in routers is not problematic nowadays. The IETF Dis-

tributed Management (DISMAN) Working Group is studying



2234 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2005

mechanisms for distributing scripts that can perform arbitrary

tasks [17]. Also, several proposals of MIBs are underway. In

particular, Script-MIB defines an SNMP-compliant MIB and a

standard interface for code pushing and pulling [18]. The MIB

supports arbitrary programming languages and makes no as-

sumption about code formats. Code execution in network de-

vices such as IP routers is also viable today. Just to mention

an example, Cisco routers provide the ability to run Tool Com-

mand Language (TCL) scripts including SNMP MIB object ac-

cess [19]. Public access to MIB objects is read-only but there

are also security mechanisms allowing full manipulation.

In our simulations, we have assumed the functionality and

typical performance figures of Script-MIB and TCL. The

resulting size of our mobile code in TCL is in the order of

50 Kbytes, while the one-hop migration time is in the order of

400 ms. We have not specifically tackled the security and safety

issues related to code mobility, given our relaxed requirements

on security (our clustering algorithm merely needs read-only

access to routing tables) and the ample literature available in

the subject (the interested reader may refer to [20] and the

references reported therein).

B. Applicability of the Algorithm

The adaptive clustering method proposed in this article has

been formulated and addressed in a general way. Because of

that, it is easy to think of a range of applications that may

significantly benefit from its features. Our algorithm solves

one of the most controversial graph theoretical problems—i.e.,

how to efficiently partition a dynamic, large-scale network,

and find the central location of each subpartition. Thus, the

algorithm may be directly applied to any of the classic network

optimization problems such as the optimal service facility

location problem [4].

Getting into more pragmatic applications, adaptive clus-

tering is the basis of ad hoc networks, where the key features

of autonomic systems (self-configuration, self-optimization,

self-healing) are being extensively investigated. Ad hoc net-

works are self-managed and, as such, they have to deal with

a small, as well as large, number of terminodes. Clustering is

one way to give structure to the network, addressing scalability

issues. Cluster head selection is another fundamental problem

when dynamic conditions cause frequent changes in the net-

work topology. Our MA system can be used as a self-organizing

management “fabric” for ad hoc networks.

A similar self-management infrastructure is also needed in

peer-to-peer networks or, more generally, in overlay networks

[21]. The former may scale up to millions of nodes but are meant

to be used by a virtually unlimited number of users. Some of

the existing peer-to-peer frameworks such as JXTA [22] are

open source and aim at becoming de facto standards. How-

ever, they do lack effective mechanisms for peer group manage-

ment (the equivalent of our clustering problem) and super-peer

election (the equivalent of our cluster head selection). Also,

given the rapid shift toward user mobility, self-organization and

self-healing are bound to become major issues in peer-to-peer

systems. We are currently looking at peer-to-peer middleware

for mobile systems, making use of the clustering algorithm de-

scribed herein.

At the same time, overlay networks are gaining significant

momentum because of their ability to complement existing

networking protocols with new application-level solutions.

Our MA deployment system may be considered as a way to

create adaptive overlays, with the agent bearing also the logic

of the application. For instance, the overlay network may be

used to deploy a new application-level multicast protocol or to

realize a content distribution network. We have recently started

investigating the former, obtaining encouraging results [23].

Other relevant work is surveyed in [24] and [25].

Going more toward examples in the network management

arena, we have recently demonstrated the use of an early version

of our algorithm for the realization of an adaptive distributed

monitoring system [26], illustrating its scalability and adapt-

ability to network dynamics.

Finally, in the context of service management, the emerging

area of content adaptation networks is a strong candidate for our

approach. The problem in this case consists in the creation of

application-level routing trees via network overlays. However,

nodes have also media transcoding capability, allowing the de-

livery of a given media stream to a set of users having different

requirements on the media format. Our future plans include the

investigating of our clustering algorithm in the context of this

revolutionary streaming approach.

XI. CONCLUSION

In this article we tackle one of the fundamental problems be-

hind autonomic systems, the adaptive clustering problem. We

propose a novel algorithm featuring computational efficiency

(linearity with network diameter), self-configurability (indepen-

dence from initial conditions), self-optimization (near-optimal

clusters and cluster heads), and self-healing (adaptation to com-

ponent failures or congestion). We have carried out an extensive

simulation-based analysis that allows drawing definite conclu-

sions on those features. The article includes also a discussion on

a range of possible applications, from ad hoc networks to appli-

cation-level networking and from network management to ser-

vice management. We have also mentioned some of our ongoing

work on application-level multicast, peer-to-peer middleware

for mobile systems, and content adaptation networks. Clearly,

the scope of autonomic systems is much wider so many other

uses may be found.

The work presented here has given us ample opportunities

to learn a number of lessons. Code mobility is certainly a po-

tential paradigm that, by its very nature, suites a variety of re-

quirements of current systems. These are increasingly mobile,

volatile, dynamic, ubiquitous, and distributed. When combined

with peer-to-peer systems and network overlays, MAs do offer

powerful means for addressing classic NP-complete problems

in a simple, though approximate, way (our work provides and

example of such a system). On the other hand, the self-manage-

ability obtained in our case through code mobility and peer-to-

peer communication poses also new problems in terms of con-

trollability, stability, and predictability of the system behavior.

Systems such as ours are extremely difficult to assess. Proto-

type-based experimentation or field trials do not help because



RAGUSA et al.: AN ADAPTIVE CLUSTERING APPROACH FOR THE MANAGEMENT OF DYNAMIC SYSTEMS 2235

the testbeds that would be needed are hardly available to re-

search organizations. Mathematical modeling is extremely com-

plicated and can only help in specific cases such as specific

types of topologies. On the other hand, simulations provide a

good insight but are time consuming and do not allow exhaus-

tive studies. Some of our earlier results highlighted occasional

instability problems which we then addressed satisfactorily.

REFERENCES

[1] C. K. Toh, Ad Hoc Mobile Wireless Networks. Englewood Cliffs, NJ:
Prentice-Hall, 2002.

[2] D. Barkai, Peer-to-Peer Computing. Santa Clara, CA: Rich Bowles,
2002.

[3] O. Kariv and S. L. Hakimi, “An algorithmic approach to network loca-
tion problems—Part 2: The P-medians,” SIAM J. Appl. Math., vol. 37,
pp. 539–560, 1979.

[4] M. S. Daskin, Network and discrete location: Wiley, 1995.
[5] S. L. Hakimi, “Optimum distribution of switching centers in a communi-

cations network and some related graph theoretic problems,” Oper. Res.,
vol. 13, pp. 462–475, 1965.

[6] F. Buckley and F. Harary, Distance in Graphs. Reading, MA: Addison-
Wesley, 1990.

[7] A. J. Goldman, “Optimal center location in simple networks,” Transport.

Sci., vol. 5, pp. 212–221, 1971.
[8] D. W. Matula and R. Kolde, “Efficient multi-median location in acyclic

networks,” ORSA/TIMS Bull., no. 2, 1976.
[9] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”

IEEE Trans. Softw. Eng., vol. 24, no. 5, pp. 342–361, 1998.
[10] K. Fall and K. Varadhan, The NS Manual. Berkeley, CA: LBNL, Univ.

California. [Online]. Available: www.isi.edu/nsnam/ns/.
[11] E. Zegura. The GT-ITM Topology Generator. [Online]. Available:

www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html
[12] K. L. Calvert, M. B. Doar, and E. W. Zegura, “Modeling Internet

topology,” IEEE Commun. Mag., vol. 35, no. 6, pp. 160–163, Jun. 1997.
[13] E. W. Zegura, K. L. Calvert, and M. J. Donahoo, “A quantitative com-

parison of graph-based models for internet topology,” IEEE/ACM Trans.

Netw., vol. 5, no. 6, pp. 770–783, Dec. 1997.
[14] Microcal ORIGIN. [Online]http://www.originlab.com/
[15] J. Mehringer, The Network Animator (NAM). Los Angeles, CA: Inf.

Sci. Inst., Univ. Southern California, . [Online]. Available: www.isi.edu/
nsnam/nam/.

[16] SITATION software. [Online]. Available: http://users.iems.nwu.edu/
~msdaskin/BookSoftware.htm

[17] IETF Distributed Management (DISMAN) Working Group. [Online].
Available: http://www.ietf.org/html.charters/disman-charter.html

[18] J. Schönwälder and J. Quittek, “Secure Internet management by delega-
tion,” Comput. Netw., vol. 35, no. 1, pp. 39–56, Jan. 2001.

[19] Cisco IOS Scripting with TCL. [Online]. Available: http://
www.cisco.com/univercd/cc/td/doc/product/software/ios123/123newft/
123t/123t_2/gt_tcl.htm

[20] J. Schönwälder, J. Quittek, and C. Kappler, “Building distributed man-
agement applications with the IETF script MIB,” IEEE J. Sel. Areas

Commun., vol. 18, no. 5, pp. 702–714, May 2000.
[21] L. L. Peterson and B. S. Davie, Computer Networks. San Mateo, CA:

Morgan Kaufmann, 2003.
[22] C. Qu and W. Nejdl, “Interacting the Edutella/JXTA peer-to-peer net-

work with web services,” in Proc. IEEE Int. Symp. Applicat. Internet,
2004, pp. 67–73.

[23] C. Ragusa, A. Liotta, and G. Pavlou, “A scalable application-level mul-
ticast approach based on mobile agents,” in Proc. IEEE Int. Conf. Netw.,
Sydney, Australia, Sep. 28–Oct. 1 2003, pp. 197–202.

[24] A. El-Sayed et al., “A survey of proposals for an alternative group
communication service,” IEEE Netw. Mag., vol. 17, no. 1, pp. 46–51,
Jan./Feb. 2003.

[25] M. Castro et al., “An evaluation of scalable application-level multicast
built using peer-to-peer overlays,” in Proc. IEEE INFOCOM, Mar.–Apr.
2003, pp. 1510–1520.

[26] A. Liotta, G. Pavlou, and G. Knight, “Exploiting agent mobility for
large scale network monitoring,” IEEE Netw. (Special Issue on Appli-

cability of Mobile Agents to Telecommunications), vol. 16, no. 3, pp.
7–15, May/Jun. 2002.

Carmelo Ragusa received the Laurea degree in com-
puter and electronic engineering from the University
of Catania, Catania, Italy, in 2001 and the Ph.D. de-
gree in communication systems from the University
of Surrey, Surrey, U.K., in 2005.

He is currently a Research Engineer at the IT
Innovation Centre, University of Southampton,
Southampton, U.K., where he works on grid com-
puting. He has published two journal papers, one
book chapter, and five conferences papers in the area
of service management and distributed computing.

His other areas of interest include software code mobility, distributed systems,
and peer-to-peer networking.

Antonio Liotta (M’98) received the Laurea degree
in computer and electronic engineering from the
University of Pavia, Pavia, Italy, in 1994, the M.Sc.
degree in information technology from the Polytech-
nics of Milan, Milan, Italy, in 1995, and the Ph.D.
degree in computer science from University College
London, London, U.K., in 2001.

He is currently a Senior Lecturer in Networking
and Service Management at the Department of
Electronic Systems Engineering, University of
Essex, Colchester, U.K. He was with the University

of Pavia, first as a Research Fellow in 1995, and then as a Guest Lecturer in
1996 when he was also a Visiting Researcher at Polytechnics of Milan and at
Hewlett-Packard Laboratories, Bristol, U.K. He was with the University of
Surrey, Surrey, U.K. first as a Research Assistant (2000), and then as a Lecturer
in Networking and Service Management (2001–2004). He has published nine
journal papers, two book chapters, and over 40 conferences papers in the area
of service management, distributed computing, and advanced networking.

Dr. Liotta is a Chartered Computer Engineer and Member of the Professional
Body of Electronic Engineers, Italy, since 1995; a Registered Practitioner of the
U.K. Higher Education Academy since 2004; and a Member of the Board of
Editors of the Journal of Network and Systems Management since 2002. He has
served the Technical Programme Committee of IEEE NOMS, DSOM, and IM
since 2001. He is also a TPC member of several other international conferences.

George Pavlou (M’95) received the Diploma degree
in electrical and mechanical engineering from the
National Technical University of Athens, Athens,
Greece, and the M.Sc. and Ph.D. degrees in computer
science from University College London, London,
U.K.

He is currently a Professor of Communication and
Information Systems at the Centre of Communication
Systems Research, Department of Electronic Engi-
neering, University of Surrey, Surrey, U.K., where he
leads the activities of the Networks Research Group.

He has previously been a Senior Research Fellow and Lecturer in the Depart-
ment of Computer Science, University College London, where he led research
activities on network and service management. He has published 34 journal pa-
pers, around 100 international refereed conference papers, and has contributed
to four books. His research interests focus on network management, networking,
and service engineering.

Prof. Pavlou is a Chartered Engineer and Member of the Technical Chamber
of Greece since 1984. He is on the Editorial Board of the IEEE eTRANSACTIONS

ON NETWORK AND SERVICE MANAGEMENT, the IEEE Communication Surveys

and Tutorials and the Journal of Network and Systems Management. He is Net-
work and Service Management Series Editor of IEEE Communications Surveys.
He is also a Technical Program Committee member of all the major conferences
in network and service management and has been the Technical Program Chair
of IEEE Integrated Management (2001).


	toc
	An Adaptive Clustering Approach for the Management of Dynamic Sy
	Carmelo Ragusa, Antonio Liotta, Member, IEEE, and George Pavlou,
	I. I NTRODUCTION
	II. E XISTING A PPROACHES

	Fig.€1. (a) Example system topology. (b) Clustering and cluster 
	III. P ROBLEM F ORMULATION

	Fig.€2. Algorithm overview (the small diagrams on the right are 
	IV. S ELF -M ANAGED C LUSTERING T HROUGH M OBILE A GENTS (MAs)
	A. System Overview


	Fig.€3. Cloning phase flowchart.
	B. Parameters and Definitions
	C. Cluster Generation Cloning Phase
	D. Cluster Head Location Migration Phase

	Fig.€4. Migration phase flowchart.
	E. Cluster Consolidation Aggregation Phase
	F. Self-Clustering in Operation An Example

	Fig.€5. Aggregation phase flowchart.
	G. Self-Healing Phase
	V. A SSESSMENT M ETHODOLOGY
	Fig.€6. Clustering process for the topology of Fig.€1(a), includ
	Fig.€7. Self-healing algorithm.

	VI. C OMPUTATIONAL T IME
	Fig.€8. Simulation environment and tools.
	Fig.€9. Clustering time versus diameter for 102-node topologies.
	TABLE€I S IMULATION D ESIGN FOR THE S TUDY OF S CALABILITY
	Fig.€10. Clustering time versus $p/\vert N\vert$ for 102-node to

	VII. A CCURACY
	A. Location Optimality


	TABLE€II S IMULATION D ESIGN FOR THE S TUDY OF O PTIMALITY AND 
	B. Accuracy on Number of Clusters
	Fig.€11. Location optimality comparison.
	Fig.€12. Error on number of clusters produced by the algorithm.


	TABLE€III S IMULATION D ESIGN FOR THE S TUDY OF S ENSITIVITY TO
	VIII. S ENSITIVITY TO S TARTING C ONDITIONS
	IX. S ELF -H EALING
	Fig.€13. Sample of results on sensitivity to starting node.
	TABLE€IV S IMULATION D ESIGN FOR THE S TUDY OF S ELF -H EALING


	Fig.€14. Sample of results on self-healing.
	X. D ISCUSSION
	A. Practical Deployment of the Algorithm
	B. Applicability of the Algorithm

	XI. C ONCLUSION
	C. K. Toh, Ad Hoc Mobile Wireless Networks . Englewood Cliffs, N
	D. Barkai, Peer-to-Peer Computing . Santa Clara, CA: Rich Bowles
	O. Kariv and S. L. Hakimi, An algorithmic approach to network lo
	M. S. Daskin, Network and discrete location: Wiley, 1995.
	S. L. Hakimi, Optimum distribution of switching centers in a com
	F. Buckley and F. Harary, Distance in Graphs . Reading, MA: Addi
	A. J. Goldman, Optimal center location in simple networks, Trans
	D. W. Matula and R. Kolde, Efficient multi-median location in ac
	A. Fuggetta, G. P. Picco, and G. Vigna, Understanding code mobil
	K. Fall and K. Varadhan, The NS Manual . Berkeley, CA: LBNL, Uni
	E. Zegura . The GT-ITM Topology Generator . [Online] . Available
	K. L. Calvert, M. B. Doar, and E. W. Zegura, Modeling Internet t
	E. W. Zegura, K. L. Calvert, and M. J. Donahoo, A quantitative c

	Microcal ORIGIN . [Online] http://www.originlab.com/
	J. Mehringer, The Network Animator (NAM) . Los Angeles, CA: Inf.

	SITATION software . [Online] . Available: http://users.iems.nwu.
	IETF Distributed Management (DISMAN) Working Group . [Online] . 
	J. Schönwälder and J. Quittek, Secure Internet management by del

	Cisco IOS Scripting with TCL . [Online] . Available: http:// www
	J. Schönwälder, J. Quittek, and C. Kappler, Building distributed
	L. L. Peterson and B. S. Davie, Computer Networks . San Mateo, C
	C. Qu and W. Nejdl, Interacting the Edutella/JXTA peer-to-peer n
	C. Ragusa, A. Liotta, and G. Pavlou, A scalable application-leve
	A. El-Sayed et al., A survey of proposals for an alternative gro
	M. Castro et al., An evaluation of scalable application-level mu
	A. Liotta, G. Pavlou, and G. Knight, Exploiting agent mobility f



