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Abstract— In this paper, we propose a new algorithm, named
JACC-G, for large scale optimization problems. The motivation
is to improve our previous work on grouping and adaptive
weighting based cooperative coevolution algorithm, DECC-G
[1], which uses random grouping strategy to divide the objective
vector into subcomponents, and solve each of them in a cyclical
fashion. The adaptive weighting mechanism is used to adjust
all the subcomponents together at the end of each cycle. In
the new JACC-G algorithm: (1) A most recent and efficient
Differential Evolution (DE) variant, JADE [2], is employed as
the subcomponent optimizer to seek for a better performance;
(2) The adaptive weighting is time-consuming and expected to
work only in the first few cycles, so a detection module is added
to prevent applying it arbitrarily; (3) JADE is also used to
optimize the weight vector in adaptive weighting process instead
of using a basic DE in previous DECC-G. The efficacy of the
proposed JACC-G algorithm is evaluated on two sets of widely
used benchmark functions up to 1000 dimensions.

I. INTRODUCTION

EVOLUTIONARY optimization has achieved great suc-

cess on many numerical and combinatorial optimization

problems in recent years [3]. However, as evolutionary algo-

rithms (EAs) are applied to increasingly large and complex

problems, their scalability has become one of the most urgent

challenges. In general, the performance of conventional EAs

deteriorates rapidly as the dimensionality of the search space

increases [4]. To tackle the puzzle, our research is focused

on solving problems that are at least one magnitude larger

than the state-of-the-art in evolutionary optimization.

Cooperative coevolutionary paradigm has been proved

to be a promising attempt for tackling those large scale

problems. Cooperative Coevolution (CC) [5] was originally

proposed as a general framework for applying EAs to large

and complex problems using a divide-and-conquer strategy.

In CC, the objective problem (such as an objective variables

vector) is decomposed into smaller subproblems and each

of them is assigned to a species (i.e. subpopulation). The

species evolve mostly separately with cooperation happening

only during fitness evaluation. In the domain of numerical

optimization, a large scale problem is corresponding to a high

dimensional objective vector. The process of EAs under the
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CC framework for large scale numerical optimization can be

summarized into three major steps [1]:

1) Problem Decomposition: Decompose the high dimen-

sional objective vector into smaller subcomponents.

2) Subcomponent Optimization: Evolve each subcom-

ponent separately using a certain EA.

3) Cooperative Combination: Combine the solutions of

all subcomponents to form the final solution.

Since Step 3) is often embedded in the fitness evalua-

tion operations, the problem decomposition approach and

the subcomponent optimization method become two most

critical issues in the CC framework [6]. Initial efforts for

problem decomposition used two simple methods, i.e., one-

dimensional based and splitting-in-half strategies [7], [8],

[9]. The one-dimensional based strategy decomposes a high-

dimensional vector into single variables. Since it does not

consider interdependencies among variables, it is unable to

tackle nonseparable problems, in which interaction exists

between objective variables. The splitting-in-half strategy

always decompose a high-dimensional vector into two equal

halves and thus reduces an n-dimensional problems into two
n
2 -dimensional problems. If n is large, the n

2 -dimensional

problems would still be very large and challenging to solve.

To overcome these shortcomings, we have proposed a more

general random grouping based problem decomposition

method in [1]. It divides a high-dimensional vector into sev-

eral subcomponents according to a predefined group size, and

thus each subcomponent contains only a subset of the orig-

inal objective variables. To further increase the probability

of grouping interacted variables in the same subcomponent,

the grouping structure will be changed dynamically after

each cycle, which refers to one complete evolution of all

subcomponents. Since interdependencies between different

subcomponents may still exist after each time of random

grouping, an adaptive weighting strategy is applied at the

end of every cycle to provide an extra chance to evolve all the

objective variables at the same time. CC based EAs with this

kind of decomposition is denoted as EACC-G [1] previously.

As for another important aspect in the CC framework,

i.e., subcomponent optimization, any existing EAs can be

introduced as the subcomponent optimizer. The task is to

select an effective and efficient EA and amend it if necessary

according to the characteristics of these subcomponents.

Although EACC-G has shown promising performance

on many benchmark functions, the random grouping and

adaptive weighting strategies are still in their infancy, and

can be improved further. One improvement can be carried
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out through controlling when to and when not to apply

the adaptive weighting strategy. It is obvious that saving

fitness evaluations (FEs) is very important for EAs. Efficient

algorithms should consume FEs only when it is very likely

to make progress. In our recent experience, we found the

adaptive weighting is quite FEs consuming and it often

does not help in the later stages of evolutionary search.

It would be desirable if the adaptive weighting is adopted

only when it is effective to help EACC-G make progress.

Otherwise, the corresponding FEs should be saved for sub-

sequent evolution. Another direct improvement to EACC-G

is to introduce some recently advanced EAs as subcomponent

optimizer. Previously, we used a Differential Evolution (DE)

variant, SaNSDE [10], as subcomponent optimizer and thus

implemented a DECC-G algorithm. However, along with

the development of evolutionary optimization, even in the

domain of DE, some more effective and efficient methods

have been proposed [11], [12], [13], [14]. We are expected

to get a better scratch line for optimizing large scale problems

with these advanced DE variants.

Based on the directions above, we propose an improved

version of DECC-G algorithm in this paper. In the new

algorithm, a probability based mechanism is implemented

to detect when to and when not to apply the adaptive

weighting strategy. The detection is useful to avoid wasting

FEs on worthless adaptive weighting process. As for the

subcomponent optimizer, we utilize a most recent adaptive

DE variants, JADE [2], which has shown very fast and

reliable convergence performance on a set of widely used

benchmark functions. It adopted a novel greedy “DE/current-

to-pbest” mutation strategy and updates control parameters

to appropriate values in an adaptive manner. To make it

more robust on difficult multimodal problems, we also amend

JADE slightly by introducing some local pbest (i.e. lpbest)

members to replace its pbest. A similar local knowledge used

in [15] has been verified to be useful for increasing DE’s ex-

ploration ability. After considering the name of both EACC-

G and JADE, the new large scale optimization algorithm is

denoted as JACC-G in this paper. The performance of JACC-

G will be evaluated on two sets of benchmark functions up

to 1000 dimensions.

The rest of this paper is organized as follows: Section II

gives the background; Section III describes the proposed

JACC-G in detail; Section IV presents the experimental

results; Finally, Section V concludes this paper briefly.

II. BACKGROUND

A. CC with Random Grouping and Adaptive Weighting

“As evolutionary algorithms are applied to the solution of

increasingly complex systems, explicit notions of modularity

must be introduced to provide reasonable opportunities for

solutions to evolve in the form of interacting coadapted

subcomponents” [5]. Examples of this show up in the need

for rule hierarchies in classifier systems and subroutines in

genetic programming [8]. CC is a general framework for

applying EAs to large and complex problems using a divide-

and-conquer strategy. In CC, the objective problem (such as

a vector) is decomposed into smaller subproblems and each

of them is assigned to a species (i.e. subpopulation). The

species are evolved mostly separately with the only cooper-

ation happening during fitness evaluations. This implies the

problem decomposition approach and the subproblem solver

are the most critical issues in the CC framework.

As analyzed in Section I, early problem decomposition

methods such as the one-dimensional based and splitting-in-

half strategies both have their own limitations. So a more

general CC framework with random grouping and adaptive

weighting is proposed in [1]. The main steps of the new CC

framework which is denoted as EACC-G can be summarized

as follows:

1) Initialize a population in the search space randomly:

P = {P (i, j) | i = (1, · · · ,NP), j = (1, · · · , n)}

where NP denotes the population size, and n denotes

the dimension of objective vector.

2) Set c = 1 to start a new cycle.

3) Divide the n-dimensional objective vector into several

groups randomly based on a group size s, i.e., G =
{G1,G2, · · · ,Gm} (assuming n = s∗m). Obviously,

each Gi represents a subcomponent.

4) Construct the subpopulation P
′ based on the popula-

tion P and subcomponent Gc:

P
′ = {P (i, j) | i ∈ {1, · · · ,NP}, j ∈ Gc}

5) Optimize the subcomponent Gc with subpopulation P
′

using a certain EA for a predefined number of FEs.

6) If c < m then c = c + 1, and go to Step 4).

7) Select the best, the worst and a random individuals of

current population P, and put them into a set S.

8) For each member in S: (a) assign a weight to each

of its subcomponents; (b) optimize the weights with

a certain EA for a predefined number of FEs; (c) if

improved, update the member by applying the best

weights achieved.

9) Stop if halting criteria are satisfied; otherwise go to

Step 2) for the next cycle.

Here a cycle consists of one complete evolution of all

subcomponents. The main advantages of EACC-G are: (1)

It evolves a group of variables (called a subcomponent)

together. The trade-off between capturing variable-interaction

and not exceeding EAs’ capability can be well controlled

by the parameter group size; (2) The grouping structure

will be changed dynamically, which can further increase the

probability of grouping interacted variables together; (3) An

adaptive weighting is executed among all subcomponents at

the end of each cycle to provide an extra chance to evolve

all the variables at the same time.

We further describe how and why the adaptive weighting

strategy works.

1) For any individual, x = (x1, x2, · · · , xn), of a popu-

lation, it is true that:

f(x) ≡ f(wc · x)
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where wc = (1, 1, · · · , 1) is a constant weight vector.

2) To obtain better fitness value, we can apply a weight wi

to each component of x, and then optimize the weight

vector. So we achieve:

min
w

f(w · x) ≤ f(wc · x) ≡ f(x)

where w = (w1, w2, · · · , wn) is the weight vector over

the individual x.

3) However, optimizing the weight vector w is as hard

to optimize as the original individual x, because they

are in the same high dimension. EACC-G splits the n-

dimensional vector x into m (m � n) subcomponents,

so we can alternatively apply a weight to each of

these subcomponents and only optimize a much lower

dimensional vector w̃ = (w̃1, w̃2, · · · , w̃m):

w
′ =

(
w̃1, · · · , w̃1︸ ︷︷ ︸

s

, w̃2, · · · , w̃2︸ ︷︷ ︸
s

, · · · , w̃m, · · · , w̃m︸ ︷︷ ︸
s

)

min
w

f(w · x) ≤ min
w

′

f(w′ · x) ≤ f(x)

where s denotes the dimension of each subcomponent

and m denotes the number of subcomponents (assum-

ing n = m ∗ s).

Thus, the adaptive weighting strategy provides a tradeoff

between optimizing a high-dimensional vector w and no

weighting at all. Furthermore, since the variables of a sub-

component is controlled integrally by changing the weight

of it, the process of optimizing the weight vector can also

be viewed as a coarse adjustment over all subcomponents.

B. JADE: An Adaptive Differential Evolution Algorithm

Differential Evolution (DE) [16], [17] is a simple yet

effective population-based algorithm for global optimiza-

tion. We have recently proposed a new adaptive differential

evolution algorithm JADE [2] [14]. JADE implements a

novel mutation strategy and updates control parameters in

an adaptive manner, while its initialization, crossover and

selection operations follow the basic procedure of classic DE.

Consider the population (or subpopulation if the subcom-

ponent optimization is concerned) at a certain generation,

{xi = (x1,i, x2,i, · · · , xs,i)|i = (1, · · · , NP )}, where NP is

the population size and s is the group size (i.e., the dimension

of a subcomponent). In JADE, mutation vectors are gener-

ated according to a relatively greedy strategy DE/current-to-

pbest/1 as follows:

vi = xi + Fi(X
p
best − xi) + Fi(xr1 − x̃r2), (1)

where xp
best is randomly chosen as one of the best 100p%,

p ∈ (0, 1], individuals in the current population, xr1(r1 �= i)
is a vector randomly selected from the population, and x̃r2

is a vector (distinct from xi and xr1) randomly chosen from

the union of the current population and an external archive of

inferior solutions. The archive is initialized to be empty and

then we add to it the parent solutions that fail in the selection

process of (3) at each generation. If the archive size exceeds a

certain threshold, say NP , then some solutions are randomly

removed from the archive to keep its size at NP .

After mutation, a binary crossover operation forms off-

spring vectors ui = (u1,i, u2,i, · · ·, us,i) in the following

manner:

uj,i =

{
vj,i ifrandj(0, 1) ≤ CRi or j = jrand

xj,i otherwise,
(2)

where randj(a,b) is a uniform random number on the interval

[a, b] and newly generated for each j, jrand = randinti(1, s)
is an integer randomly chosen from 1 to s and newly

generated for each i, and the crossover probability, CRi ∈
[0, 1], roughly corresponds to the average fraction of vector

components that are inherited from the mutation vector.

Then, the offspring vector is compared to the corresponding

parent vector and the better one survives and becomes a

parent vector in the next generation, i.e.,

xi =

{
ui if f(ui) ≤ f(xi)
xi otherwise,

(3)

In JADE, the constant parameter Fi and CRi in (1) and

(2) are randomly regenerated at each generation; i.e.,

CRi = randni(μCR, 0.1), (4)

Fi = randci(μF , 0.1), (5)

where the mean μCR and location parameter μF are updated

in an adaptive manner:

μCR = (1 − c)μCR+c · meanA(SCR), (6)

μF = (1 − c)μF +c · meanL(SF ), (7)

where SCR and SF are the respective sets of all successful

crossover probabilities and successful mutation factors ob-

tained in the selection process of (3) at the current generation,

c is a positive constant between 0 and 1 and meanA(·) is the

usual arithmetic mean and meanL(·) is the Lehmer mean

meanL(SF ) =

∑
F∈SF

F 2

∑
F∈SF

F
, (8)

which plays more weight on larger mutation factor F to

improve evolutionary search progress.

JADE has shown its success for a variety of benchmark

problems of different characteristics [2] [14] and in different

real world applications including credit decision making [18],

air traffic management [19], and combinatorial auction [20].

III. JACC-G: THE NEW IMPROVED ALGORITHM

In this section, we propose a new CC based algorithm,

JACC-G, for large scale optimization. The JACC-G is an ad-

vanced version of the previous DECC-G with improvements

in the following three aspects:

1) The adaptive weighting strategy is altered from a

necessary module to an optional one. A probability

based detection mechanism will be adopted to control

when to and when not to apply the adaptive weighting.

The motivation is to avoid wasting FEs if the adaptive

weighting becomes worthless.
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2) The JADE algorithm is adopted as the subcomponent

optimizer. It is revised by replacing its pbest with

local pbest, lpbest, to make it more robust for difficult

multimodal problems.

3) In the adaptive weighting mechanism, we also need to

specify a certain optimizer since finding out the best

weights is a optimization problem itself. A classical DE

is used in DECC-G for simplification. Obviously, we

can also introduce the advanced JADE as the weight

optimizer to seek a better performance.

Except these improvements, JACC-G is the same with

EACC-G described in Section II-A. So the new algorithm can

be formulated easily by replacing all the “a certain EA” with

“JADE” in Steps 5) and 8), and adding execution condition,

which will be given in Section III-A, in Step 8). How and

why these modifications in JACC-G work is given in the

following Subsections III-A and III-B in detail.

A. Detection on When to Apply Adaptive Weighting

As mentioned before, seeking for the optimal weights with

the adaptive weighting strategy is an optimization problem

itself. Thus, it also consumes part of the total FEs during

the process of evolution. In EACC-G, we specified a same

number of FEs for applying each adaptive weighting with

that of each subcomponent optimization in each cycle. For

example, given a 1000-dimensional problem and 100 as

group size, in each cycle EACC-G has to optimize 10

subcomponents and execute 3 times of adaptive weighting

operations. In such a case, adaptive weighting takes about
3

10+3 � 23% of the total computational effort, which is quite

significant.

However, the adaptive weighting is not always helpful in

every cycle. To be specific, it is more likely to make progress

during the early stages of evolution, i.e., the first several

cycles. This is because each weight in the adaptive weighting

process controls a group of variables. A modification of

the weight will cause a perturbation to all the controlled

variables. So this is a quite coarse adjustment over objective

variables. With the evolution progressing, the variables need

to be controlled more and more accurately. So fine turn rather

than the coarse adjustment is more likely to provide improve-

ments. To prevent using the adaptive weighting arbitrarily, we

introduce a probability wp, which is initialized as wp = 1, to

control when to apply the adaptive weighting strategy. And

thus the Step 8) of EACC-G in Section II-A is revised as

Algorithm 1. The probability wp will be reduced quickly

when the adaptive weighting becomes ineffective; thus it is

useful to avoid wasting FEs on worthless adaptive weighting

process.

B. JADE with Local pbest

JADE has shown a significant better performance than

the classic DE and several other adaptive DE variants;

however its “DE/current-to-pbest” mutation strategy is still

quite greedy. This is because the top 100p% individuals are

always selected as pbest members with probability 1. It

might make JADE less robust on some difficult multimodal

for (each member in S) do

if (U(0, 1) < wp) then
Step 8) (a);

Step 8) (b);

if (Improved) then
Step 8) (c);

wp = min(1,wp ∗ 2) ;
else

wp = wp

2 ;

end

end

end

Algorithm 1: Adaptive Weighting Detection

problems, since greedy mutation strategies have a reputation

of possibly leading to false convergence to some competitive

local optima. To further improve JADE’s robustness on such

problems, we propose a new method to select some local best

members, denoted as lpbest, to replace its pbest members as

follows:

1) Randomly assign each solution into one of K groups,

where K = 	p ∗ NP 
, p and NP have the same

meanings with that of JADE.

2) The best solution in each group is considered as an

lpbest member.

It is clear that every solution can be selected to be an lpbest

member with a non-zero probability. If a solution is the i-th
best in the population, it is selected as lpbest if and only

if it is not in the same group as other i − 1 even better

solutions. By simple combinatorial calculation, we can show

that the probability is (1−1/K)(i−1) for the i-th best solution

to become an lpbest member. With such lpbest technique,

we expect the JADE to be able to find the global optimum

consistently.

To demonstrate the effect of lpbest, we give a case study on

the well-known Generalized Schwefel’s Problem 2.26. The

multimodal problem is denoted as f8 in [21], and can also

be seen in Eq. (9). As shown in Fig. 1, the landscape of

f8 appears to be very “rugged”, and it is often regarded as

being difficult to optimize. Experiments are conducted on 50

and 100 dimension of f8. Both JADE with pbest and lpbest

were run 100 independent runs. The parameter settings for

JADE are NP = 100, p = 0.05 and 1/c = 10. The stopping

criterion is set to 50 × s generations, where s denotes the

dimension of tested problem. The error values, which are the

distance between found fitness and the global optimum, are

given in Table I. The SR in the table denotes the success

rate of each algorithm converged to the global optimum. It

can be found that JADE with pbest failed to find the global

optimum in 3 and 6 out of the 100 runs for the 50 and 100

dimension problems, respectively. In comparison, JADE with

lpbest is more robust as it appears able to converge to the
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global optimum consistently.

f8(x) = −

n∑

i=1

(
xi sin(

√
|xi|)

)
,−500 ≤ xi ≤ 500 (9)

Fig. 1. The two-dimensional version of f8.

TABLE I

SIMULATED RESULTS OF JADE WITH PBEST AND LPBEST ON THE

GENERALIZED SCHWEFEL’S PROBLEM 2.26. THE RESULTS OF 100

INDEPENDENT RUNS ARE SORTED FROM THE 1ST TO 100TH.

# of JADE(50-D) JADE(100-D)

runs pbest lpbest pbest lpbest

1st 1.82e-11 1.82e-11 1.09e-10 1.09e-10

12nd 1.82e-11 1.82e-11 1.09e-10 1.09e-10

23rd 1.82e-11 1.82e-11 1.09e-10 1.09e-10

34th 1.82e-11 1.82e-11 1.09e-10 1.09e-10

45th 1.82e-11 1.82e-11 1.09e-10 1.09e-10

56th 1.82e-11 1.82e-11 1.09e-10 1.09e-10

67th 1.82e-11 1.82e-11 1.09e-10 1.09e-10

78th 1.82e-11 2.18e-11 1.09e-10 1.09e-10

89th 1.82e-11 2.55e-11 1.09e-10 1.09e-10

100th 1.18e+02 7.64e-11 1.18e+02 1.09e-10

SR 97/100 100/100 94/100 100/100

Mean 3.55e+00 2.05e-11 7.11e+00 1.09e-10

Std 2.03e+01 6.97e-12 2.83e+01 0.00e+00

IV. EXPERIMENTAL STUDIES

A. Experimental Setup

The performance of the proposed JACC-G algorithm will

be evaluated on both a set of classical benchmark functions

[21] and a new suite of test functions provided by CEC’2005

special session [22]. The dimensions of all test functions are

set to 1000. The algorithms used for comparison are JACC-

G, DECC-G and the non-CC algorithm JADE. The DECC-G

is an implementation of EACC-G framework by using a DE

variant, SaNSDE [10] , as subcomponent optimizer. In order

to make the comparisons as fair as possible, the same number

of fitness evaluations (FEs) will be used for all algorithms

as the stopping criterion, which is set to 5,000,000. The

population size of all the algorithms are set to 100, and the

subcomponent dimensions of JACC-G and DECC-G are set

to 100.

B. Simulation Results

We first test JACC-G’s performance on 13 classical bench-

mark functions. Among the 13 functions, f1–f7 are unimodal

functions and functions f8–f13 are multimodal functions

where the number of local minima increases exponentially

as the problem dimension increases. Functions f4 and f5 are

nonseparable, while others are separable. Details of these

functions can be found in the appendix of [21]. In each

cycle, 10, 000 FEs are assigned to JADE to optimize each of

the subcomponents. The average results over 25 independent

runs on these functions are summarized in Table II.

TABLE II

EXPERIMENTAL COMPARISON ON THE 13 CLASSICAL FUNCTIONS. ALL

RESULTS HAVE BEEN AVERAGED OVER 25 INDEPENDENT RUNS.

Test JADE DECC-G JACC-G

Func Mean (Std) Mean (Std) Mean (Std)

f1 9.4e-03 (2.8e-02) 2.2e-25 (2.7e-26) 2.7e-80 (5.2e-80)

f2 1.1e+02 (3.5e+02) 5.4e-14 (1.3e-14) 2.3e-20 (4.5e-20)

f3 8.2e+00 (2.5e+01) 3.1e-03 (1.6e-03) 2.4e-10 (4.3e-10)

f4 4.3e+01 (2.3e+00) 1.0e-01 (4.3e-02) 8.0e-05 (2.7e-05)

f5 2.0e+03 (1.6e+02) 987.33 (3.2e-01) 983.04 (3.7e-01)

f6 2.6e+04 (3.5e+03) 0.0e+00 (0.0e+00) 0.0e+00 (0.0e+00)

f7 5.3e+00 (1.3e+00) 8.4e-03 (7.6e-04) 1.2e-03 (3.9e-04)

f8 -418225 (5.2e+02) -418983 (2.1e-08) -418983 (2.4e-10)

f9 1.1e+00 (1.8e+00) 3.6e-16 (8.4e-16) 0.0e+00 (0.0e+00)

f10 9.3e+00 (4.8e-01) 2.2e-13 (2.4e-14) 1.4e-14 (1.3e-14)

f11 4.8e-01 (5.0e-01) 1.0e-15 (1.3e-16) 0.0e+00 (0.0e+00)

f12 1.4e+00 (5.2e-01) 6.9e-25 (8.1e-26) 1.4e-32 (7.2e-33)

f13 6.4e+01 (7.5e+01) 2.6e-21 (5.4e-21) 1.3e-32 (5.6e-48)

As shown in Table II, both DECC-G and JACC-G obtain

much better results than the non-CC algorithm JADE. This

confirms the advantages of CC algorithms over non-CC ones

for large scale optimization problems. Comparing to DECC-

G, the JACC-G algorithm performs better on all of the

tested functions, except they show similar performance on

functions f6 and f8. The differences are most significant

on functions f1, f2 and f4. Since DECC-G and JACC-

G have adopted a very similar CC framework, it can be

inferred that the advanced subcomponent optimizer JADE

and the improved adaptive weighting strategy are the most

contributing mechanisms of JACC-G.

To evaluate the JACC-G algorithm further, experiments

are also conducted on a new set of benchmark functions,

which was provided by the CEC’2005 Special Session. It

includes 25 functions with varying complexity. Among them,

functions fcec1–fcec5 are unimodal while others multimodal.

Detailed descriptions of them can be found in [22]. Many

of them are the shifted, rotated, expanded and/or combined

variants of the classical functions. Some of these changes

cause them to be more resistant to simple search tricks. Other

changes, such as rotation, transfer separable functions into

nonseparable ones, which will be particularly challenging

in large scale optimization. Previously, eight representative

functions (out of 25) were used to evaluate DECC-G [1],

so we still use these functions in this paper, including two

separable functions (fcec1 and fcec9) and six nonseparable
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functions. To capture better the variable interactions of these

nonseparable functions, 5, 000 FEs are assigned to JADE to

optimize each subcomponent in each cycle. The averaged

error values, which are the distances to optimum, over 25

independent runs are given in Table III. The evolution curves

are also given in Fig. 2.

TABLE III

EXPERIMENTAL COMPARISON ON THE 8 CEC’2005 FUNCTIONS. ALL

RESULTS HAVE BEEN AVERAGED OVER 25 INDEPENDENT RUNS.

CEC05 JADE DECC-G JACC-G

Func Mean (Std) Mean (Std) Mean (Std)

fcec1 3.5e+02 (9.3e+02) 6.8e-13 (3.9e-14) 5.6e-13 (1.3e-13)

fcec3 1.2e+08 (1.4e+07) 8.1e+08 (5.6e+07) 1.6e+08 (1.3e+07)

fcec5 2.4e+05 (9.0e+03) 2.2e+05 (6.9e+03) 2.1e+05 (9.6e+03)

fcec6 7.9e+06 (1.9e+07) 2225.12 (7.3e+02) 2062.83 (2.4e+02)

fcec8 21.26 (4.6e-01) 21.59 (5.4e-03) 21.59 (6.8e-03)

fcec9 9.6e-01 (3.2e+00) 6.3e+02 (2.3e+01) 1.5e-12 (1.5e-13)

fcec10 1.1e+04 (5.8e+02) 9.7e+03 (3.5e+03) 9.5e+03 (1.9e+03)

fcec13 1.5e+02 (6.6e+00) 3.6e+02 (1.7e+01) 2.4e+02 (1.2e+01)

Different than classical test functions, non-CC algorithm

JADE is also competitive on the CEC’2005 benchmark func-

tions. For example, it achieved the best results on functions

fcec3, fcec8 and fcec13. That is mainly because: (1) Most

of these functions (except fcec1 and fcec9) are completely

nonseparable, which means interactions exist in any two

variables of the object vector. It is very challenging for

decomposition based methods such as CC based algorithms;

(2) JADE utilized an external archive to store former good

solutions, which make it able to explore a large search space

better [2]. However, the CC based algorithms also obtained

better results on the other 5 functions. In the comparison

of CC based algorithms, JACC-G outperformed DECC-G

on all the tested functions except fcec8, on which CC

based algorithms are not likely to make much progress. The

results on CEC’2005 functions also confirmed the efficacy

of improvements in JACC-G over DECC-G.

V. CONCLUSIONS

In this paper, we proposed a JACC-G algorithm for

large scale optimization, which is a further improvement to

our previous work on cooperative coevolution with random

grouping and adaptive weighting (DECC-G). The improve-

ments are presented in the new JACC-G algorithm: (1) A

most recent and efficient DE variant, JADE [2], is utilized as

the subcomponent optimizer to seek for a better performance;

(2) A detection module is added to the adaptive weighting

mechanism to prevent wasting FEs on ineffective adaptive

weighting processes. (3) JADE is also used to optimize

the weight vector in adaptive weighting process instead of

using a outdated DE algorithm in previous DECC-G. The

performance of the proposed JACC-G algorithm is evaluated

and discussed on both a set of 13 classical test functions

[21], and a new set of 8 benchmark functions provided by

CEC’2005 special session [22]. The results confirmed the

efficacy of the proposed improvements.
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Fig. 2. The evolution curves for CEC’2005 functions. The vertical axes show the distance to optimum and the horizontal axes show the number of FEs.
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