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ABSTRACT In this paper, we propose a novel model of sparse representation for image denoising that we

call an adaptive contourlet hidden Markov model (HMM)–pulse-coupled neural network (PCNN). In this

study, we first adopted a contourlet transform to decompose a noisy image to be some subband coefficients

of various directions at various scales. The contourlet emulated extremely well the sparse representation

performance of human visual perception, such as its multiscale characteristics, geometric features, and

bandpass properties. Second, we used an HMM method to create a statistical model that expressed the

coefficient relationships in intrabands, interbands, intrascales, and interscales. Then we used an expectation–

maximization training algorithm to obtain the state probability. The result included the state, scale, and

direction, the position of the coefficient, the noisy image, and the parameter set of the HMM model. Third,

we put the state probability into the PCNN model, which could adaptively optimize the parameters of

the HMM model and get better coefficients of clean images. Finally, we transformed the image denoising

problem into a Bayesian posterior probability estimation problem. We also reconstructed a denoised image

based on the clean coefficients obtained from our proposed method. The experimental results show that the

contourlet HMM–PCNN model proposed in this paper is superior to the contourlet with hidden Markov tree

model and the wavelet threshold method.

INDEX TERMS Contourlet HMT model, HMM–PCNN model, image denoising, sparse representation,

visual perception.

I. INTRODUCTION

Research indicates that most information acquired by humans

comes from human vision, which is visually selective; it can

perfectly distinguish small amounts of important information

from a large amount of visual information. This is called

sparse coding [1], [2]. Horace Barlow [3] has proposed an

effective coding hypothesis: the human visual perception

system can adapt to its environment because the visual per-

ception cells can effectively filter out statistically redundant

external signals. The system effectively represents the infinite

information of nature by using limited neurons.

Accordingly, researchers hope that computers can be made

to simulate the filtering ability of human visual perception.

In recent years, computer vision and neural computing, par-

allel computing, associative memory, and other intelligent

information-processing methods have become much more
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closely interconnected. These features have enabled com-

puters to make great progress in simulating human visual

perception and information processing [4]. More achieve-

ments in the studies of brain science and cognitive science

have been applied to the fields of computer vision and image

understanding. Two examples are visual attention decision-

making and the temporal pattern recognition of the lateral

temporal lobe [5], [6]. Neurophysiological studies show that

the primary mammalian visual cortex has a sparse coding

mechanism that perceives the basic characteristic of a recep-

tive field using a simple cell [2]. This sparse representation

model can effectively describe the characteristics of human

visual perception [7]. In addition, studies of neurophysiology

and psychology show that neurons of the human visual cortex

have high selectivity for visual stimuli of various features in

static and dynamic states. They are selective for orientation,

spatial frequency, speed, color, and other salient features [8].

Olshausen and Field have stated that the natural image

is sparse and have described the essential sparsity of image
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data [9]. After that, the sparse theory was widely studied

and advocated [10]. It is believed that the sparsity property

is efficient for representing the rich, varied, and directional

information contained in natural images [11]. It has also

been proven that the base function in sparse representation

has the characteristics of spatial localization, orientation, and

bandpass; these are closely related to the properties of the

receptive fields of simple cells [2]. Recently, studies further

validated the idea that sparse coding performs in a percep-

tual way that simulates the human visual system (HVS) on

natural images [12]. Numerous successful applications have

been devised based on the sparse model, including image

coding, image retrieval, image denoising, image restoration,

and quality assessment.

Image denoising is an important way to improve image

quality in electronic imaging systems. Imaging systems have

become more easily corrupted by noise with the decrease in

size and the increase in channel complexity of CMOS–CCD

sensors. Therefore, image denoising is becoming increas-

ingly important for high-resolution imaging.

The most popular image denoising methods are the

filtering-based method and the learning-based method [13].

Noisy images include natural images, remote sensing images,

infrared images, synthetic aperture radar (SAR) images, and

hyperspectral images [14]. There are also several types of

noises, such as Gaussian noise, salt and pepper noise, speckle

noise, and Poisson noise [15].

In recent years, representative achievements in image

denoising include the following research. In [16] Chen et al.

proposed a weighted couple sparse representation method

for impulse noise removal. The method focused mainly on

impulse noise removal and mathematical solutions. In [17],

Yuan and Ghanem presented the total variation and the prox-

imal alternating direction method of multipliers, which they

called the TV–PADMM method for achieving the impulse

noise removal of natural images. In [18], Yin et al. proposed a

highly accurate image reconstruction method for multimodal

impulse noise suppression on big data. That was a learning-

based image denoising method. In [19], Wang et al. proposed

a nonconvex weighted ℓp norm minimization-based group

sparse representation framework for image denoising. That

study adopted the generalized soft-thresholding algorithm to

solve the nonconvex ℓp norm minimization problem. Also,

the experiment results were excellent for reducing additive

white Gaussian noise (AWGN). In [20], Zha et al. proposed

a group sparsity residual constraint for image denoising with

an external, nonlocal, self-similarity prior. Thus, they trans-

formed the problem of image denoising into a problem of

reducing the group sparsity residual to achieve better image

denoising effects for high-density AWGN.

However, the denoisingmethods of [16]–[18] were suitable

only for impulse noise, and in [19] and [20] they did not fully

consider the visual perception characteristics.

To make better use of biological visual perception

characteristics for image noise removal, we propose

an adaptive contourlet-HMM–PCNN model of sparse

representation based on a contourlet-HMT model developed

by Po and Do [21]. Here, we make full use of the fact that an

HMM has a very strong time-warping ability, and a PCNN

has a strong classification ability. An organic combination

of these two functions may be able to overcome their short-

comings. Also, the proposed approach is superior to the

contourlet-HMT method and the wavelet threshold method.

This paper is organized as follows: In Section 2,

we propose a sparse image representation method using an

HMM–PCNN model in the contourlet domain. In Section 3,

we present an adaptive HMM–PCNN modeling implemen-

tation in the contourlet domain. In Section 4, we describe

experiment results and give an analysis based on an adaptive

HMM–PCNN model in the contourlet domain for image

denoising applications. In Section 5, we discuss the conclu-

sions and further studies.

II. AN HMM–PCNN MODEL IN THE CONTOURLET

DOMAIN

A. A PCNN MODEL

In 1990, Eckhorn proposed the connection model, which

reveals pulse synchronization emissions based on the phe-

nomenon of synchronous pulse emission in the cerebral cor-

tex of the cat [22]. In 1996, Olshausen and Field pointed

out that human vision has a sparse coding feature [9]. They

also successfully illustrated the characteristics of vision nerve

cells through a sparse coding maximization hypothesis. This

hypothesis was that if the properties of image edges were

described accurately by using sparse coding, the sparse

method was similar to the dynamic response characteristics

of the receptive fields of simple cells [9]. Moreover, the base

function for sparse coding successfully simulates the three

response properties of the receptive fields of simple cells:

localization in a spatial domain, direction characteristics, and

direction selectivity in the time and frequency domains. Con-

sidering the overcomplete properties of the basis functions,

in 1997 Olshausen and Field proposed a sparse coding algo-

rithm for the overcomplete basis and successfully simulated

the dynamic response characteristics of the receptive fields of

simple cells [23].

In 1999, Johnson proposed the PCNNmodel by improving

the Eckhorn model. PCNN is known as a third-generation

artificial neural network (ANN), which implements a func-

tion similar to that of the visual cortex in the mammalian

brain. A PCNN has the characteristics of both synchronous

pulse emission and global coupling. Itsmechanisms for repre-

senting and processing information are more consistent with

the physiological foundation of the human visual system [24].

In the traditional neural network method, the computing

cells consist of both perceptron and activation functions. The

PCNN model is similar to the real neural network of the

mammalian visual cortex in terms of the information process-

ing and signal transmission mechanisms. The model requires

no complex training, and the calculating operations of the

neural network are relatively simple [25]. However, in recent

years, studies have found other neurons with more complex
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receptive fields in the mammalian visual cortex, such as

the complex cells, the ultracomplex cells, and the grating

cells [26]. Among them, the grating cells have a substantial

response to a grid-like stimulation, which provides better

insight into the reticular texture features. A PCNN not only

nearly conforms to the visual perception data measured prac-

tically, but also can better describe the basic characteristics of

the grating cells.

Research on the human visual perception mechanism

shows that the HVS can be regarded as a reasonable and

efficient image processing system. The HVS is a series of

cells from the retina to the cerebral cortex that can be regarded

as a receptive field. The receptive field is the basic structural

and functional unit for information processing in the visual

system. It is also a region for generating ormodulating the cell

response on the retina. In addition, neurophysiology studies

have shown that the cell receptive field in the primary visual

cortex has significant directional sensitivity. A single neuron

responds only to some signals of particular frequency bands,

such as the edges, contours, and texture features in an image.

On the other hand, the spatial receptive field is described

as an information coding filter with localized, directional,

and bandpass characteristics. Because a PCNN possesses

the characteristics of emission and global coupling of syn-

chronous pulses, it can extract useful information from a

complex background based on the processing mechanism of

the human visual neural system.

FIGURE 1. Structure chart of a PCNN.

B. IMPLEMENTING A PCNN MODEL

Figure 1 shows that a PCNN is composed of a receiving

module, a nonlinearmodulatingmodule, and a pulse emission

module. Among these, the receiving module provides the

information required by the modulating module by integrat-

ing the neighborhood pulse signals of the neurons. Those

signals include both the link and the feedback input channel

accomplished by Lij and Fij respectively. The modulating

module implements the nonlinear modulations of the sig-

nal transmitted from the receiving module and then obtains

the dynamic connection Uij. The pulse emission module

carries out the pulse output Yij by making a comparison

between the dynamic connection term Uij and the adjustment

threshold Eij. The model simultaneously adjusts the threshold

value of the next iteration according to the pulse output of the

neuron. Note that the pulse emission of each neuron has two

states: firing and inhibition. In sparse image representation

research, the gray value of each pixel is used as the pulse

generated by an external stimuli Sij. Following the external

stimuli, the feedback signal generated by the pulses of the

input of the neighboring neuron into the feed channel, and

the link signal generated by the pulses of the neighboring

neurons input into the link channel. Here, the PCNN model

simulates the process of neuron activity and can be expressed

by (1) to (5).

Fij(n) = exp(−αFkl)Fij(n− 1) + Sij + VF
∑

kl

MijklYkl(n− 1)

(1)

Lij(n) = exp(−αLkl)Lij(n− 1) + VL
∑

kl

WijklYkl(n− 1) (2)

Uij(n) = Fij(n)(1 + βijLij(n)) (3)

Eij(n) = exp(−αE )Eij(n− 1) + VEYij(n) (4)

Yij(n) =

{

1, Uij(n) ≥ Eij(n)

0, otherwise
(5)

From the equations above, we know that the PCNN model

consists of six main parameters:

1. The attenuation time constants of αLkl and αFkl , which

determine the self-attenuation rate in the link and feed

input channels.

2. The attenuation time constant αE of the threshold Eij,

where αE not only regulates the decrement of the

threshold Eij after each iteration but also controls the

resolution of threshold output adjustments. In other

words, the threshold attenuation is faster if Eij is greater

and the iteration number of the PCNN model is lower,

but the threshold attenuation is slower if Eij is smaller

and the iteration number is higher.

3. The amplitude coefficient VE of the threshold Eij,

which determines the overshoot scopes of the threshold

Eij after the neurons fire. It also directly influences the

pulse emission period of the neurons.

4. The amplitude coefficients of the link and feed chan-

nels VL and VF, which regulate the amplitude of those

channels and can increase or decrease the pulse inten-

sity relayed from the neighboring neurons fired to the

central neuron.

5. The link strength β, which controls the contribution

of the neighboring neurons to the central neuron for

an advance firing. The capturing ability of neurons

is stronger with a stronger β; thereby, the scope of

pulse synchronization emissions excited by the neuron

becomes much greater.

6. The connecting weights Mijkℓ and Wijkℓ, which are

generally a 3 × 3 matrix and present the strength of

influence through the pulse emission from the neigh-

boring neurons to the central neuron. The strength of
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the influence can usually be expressed as the reciprocal

of the degree of neuron distances.

From the above analysis, we can see that the values of

the parameters in the PCNN mathematical model not only

entirely control the operational efficiency but also directly

affect the performance of the whole PCNN.

C. PCNN MODEL MECHANISM

The PCNN has many excellent characteristics and marked

advantages in the field of image processing and computer

vision, including the following:

1. Pulse coupling characteristics, as shown in Figure 1.

Here, the information transmission between neurons is

implemented by using the pulses; this character can

effectively facilitate information transmission in the

PCNN model.

2. The nonlinear multiplicative modulation characteris-

tic, where the neuron will realize the above func-

tion through connection strength β, and the link and

feed input are coupled to be the dynamic connection

item Uij. This method can simulate well the internal

activities of neurons.

3. The neighbor-capturing characteristics of neurons,

where the pulse emission period of the correspond-

ing neurons is shorter if the gray values of the image

pixels are greater. Because of the nonlinear multi-

plicative modulation characteristics of dynamic con-

nection item Uij, each neuron can capture similar

neurons in the neighborhood. In Figure 1, we assume

that the input signal Fij in the feed channel is

a constant, so the dynamic connection item Uij

increases when the input signal in the link channel

arrives.

4. The threshold mechanism of exponential attenuation,

which can simulate the perception mechanism of the

mammalian vision system and enable the PCNN to

search for a global threshold. In Figure 1, a neuron

releases the pulse every time, and Eij generates a step

enhancement and exponential attenuation until the next

pulse output.

D. A CONTOURLET-HMM–PCNN MODEL

It is known that the progress of image processing algorithms

depends largely on the improvement of the image model and

the image representation method. The contourlet transform

is the most representative algorithm in multiscale geometric

analysis theory [27], [28], and it is shown in Figure 2. Com-

pared with the wavelet transform, the contourlet transform

has better directional characteristic, which coincides with the

main performance of theHVS system, such as the localization

feature, the directional characteristic, the bandpass property,

and the anisotropic property. Therefore, a contourlet can

better simulate the principal characters of the HVS and can

also construct a visual model with excellent characteristics.

In addition, the PCNN model is consistent with the neural

response characteristics of the biological visual system, pos-

FIGURE 2. Structure chart of a contourlet transform.

sesses a certain adaptivity for data, and has strong properties

of pattern classification.

On this basis, we used the HMMwith its strong spatiotem-

poral modeling ability. The hybrid HMM–PCNN model

should then better reveal both the superficial geometric fea-

tures and the deep statistical properties of the visual per-

ception mechanism. Finally, to find a better sparse image

representation method, we propose an approach that takes

advantage of the contourlet-HMM–PCNN model to simulate

the characteristics of the biological visual perception mech-

anism in the receptive field of the simple cells. This model

also builds the essential structures and basic properties of the

grating cells and subsequently achieves the basic functions of

the visual cortex in the human brain.

The core idea of the contourlet-HMM–PCNN model pro-

posed in this paper is as follows: we first do a contourlet

transform on an image to obtain the subband coefficients

in various levels and directions. We then use the HMM to

describe the statistical properties and correlations of those

coefficients and simultaneously train this model using the

expectation–maximization (EM) algorithm for solving the

parameters of the HMM [29]. Moreover, we enable the state

probability of an HMM input into the PCNN models and

obtain the final results of the PCNN using nonlinear mapping.

III. AN ADAPTIVE CONTOURLET-HMM–PCNN MODEL

A. AN ADAPTIVE PCNN MODEL

Research indicates that the linking strength β affects the

increment of neuron activation, and a large β means neurons

tend to fire more easily. In this paper, we propose a contrast

operator dev(x, y), which is a measurement of the gray dif-

ference between neighborhoods of a target pixel. As the gray

difference of a local area in an image increases, the dev(x, y)

also increases. Therefore, here we can set an adaptive β

through the contrast operator dev(x, y) in the surrounding

area of each pixel; accordingly, we can determine the whole

neuron activation state. If the contrast of the local area of a

pixel is high, we can affirm that the corresponding neuron

is in an active state and will easily be fired. Thus, we can

normalize the contrast of the local area of the target pixel to

obtain an adaptive β as an actual parameter of a PCNNmodel
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as follows:

dev(x, y)=
max f (x, y) − min f (x, y)

max f (x, y)
, β =dev(x, y) (6)

where max f (x, y) and min f (x, y) are the maximum and

minimum respectively of the contourlet coefficients in the

neighborhood of a target pixel.

In addition, we input the state probability matrix from an

HMM training in a PCNNmodel instead of contourlet coeffi-

cients. Then we adjust the PCNN parameters of adaptive VE

and αE based on the gradient of contourlet coefficients and

adaptive β based on the contrast of contourlet coefficients.

Among those, VE controls the increment of thresholds Eij,

which increases more when VE is greater, and αE controls

the decay speed of thresholds Eij, whose decay becomes

slower when αE is greater, and vice versa. The purpose of

setting threshold Eij is to amplify the activation difference

of corresponding neurons in different areas of an image.

Therefore, we accomplished the goals of both reducing the

firing thresholds Eij and enhancing the decay speed of the

thresholds Eij for the corresponding neuron in the same area

of an image. Because a gradient is a measurement of the

differences in local areas in an image, we can use the Sobel

operator to calculate the gradient of contourlet coefficients; it

can be expressed as

Gx = [−1 0 1; −2 0 2; −1 0 1] ∗ A,

Gy = [1 2 1; 0 0 0; −1 − 2 − 1] ∗ A,

G =

√

G2
x + G2

y (7)

where A is a single subband generated by the contourlet

decomposition, and G is the gradient of a local image. If the

gradient value of the coefficient of the arbitrary position in the

subband is smaller, then the difference between neighboring

coefficients of the corresponding position is also smaller;

this also applies to the pixel domain. Moreover, if the local

gradient value of the neuron corresponding to the pixel is

smaller, then the firing threshold of this neuron is also smaller.

Therefore, in the PCNN model a pixel has a larger gradient

where αE is greater and VE is smaller, and the following

equations are given about VE and αE:

VE = 1 − G, αE = G. (8)

Based on the above methods, we amplified the difference

between the thresholds of the neurons corresponding to two

kinds of pixels in the edge area and the smooth area, simul-

taneously also obtaining better and more stable results in

the image denoising application. In this paper, we set other

parameters as follows:

αL = αF = 0.8, VL = VF = 0.5, N = 10 (9)

W = M = [1 1 1; 1 0 1; 1 1 1], (10)

where N is the number of iterations, W is the weight matrix of

synaptic connections in linking channels, andM is the weight

matrix of the synaptic connections in the feeding channel.

FIGURE 3. Flowchart of adaptive HMM–PCNN model in the contourlet
domain for image denoising.

B. FLOWCHART OF THE PROPOSED ALGORITHM

FOR IMAGE DENOISING

To show the innovation in this paper, we put the state proba-

bility matrices generated through the contourlet-HMT model

into a PCNN, and then adopted adaptive parameters VE, αE,

and β in the PCNN model, thereby showing a better per-

formance in the image denoising application. Figure 3 is a

flowchart of image denoising using the HMM–PCNN model

in the contourlet domain. Note that CHMT represents an

HMT model in the contourlet domain.

The algorithm procedure of an adaptive contourlet-HMM–

PCNN model for image denoising is as follows:

Step 1: We used a contourlet to decompose the noisy

images and obtain contourlet coefficients. The decomposition

levels were [2 2 3 3] in the contourlet domain, and we

used a 9/7 filter as a pyramid filter and a Phoong–Kim–

Vaidyanathan–Ansari (PKVA) filter as a directional filter to

implement the multiscale and directional decomposition for

a noisy image.

Step 2: We adopted the HMM to construct a statistical

model of contourlet coefficients in various levels and direc-

tions. Then we applied the EM algorithm during the training

of the HMM model, eventually obtaining the state probabil-

ity as an output. The state probability can be described as

p(Sj,k,n = m|vj,k,n, θz), where m, j, k, n, v, θ are state, scale,

direction, the position of the coefficient, the noisy image, and

the parameter set of the HMM model respectively.

Step 3: We used the contourlet coefficients to adjust the

parameters of the PCNN model for obtaining an adaptive

PCNN model. We used a contrast to ensure the adaptive β of

the linking strength and the Sobel operator to determine both

the adaptive VE of the threshold amplitude and the adaptive

αE of the time attenuation constant. We then input the state

probability p from step 2 in the adaptive PCNN model to

obtain an optimized one: p′(Sj,k,n = m|vj,k,n, θz).
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Step 4: We estimated the variance of additive noise using

the Monte Carlo method, and then we obtained the variance

of the clean image by subtracting the variances of additive

noise from the variances of the noisy image:

(σ
(z)
(j,k,n),m)

2 = (σ
(v)
(j,k,n),m)

2 − (σ
(e)
(j,k,n))

2 (11)

where (σ
(z)
(j,k,n),m)

2, (σ
(υ)
(j,k,n),m)

2 are the variances of the clean

image and the noisy image respectively, and (σ
(e)
(j,k,n))

2 are

the variances of the additive noise. Note that the clean image

does not represent the original image; it is true only under the

condition of the zero-mean Gaussian noise.

Step 5:We used both the HMM model of the clean image

and the optimized one p′ above (as a state probability).

Then we easily transformed the image denoising problem

into a Bayesian posterior probability estimation problem,

where the coefficients of the clean image can be expressed

as E[zj,k,n|vj,k,n, θz]:

E[zj,k,n|vj,k,n, θz] =
∑

m

p′(Sj,k,n = m|vj,k,n,θz)

×
(σ

(z)
(j,k,n),m)

2

(σ
(z)
(j,k,n),m)

2 + (σ
(e)
j,k,n)

2
vj,k,n (12)

Finally, we could reconstruct a denoised image based on

the coefficients of a clean image.

IV. EXPERIMENTS AND ANALYSIS

A. GRAYSCALE IMAGES

To verify the efficiency of an adaptive contourlet-HMM-

PCNN model in the field of image processing and computer

vision, we did many simulation experiments. The experi-

ments were carried out in MATLAB R2015b on a PC with

Intel i7-7700/16G, the size of all gray-scale images was

512 × 512 pixels, the depth was 8 bit, and the format

was PNG. To obtain different noisy images, we added zero-

meanwhite Gaussian noise with variances of 30, 40, and 50 to

the original images. To evaluate the performance of image

denoising using the model proposed in this paper, we com-

pared the results by their peak signal-to-noise ratio (PSNR)

and their structural similarity (SSIM) objectively, and by

visual quality subjectively.

This paper used 12 standard test images shown in Figure 4.

We used an adaptive contourlet-HMM–PCNN model to

achieve image denoising. It achieved better image denoising

performance through many simulation experiments as below.

Here, we show the experiment results of the test images

in Table 1 and Table 2. For comparison, we used various

noise levels and denoising methods for the same test image,

including thewavelet thresholdingmethodwith a threshold of

T = 3σ and the contourlet-HMT model denoising method of

Po and Do. We used PSNR and SSIM as evaluation criteria to

demonstrate their denoising performance on the test images.

From the experiment results shown in Table 1,

Table 2, and Figure 5, we can conclude that an adaptive

contourlet-HMM–PCNN model denoised better than the

FIGURE 4. Test images.

contourlet-HMT model and the wavelet threshold method in

both the PSNR and SSIM estimation criteria, as follows:

• In different noising levels for all the test images, our

approach was 0.08 to 3.59 dB higher than that of the wavelet

threshold method.

• In different noising levels for the test images of the Lena,

Zelda, Cameraman, Baboon, and Couple, our approach was

0.00 to 1.34 dB higher than the contourlet-HMT model of Po

and Do, respectively.

• In 50 noising levels for the test image of the Man,

in 40 and 50 noising levels for the Boat, in 50 noising levels

for the Bird, in 40 and 50 noising levels for the Peppers,

in 50 noising levels for the Goldhill, in 50 noising levels for

the Lake, and in 40 and 50 noising levels for the Barbara,

our approach was 0.06 to 0.34 dB lower than those of the

contourlet-HMT model of Po and Do, respectively.

• From an SSIM estimation, at different noising levels, for

the test images of the Lena, Zelda, Bird, Peppers, Goldhill,

Lake, and Couple, our approach was superior to that of the

contourlet-HMT model by 0.0018 to 0.0694.

• From an SSIM estimation, in 50 noising levels for the test

image Man, 30 for the Cameraman, in 40 and 50 for the Boat,

in 40 and 50 for the Baboon, and in 30, 40, and 50 for the

Barbara, our approach was lower than that of the contourlet-

HMT model by 0.0011 to 0.0400.

• From the above observations, we can conclude that from

a visual estimation of the test images, the proposed method is

superior to the contourlet-HMT and wavelet threshold mod-

els. However, the proposed method processes images more

slowly because of the increased complexity of its algorithm.

• It is well known that the success of sparse representation

and image denoising applications is closely dependent on the

content and background of the original images. Therefore, for

some test images with many textures in the content and in

background, there may be a slight performance degradation.
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TABLE 1. Comparison of PSNR in denoised images using various algorithms.

B. COLOR IMAGES

We also denoised color images as an extension of the pro-

posed approach in terms of theory and application. The

color image denoising procedure was basically the same

as that for gray images. The main difference is that we

used the contourlet-HMM–PCNN model to decompose the

color images with zero-mean white Gaussian noise into RGB

three channel images. We then used the same method as

that for gray image denoising to denoise the three types of

noisy images in the RGB channel. Finally, we fused the

denoised images in the RGB three channels into one color

image (RGB).

To denoise the color images, we used three color test

images—Peppers, Baboon, and Lena. Each was 512 ×

512 pixels, 24-bit depth, TIFF format with zero-mean white

Gaussian noise variances of 30, 40, and 50 respectively. The

color testing images are shown in Figure 6.

To obtain various noisy images, we added zero-mean white

Gaussian noise with variances of 30, 40, and 50 to the

color testing images. To evaluate the performance of image
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TABLE 2. Structural similarity index of denoised images using various algorithms.

denoising using the model proposed in this paper, we com-

pared the results by their PSNR and their SSIM objectively,

and by visual quality subjectively. The results are shown

in Tables 3 and 4.

Moreover, to show the effects of color image denoising

for the zero-mean white Gaussian noise with a variance

of 50, we compared visual quality subjectively, as shown in

Figure 7.

We found that the effects of the color image denoising were

not as good as those of grayscale images in general. This

is because of the correlation between the three channels of

RGB color space. The higher the correlation, the greater the

chromatic aberration in the color images after image denois-

ing. By contrast, the grayscale images had only one channel,

so the image denoising performances were not affected by

correlation.
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FIGURE 5. Denoising results of some test images. The noise variance is 30 and the images, from the left column to the
right column, are noisy images (a, e, i, m, q), wavelet thresholding denoised images (b, f, j, n, r), contourlet-HMT denoised
images (c, g, k, o, s), and contourlet-HMT–PCNN denoised images (d, h, l, p, t).

C. RUNNING TIME

Most of the computational expense of the proposed approach

comes from the training of the HMT model and the

calculations of the PCNNmodel. All the code is implemented

in MATLAB with a 3.40-GHz CPU and 16 GB of RAM. The

average CPU time of the proposed approach was slightly less
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FIGURE 6. Three color test images.

TABLE 3. Comparison of PSNR in noised and denoised color images
using the proposed algorithm.

TABLE 4. Structural similarity index of noised and denoised color images
using the proposed algorithm.

FIGURE 7. Visual quality comparison of denoised images.

than that of the contourlet-HMT model and less than some

state-of-the-art methods. For example, for the House testing

image, whose size was 256 × 256, the proposed approach

took 21 s. By comparison, the contourlet-HMT model took

17 seconds, and the method proposed by [16] took 48 seconds

of each outer iteration.

We believe that the proposed approach should be run on a

more powerful GPU to further reduce its running time.

V. CONCLUSION

In this paper, the HMM–ANNmodel, which has been applied

successfully in speech processing, is introduced to the field of

image processing, computer vision, and pattern recognition.

The combined model takes advantage of the pattern classifi-

cation ability of ANN and the modeling ability of HMM in

spatiotemporal use.

In our research, we modulated the image data structures to

match the HMM–ANN model and replaced the ANN model

with a PCNN to construct a hybrid HMM–PCNN model.

In addition, we propose an adaptive contourlet-HMM–PCNN

model based on the contourlet-HMT model presented by

Po and Do. Finally, we verified the effectiveness of the

contourlet-HMM–PCNNmodel by using an image denoising

application.

The performance was better than that of the contourlet-

HMT model and the wavelet threshold method for test

images. The proposed model had more low-frequency com-

ponents and was similar to the contourlet-HMT model for

test images with more high-frequency components. In future

research, we will further improve the theory of multiscale

geometric analysis. We will then use human visual attention

and saliency features to create a more effective sparse repre-

sentation theory for texture images.
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