
An Adaptive Crawler for Locating Hidden-Web Entry Points

Luciano Barbosa
University of Utah

lbarbosa@cs.utah.edu

Juliana Freire
University of Utah

juliana@cs.utah.edu

ABSTRACT

In this paper we describe new adaptive crawling strategies
to efficiently locate the entry points to hidden-Web sources.
The fact that hidden-Web sources are very sparsely dis-
tributed makes the problem of locating them especially chal-
lenging. We deal with this problem by using the contents of
pages to focus the crawl on a topic; by prioritizing promising
links within the topic; and by also following links that may
not lead to immediate benefit. We propose a new framework
whereby crawlers automatically learn patterns of promising
links and adapt their focus as the crawl progresses, thus
greatly reducing the amount of required manual setup and
tuning. Our experiments over real Web pages in a repre-
sentative set of domains indicate that online learning leads
to significant gains in harvest rates—the adaptive crawlers
retrieve up to three times as many forms as crawlers that
use a fixed focus strategy.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search pro-
cess.

General Terms

Algorithms, Design, Experimentation.

Keywords

Hidden Web, Web crawling strategies, online learning, learn-
ing classifiers.

1. INTRODUCTION
The hidden Web has been growing at a very fast pace.

It is estimated that there are several million hidden-Web
sites [18]. These are sites whose contents typically reside
in databases and are only exposed on demand, as users fill
out and submit forms. As the volume of hidden information
grows, there has been increased interest in techniques that
allow users and applications to leverage this information.
Examples of applications that attempt to make hidden-Web
information more easily accessible include: metasearchers [14,
15, 26, 28], hidden-Web crawlers [2, 21], online-database di-
rectories [7, 13] and Web information integration systems [10,
17, 25]. Since for any given domain of interest, there are

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

many hidden-Web sources whose data need to be integrated
or searched, a key requirement for these applications is the
ability to locate these sources. But doing so at a large scale
is a challenging problem.

Given the dynamic nature of the Web—with new sources
constantly being added and old sources removed and mod-
ified, it is important to automatically discover the search-

able forms that serve as entry points to the hidden-Web
databases. But searchable forms are very sparsely distributed
over the Web, even within narrow domains. For exam-
ple, a topic-focused best-first crawler [9] retrieves only 94
Movie search forms after crawling 100,000 pages related to
movies. Thus, to efficiently maintain an up-to-date collec-
tion of hidden-Web sources, a crawling strategy must per-
form a broad search and simultaneously avoid visiting large
unproductive regions of the Web.

The crawler must also produce high-quality results. Hav-
ing a homogeneous set of forms that lead to databases in the
same domain is useful, and sometimes required, for a number
of applications. For example, the effectiveness of form inte-
gration techniques [16, 25] can be greatly diminished if the
set of input forms is noisy and contains forms that are not
in the integration domain. However, an automated crawling
process invariably retrieves a diverse set of forms. A focus
topic may encompass pages that contain searchable forms
from many different database domains. For example, while
crawling to find Airfare search interfaces a crawler is likely to
retrieve a large number of forms in different domains, such
as Rental Cars and Hotels, since these are often co-located
with Airfare search interfaces in travel sites. The set of re-
trieved forms also includes many non-searchable forms that
do not represent database queries such as forms for login,
mailing list subscriptions, quote requests, and Web-based
email forms.

The Form-Focused Crawler (FFC) [3] was our first at-
tempt to address the problem of automatically locating on-
line databases. The FFC combines techniques for focusing
the crawl on a topic with a link classifier which identifies
and prioritizes links that are likely to lead to searchable
forms in one or more steps. Our preliminary results showed
that the FFC is up to an order of magnitude more efficient,
with respect to the number of searchable forms it retrieves,
than a crawler that focuses the search on topic only. This
approach, however, has important limitations. First, it re-
quires substantial manual tuning, including the selection of
appropriate features and the creation of the link classifier.
In addition, the results obtained are highly-dependent on
the quality of the set of forms used as the training for the



link classifier. If this set is not representative, the crawler
may drift away from its target and obtain low harvest rates.
Given the size of the Web, and the wide variation in the
hyperlink structure, manually selecting a set of forms that
cover a representative set of link patterns can be challeng-
ing. Last, but not least, the set of forms retrieved by the
FFC is very heterogeneous—it includes all searchable forms
found during the crawl, and these forms may belong to dis-
tinct database domains. For a set of representative database
domains, on average, only 16% of the forms retrieved by the
FFC are actually relevant. For example, in a crawl to lo-
cate airfare search forms, the FFC found 12,893 searchable
forms, but among these, only 840 were airfare search forms.

In this paper, we present ACHE (Adaptive Crawler for
Hidden-Web Entries),a new framework that addresses these
limitations. Given a set of Web forms that are entry points
to online databases,1 ACHE aims to efficiently and auto-
matically locate other forms in the same domain. Our main
contributions are:

• We frame the problem of searching for forms in a given
database domain as a learning task, and present a
new framework whereby crawlers adapt to their en-
vironments and automatically improve their behavior
by learning from previous experiences. We propose
and evaluate two crawling strategies: a completely au-
tomated online search, where a crawler builds a link
classifier from scratch; and a strategy that combines
offline and online learning.

• We propose a new algorithm that selects discriminat-
ing features of links and uses these features to auto-
matically construct a link classifier.

• We extend the crawling process with a new module
that accurately determines the relevance of retrieved
forms with respect to a particular database domain.
The notion of relevance of a form is user-defined. This
component is essential for the effectiveness of online
learning and it greatly improves the quality of the set
of forms retrieved by the crawler.

We have performed an extensive performance evaluation
of our crawling framework over real Web data in eight rep-
resentative domains. This evaluation shows that the ACHE

learning strategy is effective—the crawlers are able to adapt
and significantly improve their harvest rates as the crawl
progresses. Even starting from scratch (without a link clas-
sifier), ACHE is able to obtain harvest rates that are compa-
rable to those of crawlers like the FFC, that are constructed
using prior knowledge. The results also show that ACHE

is effective and obtains harvest rates that are substantially
higher than a crawler whose focus is only on page content—
these differences are even more pronounced when only rele-
vant forms (i.e., forms belong to the target database domain)
are considered. Finally, the results also indicate that the au-
tomated feature selection is able to identify good features,
which for some domains were more effective than features
identified manually.

The remainder of the paper is organized as follows. Since
ACHE extends the focus strategy of the FFC, to make the
paper self-contained, in Section 2 we give a brief overview of

1In this paper, we use the terms ’online database’ and
’hidden-Web source’ interchangeably.

the FFC and discuss its limitations. In Section 3, we present
the adaptive-learning framework of ACHE and describe the
underlying algorithms. Our experimental evaluation is dis-
cussed in Section 4. We compare our approach to related
work in Section 5 and conclude in Section 6, where we out-
line directions for future work.

2. BACKGROUND: THE FORM-FOCUSED

CRAWLER
The FFC is trained to efficiently locate forms that serve as

the entry points to online databases—it focuses its search by
taking into account both the contents of pages and patterns

in and around the hyperlinks in paths to a Web page. The
main components of the FFC are shown in white in Figure 1
and are briefly described below.

• The page classifier is trained to classify pages as belonging
to topics in a taxonomy (e.g., arts, movies, jobs in Dmoz). It
uses the same strategy as the best-first crawler of [9]. Once
the crawler retrieves a page P, if P is classified as being
on-topic, its forms and links are extracted.

• The link classifier is trained to identify links that are likely
to lead to pages that contain searchable form interfaces in
one or more steps. It examines links extracted from on-topic
pages and adds the links to the crawling frontier in the order
of their predicted reward.

• The frontier manager maintains a set of priority queues
with links that are yet to be visited. At each crawling step,
it selects the link with the highest priority.

• The searchable form classifier filters out non-searchable
forms and ensures only searchable forms are added to the
Form Database. This classifier is domain-independent and
able to identify searchable forms with high accuracy. The
crawler also employs stopping criteria to deal with the fact
that sites, in general, contain few searchable forms. It leaves
a site after retrieving a pre-defined number of distinct forms,
or after it visits a pre-defined number of pages in the site.

These components and their implementation are described
in [3]. Below we discuss the aspects of the link classifier and
frontier manager needed to understand the adaptive learning
mechanism of ACHE .

2.1 Link Classifier
Since forms are sparsely distributed on the Web, by pri-

oritizing only links that bring immediate return, i.e., links
whose patterns are similar to those that point to pages con-
taining searchable forms, the crawler may miss target pages
that can only be reached with additional steps. The link
classifier aims to also identify links that have delayed benefit

and belong to paths that will eventually lead to pages that
contain forms. It learns to estimate the distance (the length
of the path) between a link and a target page based on link
patterns: given a link, the link classifier assigns a score to
the link which corresponds to the distance between the link
and a page that contains a relevant form.

In the FFC, the link classifier is built as follows. Given a
set of URLs of pages that contain forms in a given database
domain, paths to these pages are obtained by crawling back-
wards from these pages, using the link: facility provided
by search engines such as Google and Yahoo! [6]. The back-
ward crawl proceeds in a breadth-first manner. Each level



Page Form

Database
Crawler

Link

Classifier

Page

Classifier

Domain-Specific

Form

Classifier

Forms
Relevant

 Forms

(Link,

Relevance)

Links
Most relevant

  link

Adaptive

Link

Learner

Feature

Selection

Form path

Frontier

Manager

Searchable

Form

Classifier

Searchable

 Forms

Form Filtering

Figure 1: Architecture of ACHE . The new modules that are responsible for the online focus adaptation are
shown in blue; and the modules shown in white are used both in the FFC and in ACHE .

l+1 is constructed by retrieving all documents that point
to documents in level l. From the set of paths gathered,
we manually select the best features. Using these data, the
classifier is trained to estimate the distance between a given
link and a target page that contains a searchable form. In-
tuitively, a link that matches the features of level 1 is likely
to point to a page that contains a form; and a link that
matches the features of level l is likely l steps away from a
page that contains a form.

2.2 Frontier Manager
The goal of the frontier manager is to maximize the ex-

pected reward for the crawler. Each link in the frontier is
represented by a tuple (link, Q), where Q reflects the ex-
pected reward for link:

Q(state, link) = reward (1)

Q maps a state (the current crawling frontier) and a link
link to the expected reward for following link. The value
of Q is approximated by discretization and is determined
by: (1) the distance between link and the target pages—
links that are closer to the target pages have a higher Q

value and are placed in the highest priority queues; (2) the
likelihood of link belonging to a given level.

The frontier manager is implemented as a set of N queues,
where each queue corresponds to a link classifier level: a link
l is placed on queue i if the link classifier estimates l is i steps
from a targe page. Within a queue, links are ordered based
on their likelihood of belonging to the level associated with
the queue.

Although the goal of frontier manager is to maximize the
expected reward, if it only chooses links that give the best
expected rewards, it may forgo links that are sub-optimal
but that lead to high rewards in the future. To ensure that
links with delayed benefit are also selected, the crawling
frontier is updated in batches. When the crawler starts, all
seeds are placed in queue 1. At each step, the crawler selects
the link with the highest relevance score from the first non-
empty queue. If the page it downloads belongs to the target
topic, its links are classified by link classifier and added to
a separate persistent frontier. Only when the queues in the
crawling frontier become empty, the crawler loads the queues
from the persistent frontier.

2.3 Limitations of FFC
An experimental evaluation of the FFC [3] showed that

FFC is more efficient and retrieves up to an order of mag-
nitude more searchable forms than a crawler that focuses
only on topic. In addition, FFC configurations with a link
classifier that uses multiple levels performs uniformly bet-
ter than their counterpart with a single level (i.e., a crawler

that focuses only on immediate benefit). The improvements
in harvest rate for the multi-level configurations varied be-
tween 20% and 110% for the three domains we considered.
This confirms results obtained in other works which under-
line the importance of taking delayed benefit into account
for sparse concepts [11, 22].

The strategy used by the FFC has two important lim-
itations. The set of forms retrieved by the FFC is highly

heterogeneous. Although the Searchable Form Classifier is
able to filter out non-searchable forms with high accuracy,
a qualitative analysis of the searchable forms retrieved by
the FFC showed that the set contains forms that belong to
many different database domains. The average percentage
of relevant forms (i.e., forms that belong to the target do-
main) in the set was low—around 16%. For some domains
the percentage was as low as 6.5%. Whereas it is desirable
to list only relevant forms in online database directories,
such as BrightPlanet [7] and the Molecular Biology Database
Collection [13], for some applications this is a requirement.
Having a homogeneous set of the forms that belong to the
same database domain is critical for techniques such as sta-
tistical schema matching across Web interfaces [16], whose
effectiveness can be greatly diminished if the set of input
forms is noisy and contains forms from multiple domains.

Another limitation of the FFC is that tuning the crawler

and training the link classifier can be time consuming. The
process used to select the link classifier features is manual:
terms deemed as representative are manually selected for
each level. The quality of these terms is highly-dependent
on knowledge of the domain and on whether the set of paths
obtained in the back-crawl is representative of a wider seg-
ment of the Web for that database domain. If the link classi-
fier is not built with a representative set of paths for a given
database domain, because the FFC uses a fixed focus strat-
egy, the crawler will be confined to a possibly small subset
of the promising links in the domain.

3. DYNAMICALLY ADAPTING THE

CRAWLER FOCUS
With the goal of further improving crawler efficiency, the

quality of its results, and automating the process of crawler
setup and tuning, we use a learning-agent-based approach
to the problem of locating hidden-Web entry points.

Learning agents have four components [23]:

• The behavior generating element (BGE), which based on
the current state, selects an action that tries to maximize the
expected reward taking into account its goals (exploitation);

• The problem generator (PG) that is responsible for sug-
gesting actions that will lead to new experiences, even if the



successful 

actions

known action unknown action

Critic

BGE PG

Online

Learning

Figure 2: Highlight of the main components in-
volved in the adaptive aspect of a learning agent.

benefit is not immediate, i.e., the decision is locally subop-
timal (exploration);

• The critic that gives the online learning element feedback
on the success (or failure) of its actions; and

• The online learning element which takes the critic’s feed-
back into account to update the policy used by the BGE.

A learning agent must be able to learn from new experi-
ences and, at the same time, it should be robust with respect
to biases that may be present in these experiences [20, 23].
An agent’s ability to learn and adapt relies on the successful
interaction among its components (see Figure 2). Without
exploration, an agent may not be able to correct biases in-
troduced during its execution. If the BGE is ineffective, the
agent is not able to exploit its acquired knowledge. Finally, a
high-quality critic is crucial to prevent the agent from drift-
ing away from its objective. As we discuss below, ACHE

combines these four elements to obtain all the advantages of
using a learning agent.

3.1 The ACHE Architecture
Figure 1 shows the high-level architecture of ACHE . The

components that we added to enable the crawler to learn
from its experience are highlighted (in blue). The frontier

manager (Section 2.2) acts as both the BGE and PG and
balances the trade-off between exploration and exploitation.
It does so by using a policy for selecting unvisited links from
the crawling frontier which considers links with both imme-
diate and delayed benefit. The Q function (Equation 1)
provides the exploitation component (BGE). It ensures the
crawler exploits the acquired knowledge to select actions
that yield high reward, i.e., links that lead to relevant forms.
By also selecting links estimated to have delayed reward, the
frontier manager provides an exploratory component (PG),
which enables the crawler to explore actions with previously
unknown patterns. This exploratory behavior makes ACHE

robust and enables it to correct biases that may be intro-
duced in its policy. We discuss this issue in more detail in
Section 4.

The form filtering component is the critic. It consists of
two classifiers: the searchable form classifier (SFC)2; and
the domain-specific form classifier (DSFC). Forms are pro-
cessed by these classifiers in a sequence: each retrieved form
is first classified by the SFC as searchable or non-searchable;
the DSFC then examines the searchable forms and indicates
whether they belong to the target database domain (see Sec-
tion 3.4 for details).

2The SFC is also used in the FFC.

Algorithm 1 Adaptive Link Learner

1: if learningThresholdReached then

2: paths = collectPaths(relevantForms, length)
{Collect paths of a given length to pages that contain rel-
evant forms.}

3: features = FeatureSelector(paths)
{Select the features from the neighborhood of links in the
paths.}

4: linkClassifier = createClassifier(features, paths)
{Create new link classifier.}

5: updateFrontier(linkClassifier)
{Re-rank links in the frontier using the new link classifier.}

6: end if

The policy used by the frontier manager is set by the link

classifier. In ACHE , we employ the adaptive link learner

as the learning element. It dynamically learns features au-
tomatically extracted from successful paths by the feature

selection component, and updates the link classifier. The
effectiveness of the adaptive link learner depends on the ac-
curacy of the form-filtering process; on the ability of the
feature selector to identify ’good’ features; and on the effi-
cacy of the frontier manager in balancing exploration and
exploitation. Below we describe the components and algo-
rithms responsible for making ACHE adaptive.

3.2 Adaptive Link Learner
In the FFC, link patterns are learned offline. As described

in Section 2.1, these patterns are obtained from paths de-
rived by crawling backwards from a set of pages that contain
relevant forms. The adaptive link learner, in contrast, uses
features of paths that are gathered during the crawl. ACHE

keeps a repository of successful paths: when it identifies a
relevant form, it adds the path it followed to that form to
the repository. Its operation is described in Algorithm 1.
The adaptive link learner is invoked periodically, when the
learning threshold is reached (line 1). For example, after the
crawler visits a pre-determined number of pages, or after it
is able to retrieve a pre-defined number of relevant forms.

Note that if the threshold is too low, the crawler may not
be able to retrieve enough new samples to learn effectively.
On the other hand, if the value is too high, the learning
rate will be slow. In our experiments, learning iterations
are triggered after 100 new relevant forms are found.

When a learning iteration starts, features are automat-
ically extracted from the new paths (Section 3.3). Using
these features and the set of path instances, the adaptive
link learner generates a new link classifier.3 As the last
step, the link learner updates the frontier manager with the
new link classifier. The frontier manager then updates the
Q values of the links using the new link classifier, i.e., it
re-ranks all links in the frontier using the new policy.

3.3 Automating the Feature Selection Process
The effectiveness of the link classifier is highly-dependent

on the ability to identify discriminating features of links. In
ACHE , these features are automatically extracted, as de-
scribed in Algorithm 2. The Automatic Feature Selection

(AFS) algorithm extracts features present in the anchor,
URL, and text around links that belong to paths which lead
to relevant forms.

3The length of the paths considered depends on the number
of levels used in the link classifier.



Algorithm 2 Automatic Feature Selection

1: Input: set of links at distance d from a relevant form
2: Output: features selected in the three feature spaces—

anchor, URL and around
3: for each featureSpace do

4: termSet = getTermSet(featureSpace, paths)
{From the paths, obtain terms in specified feature space.}

5: termSet = removeStopWords(termSet)
6: stemmedSet = stem(termSet)
7: if featureSpace == URL then

8: topKTerms= getMostFrequentTerms(stemmedSet, k)
{Obtain the set of k most frequent terms.}

9: for each term t ∈ topKTerms do

10: for each term t′ ∈ stemmedSet that contains the sub-
string t do

11: addFrequency(stemmedSet,t,t′)
{Add frequency of t′ to t in stemmedSet.}

12: end for

13: end for

14: end if

15: selectedFeatures = getNMostFrequentTerms(termSet)
{Obtain a set of the top n terms.}

16: end for

Initially, all terms in anchors are extracted to construct
the anchor feature set. For the around feature set, AFS se-
lects the n terms that occur before and the n terms that
occur after the anchor (in textual order). Because the num-
ber of extracted terms in these different contexts tends to
be large, stop-words are removed (line 5) and the remaining
terms are stemmed (line 6). The most frequent terms are
then selected to construct the feature set (line 15).

The URL feature space requires special handling. Since
there is little structure in a URL, extracting terms from a
URL is more challenging. For example, “jobsearch” and
“usedcars” are terms that appear in URLs of the Job and
Auto domains, respectively. To deal with this problem,
we try to identify meaningful sub-terms using the following
strategy. After the terms are stemmed, the k most frequent
terms are selected (topKTerms in line 8). Then, if a term in
this set appears as a substring of another term in the URL
feature set, its frequency is incremented. Once this process
finishes, the k most frequent terms are selected.

The feature selection process must produce features that
are suitable for the learning scheme used by the underly-
ing classifier. For text classification Zheng et al. [29] show
that the Näıve Bayes model obtains better results with a
much lower number of features than linear methods such as
Support Vector Machines [20]. As our link classifier is built
using the Näıve Bayes model, we performed an aggressive
feature selection and selected a small number of terms for
each feature space. The terms selected are the ones with
highest document frequency (DF)4. Experiments conducted
by Yang and Pedersen [27] show that DF obtains results
comparable to task-sensitive feature selection approaches,
as information gain [20] and Chi-square [12].

AFS is very simple to implement, and as our experimental
results show, it is very effective in practice.

3.4 Form Filtering
The form filtering component acts as a critic and is re-

sponsible for identifying relevant forms gathered by ACHE .
It assists ACHE in obtaining high-quality results and it also

4Document frequency represents the number of documents
in a collection where a given term occurs.

enables the crawler to adaptively update its focus strategy,
as it identifies new paths to relevant forms during a crawl.
Therefore, the overall performance of the crawler agent is
highly-dependent on the accuracy of the form-filtering pro-
cess. If the classifiers are inaccurate, crawler efficiency can
be greatly reduced as it drifts way from its objective through
unproductive paths.

The form-filtering process needs to identify, among the
set of forms retrieved by the crawler, forms that belong to
the target database domain. Even a focused crawler re-
trieves a highly-heterogeneous set of forms. A focus topic
(or concept) may encompass pages that contain many dif-
ferent database domains. For example, while crawling to
find airfare search interfaces the FFC also retrieves a large
number of forms for rental car and hotel reservation, since
these are often co-located with airfare search interfaces in
travel sites. The retrieved forms also include non-searchable
forms that do not represent database queries such as forms
for login, mailing list subscriptions, and Web-based email
forms.

ACHE uses HIFI, a hierarchical classifier ensemble pro-
posed in [4], to filter out irrelevant forms. Instead of using
a single, complex classifier, HIFI uses two simpler classifiers
that learn patterns of different subsets of the form feature
space. The Generic Form Classifier (GFC) uses structural
patterns which determine whether a form is searchable. Em-
pirically, we have observed that these structural character-
istics of a form are a good indicator as to whether the form
is searchable or not [3]. To identify searchable forms that
belong to a given domain, HIFI uses a more specialized clas-
sifier, the Domain-Specific Form Classifier (DSFC). The
DSFC uses the textual content of a form to determine its
domain. Intuitively, the form content is often a good indica-
tor of the database domain—it contains metadata and data
that pertain to the database.

By partitioning the feature space, not only can simpler
classifiers be constructed that are more accurate and robust,
but this also enables the use of learning techniques that are
more effective for each feature subset. Whereas decision
trees [20] gave the lowest error rates for determining whether
a form is searchable based on structural patterns, SVMs [20]
proved to be the most effective technique to identify forms
that belong to the given database domain based on their
textual content.

The details of these classifiers are out of the scope of this
paper. They are described in [4], where we show that the
combination of the two classifiers leads to very high pre-
cision, recall and accuracy. The effectiveness of the form
filtering component is confirmed by our experimental evalu-
ation (Section 4): significant improvements in harvest rates
are obtained by the adaptive crawling strategies. For the
database domains used in this evaluation, the combination
of these two classifiers results in accuracy values above 90%.

4. EXPERIMENTS
We have performed an extensive performance evaluation

of our crawling framework over real Web data in eight rep-
resentative domains. Besides analyzing the overall perfor-
mance of our approach, our goals included: evaluating the
effectiveness of ACHE in obtaining high-quality results (i.e.,
in retrieving relevant forms); the quality of the features au-
tomatically selected by AFS ; and assessing the effectiveness
of online learning in the crawling process.



Domain Description Density Norm. Density
Airfare airfare search 0.132% 1.404
Auto used cars 0.962% 10.234
Book books search 0.142% 1.510
Hotel hotel availability 1.857% 19.755
Job job search 0.571% 6.074
Movie movie titles and DVDs 0.094% 1.000
Music music CDs 0.297% 3.159
Rental car rental availability 0.148% 1.574

Table 1: Database domains used in experiments and
density of forms in these domains. The column la-
beled Norm. Density shows the density values nor-
malized with respect to the lowest density value (for
the Movie domain).

4.1 Experimental Setup
Database Domains. We evaluated our approach over the
eight online database domains described in Table 1. This
table also shows the density of relevant forms in the do-
mains. Here, we measure density as the number of distinct
relevant forms retrieved by a topic-focused crawler (the base-
line crawler described below) divided by the total number of
pages crawled. Note that not only are forms very sparsely
distributed in these domains, but also that there is a large
variation in density across domains. In the least dense do-
main (Movie), only 94 forms are found after the baseline
crawler visits 100,000 pages; whereas in the densest domain
(Hotel), the same crawler finds 19 times as many forms (1857
forms).

Crawling Strategies. To evaluate the benefit of online
learning in ACHE , we ran the following crawler configura-
tions:

• Baseline, a variation of the best-first crawler [9]. The
page classifier guides the search and the crawler fol-
lows all links that belong to a page whose contents are
classified as being on-topic. One difference between
baseline and the best-first crawler is that the former
uses the same stopping criteria as the FFC; 5

• Offline Learning, the crawler operates using a fixed
policy that remains unchanged during the crawling
process—this is the same strategy used by the FFC [3];

• Offline-Online Learning, ACHE starts with a pre-defined
policy, and this policy is dynamically updated as the
crawl progresses;

• Online Learning, ACHE starts using the baseline strat-
egy and builds its policy dynamically, as pages are
crawled.

All configurations were run over one hundred thousand
pages; and the link classifiers were configured with three
levels.

Effectiveness measure. Since our goal is to find search-
able forms that serve as entry points to a given database do-
main, it is important to measure harvest rate of the crawlers
based on the number of relevant forms retrieved per pages

5In earlier experiments, we observed that without the appro-
priate stopping criteria, the best-first crawler gets trapped in
some sites, leading to extremely low harvest rates [3].

Figure 3: Number of relevant forms returned by the
different crawler configurations.

crawled. It is worthy of note that harvest rates reported
in [3] for the FFC (offline learning) took into account all
searchable forms retrieved—a superset of the relevant forms.
Below, as a point of comparison, we also show the harvest
rates for the different crawlers taking all searchable forms
into account.

4.2 Focus Adaptation and Crawler Efficiency
Figure 3 gives, for each domain, the number of relevant

forms retrieved by the four crawler configurations. Online
learning leads to substantial improvements in harvest rates
when applied to both the Baseline and Offline configura-
tions. The gains vary from 34% to 585% for Online over
Baseline, and from 4% to 245% for Offline-Online over Of-

fline. These results show that the adaptive learning com-
ponent of ACHE is able to automatically improve its fo-
cus based on the feedback provided by the form filtering
component. In addition, Online is able to obtain substan-
tial improvements over Baseline in a completely automated
fashion—requiring no initial link classifier and greatly reduc-
ing the effort to configure the crawler. The only exception is
the Movie domain. For Movie, the most sparse domain we
considered, the Online configuration was not able to learn
patterns with enough support from the 94 forms encountered
by Baseline.
Effect of Prior Knowledge. Having background knowl-
edge in the form of a ’good’ link classifier is beneficial. This
can be seen from the fact that Offline-Online retrieved the
largest number of relevant forms in all domains (except for
Rental, see discussion below). This knowledge is especially
useful for very sparse domains, where the learning process
can be prohibitively expensive due to the low harvest rates.

There are instances, however, where the prior knowledge
limits the crawler to visit a subset of the productive links.
If the set of patterns in the initial link classifier is too nar-
row, it will prevent the crawler from visiting other relevant
pages reachable through paths that are not represented in
the link classifier. Consider, for example the Rental domain,
where Online outperforms Offline-Online. This behavior
may sound counter-intuitive, since both configurations ap-
ply online learning and Offline-Online starts with an advan-
tage. The initial link classifier used by Offline-Online was
biased, and the adaptive process was slow at correcting this
bias. A closer examination of the features used by Offline-

Online shows that, over time, they converge to the same
set of features of Online. The Online, in contrast, started
with no bias and was able to outperform Offline-Online in
a window of 100,000 pages.



Figure 4: Relative performance of Offline-Online

over Baseline. The domains are ordered with re-
spect to their densities.

The presence of bias in the link classifier also explains
the poor performance of Offline in Rental, Book and Air-
fare. For these domains, Offline-Online is able to eliminate
the initial bias. ACHE automatically adapts and learns new
patterns, leading to a substantial increase the number of rel-
evant forms retrieved. In the Book domain, for instance, the
initial link classifier was constructed using manually gath-
ered forms from online bookstores. Examining the forms
obtained by the Offline-Online, we observed that forms for
online bookstores are only a subset of the relevant forms in
this domain. A larger percentage of relevant forms actually
appear in library sites. ACHE successfully learned patterns
to these sites (see Table 2).

Another evidence of the effectiveness of the adaptive learn-
ing strategy is the fact that Online outperforms Offline for
four domains: Airfare, Auto, Book, and Rental. For the lat-
ter two, Online retrieved 275% and 190% (resp.) more forms
than Offline. This indicates that a completely automated
approach to learning is effective and able to outperform a
manually configured crawler.

The Link Classifier and Delayed Benefit. Figure 4
shows the relative performance between the Offline-Online

configuration of ACHE and Baseline, with respect to both
relevant forms and searchable forms. Here, the domains are
ordered (in the x axis) by increasing order of density. Note
that for the sparser domains, the performance difference be-
tween ACHE and Baseline is larger. Also note that the
gains from delayed benefit are bigger when the performance
is measured with respect to relevant forms. For example, in
the Book domain, Offline-Online retrieves almost 9 times
more relevant forms than Baseline. The performance differ-
ence is much smaller for searchable forms—Offline-Online

retrieves only 10% more searchable forms than Baseline.
This can be explained due to the fact that searchable forms
are much more prevalent than relevant forms within a focus
topic. The numbers in Figure 4 underline the importance
of taking delayed benefit into account while searching for
sparse concepts.

Delayed benefit also plays an important role in the effec-
tiveness of the adaptive learning component of ACHE . The
use of the link classifier forces ACHE to explore paths with
previously unknown patterns. This exploratory behavior
is key to adaptation. For example, in the Book domain (see

(a) Auto

(b) Book

(c) Movie

Figure 5: Number of forms retrieved over time.

Table 2), since the initial link classifier has a bias towards
online bookstores, if ACHE only followed links predicted to
yield immediate benefit, it would not be able to reach the
library sites. Note, however, that the exploratory behavior
can potentially lead the crawler to lose its focus. But as our
experimental results show, ACHE is able to obtain a good
balance, being able to adapt to new patterns while main-
taining its focus.

Crawler Performance over Time. To give insight about
the behavior of the different crawler configurations, it is
useful to analyze how their harvest rates change over time.
Here, we only show these results for Book, Auto and Movie
in Figure 5. Similar results were obtained for the other do-
mains.

Note that the number of relevant forms retrieved by On-

line and Baseline coincide initially, and after the crawler
starts the learning process, the performance of Online im-
proves substantially. A similar trend is observed for Offline

and Offline-Online—the number of relevant forms retrieved
by Offline-Online increases after its policy is first updated.



Another interesting observation is that the rate of increase
in the number of relevant forms retrieved is higher for the
configurations that use online-learning.

The increase in the number of forms retrieved over time is
a good indication of the effectiveness of online learning for a
particular domain. For Movie (Figure 5(c)), after crawling
66,000 pages, Baseline retrieves only 93 relevant forms. Af-
ter that, the number of forms remain (almost) constant (a
single additional form is found in the last 30,000 pages). Be-
cause so few relevant forms are found, Online is not able to
learn due to insufficient evidence for the link patterns.Note
that the lines for Baseline and Online coincide for the Movie
domain.

In the Book domain, which is also sparse but less so than
Movie, Online was able to learn useful patterns and substan-
tially improve the harvest rate. As shown in Figure 5(b), the
first learning iteration happened after 50,000 pages had been
crawled—much later than for the other denser domains. For
example, for Auto the first iteration occurs at 17,000 pages
(Figure 5(a)). The Auto domain provides a good example
of the adaptive behavior of ACHE in denser domains.

These results show that, even starting with no information
about patterns that lead to relevant forms, these patterns
can be learned dynamically and crawler performance can
be improved in an automatic fashion. However, the sparser
the domain is, the harder it is for the crawler to learn. For
Online to be effective in a very sparse domain, a crawler
that is more focused than Baseline is needed initially.

4.3 Feature Selection
The performance improvement obtained by the adaptive

crawler configurations provides evidence of the effectiveness
of the automatic feature selection described in Section 3.3.
As an example of its operation, consider Figure 6, which
shows the terms selected by AFS in 4 learning iterations for
the Auto domain using the Online configuration. Note that
AFS is able to identify good features from scratch and with-
out any manual intervention. For both Anchor and Around
feature sets, already in the first iteration, relevant terms are
discovered which remain in subsequent iterations (e.g., car,
auto), although their frequency changes over time. For in-
stance, the term “auto” has the highest frequency in the
first iteration, whereas “car” has the highest frequency after
the second iteration.

Unlike Anchor and Around, the URL feature set is not
so well-behaved. Because URLs contain uncommon terms
and more variability, the patterns take longer to converge.
As Figure 6 shows, after the first iteration the AFS selects
terms that disappear in subsequent iterations (e.g., “index”
and “rebuilt”). In addition, the frequencies of terms in the
URL are much lower than in the other feature spaces.

A final observation about the automatic feature selection
is that by analyzing how the features evolve over time, and
change at each learning iteration, insights can be obtained
about the adaptive behavior of ACHE . For example, as Ta-
ble 2 illustrates, for the Offline-Online in the Book domain,
the features selected for the initial link classifier are clearly
related to online bookstores (e.g., book, search and book-
stor). As new relevant forms are encountered, new terms
are introduced that are related to library sites (e.g., ipac,6

librari, book, search, and catalog).

6ipac is a system used by some library sites to search their
catalogs.

(a) URL

(b) Anchor

(c) Around

Figure 6: Features automatically extracted in differ-
ent iterations of adaptive learning for Online in the
Auto domain.

5. RELATED WORK
There is a rich literature in the area of focused crawlers

(see e.g., [1, 3, 8, 9, 11, 22, 24, 19]). Closely related to our
work are strategies that apply online-learning and that take
delayed benefit into account. We discuss these below.

Delayed Benefit. Rennie and McCallum [22] frame the
problem of creating efficient crawlers as a reinforcement learn-
ing task. They describe an algorithm for learning a function
that maps hyperlinks to future discounted reward: the ex-
pected number of relevant pages that can be found as a re-
sult of following that link. They show that by taking delayed
rewards into account, their RL Spider is able to efficiently
locate sparse concepts on a predetermined universe of URLs.
There are several important differences between the RL Spi-
der and ACHE . First and foremost, the RL Spider does not
perform a broad search over the Web. It requires as input
the URLs of all sites to be visited and performs a focused
search only within these pre-determined sites. Second, it is
not adaptive—the classifier maintains a fixed policy during
the crawl. Finally, although their classifier also learns to
prioritize links and it considers links that have delayed ben-
efit, the learning function used in ACHE is different: the
link classifier estimates the distance between a link and a
relevant form (see Section 2.1).

The importance of considering delayed benefit in a fo-
cused crawl was also discussed by Diligenti et al. [11]. Their



Iteration Selected Features
URL Anchor Around

0 (initial features) book,search,addal,natur,hist book,search,addal,bookstor,link book,search,onlin,new,bookstor
1 search,index,book search,book,advanc,librari,engin book,search,titl,onlin,author
2 search,adv,lib,index,ipac search,book,advanc,librari,catalog book,search,librari,titl,author
3 search,lib,ipac,profil,catalog search,librari,catalog,advanc,book librari,search,book,catalog,titl
4 search,lib,ipac,profil,catalog librari,search,catalog,advanc,book librari,search,catalog,book,titl
5 search,lib,ipac,profil,catalog librari,search,catalog,advanc,book librari,search,book,catalog,public

Table 2: Features selected during the execution of the Offline-Online in Book domain.

Context Focused Crawler (CFC) learns a hierarchy of con-
cepts related to a search topic. The intuition behind their
approach is that topically relevant pages can be found by
using a context graph which encodes topics that are directly
or indirectly related to the target topic. By performing a
backward crawl from a sample set of relevant pages, they
create classifiers that identify these related topics and es-
timate, for a given page r, the distance between r and a
topic-relevant page. Unlike ACHE , the focus of the CFC is
solely based on the contents of pages—it does not prioritize
links. If a page is considered relevant, all links in that page
will be followed. Like the RL Spider, the CFC uses a fixed
focus strategy.

The FFC [3] combines ideas from these two approaches.
It employs two classifiers: one that uses page contents that
focuses the search on a given topic; and another that identi-
fies promising links within the focus topic. An experimental
evaluation over three distinct domains showed that combin-
ing the page contents and hyperlink structure leads to sub-
stantial improvement in crawler efficiency. The differences
between FFC and ACHE are discussed in Section 3.

Unlike these approaches, ACHE adaptively updates its
focus strategy as it learns from new experience. There is an
important benefit derived from combining delayed benefit
and online-learning: following links that have delayed bene-
fit forces the crawler to explore new paths and enables it to
learn new patterns. This is in contrast to strategies based on
immediate benefit that exploit actions it has already learned
will yield high reward. This exploratory behavior makes our
adaptive learning strategy robust and enables it to correct
biases created in the learning process. This was observed
in several of the domains we considered in our experimental
evaluation (Section 4). In the Book domain, for instance, the
crawler with a fixed policy (Offline) was trapped in a sub-
set of promising links related to online bookstores, whereas
ACHE was able to eliminate this bias in the first learning it-
eration and learn new patterns that allowed it to also obtain
relevant forms from online library sites.
Online Learning Policies. Chakrabarti et al. [8] proposed
an online learning strategy that, similar to ACHE uses two
classifiers to focus the search: a baseline page classifier that
learns to classify pages as belonging to topics in a taxon-
omy [9]; and the apprentice, a classifier that learns to iden-
tify the most promising links in a topic-relevant page. Their
motivation to use the apprentice comes from the observation
that, even in domains that are not very narrow, the number
of links that are irrelevant to the topic can be very high.
Thus, following all the links in a topic-relevant page can be
wasteful. The baseline classifier captures the user’s specifi-
cation of the topic and functions as a critic of the apprentice,
by giving feedback about its choices. The apprentice, using
this feedback, learns the features of good links and is re-

sponsible for prioritizing the links in the crawling frontier.
Although ACHE also attempts to estimate the benefit of
following a particular link based on the crawler experience,
there is an important difference. Because the apprentice
only follows links that give immediate benefit, biases that
are introduced by the online learning process are reinforced
as the crawl progresses—the crawler will repeatedly exploit
actions it has already learned will yield high reward. In con-
trast, as discussed above, by considering links that may lead
to delayed benefit, ACHE has a more exploratory behavior
and will visit unknown states and actions.

It is worthy of note that the goal of our link classifier is
complementary to that of the apprentice—it aims to learn
which links lead to pages that contain relevant forms, whereas
the goal of the apprentice is to avoid off-topic pages. In ad-
dition, we are dealing with concepts that are much sparser
than the ones considered by Chakrabarti et al.. For exam-
ple, the density of the domains considered in [8] varied from
31% to 91%, whereas for concepts we considered density
values range between 0.094% and 1.857%. Nonetheless, our
approach is likely to benefit from such an apprentice, since
it would reduce the number of off-topic pages retrieved and
improve the overall crawling efficiency. Integrating the ap-
prentice in our framework is a direction we plan to pursue
in future work.

Aggarwal et al. [1] proposed an online-learning strategy to
learn features of pages that satisfies a user-defined predicate.
They start the search with a generic crawler. As new pages
that satisfy the user-defined predicates are encountered, the
crawler gradually constructs its focus policy. The method
of identifying relevant documents is composed by different
predictors for content and link structure. Manual tuning is
required to determine contribution of each predictor to the
final result. In addition, similar to Chakrabarti et al. their
strategy only learns features that give immediate benefit.
Another drawback of this approach is its use of a generic
crawler at the beginning of its execution. Because a generic
crawler may need to visit a very large number of pages in
order to obtain a significant sample, the learning costs may
be prohibitive for sparse domains. As a point of comparison,
consider the behavior of the online crawler for the Movie
domain (Section 4). Even using a focused crawler, only 94
relevant forms are retrieved in a 100,000 page crawl, and
these were not sufficient to derive useful patterns. A much
larger number of pages would have to be crawled by a general
crawler to obtain the same 94 forms.

6. CONCLUSION AND FUTURE WORK
We have presented a new adaptive focused crawling strat-

egy for efficiently locating hidden-Web entry points. This
strategy effectively balances the exploitation of acquired knowl-
edge with the exploration of links with previously unknown



patterns, making it robust and able to correct biases intro-
duced in the learning process. We have shown, through a
detailed experimental evaluation, that substantial increases
in harvest rates are obtained as crawlers learn from new ex-
periences. Since crawlers that learn from scratch are able to
obtain harvest rates that are comparable to, and sometimes
higher than manually configured crawlers, this framework
can greatly reduce the effort to configure a crawler. In ad-
dition, by using the form classifier, ACHE produces high-
quality results that are crucial for a number information
integration tasks.

There are several important directions we intend to pur-
sue in future work. As discussed in Section 5, we would
like to integrate the apprentice of [8] into the ACHE frame-
work. To accelerate the learning process and better handle
very sparse domains, we will investigate the effectiveness
and trade-offs involved in using back-crawling during the
learning iterations to increase the number of sample paths.
Finally, to further reduce the effort of crawler configuration,
we are currently exploring strategies to simplify the creation
of the domain-specific form classifiers. In particular, the use
of form clusters obtained by the online-database clustering
technique described in [5] as the training set for the classi-
fier.

Acknowledgments. This work is partially supported by
the National Science Foundation (under grants IIS-0513692,
CNS-0524096, IIS-0534628) and a University of Utah Seed
Grant.

7. REFERENCES

[1] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu.
Intelligent crawling on the world wide web with
arbitrary predicates. In Proceedings of WWW, pages
96–105, 2001.

[2] L. Barbosa and J. Freire. Siphoning Hidden-Web Data
through Keyword-Based Interfaces. In Proceedings of

SBBD, pages 309–321, 2004.

[3] L. Barbosa and J. Freire. Searching for Hidden-Web
Databases. In Proceedings of WebDB, pages 1–6, 2005.

[4] L. Barbosa and J. Freire. Combining classifiers to
identify online databases. In Proceedings of WWW,
2007.

[5] L. Barbosa, J. Freire, and A. Silva. Organizing
hidden-web databases by clustering visible web
documents. In Proceedings of ICDE, 2007. To appear.

[6] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and
S. Venkatasubramanian. The connectivity server: Fast
access to linkage information on the Web. Computer

Networks, 30(1-7):469–477, 1998.

[7] Brightplanet’s searchable databases directory.
http://www.completeplanet.com.

[8] S. Chakrabarti, K. Punera, and M. Subramanyam.
Accelerated focused crawling through online relevance
feedback. In Proceedings of WWW, pages 148–159,
2002.

[9] S. Chakrabarti, M. van den Berg, and B. Dom.
Focused Crawling: A New Approach to Topic-Specific
Web Resource Discovery. Computer Networks,
31(11-16):1623–1640, 1999.

[10] K. C.-C. Chang, B. He, and Z. Zhang. Toward
Large-Scale Integration: Building a MetaQuerier over

Databases on the Web. In Proceedings of CIDR, pages
44–55, 2005.

[11] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and
M. Gori. Focused Crawling Using Context Graphs. In
Proceedings of VLDB, pages 527–534, 2000.

[12] T. Dunnin. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61–74, 1993.

[13] M. Galperin. The molecular biology database
collection: 2005 update. Nucleic Acids Res, 33, 2005.

[14] Google Base. http://base.google.com/.

[15] L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss:
Text-source discovery over the internet. ACM TODS,
24(2), 1999.

[16] B. He and K. C.-C. Chang. Statistical Schema
Matching across Web Query Interfaces. In Proceedings

of ACM SIGMOD, pages 217–228, 2003.

[17] H. He, W. Meng, C. Yu, and Z. Wu. Wise-integrator:
An automatic integrator of web search interfaces for
e-commerce. In Proceedings of VLDB, pages 357–368,
2003.

[18] W. Hsieh, J. Madhavan, and R. Pike. Data
management projects at Google. In Proceedings of

ACM SIGMOD, pages 725–726, 2006.

[19] H. Liu, E. Milios, and J. Janssen. Probabilistic models
for focused web crawling. In Proceedings of WIDM,
pages 16–22, 2004.

[20] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[21] S. Raghavan and H. Garcia-Molina. Crawling the
Hidden Web. In Proceedings of VLDB, pages 129–138,
2001.

[22] J. Rennie and A. McCallum. Using Reinforcement
Learning to Spider the Web Efficiently. In Proceedings

of ICML, pages 335–343, 1999.

[23] S. Russell and P. Norvig. Artificial Intelligence: A

Modern Approach. Prentice Hall, 2002.

[24] S. Sizov, M. Biwer, J. Graupmann, S. Siersdorfer,
M. Theobald, G. Weikum, and P. Zimmer. The
BINGO! System for Information Portal Generation
and Expert Web Search. In Proceedings of CIDR,
2003.

[25] W. Wu, C. Yu, A. Doan, and W. Meng. An
Interactive Clustering-based Approach to Integrating
Source Query interfaces on the Deep Web. In
Proceedings of ACM SIGMOD, pages 95–106, 2004.

[26] J. Xu and J. Callan. Effective retrieval with
distributed collections. In Proceedings of SIGIR, pages
112–120, 1998.

[27] Y. Yang and J. O. Pedersen. A Comparative Study on
Feature Selection in Text Categorization. In
International Conference on Machine Learning, pages
412–420, 1997.

[28] C. Yu, K.-L. Liu, W. Meng, Z. Wu, and N. Rishe. A
methodology to retrieve text documents from multiple
databases. TKDE, 14(6):1347–1361, 2002.

[29] Z. Zheng, X. Wu, and R. Srihari. Feature selection for
text categorization on imbalanced data. ACM

SIGKDD Explorations Newsletter, 6(1):80–89, 2004.


