
An Adaptive Cryptographic Accelerator for IPsec
on Dynamically Reconfigurable Processor

Yohei Hasegawa, Shohei Abe, Hiroki Matsutani, and Hideharu Amano
Graduate School of Science and Technology, Keio University

3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan
drp@am.ics.keio.ac.jp

Kenichiro Anjo
NEC Electronics Corporation

1753 Shimonumabe, Nakahara, Kawasaki, Kanagawa 211-8668, Japan

Toru Awashima
NEC System Devices Research Laboratory

1753 Shimonumabe, Nakahara, Kawasaki, Kanagawa 211-8668, Japan

Abstract

We propose a cryptographic accelerator for IPsec
by using the NEC electronics’ Dynamically Reconfig-
urable Processor (DRP). In our system, an embedded
processor and DRP are integrated in a System-on-a-
Chip (SoC) and multiple cryptographic tasks can be
accelerated by DRP. Moreover, the virtual hardware
mechanism, which dynamically changes its configu-
ration data set, is introduced to realize more tasks on
DRP. The evaluation results show that the through-
put of each implemented cryptographic task outper-
formed a MIPS compatible embedded processor from
1.6 times to 7.8 times. In addition, it is shown that
80.7% of the run-time configuration overhead can be
reduced by background configuration based on the
double buffering method.

1 Introduction

Recently, the improvements in semiconductor
technology made it possible to integrate all of system
components, such as microprocessor, memory, and
several controllers into a single chip called System-
on-a-Chip (SoC). In particular, in mobile phones,
PDAs, and other embedded mobile systems, applica-
tion specific hardware and a simple embedded pro-
cessor are coupled to perform image/audio process-
ings, encryptions and other multimedia processings.
In these systems, an application specific hardware for
off-loading heavy weight processes of embedded pro-
cessors is widely used to achieve both high perfor-
mance and low power consumption.

However, such a specialized chip cannot be used

for other purposes and new standards or techniques
are hard to be built in after shipment. Besides, the
increase of the development cost is a serious prob-
lem when the size and complexity of the system are
increased. Since a various kind of new technologies
including JPEG2000, H.264, and AES have been pro-
posed one after another, it is not practical to develop
the dedicated hardware for each of them.

For example, IP Security (IPsec) [13] has been
popular even in embedded systems. It is a protocol
suite that provides security feature to the standard In-
ternet Protocol (IP) with combination of multiple en-
cryptions and authentications. Since powerful com-
putational capability is required to deal with data en-
cryption and authentication processing, hardware im-
plementation of them has been a common solution.
However, designing special hardware corresponding
to each cryptography results in the heavy increase of
the development cost. In addition, it is difficult to
cope with newly developed cryptographic algorithms.

Dynamically reconfigurable processors are ex-
pected to overcome these problems. Recent coarse
grain dynamically reconfigurable processors [11, 9, 8,
12] have been developed to achieve high performance
and flexibility with smaller cost compared with tra-
ditional programmable devices, such as Field Pro-
grammable Gate Arrays (FPGAs). These devices
consist of coarse grain cells and are prospective for
high performance especially for stream applications
such as encryption, image/audio compression, and
digital signal processings [14, 3].

Furthermore, dynamically reconfigurable proces-
sors are believed to be more suitable for mobile ter-
minals whose hardware resource and battery capac-
ity are strictly limited because of time-multiplexed

VMEM

HMEM HMEM HMEM HMEM

HMEM HMEM HMEM HMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

Vmemctrl

Vmemctrl

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

Vmemctrl

Vmemctrl
State Transition Controller

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

PEPEPEPEPEPEPEPE

Figure 1. DRP Tile Archi-
tecture

In
st

ru
ct

io
n

M
em

or
y

A
L

U
D

M
U

FL
IP

 F
L

O
P

D
at

a
O

ut
pu

t
8b

it

Flag Input

Data Bus

Flag Output

D
at

a
In

pu
t

8b
it

x
2

Flag Bus
Instruction Pointer

Bus Selector

R
eg

is
te

r F
ile

Figure 2. Processing Ele-
ment (PE)

CLK To SDRAM/SRAM/CAM CLK

Data

Ctrl

Test

Program

CLK PCI IF CLK

PLL MUL MUL MC MUL MUL PLL

PLLMULMULPCICMULMULPLL

Tile Tile Tile Tile

Tile Tile Tile Tile

CSTC

Figure 3. Prototype Chip:
DRP-1

execution introduced by multi-context functionality.
Multiple configuration data of circuits called contexts
are stored in the internal configuration memory, and
it can be rapidly (often in one clock) interchanged
to implement different functions. This multi-context
functionality reduces the physical die size and im-
proves power efficiency. It divides a whole task into
multiple contexts, and only one context which is re-
quired at that point should be activated and executed.

In this paper, we implemented and evalu-
ated the cryptographic accelerator for IPsec based
on NEC’s Dynamically Reconfigurable Processor
(DRP). Moreover, we propose a DRP-based system
architecture that targets embedded fields. Our system
provides high-throughput cryptographies, cost effi-
ciency, and high flexibility to embedded systems that
support IPsec communications.

The rest of this paper is organized as follows. Sec-
tion 2 explains an architecture of DRP, which is a tar-
get device in this paper. In Section 3, we present our
DRP-based embedded system architecture including
design policies of the cryptographic accelerator. In
Section 4, the implementation of experimental system
utilizing a DRP evaluation board is described. The re-
sults of performance analysis and simulation results
are shown in Section 5. Finally, Section 6 describes
the previous work on FPGA-based IPsec implemen-
tations and this work is concluded in Section 7.

2 DRP Overview

DRP is a coarse grain dynamically reconfigurable
processor that was released by NEC Electronics in
2002 [11]. It carries an on-chip configuration data,
or contexts, and it dynamically reschedules between
them to realize multiple functions with one chip.

Sixty-four of the most primitive 8-bit processing
elements (PEs) are combined to form what is called
a Tile, and the DRP core consists of an arbitrary
number of these Tiles. Figure 1 is a sketch of a
Tile in DRP. The DRP was designed with a focus on
coupling with other cores on a SoC, and it has pe-

ripheral connections for such purposes. Within each
Tile, there are 64 PEs, one State Transition Controller
(STC), eight 2-ported memories (VMEMs: Vertical
MEMories), four VMEM Controllers (VMCtrl), and
four 1-ported memories (HMEMs: Horizontal MEM-
ories). The number of Tiles can be expandable, hori-
zontally and vertically.

The structure of a PE is shown in Figure 2. It
has an 8-bit ALU, an 8-bit DMU (for shifts/masks),
an 8-bit×16-word register file (RFU), and an 8-bit
flip-flop (FFU). These units are connected by pro-
grammable wires specified by instruction data (con-
figuration data), and their bit-widths range from 8
Bytes to 18 Bytes depending on the location. PE has
16-depth instruction memories (e.g. 16 contexts) and
supports multiple context operations. Its instruction
pointer is delivered from the STC.

STC is a simple sequencer in which any finite
state machine (FSM) can be stored. The STC has
64 states, and each state is associated with the in-
struction pointer. The FSM of the STC operates syn-
chronized with the internal clock, and generates the
instruction pointer for each clock cycle according to
the state. Also, STC can receive event signals from
PEs to branch conditionally. The maximum number
of branches that can be specified from the PE is four.

As for the memory units, a Tile has eight 2-ported
VMEMs on its right and left sides, and four 1-ported
HMEMs on upper and lower boundary. The capacity
of a VMEM is 8-bit×256-word, and four VMEMs
can be handled as a FIFO, using VMCtrl. HMEM is
a single-ported memory and it has a larger capacity
than the VMEM. It has 8-bit×8K-word entries. Con-
tents of these memories, flip-flops, and register files
of PE are shared with the datapath of all the contexts.
DRP Core, consisting of several Tiles, can change its
contexts every cycle with the instruction pointer dis-
tributed from STCs. Also, each STC can run inde-
pendently by programming different FSMs.

DRP-1, shown in Figure 3, is the prototype chip
using DRP Core with 4×2 Tiles. It is fabricated with
0.15-µm CMOS processes. It consists of 8 Tiles,

Embedded
Processor Memory

(IP-Packet
Buffer)

I/O

DRP
Core

Data Bus

Configuration
Memory

Configuration Bus

Figure 4. Target System Architecture

eight 32-bit multipliers, an external SRAM controller,
a PCI interface, and 256-bit I/Os. The maximum op-
eration frequency is 100-MHz. Although DRP-1 is
used as a stand-alone reconfigurable device, Tiles of
DRP can be used as an Intellectual Property (IP) on
SoCs with an embedded processor. In this case, the
number of Tiles can be chosen so as to achieve the
required performance with minimum area.

An integrated design environment, called Muske-
teer, is provided for DRP-1. It includes a high level
synthesis tool, a design mapper for DRP, simulators,
and a layout/viewer tool is provided. Applications
can be written in a C-based high level hardware de-
scription language, synthesized, and mapped directly
onto the DRP-1.

3 Cryptographic Accelerator Design

In this paper, we propose the DRP-based crypto-
graphic accelerator for IPsec. We suppose the fol-
lowing system, considering that it is applied for em-
bedded systems.

3.1 Co-Processing System Model

The recent SoCs consist of tightly coupled co-
processors with a simple embedded processor. The
embedded processor is used to implement control-
intensive tasks, while the co-processor that is of-
ten dedicated hardware accelerates computation-
intensive tasks of applications. The co-processing
system has been widely used as a practical solution
to optimize cost, performance, and power consump-
tion.

However, designing special hardware customizing
various kinds of tasks results in the heavy increase
of the development cost. Besides, it is difficult to
address new technologies which spring up one after
another. In order to solve this problem in SoC, re-
placing some dedicated hardware cores with a single
dynamically reconfigurable processor makes the sys-
tem flexible and scalable.

Context 1

Context 2

Context 3

Context n

Programmable
Logic Array

Configuration Memory

M
ultiplexer

Dynamically Reconfigurable Processor

Backup Memory

Figure 5. Virtual Hardware

Some coarse grain reconfigurable processors like
DRP are also used as a co-processor of an embedded
processor. The typical stream processing, which is a
target of DRP, consists of some tasks, and the transfer
of stream data between tasks is quite explicit. For this
reason, it is effective to assign tasks to coarse grain
reconfigurable datapath and then store and distribute
the block of stream data into the internal distributed
memory modules.

Hence, we treat a target system shown in Figure 4
here. This is a co-processing system which includes
an embedded processor and DRP Core which consists
of some Tiles of DRP. The embedded processor, DRP
Core and a shared memory are connected by a high-
speed on-chip data bus like NECoBus[5], and DMA
transfer is supported. Moreover, DRP Core has a spe-
cial I/O interface considering stream processing.

In the IPsec accelerator proposed here, multiple
cryptographic tasks are accelerated by DRP Core, and
the other control-intensive tasks including configura-
tion control are executed by the on-chip embedded
processor.

3.2 Virtual Hardware

Dynamically reconfigurable processors can realize
various functions utilizing dynamic reconfiguration
based on the multi-context feature. However, since
the on-chip configuration memory is limited (16 con-
texts in the DRP-1), applications over this limitation
cannot be executed.

In order to conquest this problem and implement
more functions than the capacity of the on-chip con-
figuration memory, a virtual hardware mechanism has
been proposed [10, 4]. It is a technique which realizes
large scale applications by dynamically changing the
set of contexts from an external memory. As shown in
Figure 5, this method allows reducing hardware cost
by escaping unused contexts to the external memory
and executes them in the time-multiplexed manner at
task level. The virtual hardware is a useful technique
to implement various tasks in embedded systems that
have limited with computation resources.

We introduced the virtual hardware mechanism
to our cryptographic accelerator so that can switch
multiple cryptographic tasks on demand. In IPsec
communications, it is required that multiple crypto-
graphic tasks can be switched according to the situ-
ation. The configuration data corresponding to each
cryptographic task is implemented individually. So,
if users generate new configuration data of DRP, it is
easy to add any cryptographic algorithms to the sys-
tem.

As shown in Figure 4, an embedded processor
controls the configuration access of DRP Core and
switches cryptographic tasks by loading the configu-
ration data dynamically. It is transferred by the ded-
icated configuration bus between DRP Core and the
external configuration memory.

3.3 Run-Time Configuration based on Dou-
ble Buffer

In the virtual hardware system, the dynamic load-
ing time of configuration data sets can be a bottleneck
of the system. Since task switching may be frequently
occurred when many nodes communicate using sev-
eral cryptographic tasks on IPsec, the configuration
overhead is a critical problem in our cryptographic
accelerator.

To address this problem, the run-time configura-
tion method based on double buffering is introduced.
In this method, at first, available contexts of DRP
Core are divided into two groups. Then, a certain task
is executed in one context group, while the configu-
ration of the next task is done to the other context
group. Consequently, the execution and the configu-
ration of tasks are overlapped, and the configuration
is completed in background.

In order to hide the run-time configuration time,
however, the next configuration must be predictable.
Furthermore, the next configuration must be finished
during the execution of the current task to switch the
task without inhibition of system operations. This
overhead is evaluated later.

3.4 Acceleration Flow

The acceleration flow of our cryptographic accel-
erator is as follows. At first, the embedded proces-
sor checks IP packet headers in the IP-packet buffer.
It determines whether the IPsec is applied for the
packet. In IPsec, two communicating parties ne-
gotiate and establish a security association (SA) for
protecting the transferred data preliminarily. An SA
specifies the cryptography and the related keys to be
utilized. The embedded processor decodes the IP
header and finds out the corresponding SA from its
database (SAD). After that, it searches the configu-
ration data corresponding to the cryptography indi-
cated by the SA, and sends its pointer and data to DRP

(a) Appearance

Hyper Transport
Interface

Host PCI
Interface

Delineator

DMA

inFIFO
(1K x 64bit)

FIFO
Controller

outFIFO
(1K x 64bit)

Local PCI
Interface

SRAM
(1M x 32bit)

FPGAHost PCI Bus
(64/32bit, 33MHz)

Hyper Transport Bus
(8bit, 200MHz, 2ch)

Local PCI Bus
(32bit, 33MHz)

Memory
Controller

PCI
Interface

DRP-1

(b) Block Diagram

Figure 6. DRP Evaluation Board

Core.
For example, if an SA indicates DES-CBC as an

encryption of data, the configuration data is loaded
to the DRP Core according to the pointer from the
embedded processor. After the configuration of DRP
Core, the embedded processor sends the data to the
input buffer of DRP Core. Then, it starts processing
of DES-CBC. The output data is written in the output
buffer and the embedded processor pulls it. Finally,
an IPsec packet is transferred to a network interface
or an upper layer application.

Furthermore, for the run-time configuration based
on the double buffer, the embedded processor checks
the IP-packet buffer ahead and holds the event se-
quence of the future configurations. Thus, it is pos-
sible that the configuration for the next task is over-
lapped with the current task execution.

4 Experimental System

For the purpose of the verification, we established
the experimental system for our cryptographic accel-
erator by using a DRP evaluation board.

4.1 DRP Evaluation Board

For the implementation and the verification of our
cryptographic accelerator, we established the exper-
imental system by using a DRP evaluation board
shown in Figure 6. A DRP-1, an FPGA as I/O con-
troller, a PCI interface, and an external SRAM are
mounted on a PCI-card. In this experimental environ-
ment, DRP-1 is used as a DRP Core with 8 Tiles and
a host PC controls the DRP-1 using a set of APIs. We

developed and debugged the cryptographic accelera-
tor on the environment with the host PC and the DRP-
1. We could use this evaluation board as an emulation
platform while it doesn’t support run-time configura-
tion at the moment.

4.2 Cryptography Designs

The cryptographic tasks implemented on DRP-1
are five private-key encryptions/decryptions: DES,
AES (Rijndael), CAST-128, CAST-256, and RC6.
We also implemented two one-way hash functions:
MD5 and SHA-1. They are described by C-level
description language, Behavioral Design Language
(BDL), and compiled using the DRP compiler and the
integrated development environment called Muske-
teer. The Cipher Block Chaining (CBC) mode, which
is general in IPsec, is adopted as the operation mode
for all of private-key encryption algorithms.

The DRP compiler supports two context schedul-
ing methods, automatic and manual scheduling. the
manual scheduling in which the timing of changing
the state/contexts are directed manually by specifying
timing directive in a code, while automatic schedul-
ing mode does not need it. For the high-accuracy con-
text scheduling, we adopted the manual scheduling.

There are various task distributions between em-
bedded processor and DRP-1. Key schedulers for
DES and AES are also supported on DRP-1, while
software supports for the other algorithms. The AES,
CAST-256, and RC6 modules are designed to be able
to select the key-length flexibly. The MD5 and SHA-
1 modules are designed to calculate the hash value
of the original message by 512-bit blocks. The other
operation of MD5 and SHA-1, such as zero-padding,
and appending a message length are done by soft-
ware. Furthermore, by processing with software and
DRP-1, it is possible to compute the HMAC[2] which
is an authentication algorithm used in IPsec.

4.3 Case Design: AES-CBC

A number of cryptographic tasks have been imple-
mented on DRP-1 for the cryptographic accelerator
proposed here. From the page limitation, an exam-
ple, the implementation of AES-CBC is described in
this section.

Advanced Encryption Standard (AES) [1] is a 128-
bit encryption cipher which has been selected as a
successor to the venerable Data Encryption Standard
(DES) by the National Institute of Standards and
Technology (NIST). The AES algorithm is capable
of using cryptographic keys of 128, 192, and 256 bits
to encrypt and decrypt data in blocks of 128 bits.

The AES is designed to use only simple whole-
byte operations. In the case of 128-bit key, AES iter-
ates some steps for 10 rounds. Each regular round in-
volves four steps: Byte Sub, Shift Row, Mix Column,

S
ub

 B
yt

e

S
hi

ft
R

ow

M
ix

 C
ol

um
n

A
dd

 R
ou

nd
 K

ey

S
hi

ft
R

ow

A
dd

 R
ou

nd
 K

ey

ou
tp

ut

IV

ke
y

ke
y

S
ub

 B
yt

e

A
dd

 R
ou

nd
 K

ey

in
pu

t

ke
yIV

context1 context2 context3 context4 context5

round n round n+1

round 1 round 10

Figure 7. AES Context Scheduling

and Add Roundkey. Mix Column step is omitted in
the final round. In the CBC mode, the expanded keys
are used in each round and the 128-bit cipher block is
fed back to the next encryption as Initialization Vec-
tor (IV).

The context scheduling of AES-CBC is shown in
Figure 7. Since AES uses only 8-bit operations, DRP
deals with it well due to the granularity of the PE and
makes the most of the byte-level parallelism espe-
cially in Mix Column step. First is the Byte Sub step,
where each byte of the block is replaced by its sub-
stitute called an S-box operation. We implemented
the S-Box which uses VMEMs as LUTs to achieve
a balanced design in resource and delay. Since the
VMEM is a 2-ported memory and distributed around
a Tile of DRP, required data sets can be read from the
VMEM-based S-box simultaneously.

To hide the 1-clock latency for the memory ac-
cess and the gate delay, round n and round n + 1
are mixed in the same context as shown in Figure 7.
This causes the inefficient resource utilization, since
the same functions are required in the different con-
texts. The number of the contexts is increased instead
of the improvement of the performance.

5 Evaluation Results

5.1 Resource Usage and Performance

Table 1 shows the resource usage and throughput
of each cryptographic task. The required contexts
(Ctxt), the maximum number of required PEs (Max),
the total utilization of PEs (All), and the maximum
number of required VMEM modules (Vm) are sum-
marized in this table. The value of Max is the maxi-
mum number of PEs used in the context. This means
the number of PEs used spatially. In contrast, the
value of All means the total number of PEs used in
all contexts, i.e. the number of PEs used temporally.

One Tile of DRP-1 has 64 available PEs. So, all of
cryptographic tasks are implemented within 2 Tiles
of DRP-1 (128 PEs and 32 VMEMs). We can op-
timize the area efficiency by adopting the DRP core

Table 1. Resource Usage and Through-
put

Required Resources Freq. Throughput[Mbps]
name Ctxt Max All Vm [MHz] DRP-1 DSP MIPS
DES 16 121 1357 10 28.6 107.6 84.2 40.3

CAST128 9 32 140 20 27.4 109.8 95.4 46.7
AES 8 128 372 30 56.7 363.1 16.9 46.4

CAST256 16 38 327 21 28.9 37.4 36.1 23.2
RC6 6 56 164 8 34.0 198.1 96.6 76.9
MD5 7 75 279 14 24.7 194.2 135.5 95.5

SHA-1 8 65 337 20 35.1 202.1 44.0 38.7

with 2 Tiles for all cryptographic tasks. The context
which utilizes the largest number of PEs includes a
core round function of the encryption process, which
is the critical path of all contexts.

Besides, we evaluated the throughput of each
cryptographic task. Table 1 also shows the through-
put on DRP-1 comparing with DSP and an embedded
processor for each task. The throughput is measured
from the minimum number of clock cycles which is
required to operate 10000 blocks.

The throughput on DRP-1 is compared with a
widely used DSP: Texas Instruments TMS320C6713.
It is an 8-way VLIW DSP with floating operations
that runs at 225MHz. 4-KB L1 instruction cache and
4-KB L1 data cache backed up with 256-KB L2 cache
are equipped. A custom C compiler is used to com-
pile the code written in C language. The options were
set so as to maximize the throughput. We measured
the throughput with all of data stored in the L1 data
cache.

NEC’s MIPS64 compatible VR5500 was also used
for the evaluation. VR5500 is a 10-stage pipeline,
2-way out-of-order SuperScaler processor that runs
at 400 MHz with 32KB instruction cache and 32KB
data cache. Evaluation programs for each crypto-
graphic task were written in C language and com-
piled with a MIPS compatible gcc cross-compiler in
the T-Engine design environment. A ‘-O3’ optimiza-
tion option was used for compiling the program.

Evaluation result shows that the throughput of all
cryptographic tasks on DRP-1 outperforms VR5500
from 1.6 times to 7.8 times. So, they can acceler-
ate encryptions and authentications for IPsec com-
munications. Because of the performance over DSP,
DRP has advantages as an accelerator. In terms of re-
source usage, all cryptographic tasks have been im-
plemented within 2 Tiles of DRP-1. If we use 2
Tile as DRP Core, it is possible to accelerate crypto-
graphic tasks with improved area-efficiency. Further-
more, since the operation frequency is about 30MHz,
the power consumption is expected to be reduced
compared with other architectures.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0
25

6
51

2
76

8
10

24
12

80
15

36
17

92
20

48
23

04
25

60
28

16
30

72
33

28
35

84
38

40
40

96
43

52
46

08
48

64
51

20
53

76
56

32
58

88
61

44
64

00
66

56
69

12
71

68
74

24
76

80
79

36
81

92

C
o-

P
ro

ce
ss

in
g

/ S
of

tw
ar

e
O

nl
y

Message Size[bytes]

HMAC-SHA-1-96
HMAC-MD5-96

Figure 8. Performance Improvement

5.2 Co-Processing Evaluation

From evaluation results described in the previous
section, it appears that cryptographic tasks can be ef-
ficiently accelerated by DRP Core with 2 Tiles. Here,
we evaluated the performance of co-processing with
an embedded processor and DRP Core. In this case,
we simulated the system such that NEC’s VR5500
is combined with DRP Core that consists of 2 Tiles.
The capability of data transfer between VR5500 pro-
cessor and DRP Core, and the configuration method
of DRP Core were assumed in Section 3.

Target applications to evaluate the impact of co-
processing are HMAC-MD5-96 and HMAC-SHA-1-
96 for authentication algorithms on IPsec. We sup-
posed that MD5 and SHA-1, the core of both appli-
cations, are executed on DRP Core. Moreover, the
message data to process is generated from a random
number by 256-bit block automatically. The prelim-
inary profiling shows that the operation time of both
hash functions accounts over 90% of the execution
time. Besides, as the message size to operate be-
comes large, the ratio of both hash function increases.

Figure 8 shows the performance improvement
by co-processing to the case that HMAC-MD5-96
and HMAC-SHA-1-96 are executed by software on
VR5500 only. The vertical axis shows the ratio of
performance improvement which is normalized by
the execution time for the software only, while the
horizontal axis shows the message size.

The data transfer between VR5500 and DRP Core
is assumed to be performed through a shared mem-
ory connected via an on-chip bus like NECoBus, and
DMA transfer is supported. The throughput of the on-
chip bus is assumed to be 64bit at 100MHz. Under the
above assumptions, we estimated the time required
to communicate the message data. Furthermore, the
pure operation time of evaluation programs was mea-
sured, assuming that the configuration of DRP Core
had been finished completely.

Figure 8 shows that if DRP Core and VR5500
run together, it is possible to improve the perfor-

Table 2. Configuration Data Size of
Tasks on DRP-1

Task Config.Size[bit]
DES (Encryption + KeyScheduler) 331104
CAST128 (Encryption) 104928
AES (Encryption + KeyScheduler) 201184
CAST256 (Encryption) 207744
RC6 (Encryption) 90240
MD5 113760
SHA-1 134560

mance compared with a case of the software execu-
tion on VR5500 only. In particular, the co-processing
is more effective if the message size to operate be-
comes large. Consequently, the achieved improve-
ment is about 1.8 times in HMAC-MD5-96 and about
4.1 times in HMAC-SHA-1-96.

5.3 Analysis of Run-Time Configuration
Overhead

5.3.1 Configuration Data Size The previous
results show that multiple cryptographic tasks can be
accelerated by co-processing with an embedded pro-
cessor and DRP Core. In our system, however, cryp-
tographic tasks are switched by a virtual hardware
mechanism. Namely, they are switched by replacing
the configuration data corresponding to each task on
demand. Thus, the run-time configuration overhead
in task switching must be evaluated.

The size of configuration data of each crypto-
graphic task is shown in Table 2. About 40KB of
configuration data in a large case must be transferred
from the external memory into DRP Core. Although
it is much smaller than the configuration data of com-
mon FPGAs, its configuration time is considerable
compared with the execution time. So, the virtual
hardware mechanism with double buffering is intro-
duced to hide the run-time configuration overhead.

5.3.2 Simulation Results We simulated the
virtual hardware system with the double buffer us-
ing the actual IPsec traffic, and evaluated the effect
of overhead hiding. Each cryptographic task is im-
plemented within 16 contexts of the DRP-1. Thus,
we supposed that 32 contexts are available to allow
using the double buffer. It is also assumed that the
bandwidth of DRP configuration is 128bit/100MHz.
The configuration access is controlled by an on-chip
embedded processor.

The traffic data of IPsec is traced from the follow-
ing actual network with three PCs (A, B, and C) com-
municating with each other with IPsec. The PC-B and
-C download a certain size of a file from the PC-A si-
multaneously. The traffic data streaming in the above
network is measured. The PC-A and -B communicate

79.9

95.4

20.1

4.6

without
double buffer

with
double buffer

Total Execution Time

Task Execution Time Task Configuration Time

Figure 9. Run-Time Configuration Over-
head and Impact of Double Buffering

with encryption by AES-CBC and authentication by
HMAC-MD5-96. Similarly, the PC-A and -C com-
municate with RC6-CBC and HMAC-SHA-1-96. It
is assumed that our cryptographic accelerator is used
in the PC-A which is a host PC in this network. In
addition, we suppose that enough size of packets are
stored in the IP-packet buffer of the PC-A to predict
and prefetch the next configuration data during the
execution of a certain task.

Figure 9 shows the simulation result of the run-
time configuration overhead. In this graph, the ratio
of required configuration time of tasks in the case of
with/without the double buffer is shown. If the con-
figuration cannot be overlapped, the run-time con-
figuration overhead is 20.1% of the total operation
time. If the double buffer is available, the overhead
decreases to 4.6% and it is possible to reduce 80.7%
of the configuration time compared with the case that
any configurations cannot be hidden.

The effects of double buffering are classified
broadly into following two categories.

a) One is the effect of hiding configuration time be-
hind a task execution.

b) The other effect is reduction of configuration
frequency due to buffering of tasks in DRP Core.
In this simulation, since 19.7% of tasks had been
retained in the DRP Core, their configurations
had been skipped.

From above analysis, we have demonstrated that
configuration overhead can be reduced to 4.6% of to-
tal operation time by applying run-time configuration
based on the double buffer. Consequently, it is also
possible to implement a practical virtual hardware
system with DRP Core.

Additionally, if more contexts (e.g. 64 contexts)
are available, more tasks can be implemented and it
is easy to reduce the overhead of run-time configura-
tions. The hierarchical configuration cache can im-
prove the bandwidth of the run-time configuration.

6 Related Work

Recently, FPGA-based cryptographic accelerators
have been developed. Utilizing one or more FPGAs,
high throughput and flexible systems have been im-
plemented.

In [6], SLAAC-1V board that has three Xil-
inx’s Virtex XCV1000 is proposed. High-throughput
Triple-DES and AES are implemented in this accel-
erator. This board is a powerful and large scale cryp-
tographic accelerator based on multiple FPGAs.

Task switching method by run-time FPGA config-
uration is introduced in [7]. In this literature, Adap-
tive Cryptographic Engine (ACE), which is an IPsec
accelerator based on a single FPGA is proposed. In
ACE, five private-key encryptions are implemented
and ACE can switch them by run-time FPGA config-
uration. Besides, for the challenge to the configura-
tion overhead, an efficient use of configuration mem-
ory by compressing configuration data is examined.

These FPGA-based systems achieve high through-
put and flexibility, but require multiple high-end FP-
GAs which are connected to host PC by interface like
PCI and USB. These systems are for acceleration of
common PCs, and difficult to be integrated in embed-
ded systems. And also, because of milli-second order
configuration time of common FPGAs, the configu-
ration overhead is extremely large.

In our cryptographic accelerator for IPsec, we
adopted a coarse-grain dynamically reconfigurable
processor, DRP whose configuration overhead is
smaller than commercial FPGAs. Thus, in particu-
larly embedded systems, our proposed system is ad-
vantageous compared with conventional approaches.

7 Summary

The implementation and the evaluation of the
cryptographic accelerator for IPsec on NEC’s Dy-
namically Reconfigurable Processor (DRP) are pre-
sented and discussed. This system accelerates multi-
ple cryptographic tasks on DRP-1 and also can switch
them on demand by a virtual hardware mechanism.

The evaluation result shows that all of crypto-
graphic tasks can be implemented within 2 Tiles of
DRP-1. The throughput of each cryptographic task
outperformed the DSP and MIPS compatible proces-
sor. Furthermore, the simulation results show that our
co-processing system eliminated a bottleneck of the
software execution and achieved from 1.8 times to 4.1
times of performance improvement in the authentica-
tion application for IPsec.

In addition, we have analyzed the overhead of a
run-time configuration on the virtual hardware. The
evaluation result shows that the overhead is 20.1% of
the total operation time. It is also clarified that about
80.7% of the run-time configuration time can be re-
duced using the double buffer method.

Acknowledgment

Throughout this work, the DRP-1 Device and
its design and synthesis tools were provided from
NEC/NEC Electronics. The authors would like to
show our gratitude to all members of the DRP de-
velopment group at NEC Electronics and NEC Labo-
ratories for their design tool support and considerable
amount of technical advice.

8. References

[1] Advanced Encryption Standard(AES). Federal Infor-
mation Processing Standard (FIPS) Publication 197,
2001.

[2] The Keyed-Hash Message Authentication Code
(HMAC). FIPS Pub 198, 2002.

[3] A. Alsolaim, J. Becker, M. Glesner, and J. Starzyk.
Architecture and Application of a Dynamically Re-
configurable Hardware Array for Future Mobile
Communication Systems. In Proceedings of the IEEE
Symposium on Field-Programmable Custom Com-
puting Machines (FCCM2000), pages 205–214, Apr.
2000.

[4] H. Amano, T. Inuo, H. Kami, T. Fujii, and M. Suzuki.
Techniques for Virtual Hardware on a Dynamic Re-
configurable Processor -An approach to tough cases-.
In Proceedings of International Conference on Field
Programmable Logic and Application (FPL2004),
pages 464–473, Sept. 2004.

[5] K. Anjo, A. Okamura, and M. Motomura. Wrapper-
based Bus Implementation Techniques for Perfor-
mance Improvement and Cost Reduction. IEEE Jour-
nal of Solid State Circuits, 36(5):804–817, May 2004.

[6] P. Chodowiec, K. Gaj, P. Bellows, and B. Schott. Ex-
perimental Testing of the Gigabit IPSec-Compliant
Implementations of Rijndael and Triple DES Using
SLAAC-1V FPGA Accelerator Board. In Proceed-
ings of the 4th International Conference on Informa-
tion Security (ISC2001), pages 220–234, Oct. 2001.

[7] A. Dandails, V. K. Prasanna, and J. D. P. Rolim. An
Adaptive Cryptographic Engine for IPsec Architec-
tures. In Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines
(FCCM2000), pages 132–141, Apr. 2000.

[8] Elixent. http://www.elixent.com/.
[9] IPFlex. http://www.ipflex.com/.

[10] X.-P. Ling and H. Amano. WASMII: A Data Driven
Computer on a Virtual Hardware. In Proceedings of
the IEEE Symposium on FPGAs for Custom Comput-
ing Machines (FCCM1993), pages 33–42, Apr. 1993.

[11] M. Motomura. A Dynamically Reconfigurable Pro-
cessor Architecture. Microprocessor Forum, Oct.
2002.

[12] PACT. http://www.pactcorp.com/.
[13] S.Kent and R. Atkinson. Security Architecture for the

Internet Protocol. RFC 2401, 1998.
[14] G. J. M. Smit, P. J. M. Havinga, L. T. Smit, and

P. M. Heysters. Dynamic Reconfiguration in Mo-
bile Systems. In Proceedings of International Con-
ference on Field Programmable Logic and Applica-
tion (FPL2002), pages 162–170, Aug. 2002.

