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Abstract

Adapting to dynamic environments is essential for artificial agents, especially those
aiming to communicate with people interactively. In this context, a social robot that
adapts its behaviour to different users and proactively suggests their favourite activ-
ities may produce a more successful interaction. In this work, we describe how the
autonomous decision-making system embedded in our social robot Mini can produce
a personalised interactive communication experience by considering the preferences
of the user the robot interacts with. We compared the performance of Top Label as
Class and Ranking by Pairwise Comparison, two promising algorithms in the area, to
find the one that best predicts the user preferences. Although both algorithms provide
robust results in preference prediction, we decided to integrate Ranking by Pairwise
Comparison since it provides better estimations. The method proposed in this contribu-
tion allows the autonomous decision-making system of the robot to work on different
modes, balancing activity exploration with the selection of the favourite entertain-
ing activities. The operation of the preference learning system is shown in three real
case studies where the decision-making system works differently depending on the
user the robot is facing. Then, we conducted a human-robot interaction experiment
to investigate whether the robot users perceive the personalised selection of activities
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more appropriate than selecting the activities at random. The results show how the
study participants found the personalised activity selection more appropriate, improv-
ing their likeability towards the robot and how intelligent they perceive the system.
query Please check the edit made in the article title.

Keywords Autonomous Decision-making - Preference learning - Social Robots -
Human-robot interaction - Adaptation - Personalised robotics

1 Introduction

Social robots with autonomous decision-making capabilities are becoming real in
many applications. They are used in tasks related to healthcare (Olaronke et al. 2017,
Castilloetal. 2018), education (Bertel and Hannibal 2016), and entertainment (Alonso-
Martin et al. 2010). Thus, social robots are intended to coexist with humans at their
homes or care centres, requiring robust interaction mechanisms for working during
long periods. As Leite et al. (2013) assure, especially ‘in healthcare and therapy,
there is a great potential for social robots to assist users over extended periods. Thus,
the acceptance and usability of the robot are bound to the accomplishment of their
expectations and beliefs (de Graaf et al. 2016). This contribution evaluates groups
of socially assistive robots coexisting with their homes and aiding them on different
tasks. According to this work, if robots coexist in people’s homes, the adaptation and
personalisation of the robot’s behaviour are essential to engage users in the interaction.

In order to achieve adaptation, the robot has to be aware of whom it is interacting
with. It must be provided with skills not only to perceive the user presence but to
retrieve all the possible information about them (Rossi et al. 2017). Enough informa-
tion allows roboticists to channel the interaction procedures of the robot towards the
needs and requirements of the user. In this line, many works have been developed con-
cerning robot personalisation and adaptation, such as (Tapus et al. 2008; Ahmad et al.
2017; Weber et al. 2018). They agree in presenting a decision-making module embed-
ded in the robot’s interaction architecture and learning mechanisms (mainly supported
by reinforcement learning) to accomplish their task. Hence, if the robot behaves dur-
ing prolonged interactions, a decision-making system and learning mechanisms are
essential to attain a personalised, natural, and fluid interaction.

In this study, the main contribution is the development of a preference learning
framework that allows a social robot to suggest their preferred activities to each user.
The framework integrates into the decision-making system of the social robot Mini
(Maroto-Gémez et al. 2018; Salichs et al. 2020) to personalise its autonomous activ-
ity selection balancing between selecting the user’s preferred activities and exploring
new ones. We believe that personalising the activity selection will improve human—
robot communication with the user. Using an online survey, 473 participants provided
their defining features and preferences towards the entertaining activities of the robot.
Then, a preference learning model estimates the preferences of new users using
similar features of the survey participants. The survey contains questions about socio-
demographic, habits, interests, and preferences about specific attributes related to our
social robot Mini (Salichs et al. 2020) (see Appendix A).
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From the variety of preference learning (Fiirnkranz J. 2010) techniques, we opted
for using label ranking (LR) (Vembu and Gértner 2010), a supervised method that
generates a preference ranking considering a predefined set of items. In the ranking,
top-ranked items are preferred, presenting a higher score obtained from a voting pro-
cess. In this application, the LR algorithm ranks the robot’s activities according to the
preferences of each particular user. Thus, we refer to each item in the ranking as a label.
Each ranking has a predefined number of items that are the entertaining activities of the
robot. Note that unlike most works in preference adaptation, we are not adapting the
user’s preferences with the interaction but estimating the possible preferences before
interacting, so users do not have to indicate their favourite activities to the robot.

Since initially we lacked information about the best LR method, we reviewed the
existing literature about combining LR with random forest classifiers (Breiman 2001).
Label ranking forest (LRF) is very promising because it does not need large datasets
to produce optimal results like deep learning. Besides, unlike reinforcement learning,
LRF does not require long-lasting continuous interaction with the environment, pro-
viding accurate and rapid predictions once the model is trained. After reviewing the
state of the art in LRF, we compared Top Label as Class (TLAC) (Zhou and Qiu 2018)
and Ranking by Pairwise Comparison (RPC) (Fiirnkranz and Hiillermeier 2003) to
optimise the performance of our framework. Both algorithms are straightforward to
implement, require a low computational payload, and yield outstanding results for
small datasets. According to previous results (Zhou and Qiu 2018; Fiirnkranz and
Hiillermeier 2003), Ranking by Pairwise Comparison should perform better in terms
of ranking prediction, although it requires intensive training periods. Contrarily, Top
Label as Class should compete in performance for those scenarios where the num-
ber of items to rank is small, requiring less computational time. In later sections, we
present the results that lead us to opt for Ranking by Pairwise Comparison instead of
Top Label as Class.

The evaluation of the system started with the selection of the LR algorithm that
yielded the best outcomes for our application. Once selected, the second step embraced
the design of three case studies showing how the decision-making system of the
robot uses the predictions of the preference learning algorithm to balance the activity
selection between the user’s preferences and exploring other activities. The balance
between activity exploration and exploiting the top-ranked activities is attained by
combining proactive selections of the robot with allowing the user to decide which
activity to execute. Finally, we conducted a real human—robot interaction experiment to
assess whether users prefer a personalised or a stochastic activity selection. Although
numerous works present active techniques to learn user preferences using human—
machine interactions (Long et al. 2016; Chen et al. 2017; Woodworth et al. 2018;
Alkhabbas et al. 2020; Adinolf et al. 2020; Schneider and Kummert 2021; Kubota and
Riek 2021), any current works addresses how to estimate the initial preferences of new
users that interact with a social robot using data collected from similar users. Besides,
any work focuses on proactively suggesting the favourite entertaining activities to
improve engagement.

This manuscript reviews, in Sect. 2, the related work that can be found in the liter-
ature, focusing on LR preference learning and personalised human—robot interaction.
In Sect. 3, we formalise the problem of LRF in terms of Ranking by Pairwise Com-
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parison and Top Label as Class. Section 4 puts forward the core of this manuscript.
First, it briefly introduces Mini, the robot we have used in this experiment. Next, we
provide a detailed description of its software architecture, standing out the commu-
nications of the autonomous decision-making system with the rest of the modules in
the architecture. Then, we point out how the algorithms estimate the rankings used for
personalising the interaction. The dissertation follows with a description of how the
user preferences are managed to balance between activity exploration and selecting
the favourite activities of the user. We continue in Sect. 5 with we built the datasets for
training the model, the experimental set-up and the evaluation of the system. Section
6 presents the main results of this work. We start with the selection of the best algo-
rithm for our application. Next, we describe three case studies describing the operation
modes of the decision-making system. Finally, we show the results of the human—robot
interaction study about if the participants rate more positive to interact with a robot
with personalised activity selection. Section 7 presents a general discussion about the
contribution and the main limitations of the model, and Sect. 8 close this work with a
brief conclusion.

2 Related work

This section surveys the current state of preference learning for user preference predic-
tion, focusing on LRF algorithms. Additionally, we analyse the most relevant works
in adaptive decision-making for social robots, highlighting those used to adapt to each
user’s preferences.

2.1 Preference Learning for user preference estimation

Preference learning (Fiirnkranz and Hiillermeier 2010) is a technique aiming at pre-
dicting as output the total or partial rankings of a set of items from training information
given as input. Unlike most types of machine learning classifiers, the goal of prefer-
ence learning is to sort items instead of clustering them (Cohen et al. 1998). Literature
usually classifies preference learning in LR, instance ranking and object ranking
(Fiirnkranz J. 2010). In this work, we work with LR, which aims at given an instance
space X and a finite set of labels £ = Ay, A2...A, as input, providing an output space
S, which defines all total orders of the set of labels for each instance x € X (Vembu
and Girtner 2010). In this application, we rank a set of labels (activities) presented as
total orders for each instance of the input state (ranking of user preferences). For this
reason, we use LR to estimate the preferences of each user.

Many methods tackle how to rank preferences as total orders (Fiirnkranz J. 2010).
These techniques are based on Utility functions, Binary preference relations, Model-
based learning, and Local Rank Aggregation. Utility functions learn to evaluate
individual alternatives assigning a degree of utility to each one (Aiolli and Sper-
duti 2005). Binary preference relations decompose the learning procedure into binary
relations. Pairwise learning (Fiirnkranz and Hiillermeier 2003; Fiirnkranz et al. 2009)
follows two approaches: training a model M;; for each pair of labels expressed in a
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preference relation of the type A; >, A; for each instance x or by training models M;
to separate each class A; from class A ; being class A; #, A ;. Recently, a new approach
focused on learning model-based preference relations assuming a known preference
structure is trendy. This approach is less generic because it depends on the particu-
lar preference definition. Finally, Local Rank Aggregation (Brinker and Hiillermeier
2006, 2007) generates predictions from nearest-neighbour aggregations from similar
estimations. In this dissertation, we compare the performance of Ranking by Pairwise
Comparison, which supports learning binary preference relations, and Top Label as
Class, which uses Local Rank Aggregation. Both methods integrate random forest to
estimate the rankings.

Focusing on LR problems, Vembu and Gértner (2010) provide a thorough revision
of LR algorithms and their applications. Nonetheless, this survey does not contain
any reference to LR in combination with random forest (Breiman 2001). Multiple
studies address random forest’s benefits in LR problems, especially when the dataset
is small. As a starting point in LRF, Aledo et al. (2017) used weak learners based on
random forest in their LR tree algorithm. In this regard, De S4 et al. 2017 presented
LRF, a method that demonstrated significant results in ranking prediction. Zhou and
Qiu (2018) improved de S&’s LRF by considering top-ranked labels of the rankings
in the classifying process, reducing the dimension of the problem. The key of Zhou
et Qiu’s algorithm lies in a two-step neighbour rank aggregation performed at leaf
nodes. Similarly, Werbin-Ofir et al. (2019) presented a new approximation of LRF
classification using voting rules.

LR applications range from information retrieval (Schiitze et al. 2008) to search
engines and recommender systems (Burke et al. 2011; Bobadilla et al. 2013).
Online superstores deeply explored these approaches to increase sales by highlighting
preferred products on their websites. These websites employ autonomous decision-
making engines which actuate according to feedback obtained from user’s clicking
data (Joachims and Radlinski 2007; Zheng et al. 2008). These systems proactively
present the favourite products in the first place (usually using a ranking format). In
robotics, LR has been used with deep learning to estimate a ranking about the optimal
grasping of different objects using images (Han et al. 2019). Similarly, LR has been
used to rank affordances of a group of novel objects to assist with manipulation tasks
(Chu et al. 2019). Combined with deep learning, label ranking has been broadly used
in text classification (Liu et al. 2017; You et al. 2019; Gargiulo et al. 2019; Wang et al.
2021). Numerous works reveal excellent results in LR problems using deep learning
models for image classification (Cevikalp et al. 2020; Wu et al. 2020; Wen et al. 2020;
Dery 2021; Lei et al. 2021). Finally, LR algorithms with deep learning classification
are in information retrieval (Pang et al. 2017), disease diagnosis (Zhou et al. 2021), or
in Internet of Things (Alkhabbas et al. 2020).

Although the range of LR applications is extensive, we have not found any work
where LR applies to social robotics for estimating user preferences in entertainment
domains. Most recent works using LR for preference estimation are deployed in online
recommendation systems for superstores websites. Nevertheless, the models presented
in these works require extensive training of the preference learning system by the
customers by using the superstore’s website for generating an initial set of estimations.
Thus, unlike the previous works, we build our datasets from data collected through an
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online survey, so for training our system any human-robot interaction. In this sense,
when the robot meets new users and has to estimate their preferences, it just needs
the input vector containing the features of the new user. As described in the following
sections, the robot can ask the user to retrieve the information contained in the input
vector.

2.2 Robot adaptive behaviour

Autonomous decision-making is an emerging field that is gaining importance in appli-
cations such as military (Prelipcean et al. 2010; Goztepe 2015), economics (Parkes
and Wellman 2015), or artificial intelligence (Duan et al. 2019). In robots, many works
describe systems with autonomous behaviour. Velasquez (1996) developed Cathexis as
one of the pioneering works in emotional decision-making for artificial agents. Sim-
ilarly, Cafiamero obtained remarkable results in robot adaptation (Cafamero 1997,
2005). Biologically inspired models mainly work in social robots to improve human—
robot interaction emulating human relationships. Considering these works, we pretend
to endow the social robot Mini with autonomous activity selection adaptation accord-
ing to the user’s preferences.

In robot adaptation, Ritschel and André (2017) presented a robot that modulates
its personality in real time depending on social cues. In the study, the robot uses rein-
forcement learning to learn users’ preferences by asking their favourite stories during
a storytelling task. Weber et al. (2018) presented a robot that dynamically adapts its
humour based on reinforced signals obtained from visual and auditory perceptions of
the user, as smiles or laughs. To attain user engagement in social robotics, adaptive
mechanisms are essential, as Khamassi et al. (2018) postulate. The authors propose a
simulated environment where arobot perceives the user’s engagement, gathering visual
information in their study. The robot provides fast adaptation mechanisms modifying
its behaviours to maintain the user engaged using reinforcement learning. In scenarios
involving long-term child-robot interactions, robot adaptation is essential to maintain
engagement (Ahmad et al. 2017). In this work, the NAO robot plays the well-known
snakes and ladders game with groups of children. Engagement is achieved by perform-
ing game-based, emotional, and memory-based adaptation on real-time interactions.
Following a similar line, Martin et al. (2020) presented a novel framework devised
for user adaptation and profiling in rehabilitation tasks. Martin et al. describe how a
monitoring system controls the patient features and behaviour patterns allowing per-
sonalised rehabilitation. Giakoumis et al. (2020) presented a service robot that adapts
its behaviour depending on the patient’s mood. Finally, and considering the study pre-
sented in (Rosenthal-von der Piitten and Abrams 2020), it is worthy of mentioning
that user adaptation may consider the social dynamics of people when operating in a
different human environment and the consequences derived from this adaptation. Like
in our contribution, Rossi et al. (2017) retrieved information about the robot users to
adapt the interaction to them. The authors argue that physical, cognitive, and social
information is essential to adapt robot behaviour correctly. Similarly, Martins et al.
(2019) review how social robots can adapt to different users but focus on the non-
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physical component of the interaction. Finally, an extensive review of social robots
with adaptive methods in rehabilitation can be found in (Kubota and Riek 2021).

Regarding preference prediction for robots, including social ones, the existing litera-
ture is scarce. Similarly to our work, Khalili et al. (2010) proposed an intelligent system
for light control, making hierarchical decisions using preferences. Long et al. (2016)
proposed a system for predicting and recommending users with their favourite activi-
ties in social media. Although the model produces excellent results, it requires the user
to interact with the system to estimate future activities. Similarly to the previous con-
tribution, Chen et al. (2017) developed a system for user preference recommendation
in online stores. This work presented the drawback of needing repeated interactions
with users to start yielding estimations. Woodworth et al. (2018) presented a model
that infers the user preferences in assistive tasks. The robot learns these preferences
by observing the user behaviour using reinforcement learning. Adinolf et al. (2020)
present a robot that learns the preferences of users using their feedbacks in a game
agent customisation. The study includes human—robot interaction results showing that
designers can apply the users’ preferences in future game versions. In an interesting
scenario, a robot learns the favourite actions of the user in the control of a manipula-
tor. Probably, the work with more similarities to this contribution is (Schneider and
Kummert 2021). The authors present an exercising scenario where a socially assis-
tive robot learns while interacting with the users suggesting their favourite exercises.
In the study, they compare participants’ experiences when encountering an adaptive
robot and a general one. The authors conclude that people find the adaptive robot
more competent and trustworthy than the general robot. This work tackles preference
learning using reinforcement learning since any dataset is available at the beginning
of the experiment.

The previous review suggests that most preference learning works in robotics focus
on learning by interacting with the system instead of estimating the initial preferences
to avoid interacting from scratch. On the one hand, reinforcement learning models
require long-lasting interactions to find the real user preferences. Moreover, the finding
on the preferences generally occurs from scratch. On the other hand, using deep
learning models requires massive datasets to produce accurate results, so we addressed
this problem by using random forest methods that do not require such large datasets.
Besides, we have not found any work integrating LRF in social robots to produce initial
user preferences for entertainment without a previous interaction with the robot. For
this reason, this work fills the gap in adapting the human-robot interaction mechanisms
of a social robot to recommend their favourite activities, only requiring the users’
features that define the input vector that the model uses for making a preference
prediction.

3 Label ranking forest for preferences estimation

This section introduces LRF, a method that combines the ranking of items with random
forest classification. Then, we briefly describe Ranking by Pairwise Comparison and
Top Label as Class, the two LR algorithms compared in this work. Besides, we reason
the selection of both methods, enumerating their pros and cons.
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User features Categories
[ ] ] |
Gender Age Educational Interest Ranking of preferred categories
level in music
(Ifemale, 23, secondary school, ..., yes, Imultimedia, games, information)
J J
| Input vector Labelled output |
Instance

Fig. 1 An instance combines the input vector with the labelled output in ranking format. On the one
hand, the input vector contains the user’s features regarding the personal, interests, and preferences data
about different attributes. On the other hand, the labelled output concerns a predefined set of items (labels)
preference ranking. In this case, the example ranks the categories multimedia, games, and information
according to the user’s preferences

3.1 Label ranking forest

Hiillermeier et al. (2008) formulates LR as the prediction, for any instance x in an
instance space X, of a preference relation of the type >, € £ among a finite set of labels
L = {A1...An}, Where A; >, A; means that for each instance x, label A; is preferred
above label A ;. Note that the set of labels are ranked according to a total order, defined
by a permutation 7, of {1...m}, such 7, (i) < 7,(j) whenever A; >, A;, being 7 (i) the
position of A; in the ranking and €2 the full permutation space. We refer to Sq as the full
set of permutations over m labels. Training data instances are presented in the form
of (a1, 71)...(xm, Ty) Which contains features and labelled rankings in permutation
format.

An instance is each of the inputs of the dataset used for training and validating
the model. Each instance has an input vector and a ranking of labels (output). In this
work, the input vector is the features of the user. The output is the ranking of activities
according to the preferences of the user. The goal of LR is to learn a mapping from
X — €2, assuming that for every 7 €  there is a probability P(t|x) that T is the
permutation associated with instance x. Figure 1 shows the example of an instance in
our learning system.

The integration of random forest classifiers (Breiman 2001) in LR algorithms is
called LRF (Gharroudi et al. 2014; de S4 et al. 2017; Zhou and Qiu 2018), a method
that produces outstanding results even when the dataset is small. Due to the nature of
our system, which consists of training various small datasets, we opted for comparing
two LRF algorithms to optimise the system’s performance. The following sections
introduce Ranking by Pairwise Comparison and Top Label as Class, the two algorithms
compared in this study.

3.2 Ranking by pairwise comparison

Ranking by Pairwise Comparison (Fiirnkranz and Hiillermeier 2003) splits the clas-
sification problem, defined by a set of finite labels £ = {X1...A;,}, into m(m — 1)/2
binary classifiers. Each binary classifier 2;; represents a binary preference, for a pair
of labels (Ai, A j) € £,1 <i < j < m. Thus, each preference relation expressed as
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A; > Aj is converted into a binary comparison where label A; is preferred above A ;,
as Eq. 1 represents.

- Lif A > A
Mij = {0 otherwise M

Consequently, each new model generates, for each instance x;, a binary label € {0, 1}
which represents whether label A; is ranked above A ;. This preference is stated in
the 24;;. Once all models make their binary predictions, a voting rank aggregation
process produces a ranking where most voted rankings are sorted first. In this work,
this ranking sorts the user’s preferences towards a certain list of entertaining activities.

Ranking by Pairwise Comparison simplifies the classification process at the cost of
increasing the algorithm’s computational complexity since it trains m (m — 1) /2 binary
classifiers instead of one. Thus, the computational cost of this algorithm increases
with the number of labels to rank. Nevertheless, when the number of labels to rank
increases, methods like Ranking by Pairwise Comparison based on decoupling the
learning problem in several classifiers yield better results in ranking correlation and
classification accuracy.

3.3 Top label as class

Top Label as Class is a LRF algorithm developed by Zhou and Qiu (2018). This
method replaces the entire rankings found in the labelled output of each instance with
its top-ranked label. The top label becomes a new class different from the labels of the
ranking. Top Label as Class reduces significantly reduces the label space, simplifying
the classification problem. For example, in a domain where the label set is £ =
[A1, X2, A3] and the ranking for a particular instance x, is A3 > A1 > X, the full
ranking is replaced by its top label, in this case A3.

After training the model, a two-step rank aggregation process yields the new ranking
predicted by the learning model. The first rank aggregation process uses the arrange-
ments stored in the leaf nodes of each tree in the forest to produce a ranking. Next,
the second rank aggregation uses the estimations of each tree in the forest to make a
final ranking. Each ranking of a tree equally contributes to the generation of the final
ranking. Rank aggregation is tackled using Borda’s method (Brinker and Hiillermeier
2006; Zhou and Qiu 2018; Werbin-Ofir et al. 2019).

Top Label as Class has the advantage of requiring less computational time than,
for example, supported vector machines and pairwise comparison, as it just trains
one model for the whole problem. However, its main drawback is a significant drop
in the performance when the number of labels to rank increases, probably because
meaningful information is lost when replacing the full ranking by just their top labels.
Top Label as Class and Ranking by Pairwise Comparison have opposite pros and cons.
As the following section states, our learning system consists of eight datasets with a
variable number of labels to rank, so the selection of both algorithms pretended to
optimise the whole system’s performance rather than just one particular dataset. For
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designed for entertainment and
assisting older adults in
cognitive stimulation therapies

Fig.2 Mini, a social robot @ @\

SOCIALROBBTS

this reason, the first step in the design of the Preference Learning model was to select
the algorithm that yields better results.

4 Adaptive activity selection in the social robot mini

In this section, we present the social robot Mini (Salichs et al. 2020), devised for
entertainment and assisting older adults in cognitive stimulation therapies. We focus
on describing its application to entertainment since it is an important area of social
robotics. Figure 2 shows the appearance of the social robot Mini and its touch screen
used for entertaining the user.

4.1 Robot architecture

The sensorimotor system of Mini consists of a broad range of sensors and actuators to
interact with the environment. Mini contains a 3 D-stereo camera to detect people and
objects, four capacitive touch sensors to detect strokes, and a microphone to understand
the user’s speech. Its actuation system contains five degrees of freedom (hip, arms,
neck, and head) and four RGB LEDs (cheeks, heart, and mouth). It also has a speaker
to communicate and play sounds verbally. Mini communicates with an external touch
screen for displaying different games or multimedia content, among other visual and
auditory information.

Figure 3 shows the software architecture of the robot. It consists of six modules and
different activities which allow it to deploy different functionalities. Communicating
with the environment, the perception system perceives its changes, and the actuation
system allows the robot to execute physical responses. The task of the perception
system is to receive raw data from the robot’s sensors and process them into a message
that the other modules in the architecture can understand. On the other hand, the
actuation system controls the robot’s actuators and modifies the environment through
the execution of specific actions.
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ENVIRONMENT
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Fig. 3 General view of the architecture of the social robot Mini, highlighting its decision-making system
module in charged on sequencing the robot’s behaviour

The human-robot interaction system (see (Ferndndez-Rodicio et al. 2020) for fur-
ther details) controls the interaction with the user. This system receives information
from the perception system about environmental changes, process them, and sends
an appropriate message to the decision-making system and the robot’s activities. In
this manner, the robot produces a suitable interactive communication with the user.
Besides, this module handles petitions of other modules like the decision-making sys-
tem to show or gather information from the user. An example of these petitions is
asking the user or display a video on the touch screen. The human-robot interaction
system communicates with the expression system, a module that generates appropriate
commands to the actuators.

The expression system modulates the expressiveness of the robot in terms of live-
liness and emotional gestures. This module executes two main functions. On the one
hand, the expression system receives orders (principally from the human-robot inter-
action system) to control the robot’s actuation. It checks the state of each actuator and
controls whether it is possible to execute specific expressions using a priority system.
On the other hand, this system receives high-level expressions from the expression
scheduler, decomposing them into individual commands to each robot actuator. A
particular player dedicates to each actuation unit managing the control of the physical
actuator. Finally, the expression system returns essential information to the human—
robot interaction system about the execution of each expression.

Finally, the decision-making system is the most critical part of our architecture.
It appears highlighted in Fig. 3 since this module contains the preference learning
system for adapting the user’s activity selection. The decision-making system decides
the activity that Mini executes according to the inputs received from the rest of the
modules, using a three-level sequence of decisions (category, subcategory, and activ-
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ity) balancing between selecting the user’s favourite with exploring new activities. It
is worth mentioning that the decision-making system does not always select activi-
ties for the user’s entertainment. Mini’s behaviour depends on an internal biologically
inspired system (see (Maroto-Gomez et al. 2018)) that represents artificial variables
about the physiological and psychological needs of the robot. It is under the activation
of the motivational state to play when the preference learning system presented in
this manuscript starts working. Once active, it estimates the user’s preferred activi-
ties personalising the interaction. When the robot interacts a user, the entertainment
motivational state activates more easily, leading to entertainment activities.

The following list introduces and describes the entertaining activities of the social
robot Mini. The preference learning system uses these activities to personalise the
interaction suggesting the users their preferred ones.

Play Bingo! game: This activity allows the robot to play the well-known Bingo!

game with the user.

— Play a calculus game: This game consists of the robot asking the user to solve
some mathematical operations with different difficulty levels.

— Play a quiz game: This game presents the user a set of questions about different
topics (e.g. history, science, sports), and the user has to guess the correct answer
to win.

— Weather forecast: This activity forecasts today’s weather prediction.

— Informing news: The robot informs the user about recent news related to some
fields as sports, national events, international events, opinion articles, and last-
minute information.

— Play music: The robot plays songs about a predefined music style (which can
be decided by the user or the robot). The available music styles are English pop,
English rock, Spanish pop, Spanish rock, Latin music, Classical music, and Fla-
menco.

— Display videos: The robot displays a video using its tablet. The available categories
of the video are Sports, Cooking, Famous film trailers, and Comedy.

— Play audiobooks: The robot plays an audiobook of the following categories:
Famous historical moments, classical books or children’s tales.

— Play sayings: The robot tells the user a well-known Spanish saying.

— Play jokes: The robot tells the user a funny joke about different topics.

— Display photos: The robot displays a group of different photos, which can be

about Historical monuments, Incredible landscapes, Animals, or Funny moments.

4.2 Methodology

The adaptive human-robot interaction carried out by the preference learning system
is summarised in three steps. First, the entertaining activities of the robot are classified
into categories and subcategories. Second, LRF techniques rank the items in each cat-
egory and subcategory to generate the user preferences. The decision-making system
uses these rankings (and associated scores) to carry out a three-step hierarchical deci-
sion. The third step embraces the decision itself, leading to the execution of a particular
entertaining activity that will usually be among the user’s preferred ones. The decision
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Fig.4 Organisation in three hierarchical levels (categories, subcategories, and entertainment activities) of
datasets generated by surveying users. Low-level items are ranked at its higher level producing a ranking
of preferences for each user input. In brackets next to each label, its corresponding abbreviation

consists of selecting a category, then a subcategory, and finally an entertaining activity.
The entertaining activity must be contained in the subcategory and category selected
previously. Instead of directly selecting an activity from the available list, we propose
a hierarchical selection that allows the decision-making system to work in different
modes.

Figure 4 shows the classification of the entertaining activities of the robot in cate-
gories and subcategories. The functionality of each activity denotes in which category
and subcategory it is classified. The categories we have defined are: Games, Mul-
timedia, and Information. The Games and Information categories do not have any
subcategory directly integrating entertaining activities (types of games and news).
The Multimedia category has six subcategories: Videos, Photos, Audiobooks, Music,
Sayings, and Jokes. Each of these subcategories contains a group of entertaining activ-
ities that the robot can execute. Based on this classification, the preference learning
system consists of eight datasets: Entertainment, Games, Multimedia, Information,
Videos, Photos, Audiobooks, and Music. The Entertainment dataset ranks the cat-
egories Games, Multimedia, and Information according to each user’s preferences.
Similarly, the rest of the datasets rank the activities and subcategories using the pref-
erences of each user. For example, the Games dataset ranks the three entertainment
activities related to gaming: classical games, quiz games, and calculus games.

Another example is the Videos dataset, which sorts the entertaining activities related
to videos displaying: comedy, sports, film trailers, and cooking. Note that like Fig. 4
depicts, each dataset ranks the group of items located in one level below. The translation
from the survey data into the eight datasets is described in Sect. 5.1.

Using the ranking defined by each dataset, the decision-making system decides
which activity to execute deciding level. The decision-making system works in three
modes. These modes combine autonomous decisions made by the robot with decisions
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from the user. The operating mode depends on the user proactivity level, a parameter
gathered by the list of features of the user. The proactivity level can have five numerical
values, from 1 to 5. Proactivity values close to 5 represent a user that typically takes
the initiative while interacting. Contrarily, proactivity values close to 1 unit indicate
a user not taking the initiative while interacting with the robot. The decision-making
system works autonomously with users with low proactivity, allows them to select the
entertaining activity to execute when encountering very proactive users, and balances
both modes for moderate proactive users. We believe that adapting to the proactive
level of interacting improves the interaction since the robot aids them if they have
difficulties using it.

The autonomous decisions of the robot are carried out using the Boltzmann (Cer-
cignani 1988) distribution, defined in Eq. 2. This distribution balances the selection
of preferred entertaining activities with the exploration of new activities assigning a
selection probability p(a) to each alternative. The selection probability depends on
the score yielded by the preference learning system (R(a)), the scores of the other
N activities, and a parameter in the Boltzmann equation called temperature (7). The
temperature value ranges from 0.1 to 100. A value of 100 units means equal selec-
tion probabilities for all labels in the ranking (consequently promoting exploration),
whereas values close to 0.1 prioritise the selection of preferred activities by assigning
them a higher selection probability. The decision-making system includes mechanisms
to avoid repeating the selection of the same activity. By default, the temperature value
is 0.1, favouring the selection of the preferred activities of the user. Nevertheless, once
a while, the temperature is set to 100 to select the entertaining activity randomly.

R(a)
e T
P@)= —a 2
b=1¢ "7

The decision-making system lets proactive users decide which entertaining activity
to execute using tablet menus. Figure 5 shows the tablet menus that can be displayed.
These menus correspond to each of the datasets of the preference learning system.
The items of the menu are ranked using the estimations produced by the learning
system. Therefore, the preferred activities appear first so the user can easily select
their favourite activities.

Figure 6 shows the entire process of predicting user preferences and how the robot
uses them to online adapt its activity selection. The above-mentioned three steps can
be grouped into two phases, offline preprocessing and online processing. The first
phase includes the retrieval of the survey data, the generation of the datasets used for
training the preference learning model (both detailed in Sect. 5.1), and the training
process itself. The second stage runs in the robot while it is interacting with the user.
Starting from the trained model, when the robot interacts with a particular user, it
predicts the preferences and uses them in the decision-making process Fig. 7.
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Fig. 6 Flow diagram depicting the full process for predicting user preferences and how the autonomous
decision-making system use them to provide personalized activities to different users

4.3 Decision-making using preference prediction in Mini

The system we present in this work provides a hierarchical user preferences prediction
used by the social robot Mini in its decision-making process. This study focuses on the
user’s entertainment, improving the activity selection with a robust preference estima-
tion. The entertainment activities are organised under categories and subcategories,
as depicted in Fig. 4. As stated before, the categories are Games, Multimedia, and
Information. Games and Information categories are directly tied to a set of activities,
not containing any subcategory.

The Multimedia category divides into Videos, Photos, Audiobooks, Sayings, Jokes,
and Music subcategories. Each subcategory contains a group of activities at the low-
est level of Fig. 4. The preference learning system predicts, for each user, different
rankings about their preferences for these activities using the eight datasets. The LRF
generates these rankings following the methodology explained in Sect. 3. The learning
system assigns a score to each item that is used for producing the ranking. The ranking
locates items with the highest score on top of the ranking. Then, the decision-making
system works in three modes depending on the level of proactivity of the user, as Fig.
(7) shows.
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e The first mode activates when the user is not proactive. The robot autonomously
starts the interaction with the user selecting the activity that the robot believes
the user will prefer. This selection uses the preferences predicted by the prefer-
ence learning model and the Boltzmann probability distribution. The hierarchical
decision occurs in three steps. First, the decision-making system selects the most
appropriate category, then the subcategory (if the category is Multimedia), and
finally, the entertaining activity executed. Therefore, options with similar scores
will present similar selection probabilities. The options with higher scores are
more likely to be selected. Section 6.2.1 describes a real case of study (Case 1: A
fully autonomous robot) showing how the decision-making system works in this
mode.

e The second mode consists of the robot giving the initiative to the user so (s)he can
decide which entertaining activity to execute. This mode activates when the robot
encounters a very proactive user. The user selects the category, subcategory and
entertaining activity using the tablet menus shown in Fig. 5. The items of each
menu are ranked using the estimations of the preferences of each user. Preferred
activities appear on top of the other to facilitate their selection. Section 6.2.2
presents a complete case of study (Case 2: A robot that gives the initiative to the
user), with accurate user data to describe in more detail how this operation mode
works. It is worth mentioning that despite most of the decisions are in the user’s
hands, sometimes it can autonomously make partial decisions if necessary.

e The third mode combines modes one and two. This mode activates with users with
moderate proactivity. In this mode, the robot combines autonomous decisions
with giving the selection to the user. Thus, we allow the users to explore different
alternatives from the repertoire of activities rather than leaving the entire decision in
the robot’s hands. Using this method, we avoid the robot making similar decisions.
Section 6.2.3 contains a detailed case of study (Case 3: A semi-autonomous robot)
showing the operation of this model.

5 Experiment set-up and evaluation

This section describes how to endow the social robot Mini with preference prediction
for personalising its entertainment activity selection. In the first place, we present the
process of building the datasets used for estimating the preferences from data retrieved
using an online survey. Then, we finally explain how both LR algorithms have been
compared to select the ones with the best performance. Finally, we describe the human—
robot interaction experiment to validate whether the users prefer a personalised activity
selection instead of a random one.

5.1 Building datasets from surveyed data
The purpose of this work aims at predicting user preferences and use them to achieve a

personalise activity selection. Like similar studies (Olsson and Salo 2011; Bouza and
Bernstein 2014), we opted for spreading an online survey for building the datasets
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Fig.7 Robot autonomy level in activity selection depending on the Case of Study. A non-autonomous robot
(Case of study 1) leaves decisions in the user’s hands. The selections produce using menus displayed on the
touch screen. The semi-autonomous mode combined user selections with autonomous decisions of the robot
using the preference learning system. Finally, a fully autonomous robot always decides the entertainment
activity to execute using the preference learning system. The decision-making system selects the operating
mode depending on the proactivity level of the user

used to train the learning model. We selected a set of questions to gather socio-
demographical data, habits and interests of participants. These questions are mainly
related to technological issues and their preferences about the entertainment activi-
ties that Mini has. We included two additional questions about the users’ intention to
socialise with other peers and whether they use electronic devices as entertainment
platforms. The list of socio-demographical features obtained from the participants of
the online survey was: genre, age, nationality, educational level, current occupation,
number of people in their current residence, kind of place of residence, and physical
exercise frequency in the week. We also asked users about habits like their use of elec-
tronic devices for entertainment and their proactivity level. Besides, we asked about
their interests in sport, videogames, TV series and films, reading, photography, videos,
purchases, social networks, browsing the internet, searching for information, music,
and cooking, where the user had to indicate whether or not (s)he liked each category.
Combining socio-demographic, habits, and interests features, each user’s input vector
of features contains 21 attributes. We discarded nationality since most participants
were Spaniards.

To define the labelled output of the dataset, the survey requested users to rate how
much they like the entertainment activities of the robot. Ratings ranged from O o 5,
meaning O absolute dislike, and 5 total like. As stated before, robot activities are
grouped in 3 categories: Games, Multimedia and Information. In Games category,
users were requested to rate their preferences towards Classic, Calculus, and Quiz
games. In the Information category, participants rated Breaking news, National news,
International news, Opinion articles, Sport news, and Weather forecast. Finally, the
Multimedia category rated Jokes, Sayings, and different types of Music (English pop,
English rock, Spanish pop, Spanish rock, Classical, Latin, and Flamenco), Audio-
books (Classics, Children’s Tales, and Historical events), Photos (Landscapes, Funny
moments, Monuments, and Animals) and Videos (Sports, Cooking, Comedy, and Film
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trailers). Each category and subcategory defines a dataset that contains a particular
ranking for each user. Using the ratings provided by each participant, activities with
higher ratings are ranked on top. Rating ties were randomly broken. Using the activities
classification in categories and subcategories and the rankings, we built 8 datasets. The
first dataset ranked the categories (Games, Multimedia, and Information). The other
datasets ranked the activities in the categories Games, Information, and Multimedia
and the subcategories Photos, Videos, Audiobooks, and Music. Moreover, we built 2
additional datasets, Entertainment and Multimedia. This dataset organisation allows
the decision-making system to select a category hierarchically, then a subcategory, and
finally an entertainment activity that will be executed. Thus, all datasets are necessary
to personalise the activity selection since the ranking they contain indicates which
categories, subcategories, and entertainment activities each user likes the most and
will be selected more often.

We received 473 replies to the online survey, which led to 471 input instances
since three replies were not valid due to inconsistencies in the features (for example,
answering being 8 years old and a qualified worker). The participants were 217 men,
254 women aged u = 29.52, 0 = 12.64. 96% of them were Spaniards. Valid replies
defined the input instances and labelled output of the 8 datasets utilised by the pref-
erence learning algorithms during the training and validation of the model. When the
robot interacts with new users, their features have been obtained using a questionnaire
containing the questions listed in Appendix A. We are currently working on including
these questions in the robot to obtain the users’ features using human-robot interaction.
Then, using these features, the preference learning system predicts the user preferences
organising them in three decision levels that are used by the decision-making system
like Sect. 4.3 describes.

5.2 Ranking correlation metrics

Preference learning predictions are aggregated rankings that represent the preferences
of an instance x;,. Preference learning methods use Kendall’s t-b (Kendall 1945) and
Spearman’s p (Spearman 1961) nonparametric correlations to evaluate the estimation
yielded the model. Both metrics range from [—1, 1]. Values close to 1 represent a
solid positive rank correlation (perfect estimation), while correlations close to —1
indicate a strong negative correlation (ranking reversed). Drawing on (Corder and
Foreman 2011; Schober et al. 2018), we will consider positive, strong rank relation
values above +0.7, moderate correlation values between +0.3 and +0.7, and weak
otherwise.

Kendall’s 7-b (Kendall 1945) developed this nonparametric measure of correlation
between two rankings 7 and 7/, like Eq. 3 shows. It relies on the number of concordant
(n.) and discordant (ny) pairs of the ranking, considering the number of ties in the
predicted ranking 7 (#;) and in the real ranking 7" (u i)

L ne — ng 3)
g+ 1) % (e + g+ up)
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Spearman’s p (Spearman 1961) rank-order correlation is a nonparametric measure
of the monotonicity between the correspondence of two rankings 7 and 7’. Unlike
other correlation metrics such as Pearson’s coefficient (Gao et al. 2016), Spearman’s p
does not assume a normal distribution of the data, which makes it more suitable to our
self-built dataset. As Eq. 4 represents, it depends on the number of pairs N available
in the ranking and the distance D (7, 7’) about the positioning of each label in both
rankings.

6N, Di(n, ')
N(NZ—1)

p=1 “4)

5.3 Evaluation of the ranking algorithms

Ranking by Pairwise Comparison and Top Label as Class were evaluated in terms of the
average prediction accuracy of the random forest integrated into them, the Kendall 7-b
and Spearman p ranking correlation metrics, and the training time per cross-validation
iteration during training and validation. The three first metrics represent the model’s
accuracy in predicting rankings, whereas the training time is essential to determine
whether the system can run in real time in the robot as one of the future goals will be
to retrain the system online.

The first step in this process was to find the hyperparameters of both algorithms that
produce better results in each case. Ranking by Pairwise Comparison, Top Label as
Class and Random Forest (the classifier) have multiple parameters. We opted for using
the node splitting criteria (Information gain (Quinlan 1996) or Gini impurity (Steinberg
and Colla 2009)), the number of trees of the forest (11;¢¢5), the maximum depth of
the tree (mgepsn), the minimum number of samples in a node to produce a splitting
(Msamples) and the minimum number of samples in a node to directly become a leaf
of the tree (n;.r) since they are the most representative ones in terms of its influence
over the performance of both algorithms. Hyperparameter optimisation was carried
out using a grid search method (Syarif et al. 2016), so we defined the optimisation
ranges of each parameter according to Table 1.

Table 1 Range of values used

for each hyperparameters during Hyperparameter Grid-search values
grid-search optimization Splitting criteria Gini impurity, Information gain
Ntrees [10, 20, 30...150]
Mdepth [2,3,4,5,6]
Nsamples [5, 10, 15, 25]
Nieaf [10, 15, 20, 25]
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5.4 Human-robot interaction assessment

Once we found the best algorithm for our application, it was necessary to validate the
preference learning system. Thus, we tested whether selecting entertainment activities
using the user’s preferences was perceived more positively than selecting activities
at random. The experiment consisted of 22 participants (13 women, 9 men aged
w = 41.09, o = 20.57, all Spaniards) interacting with the social robot Mini dur-
ing short-term interactions. Before interacting with the robot, all participants filled the
questionnaire shown in Appendix A to obtain their input features that were necessary
for predicting their preferences. Then, each participant was randomly assigned to one
of the two conditions tested: Interacting with a robot that selects the activities using
the preference learning system presented in this work (Condition 1) and interacting
with a robot that randomly decides the activities to execute (Condition 2). Hence,
the participants were equally distributed in both conditions (11 participants in each
condition). Independently of the condition of participants, during the interaction, they
realised three consecutive activities selected from the repertoire shown in Fig. 4.

At the beginning of the experiment, the robot started with a short introduction about
its dynamics. Then, the participant had to execute the three activities selected by the
robot. On average, the duration of each session lasted around ten minutes, considering
the duration of each activity around three minutes each plus one minute of introduction.
We included two questionnaires for the evaluation that the participants had to complete
after interacting with the robot. The first questionnaire contained six ad hoc questions
about the perception of the robot’s personalised activity selection (Personalisation
perceived). We decided to include customised questions considering previous similar
works in the evaluation of social robots (Churamani et al. 2017; Tozadore et al. 2018).
The participant answered the six questions using a 5-point Likert scale where one
means strongly disagree and five strongly agree. The aggregated results of the six
questions reported the attribute Personalisation perceived. The six ad hoc questions
are listed below.

— Q1: How appropriate did you find the first activity selected by the robot according
to your preferences?

— Q2: How appropriate did you find the second activity selected by the robot accord-
ing to your preferences?

— Q3: How appropriate did you find the third activity selected by the robot according
to your preferences?

— Q4: In general, do your think the activities proposed by the robot are adequate to
you?

— QS5: Have you noticed that the robot knows information about yourself?

— Q6: Have you noticed that the robot behaviour adapts to yourself?

Following the ad hoc questions, the second questionnaire consisted of the well-
known Godspeed questionnaire (Bartneck et al. 2008), used for evaluating different
attributes of social robots. The questionnaire evaluates the robot in five different gen-
eral attributes: Anthropomorphism (A), Animacy (A), Likeability (L), Intelligence
perceived (IP), and Security perceived (SP). Each attribute has three to five items that
use a 5-point Likert scale allowing the participant to indicate how (s)he perceives the
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Fig.8 Results carried out to test the operability of the preference learning system in the social robot Mini.
First, we compare Top Label as Class and Ranking by Pairwise Comparison to obtain the algorithm with
the best performance in our application. Then, we present three case studies about the operation of the
system when interacting with new users with different proactivity levels. Finally, we validate the system
in real human—robot interactions to assess whether the personalised selection of entertainment activities is
preferred above a random activity selection

robot between two opposite terms (e.g. artificial vs lifelike). Since the public aim of the
study was Spaniards, we used the official translation provided in (Weiss and Bartneck
2015).

In this evaluation, we expected to obtain significant statistical differences between
both conditions tested in the personalisation perceived and some of the categories of
the Godspeed questionnaire. The attributes Likeability (L), Intelligence perceived (IP),
and to alesser extent Animacy (AN) are those more related to adaptive and personalised
activity selection, so we believed that participants of Condition 1 would perceive
the robot exhibiting a personalised activity selection prominent in these attributes.
However, we did not expect to obtain differences in the Anthropomorphism (A) and
the Security Perceived (SP) attributes as both are related to the robot’s physical features
without any influence on personalised activity selection.

6 Results

The following section presents the results obtained in selecting the best preference
learning algorithm regarding the hyperparameters optimisation, the prediction accu-
racy of random forest and ranking metrics. Once we selected the best algorithm,
we describe three case studies showing the operation modes of the decision-making
system during the recommending the preferred entertainment activities of the robot.
Finally, we conclude by presenting the results of the preference learning system per-
formance in real human-robot interactions. Figure 8 shows the process of validating
the preference learning system presented in this manuscript.
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Fig.9 Representation Of n¢rees and mgepsp hyperparameters optimization on each dataset considering the
set of hyperparameter that provided the best results in each trial

6.1 Algorithm selection

The selection of the LRF algorithm that produces the best outcomes in our multi-dataset
hierarchical learning system led to comparing Ranking by Pairwise Comparison and
Top Label as Class, two outstanding methods with different features. Next, we show
the comparison results and select the LRF method more appropriate for our model.

6.1.1 Optimising hyperparameters

Figure 9 represents Kendall’s 7-b ranking correlation according to the number of trees
per forest n/,¢0s and the maximum depth of each tree mgeps; using Gini impurity
as splitting criteria for Ranking by Pairwise Comparison and Top Label as Class
algorithms. Note that Kendall’s t-b metric is represented in these graphs from 0.2 to
1.0, although its output range is [—1, 1] since no value was below 0.2.
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Using the results provided by Fig. 9, it is possible to assure that the best set of
hyperparameters for Ranking by Pairwise Comparison is nsgmpies = 15, jear = 10,
Niress = 100, and myep, = 3. Regarding Top Label as Class, the best performance
is obtained with nygmpies = 10, njeqr = 5, Nyress = 60, and myep, = 4. Thus, the
results presented in the following sections use this configurations for each algorithm.

6.1.2 Prediction accuracy

Table 2a shows the prediction accuracy mean and standard deviation (in brackets)
values obtained during a tenfold cross-validation testing phase of each dataset, using
both algorithms and both splitting criteria. This metric is a reasonable estimation of
the performance of the ranking since it is the preliminary step to rank aggregation
techniques.

Results show how Ranking by Pairwise Comparison produces better classifications
than Top Label as Class for all cases. Moreover, Gini impurity usually presents better
results than Information gain. Focusing on the numerical results of the classification,
the high accuracies in the Games, Multimedia and Information datasets are remark-
able, all above 98% of success. Considering Entertainment, Photos and Audiobooks
datasets, the classification accuracy is good in Ranking by Pairwise Comparison (all
above 80%) but drops when classifying with Top-Label as Class. Finally, in Videos and
Music datasets, the classification accuracy is around 70% in both cases for Ranking
by Pairwise Comparison algorithm, but diminishes for Top Label as Class, especially
in the Music dataset (~ 38%). Note that the differences in the classification accuracies
of each dataset are due to different causes. First, the number of items in each ranking
reduces the accuracy as the complexity of the model increases. Second, the definition
and structure of the dataset may contain inconsistencies causing a reduction in the
prediction accuracy.

6.1.3 Training time

Table 2b represents the average training time for both algorithms during training and
validation stages. At first glance, it is worth mentioning how Top Label as Class
requires less computational time than Ranking by Pairwise Comparison, especially
for those cases where the number of ranking labels is high (Music, Information and
Multimedia datasets). These results support one of the hypotheses previously stated
in this manuscript, Top Label as Class requires less training time than Ranking by
Pairwise Comparison. This variation is due to the ranking splitting and aggregation
processes performed before and after the random forest classification. Top Label as
Class only trains and evaluates one model for each dataset, independently of the
number of available labels to rank in such dataset.

Ranking by Pairwise Comparison requires additional computational time as it trains
m(m —1)/2 models per dataset, where m is the number of items to rank. Although Top
Label as Class trains one model per dataset, the number of items to rank also affects
the training time, but to a lesser extent. Finally, the comparison of Gini impurity with
Information gain presents very similar values, not showing any significant difference.
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Table 2 Numerical results in terms of prediction accuracy of the random forest classifier, training time,
Kendall’s t-b and Spearman’s p ranking correlation metrics for Ranking by Pairwise Comparison (RPC)
and Top Label as Class (TLAC) algorithms using Gini impurity and Information gain as splitting criteria
on the decision tree. Bolded numbers indicate the best algorithm for each dataset and splitting criteria

assessed in the comparison

Dataset Algorithm

RPC TLAC

Gini impurity Information gain Gini impurity Information gain

(a) Mean (std) average values for internal random forest classifier accuracy obtained using optimal

hyperparameters in tenfold cross-validation.

Entertainment .8630 (.0227) .8630 (.0308)  .7326 (.0583) .7347 (.0788)
Games 9934 (.0068) .9942 (.0054)  .9804 (.0180) .9934 (.0099)
Multimedia 9862 (.0047) .9872 (.0044) 9217 (.0325) .9500 (.0377)
Information  .9886 (.0053) .9881 (.0044)  .9304 (.0474) .9000 (.0468)

Photos 8057 (.0137) .8050 (.0283)  .7456 (.0937) .7500 (.0668)
Videos 7065 (.0191) .7050 (.0222)  .6239 (.0558) .6282 (.0655)
Audiobooks  .8666 (.0269) .8681 (.0252)  .8760 (.0292) .8826 (.0403)
Music 16962 (.0226) .6928 (.0154)  .3847 (.0550) .3739 (.0946)
Dataset N Labels  Algorithm

RPC TLAC

Gini Impurity ~ Information Gain  Gini Impurity

Information Gain

(b) Mean training time values per each cross-validation iteration (training
and validation), which depend on the number of labels of each ranking using
optimal hyperparameters.

Entertainment 3 3.8511 3.8414 2.4019 2.2970

Games 3 4.1858 4.0515 2.0990 2.1385
Multimedia 6 18.3387 17.8568 3.3404 3.3899
Information 6 18.5684 18.4749 4.4734 3.8260
Photos 4 7.2872 7.2957 2.8319 2.6490
Videos 4 7.9843 8.0638 2.5251 2.4801
Audiobooks 3 3.7682 3.9130 2.3731 2.3180
Music 7 26.7077 26.6414 5.5840 5.0993
Dataset Algorithm

RPC TLAC

Gini Impurity Information Gain Gini Impurity Information Gain

(c) Mean (std) Kendall’s 7-b average values for tenfold cross-validation
obtained for optimal hyperparameters.

Entertainment 7260 (.0455) 7260 (.0616) 7246 (.0349)
Games 9869 (.0136) 9884 (.01084) 7637 (.0954)
Multimedia 9721 (0113) 9753 (.0127) 7315 (.0286)

7246 (.0685)
.8362 (.0534)
7292 (.0223)
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Table 2 continued

Dataset Algorithm
RPC TLAC
Gini Impurity Information Gain Gini Impurity Information Gain
Information 9762 (.0112) .9744 (.0090) .6530 (.0286) .6997 (.0314)
Photos 6115 (.0275) .6113 (.0584) .6088 (.0897) .6037 (.0471)
Videos 4007 (.0412) 4094 (.0538) 4057 (.0376) 4014 (.0669)
Audiobooks .7333 (.0539) 7362 (.0505) .7289 (.0439) 7318 (.0481)
Music .3805 (.0460) .3799 (.0284) 3726 (.0427) .3788 (.0338)
Dataset Algorithm
RPC TLAC
Gini Impurity Information Gain Gini Impurity Information Gain

(d) Mean (std) Spearmans’s p average values for tenfold cross-validation
using optimal hyperparameters.

Entertainment 7576 (.0462) 7608 (.0631) 7554 (.0315) 7521 (.0660)
Games 9902 (.0102) 9913 (.0081) .8206 (.0711) .8739 (.0438)
Multimedia 9831 (.0069) 9849 (.0090) .8108 (.0290) .8126 (.0221)
Information 9853 (.0081) .9848 (.0062) 7636 (.0248) .7983 (.0286)
Photos .6765 (.0285) .6765 (.0641) .6782 (.0881) .6734 (.0468)
Videos 4465 (.0555) 4486 (.0590) 4630 (.0328) 4578 (.0681)
Audiobooks 7717 (.0500) 7706 (.0450) 7684 (.0434) 7706 (.0436)
Music 4781 (.0550) 4754 (.0330) 4760 (.0563) 4835 (.0333)

6.1.4 Kendall 7-b rank correlation

Table 2¢ shows Kendall’s t-b correlation values for each dataset in terms of its mean
and standard deviation values (in brackets). According to the results, Ranking by
Pairwise Comparison performs substantially better than Top Label as Class in the
Games, Multimedia, and Information datasets. In the other datasets, Kendall’s 7-b
values are very similar. However, Ranking by Pairwise Comparison outperforms Top
Label as Class in all datasets. Gini impurity and Information gain do not present
significant discrepancies, which means that the results are independent of the splitting
criteria used intrinsically on decision tree classifiers.

Concentrating on Kendall’s t-b correlation and not comparing both algorithms, the
preference learning setting provides promising results in terms of rank correlation. In
Games, Multimedia, and Information datasets, Kendall’s 7-b values are above 0.97,
which means a very robust rank correlation at the testing phase. Results are excellent
in the Entertainment and Photos datasets, as rank correlation is strong, above 0.7.
Focusing on the Photos dataset, a high, moderate rank correlation is obtained (0.61).
Videos and Music datasets present worse rankings in rank correlation (around 0.4),
classified as low, moderate rank correlation. Remember that positive correlations above
+0.7 are strong, values between +0.3 — 4-0.7 moderate, and weak otherwise (Corder
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and Foreman 2011; Schober et al. 2018). Also, note that the datasets with worse results
correspond to those with lower classification accuracies and with a higher number of
items to rank. This issue suggests that estimations are strongly dependent on the length
of the ranking.

6.1.5 Spearman p rank correlation

Table 2d shows the results obtained for Spearman’s p rank correlation. It shows the
mean and standard deviation values (in brackets) for each LRF algorithm and splitting
criteria using optimal hyperparameters. The use of this correlation metric supports the
results provided by Kendall’s 7-b. Despite this enormous similarity, the discrepancies
between Ranking by Pairwise Comparison and Top Label as Class found in Table 2c
for some datasets are less notable in Table 2d. This issue is probably because Kendall’s
correlation metric considers both concordant and discordant pairs in the rankings being
more severe than Spearman’s correlation, being more thorough than Kendall’s 7-b in
comparing real and estimated rankings.

6.1.6 Best algorithm selection

Considering the results obtained from the comparison of Ranking by Pairwise Compar-
ison and Top Label as Class, we opted for selecting Ranking by Pairwise Comparison
since it generally provided better estimations. As results in Table 2 show, Ranking by
Pairwise Comparison using Gini impurity subtly outperforms the other alternatives.
However, the differences between Gini impurity and Information gain are almost unde-
tectable. Contrary to our initial believe, this fact means that the splitting criteria is not
a critical hyperparameter of our learning system.

As we expected, Ranking by Pairwise Comparison provides substantially better
results for the Games and Multimedia datasets than Top Label as Class, probably
because their dataset definition ballast the replacement of the top-label carried out by
Top Label as Class. Although in the other datasets Ranking by Pairwise Compari-
son still outperforms Top Label as Class, in these cases the differences are minimal.
Remember that these results arise from the hyperparameter optimisation method
described in Fig. 9.

6.2 Case studies

The following section presents three case studies describing Mini’s autonomous enter-
tainment activity selection using the user preferences and the level of proactivity.
These cases correspond to the three operation modes of the decision-making system
explained in Sect. 4.3. Case 1 compares the autonomous activity selection for two
users with different features but a low proactivity level. Case 2 shows that, for very
proactive users, the robot opts to leave the decision in the user’s hands. Finally, Case
3 combines both previous approaches for users with a moderate level of proactivity.
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6.2.1 Case 1: a fully autonomous robot

This case of study shows how the preference learning system presented in this work
produces different preference estimations for two different users. Thus, the decision
made by the decision-making system of the robot adapts to the estimated preferences
of each user, producing a personalised interaction. Table 3 shows the input features of
User 1 and User 2 given to the preference learning model to estimate their preferences
towards the activities of the robot in hierarchical levels. Considering their input vector
of features, our preference learning model predicts a ranking of labels for each dataset,
hierarchically represented as decision trees. Figure 10 shows the decision tree for User
1 and Fig. 11 for User 2. Both trees organise the activities of the robot in categories
and subcategories, like Fig. 4 shows, but following a ranking format. Due to the length
in some entertainment activities names, a legend supports the understanding of the
figures. In Figs. 10 and 11, each category, subcategory, and entertainment activity in the
tree has a score in brackets next to the name of the item. These scores are the preferences
of the user that originate the rankings. Thus, for example, the ranking of categories
for User 1 is Multimedia (2.34) > Information (1.54) > Games (0.98). This method
extrapolates to the other rankings generated for each of the eight datasets shaping the
preference learning. Since both users in this example have a low proactivity level (see
Fig. 3), the decision-making system of the robot will work in a fully autonomous mode.
Thus, the robot will always make autonomous decisions selecting the entertainment
activity to execute considering the predictions of the preference learning system. It
is worth mentioning that each item’s scores depend on the ranking contained in each
dataset and not on the overall architecture. Besides, scores range from 0 to 5, depending
on the users’ ratings in the survey.

The predictions for User 1 lead the decision-making to select more often specific
entertainment activities. These selections depend on the temperature values set in the
Boltzmann Eq. 2. Looking at Fig. 10, the red pathway represents the preferred cate-
gory, subcategory, and entertainment activity for User 1 predicted by the preference
learning model. An example of the operation of the decision-making system consid-
ering the features of User 1 if the Temperature of the Boltzmann equation values 0.1,
starts with the selection of the preferred activity of User 1. Thus, the robot will select
the Multimedia category, then the Sayings (S) subcategory, and finally, it will execute
a random saying activity (RS). Note that the random saying activity does not have a
score since it is the only activity inside the Sayings (S) subcategory. Otherwise, if the
Temperature in the Boltzmann equation values 100 units, the estimated preferences
are omitted, and the category, subcategory, and entertainment activity are selected ran-
domly. If the temperature parameter in the Boltzmann equation is between 0.1 — 100,
the selection of the preferred activity of the user is not assured. As the temperature
value increases, selections are more random since the likelihood assigned by the Boltz-
mann equation to each item in the ranking is more similar. The temperature value is
beneficial to introduce a degree of randomness in the activity selection, avoiding the
decision-making system always selecting top-ranked items.

Considering the features of User 2 in Table 3 and the decision tree estimated by the
preference learning systemin Fig. 11, the red path denotes the preferred activity of User
2. When deciding which entertainment activity to execute, if the temperature parameter
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Fig. 10 Predicted decision tree for User 1 showing how each category, subcategory, and activity rank in
the hierarchy according to the score (in brackets) estimated by the preference learning system. Highlighted
in red, the path that represents the preferred category, subcategory, and entertainment activity for the user.
In this case, the category is Multimedia, the subcategory is Sayings, and the activity is playing a random
saying

in the Boltzmann equation is set to its lower value of 0.1 units, Mini will perform the
selection indicated in red in Fig. 11. Thus, an example of the operation of the decision-
making in this operation model starts by selecting the category Information in the first
place because it is the one with the highest score among all categories. Since the
Information category does not contain any subcategory, the following selection will
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directly be the entertainment activity contained in the Information category. In this
case, the entertainment activity breaking news (BN) is the preferred activity as it has
the highest score from all the other activities (national news (NN), international news
(IN), weather forecast (WF), opinion articles (OA), and sports news (SN) in this order).
If the temperature value is close to 100, the selection likelihood of each item will be
homogenised, leading to a random category, subcategory, and activity selection. For
this reason, including a variable temperature value allows the robot to explore new
activities instead of repeating the selection of the preferred one.

This autonomous operation mode presents the advantage of proactively start the
interaction with inexperienced users or those with interaction limitations. Thus, the
robot fosters interacting with the user engaging him/her with entertainment activities.
On the other hand, always selecting the activities without the intervention of the user
may lead to repeat the preferred activities provoking the user’s fatigue. Besides, the
estimations produced by the preference learning system may not be the real preferences
of the user, so this method would require a complementary adaptive refinement of the
initial predictions with the interaction.

6.2.2 Case 2: arobot that gives the initiative to the user

This case of study shows the second operation mode of the decision-making system.
This mode activates when the robot interacts with users with a high level of proactiv-
ity. In this mode, the robot guides the user during the entertainment activity selection
process, but the user decides which activity the robot will finally execute. Like in the
previous mode, the activity selection follows a three-level hierarchical path. First, the
user has to select the category, then the category, and finally the entertainment activity
that (s)he prefers. A sequence of tablet menus is displayed on the touch screen to assist
the user in selecting and letting him/her know about what activities it has. Figure 5
shows the organisation of the entertainment activities of the robot in tablet menus.
In operation mode, the scores of each item in the ranking are not used because the
decision-making system does not work autonomously. However, the rankings gener-
ated by the preference learning model serve to organise the tablet menus according to
the user’s preferences. Thus, each category and subcategory that the user prefers will
appear on top of the tablet menu, facilitating their selection. Although this approach
does not imply the complete functionality of the Preference Learning system, it allows
users to select the activities they prefer, embedding ranking predictions in the tablet
menus so the favourite categories, subcategories, and activities can be easily seen when
making the decision.

An example of this operation mode could be the following. Initially, the Entertain-
ment menu will be permanently displayed, ranking the categories Games, Multimedia,
and Information (Fig. 5a) according to the preferences of the user. If the user selects
the Games category, a new tablet menu (Fig. 5b) will pop up displaying the gaming
activities of the robot (classical, calculus, and quiz games) so the user can make its
decisions. In case the Multimedia category is selected, the new menu appearing will
be Multimedia (Fig. 5c), ranking the subcategories Sayings, Jokes, Videos, Photos,
Music, and Audiobooks. Then, depending on the user selection, the last menu will
appear on the touch screen. If the selection is Music, the different music styles (Fig.
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Fig. 11 Predicted decision tree for User 2 showing how each category, subcategory, and entertainment
activity rank inside the hierarchy according the score of each item. Highlighted in red, the path indicating
the activity breaking news (BN) contained in the Information category that the user likes the most

5h) will appear ranked according to the preferences of the user. Once the music style
has been selected, a song will start playing.

Contrary to the first operation mode, this method has the advantage of allowing
users to select their favourite entertainment activity, so the probabilities of making
an incorrect selection are substantially reduced. This method is useful for adapting
the initial predictions with the interaction as users are providing positive feedback by
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selecting their preferred activities. However, with users that do not like the robot and
refuse to interact with it, this mode can lead the user to stop the interaction since (s)he
can feel that the robot behaves like a simple automaton.

6.2.3 Case 3: a semi-autonomous robot

The third case of study presents how the decision-making system of the robot bal-
ances autonomous decisions with giving the initiative to the user. This operation mode
activates for users with a moderate proactivity level. Considering the feature of User
3 in Table 3 and the prediction tree shown in Fig. 12, the decision-making system
intercalates autonomous decisions with displaying tablet menus. The probability of
making autonomous decisions or displaying a tablet menu is randomised at each deci-
sion step. Thus, in this case, the probability of being autonomously decided by the
robot or the user is the same. If the robot makes the decision, the preferences esti-
mated and the Boltzmann equation are used like Sect. 6.2.1 shows. If the user makes
the selection, the methodology is stated in Sect. 6.2.2. Then, the subcategory and the
entertainment activity are selected following the same method. Since the robot works
in a semi-autonomous mode, the subcategory and activity can be selected by the robot
or the user with equal probability.

An example of operation mode that considers the rankings and scores predicted for
User 3 shown in Fig. 12 could be as follows. First, the system decides if the robot
or the user selects the category. If the robot autonomously selects the category, the
the preferred item for User 3 according to the estimation of the preference learning
algorithm is Games. Therefore, if the temperature in the Boltzmann equation is low,
Games will likely be the selected option. If the temperature is high (close to 100 units),
the category will be randomly selected. If we assume that the robot selects the Games
category and then determines the user has to make the following decision, a tablet
menu containing the activities related to games will be displayed (Fig. 5b). Using
this menu, the user can select their favourite gaming activity from classical, quiz,
and calculus games, displayed in that order. If the selection depends on the rankings
estimated by the Preference Learning system, the red path in Fig. 12 will be selected
more often since it leads to the user’s favourite activity (classic games).

Considering the case studies presented in this section about how the decision-
making system of Mini works, the level of exploration (in terms of executing a broader
range of different activities) depends on two factors. First, it depends on the temperature
of the Boltzmann equation when the robot autonomously decides what item to select
at each decision stage using estimated preferences for a particular user. Additionally,
the exploration is also higher when more decisions depend on the user, as (s)he can
decide the real preferences (which can be different from the estimated ones). Although
allowing the user to select by (him)herself what activity the robot will execute may
promote exploration, autonomous decision-making becomes especially necessary for
users with interaction limitations and low proactivity.

From our point of view, this operation mode will provide the best results in the
long run. We hypothesise that the combination of the robot’s autonomous decisions
with user selection could reduce the fatigue of the user and increase the engagement.
Besides, balancing the activity selection may drive the user to test a broader repertoire

@ Springer



Adaptive robot decision-making for user preference prediction 391

(T T CATEGORIES = ") (™ SUBCATEGORIES =) (= = =  ACTIVITES = = =y
| n n |-> CG (2.03) 1
' —> Games (2.61) L1 LI QG (2.02) 1
[ [
! MLy ca 023) !
[ I [ 1
1 1 iy CV (3.62) :
1 5 v(5.20) SV (2.53) 1
1 1 1 [
: I " FT (1.20) .
[ 1 1L coov (1.01) [
1 Il |—> M (4.63) . » EPM (6.84) |
[ N 1 [
1 I p—>)(4.12) ——+—> R > SPM(5.26)
[ 1 1 [
| | Multimedia (1.49) —pt—> S (3.04) ———> RS > fess
: : : : I > HMA (2.03) [ ERM (3600
[ [
i L > cM (2.67)
Entertainment = Ib—5 A(1.90) ——H 5 cA(1.67) 1
[ 1 1 L > SRM (1.42) |
[ ' 15 1A 0.15) .
I T . > M (028)
—> LP (3.73)
[ 1 1 [
[ 1 P> M (2.17) I
1 1 1 [
MP (1.60
; T "y > ( ) .
1 11— P (0.52) ——4t1> AP (1.45) I
1 1 1 [
[ T T —> BN (5.40) .
1 1 1 —> WF (4.52) 1
[ 1 1 [
. ' . > IN (3.83)
> Information (0.67) l !
I I ] —> NN (2.29) 1
[ [
! 1 L5 OA (1.80) !
1 I I 1
I L3 SN (0.61) I

I 1
— - - = = === L S, B /

S - Sayings V-Videos P -Photos |-Jokes M -Music A - Audiobooks
LP - Landscapes photos MP - Monuments photos AP - Animals photos FM - Funny moments photos
RJ - Random joke RS - Random saying CG - Classic games QG - Quiz games CALG - Calculus games
SV - Sport videos FM - Film trailers CV - Comedy videos COOV - Cooking videos
SPM - Spanish pop music  EPM - English pop music  SRM - Spanish rock music LM - Latin music
FM - Flamenco music CM - Classical music ERM - Spanish rock music TA - Tales audiobooks
HMA - Historical moments audiobooks CA - Classical audiobooks NN - National news SN - Sport news
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Fig. 12 Predicted decision tree for User 3 showing how each category, subcategory, and activity rank inside
the hierarchy according to its associated estimated score (in brackets). Highlighted in red, the path indicating
which activity (classic games (CG)) has more possibilities to be chosen in case the robot decides the activity
autonomously

of entertainment activities, discovering their real favourite ones. A possible drawback
of this method can be related to the expectations of the user. If (s)he is waiting for a
menu to appear and the robot decides a different activity, the user may feel that the
robot is not really adapting to him/her. For this reason, it is important that autonomous
and user selection are correctly balanced to avoid these situations.
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Fig. 13 Mean and standard deviation value of the Personalisation perceived attribute for Condition 1 (C1):
arobot personalising the activity selection and Condition 2 (C2): a robot selecting activities randomly. Very
significant statistical differences (p-value from 0.01 to 0.001) are denoted with *#*

Table 4 Results obtained from the statistical analysis of the Personalisation perceived regarding the per-
sonalisation of the activity selection process. Very significant statistical differences (p-value < 0.001) are
indicated with **

Attribute Mann-Whitney’s U p-value

Personalisation perceived 16.50 .003#%*

6.3 Human-robot interaction results

The evaluation of the system during human—robot interaction provided valuable results
regarding both conditions tested. Figure 13 compares the mean and standard devia-
tion values for the attribute Personalisation perceived reported by the participants of
Condition 1 (personalisation) and Condition 2 (general).

The statistical analysis of the Personalisation perceived, presented in Table 4, befell
using the Mann—Whitney’s U (Zimmerman 1987) nonparametric statistic since the
data did not follow a normal distribution and the sample is relatively small. The
analysis shows significant statistical differences between both conditions (p —value =
0.003). This fact indicates that the participants using a robot with personalised activity
selection (Condition 1) found the robot more adaptive to themselves than those with
random activity selection (Condition 2).

The analysis of the results related to the Godspeed questionnaire lead to the follow-
ing conclusions. As Fig. 14 shows, the participants that interacted with a robot that
personalised the activity selection (Condition 1) generally rated the robot higher than
those participants that interacted with a robot that randomly decided the activities to
execute (Condition 2). The only category that received a lower rating by participants in
Condition 1 was the Security Perceived (SP). However, the ratings in both conditions
regarding this category were very similar.

The statistical analysis of the data also provided valuable results in the compari-
son of both conditions. Since the data retrieved in the evaluation followed a normal
distribution, we could apply parametric statistics. In our experiment, we have two
independent samples (Condition 1 and Condition 2). For this reason, the most appro-
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Fig. 14 Mean and standard deviation values in the statistical analysis of the Godspeed results considering
each category and condition tested (Condition 1 (C1): a robot personalising the activity selection and
Condition 2 (C2): arobot selecting activities randomly). Anthropomorphism (A), Animacy (A), Likeability
(L), Intelligence perceived (IP), and Security perceived (SP). Significant statistical differences (p-value
from 0.05 to 0.01) are denoted with *, very significant (p-value from 0.01 to 0.001) with **, and extremely
significant (p-value< 0.001) with *#%*

Table 5 Results of the statistical analysis carried out on the categories of the Godspeed questionnaire.
Significant statistical differences (p-value from 0.05 to 0.01) are denoted with *, very significant (p-value
from 0.01 to 0.001) with **, and extremely significant (p-value< 0.001) with ***

Goodspeed category Students’ T DoF p-value
Anthropomorphism 1.767 5 .092
Animacy 1.471 6 157
Likeability 6.197 5 L0007
Intelligence perceived 3.788 5 .000%**
Security perceived 0.640 3 529

priate statistical analysis to investigate whether there exists a significant difference
between them is the Student’s T-test (Efron 1969). Table 5 shows the statistical anal-
ysis for each category in the Godspeed questionnaire; each category contains several
degrees of freedom (DoF) that equally contribute to the evaluation of the category.
Results show significant statistical differences for the Student’s T-test in the categories
Likeability (L) (p-value< 0.001) and Intelligence Perceived (IP) (p-value=0.01) and
no differences in the categories Anthropomorphism (A) (p-value=0.092) and Security
Perceived (SP) (p-value=0.529). These results align with our initial hypothesis, indi-
cating that the robot with personalised activity selection (Condition 1) is rated more
positively than a robot with random activity selection (Condition 2). Contrary to what
we expected, we did not find any significant statistical differences in Animacy (AN)
(p-value=0.157).

7 Discussion and limitations
One of the goals of social robots is to communicate with their users appropriately.

These users may present very different features, including a diverse range of pref-
erences. For this reason, if a robot aims at entertaining users during long-term
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interactions, it has to exhibit adaptive capabilities to suggest each user with their
favourite activities. Currently, many machine learning algorithms allow fulfilling this
goal. However, like presented in this manuscript, preference learning and, more pre-
cisely, LRF is nowadays a competitive alternative that allows artificial systems to
predict, using rankings, the favourite activities of each user from a predefined set of
alternatives. The review of the existing literature lacks research about this area, as most
current models focus on learning while interacting instead of anticipating the potential
preferences of users before the interaction occurs using their defining features. How-
ever, we took strong inspiration from the literature presented in Sect. 2, but including
some novel methodology to overcome some issues that our social robot and archi-
tecture presented. Unlike related literature for preference predictions based on deep
learning or reinforcement learning, our contribution uses Label Ranking combined
with random forest for several reasons. First, our dataset is not large, as deep learning
models require to produce accurate outcomes. Second, deep learning models require
a higher computational complexity and learning times that our robot may not easily
afford due to its hardware limitations. Finally, as mentioned above, already existing
methods typically need that the user interacts with the system before the estimation
occurs. For this reason, our framework pretends to overcome the previous limitations
to improve human—robot interaction by personalising activity selection estimating the
preferred user’s activities.

Due to the broad range of algorithms that provide meaningful results in LRF prob-
lems, we opted for comparing two promising but different alternatives: Top Label
as Class and Ranking by Pairwise Comparison. We demonstrated how Ranking by
Pairwise Comparison is the best alternative since it produces promising outcomes in
our learning scenario, especially for datasets with a large number of items to rank. To
prove the improvements of personalising the activity selection according to the user’s
preferences, we present different case studies about the operation of the learning sys-
tem in the long run. Besides, we conducted a short-term human-robot interaction
experiment for assessing whether people prefer interacting with a robot presenting
personalised activity selection (Condition 1) than with a robot with random activity
selection (Condition 2). The statistical analysis carried out on the data retrieved from
the study shows valuable outcomes in comparing both conditions. The participants
believe that a robot with personalised activity selection is more appropriate to their
preferences, as well as they perceive this robot as more intelligent, and they like it
above the robot without personalised activity selection.

Although the previous results show optimistic and promising outcomes in the adap-
tive selection of activities by the robot and the correct operation of the system, the
learning process of the robot has some limitations that are worthy of mentioning. In
the first place, we are aware that retrieving the data using an online survey for building
our datasets and training the model is not the best alternative. Nonetheless, due to
the COVID-19 pandemic, we believed it was the safest way to obtain the necessary
data. Besides, the collection of the input features for test users was carried out using
the questionnaire presented in Appendix A. We are aware that the best idea is to give
the robot the possibility to gather such information interacting with the user. For this
reason, we are currently working on designing a new robot functionality that allows
Mini to retrieve the input features of the users by interacting with them.
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Another limitation of the system resides in comparing the two LRF algorithms
used in this work. We selected them because previous preference learning scenarios
suggested promising results, but many other alternatives could be selected. Besides,
as Sect. 6.1.1 shows, hyperparameter optimisation is an arduous task since it requires
much computational time. Although these issues, the results demonstrated that our
initial decisions in terms of the technique used in our learning model were, at least,
appropriate for the kind of task we wanted to carry out. Finally, as results in Table 2
prove, LRF algorithms are strongly affected by the number of labels to rank. In datasets
with a high number of labels, such as the Music dataset in this work (7 items in the
ranking), the ranking correlation value significantly drops for datasets containing three
items to rank (e.g. Entertainment or Games). Besides, the computational time required
for training the system exponentially increases too. Although this is not an issue in
this application, we must be aware of these drawbacks if we continue expanding the
entertainment repertoire of Mini.

The human-robot interaction experiment yielded encouraging results in evaluat-
ing the robot exhibiting a personalised activity selection. However, we are conscious
that further experiments with more participants and during long-term interactions are
required to see if the learning model works in the long run. The system presented
in this work is just the first step in endowing social robots with personalised activity
selection. In the future, we believe that the preference learning estimations should be
combined with reinforcement learning to adapt the initial predictions to their real val-
ues using the feedback provided by the users. Finally, we pretend to enlarge the number
of instances of the datasets by including the final ratings learnt by the reinforcement
learning model to enhance the prediction accuracy and the estimated rankings of the
original preference learning model presented in this dissertation.

8 Conclusions

This contribution presents how the social robot Mini can predict the favourite activities
of the potential robot users. Specifically, the adaptive decision-making system extends
our previous research focused on using the robot during personalised interactions.
First, we compared the performance of Ranking by Pairwise Comparison and Top
Label as Class, two encouraging LR algorithms. The results demonstrate how Ranking
by Pairwise Comparison outperforms Top Label as Class in our learning system,
producing better overall estimations. Then, we present different case studies showing
the operation of the architecture. Finally, a human-robot interaction study validates
whether people prefer a personalised activity selection over a random one.

The preference learning system embedded in the decision-making of Mini includes
different mechanisms of interaction depending on the user with whom it is interact-
ing. The three case studies describe how the robot interacts with users with different
proactivity levels, leading to broad and diverse communication between agents. More-
over, the decision-making system promotes activity exploration and user proactivity
if necessary. In this context, we are aware that predictions, in certain situations, do
not assure a perfect accuracy in preferences representation, especially whether users
have not interacted previously with the robot or do not figure out how some of the
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activities work. Besides, sometimes users can change their interests in real time while
interacting with the robot. To overcome these situations, this work embraces the first
step towards preference learning modelling in social robots.
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A Survey content

The following appendix contains the survey questions that were asked to users and
their possible answers. For full details of the survey, please access the following link
Online Survey. Sections A.1, A.2 and A.3 were used to obtain the input of the datasets,
while user ratings in Sect. A.4 were used to shape the labelled output in the ranking
format of each category and subcategory.

A.1 Socio-demographical questions

1. Gender. Multi-choice question.

— Male
— Female
— Other

2. Age. Open numerical question (range 1-99).
Nationality. Open question.
4. Education. Multi-choice question.

»

— Primary School/Elementary education
Secondary School

— Medium level vocational training
High level vocational training
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— Bachelors
— Master or PhD.
— Other

5. Occupation. Multi-choice question.

— Qualified worker
Student
Unqualified worker
— Unemployed

— Other

6. Coexistence. Multi-choice question.

— Alone

— Couple
Familiar

— Shared house

7. Place of residence. Multi-choice question.

— Big city
— Small city/Town
— Village/Countryside

8. Physical activity. Multi-choice question.

— Less than once a week

1-3 times a week

— 4-6 days a week
Everyday/Almost everyday

A.2 Habits questions

1. Do you consider a proactive person? 1 — 5 rating.
2. Do you daily make use of electronic devices to entertain yourself? Yes-No question.

A.3 Interest questions

1. Indicate if you have interest in the following categories. Checkbox question.

Sports

— Videogames
Reading
Photography

— Information Search
Browse the Internet
— Videos

Social Networks
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— Cooking

— Purchases

— TV series and films
— Music

A.4 Preferences ratings

Rate from 0 o 5, meaning O total dislike and 5 total like the following entertainment
categories, subcategories and activities.

1. Games

— Classics
— Calculus
— Quiz

2. Photos

— Monuments

— Animals
Landscapes

— Funny moments

3. Audiobooks

— Classics
— Historical events
— Children’s tales

4. Music

— Spanish rock

— Classical music
— English rock
Flamenco music
Spanish pop

— Latin music
English pop

5. Videos

— Sports

— Comedy

— Cooking

— Film trailers

6. Sayings
7. Jokes
8. Information

— Weather forecast
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— National news
International news
Sport news

— Opinion articles
Breaking news

References

Adinolf, S., Wyeth, P., Brown, R., Harman, J.: My little robot: user preferences in game agent customization.
In: Proceedings of the annual symposium on computer-human interaction in play, pp 461-471 (2020)

Ahmad, M.I., Mubin, O., Orlando, J.: Adaptive social robot for sustaining social engagement during long-
term children-robot interaction. Int. J. Human-Comput. Interact. 33(12), 943-962 (2017)

Aiolli, F.,, Sperduti, A.: Learning preferences for multiclass problems. Adv. Neural Info. Process. Syst., pp
17-24 (2005)

Aledo, J.A., Gamez, J.A., Molina, D.: Tackling the supervised label ranking problem by bagging weak
learners. Inf. Fus. 35, 38-50 (2017)

Alkhabbas, F., Alawadi, S., Spalazzese, R., Davidsson, P.: Activity recognition and user preference learning
for automated configuration of iot environments. In: Proceedings of the 10th international conference
on the internet of things, pp 1-8 (2020)

Alonso-Martin, F., Gonzalez-Pacheco, V., Castro-Gonzilez, A., Ramey, A., Yébenes, M., Salichs, M.A.
Using a social robot as a gaming platform. In: International Conference on Social Robotics, Springer,
pp 30-39 (2010)

Bartneck, C., Croft, E., Kulic, D.: Measuring the anthropomorphism, animacy, likeability, perceived intel-
ligence and perceived safety of robots (2008)

Bertel, L.B., Hannibal, G.: The nao robot as a persuasive educational and entertainment robot (peer)-a
case study on children’s articulation, categorization and interaction with a social robot for learning.
Tidsskriftet Lering og Medier (LOM) 8(14) (2016)

Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Know. -Based Syst.
46, 109-132 (2013)

Bouza, A., Bernstein, A.: (partial) user preference similarity as classification-based model similarity. Seman-
tic Web 5(1), 47-64 (2014)

Breiman, L.: Random forests. Mach. Learn. 45(1), 5-32 (2001)

Brinker, K., Hiillermeier, E.: Case-based label ranking. In: European Conference on Machine Learning,
Springer, pp 566-573 (2006)

Brinker, K., Hiillermeier, E.: Case-based multilabel ranking. In: IJCAL pp 702-707 (2007)

Burke, R., Felfernig, A., Goker, M.H.: Recommender systems: an overview. Ai Mag. 32(3), 13-18 (2011)

Cainamero, L.: Modeling motivations and emotions as a basis for intelligent behavior. In: Proceedings of
the first international conference on Autonomous agents, pp 148-155 (1997)

Cailamero, L.: Emotion understanding from the perspective of autonomous robots research. Neural Netw.
18(4), 445-455 (2005)

Castillo, J.C., Alvarez-Fernandez, D., Alonso-Martin, F., Marques-Villarroya, S., Salichs, M.A.: Social
robotics in therapy of apraxia of speech. J. Healthcare Eng. 2018 (2018)

Cercignani, C.: The boltzmann equation. In: The Boltzmann Equation and its Applications, Springer, pp
40-103 (1988)

Cevikalp, H., Benligiray, B., Gerek, O.N.: Semi-supervised robust deep neural networks for multi-label
image classification. Pattern Recognit. 100, 107164 (2020)

Chen, Y., Zhang, J., Guo, M., Cao, J.: Learning user preference from heterogeneous information for store-
type recommendation. IEEE Trans. Serv. Comput. (2017)

Chu, EJ., Xu, R., Seguin, L., Vela, P.A.: Toward affordance detection and ranking on novel objects for
real-world robotic manipulation. IEEE Robot. Autom. Lett. 4(4), 4070-4077 (2019)

Churamani, N., Anton, P., Briigger, M., FlieBwasser, E., Hummel, T., Mayer, J., Mustafa, W., Ng, H.G.,
Nguyen, T.L.C., Nguyen, Q., et al.: The impact of personalisation on human-robot interaction in
learning scenarios. In: Proceedings of the Sth international conference on human agent interaction, pp
171-180 (2017)

@ Springer



400 M. Maroto-Gémez et al.

Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Adv. Neural Info. Process. Syst., pp
451-457 (1998)

Corder, G.W., Foreman, D.I.: Nonparametric statistics for non-statisticians (2011)

Dery, L.: Multi-label ranking: Mining multi-label and label ranking data. arXiv preprint arXiv:2101.00583
(2021)

Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of big data-
evolution, challenges and research agenda. Int. J. Info. Manag. 48, 63-71 (2019)

Efron, B.: Student’s t-test under symmetry conditions. J. Am. Stat. Assoc. 64(328), 1278-1302 (1969)

Ferndndez-Rodicio, E., Castro-Gonzélez, A Alonso-Martin, F., Maroto-Gémez, M., Salichs, M.A.: Mod-
elling multimodal dialogues for social robots using communicative acts. Sensors 20(12), 3440 (2020)

Fiirnkranz, J., Hiillermeier, E.: Pairwise preference learning and ranking. In: European Conference on
Machine Learning, Springer, pp 145-156 (2003)

Fiirnkranz, J., Hiillermeier, E.: Preference learning and ranking by pairwise comparison. In: Preference
Learning, Springer, pp 65-82 (2010)

Fiirnkranz, J., Hiillermeier, E., Vanderlooy, S.: Binary decomposition methods for multipartite ranking. In:
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer,
pp 359-374 (2009)

Fiirnkranz, J. HE: Preference learning: an introduction. In: Preference Learning, Springer, pp 1-17 (2010)

Gao, N., Bagdouri, M., Oard, D.W.: Pearson rank: a head-weighted gap-sensitive score-based correlation
coefficient. In: Proceedings of the 39th International ACM SIGIR conference on research and devel-
opment in information retrieval, pp 941-944 (2016)

Gargiulo, F,, Silvestri, S., Ciampi, M., De Pietro, G.: Deep neural network for hierarchical extreme multi-
label text classification. Appl. Soft Comput. 79, 125-138 (2019)

Gharroudi, O., Elghazel, H., Aussem, A.: A comparison of multi-label feature selection methods using
the random forest paradigm. In: Canadian Conference on Artificial Intelligence, Springer, pp 95-106
(2014)

Giakoumis D, Peleka, G., Vasileiadis, M., Kostavelis, 1., Tzovaras, D.: Service robot behaviour adaptation
based on user mood, towards better personalized support of mci patients at home. In: Smart Assisted
Living, Springer, pp 209-226 (2020)

Goztepe, K.: New directions in military and security studies: artificial intelligence and military decision
making process. Int. J. Info. Security Sci. 4(2), 69-80 (2015)

de Graaf, M.M., Allouch, S.B., van Dijk, J.A.: Long-term evaluation of a social robot in real homes. Interact.
Stud. 17(3), 462-491 (2016)

Han, M., Giinay, S.Y., Yildiz, 1., Bonato, P., Onal, C.D., Padir, T., Schirner, G., Erdogmus, D.: From
hand-perspective visual information to grasp type probabilities: deep learning via ranking labels. In:
Proceedings of the 12th ACM international conference on pervasive technologies related to assistive
environments, pp 256-263 (2019)

Hiillermeier, E., Fiirnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences.
Artif. Intell. 172(16-17), 1897-1916 (2008)

Joachims, T., Radlinski, F.: Search engines that learn from implicit feedback. Computer 40(8), 34—40 (2007)

Kendall, M.G.: The treatment of ties in ranking problems. Biometrika pp 239-251 (1945)

Khalili, A.H., Wu, C., Aghajan, H.: Hierarchical preference learning for light control from user feedback.
In: 2010 IEEE computer society conference on computer vision and pattern recognition-workshops,
IEEE, pp 56-62 (2010)

Khamassi, M., Velentzas, G., Tsitsimis, T., Tzafestas, C.: Robot fast adaptation to changes in human
engagement during simulated dynamic social interaction with active exploration in parameterized
reinforcement learning. IEEE Trans. Cognitive Dev. Syst. 10(4), 881-893 (2018)

Kubota, A., Riek, L.D.: Methods for robot behavior adaptation for cognitive neurorehabilitation. Annual
review of control, robotics, and autonomous systems 5 (2021)

Lei, Z.,Zeng, Y., Liu, P., Su, X.: Active deep learning for hyperspectral image classification with uncertainty
learning. IEEE Geosci. Remote Sens. Lett. (2021)

Leite, 1., Martinho, C., Paiva, A.: Social robots for long-term interaction: a survey. Int. J. Soc. Robot. 5(2),
291-308 (2013)

Liu, J., Chang, W.C., Wu, Y., Yang, Y.: Deep learning for extreme multi-label text classification. In: Proceed-
ings of the 40th international ACM SIGIR conference on research and development in information
retrieval, pp 115-124 (2017)

@ Springer


http://arxiv.org/abs/2101.00583

Adaptive robot decision-making for user preference prediction 401

Long, Y., Lu, Q., Xiao, Y., Li, M., Huang, C.R.: Domain-specific user preference prediction based on
multiple user activities. In: 2016 IEEE international conference on big data (big data), IEEE, pp
3913-3921 (2016)

Maroto-Gémez, M., Castro-Gonziélez, A., Castillo, J.C., Malfaz, M., Salichs, M.A.: A bio-inspired moti-
vational decision making system for social robots based on the perception of the user. Sensors 18(8),
2691 (2018)

Martin, A., Pulido, J.C., Gonzilez, J.C., Garcia-Olaya, A., Sudrez, C.: A framework for user adaptation and
profiling for social robotics in rehabilitation. Sensors 20(17), 4792 (2020)

Martins, G.S., Santos, L., Dias, J.: User-adaptive interaction in social robots: a survey focusing on non-
physical interaction. Int. J. Soc. Robot. 11(1), 185-205 (2019)

Olaronke, I., Oluwaseun, O., Rhoda, I.: State of the art: a study of human-robot interaction in healthcare.
Int. J. Info. Eng. Elect. Bus. 9(3), 43 (2017)

Olsson, T., Salo, M.: Online user survey on current mobile augmented reality applications. In: 2011 10th
IEEE International symposium on mixed and augmented reality, IEEE, pp 75-84 (2011)

Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., Cheng, X.: Deeprank: A new deep architecture for relevance
ranking in information retrieval. In: Proceedings of the 2017 ACM on conference on information and
knowledge management, pp 257-266 (2017)

Parkes, D.C., Wellman, M.P.: Economic reasoning and artificial intelligence. Science 349(6245), 267-272
(2015)

Prelipcean, G., Boscoianu, M., Moisescu, F.: New ideas on the artificial intelligence support in military
applications. In: Proceedings of the 9th WSEAS international conference on Artificial intelligence,
knowledge engineering and data bases, World Scientific and Engineering Academy and Society
(WSEAS), pp 34-39 (2010)

Rosenthal-von der Piitten, A., Abrams, A.M.: Social dynamics in human-robot groups—possible conse-
quences of unequal adaptation to group members through machine learning in human-robot groups.
In: International Conference on Human-Computer Interaction, Springer, pp 396-411 (2020)

Quinlan, J.R.: Improved use of continuous attributes in c4. 5. J. Artif. Intell. Res. 4, 77-90 (1996)

Ritschel, H., André, E.: Real-time robot personality adaptation based on reinforcement learning and social
signals. In: Proceedings of the companion of the 2017 acm/iEEE international conference on human-
robot interaction, pp 265-266 (2017)

Rossi, S., Ferland, F., Tapus, A.: User profiling and behavioral adaptation for hri: a survey. Pattern Recog.
Lett. 99, 3-12 (2017)

de S4, C.R., Soares, C., Knobbe, A., Cortez, P.: Label ranking forests. Expert Syst. 34(1), e12166 (2017)

Salichs, M.A., Castro-Gonzilez, A., Salichs, E., Ferndndez-Rodicio, E., Maroto-Gémez, M., Gamboa-
Montero, J.J., Marques-Villarroya, S., Castillo, J.C., Alonso-Martin, F., Malfaz, M.: Mini: A new
social robot for the elderly. Int. J. Soc. Robot. pp 1-19 (2020)

Schneider, S., Kummert, F.: Comparing robot and human guided personalization: adaptive exercise robots
are perceived as more competent and trustworthy. Int. J. Soc. Robot. 13(2), 169-185 (2021)

Schober, P., Boer, C., Schwarte, L.A..: Correlation coefficients: appropriate use and interpretation. Anesthesia
Analgesia 126(5), 1763-1768 (2018)

Schiitze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval, vol 39. Cambridge Uni-
versity Press Cambridge (2008)

Spearman, C.: The proof and measurement of association between two things (1961)

Steinberg, D., Colla, P.: Cart: classification and regression trees. Top Ten Algorithms Data Min. 9, 179
(2009)

Syarif, I., Prugel-Bennett, A., Wills, G.: Svm parameter optimization using grid search and genetic algorithm
to improve classification performance. Telkomnika 14(4), 1502 (2016)

Tapus, A., Tapus, C., Matari¢, M.J.: User-robot personality matching and assistive robot behavior adaptation
for post-stroke rehabilitation therapy. Intell. Service Robot. 1(2), 169 (2008)

Tozadore, D.C., Valentini, J.P., Rodrigues, V.H., Vendrameto, M., Zavarizz, R.G., Romero, R.A.: Towards
adaptation and personalization in task based on human-robot interaction. In: 2018 Latin American
Robotic Symposium, 2018 Brazilian Symposium on robotics (SBR) and 2018 workshop on robotics
in education (WRE), IEEE, pp 383-389 (2018)

Veldsquez, J.D.: Cathexis—a computational model for the generation of emotions and their influence in the
behavior of autonomous agents. Ph.D. thesis, Massachusetts Institute of Technology (1996)

Vembu, S., Girtner, T.: Label ranking algorithms: a survey. In: Preference Learning, Springer, pp 45-64
(2010)

@ Springer



402 M. Maroto-Gémez et al.

Wang, R., Ridley, R., Qu, W., Dai, X., et al.: A novel reasoning mechanism for multi-label text classification.
Info. Process. Manag. 58(2), 102441 (2021)

Weber, K., Ritschel, H., Aslan, 1., Lingenfelser, F., André, E.: How to shape the humor of a robot-social
behavior adaptation based on reinforcement learning. In: Proceedings of the 20th ACM international
conference on multimodal interaction, pp 154-162 (2018)

Weiss, A., Bartneck, C.: Meta analysis of the usage of the godspeed questionnaire series. In: 2015 24th
IEEE International symposium on robot and human interactive communication (RO-MAN), IEEE, pp
381-388 (2015)

Wen, S., Liu, W., Yang, Y., Zhou, P., Guo, Z., Yan, Z., Chen, Y., Huang, T.: Multilabel image classification
via feature/label co-projection. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2020)

Werbin-Ofir, H., Dery, L., Shmueli, E.: Beyond majority: Label ranking ensembles based on voting rules.
Expert Syst. Appl. 136, 50-61 (2019)

Woodworth, B., Ferrari, F., Zosa, T.E., Riek, L.D.: Preference learning in assistive robotics: Observational
repeated inverse reinforcement learning. In: Machine learning for healthcare conference, PMLR, pp
420-439 (2018)

Wu, J., Sheng, V.S., Zhang, J., Li, H., Dadakova, T., Swisher, C.L., Cui, Z., Zhao, P.: Multi-label active learn-
ing algorithms for image classification: overview and future promise. ACM Comput. Surv. (CSUR)
53(2), 1-35 (2020)

You, R., Zhang, Z., Wang, Z., Dai, S., Mamitsuka, H., Zhu, S.: Attentionxml: label tree-based attention-
aware deep model for high-performance extreme multi-label text classification. Adv. Neural Info.
Process. Syst. 32, 5820-5830 (2019)

Zheng,Z.,Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G.: A general boosting method and its application
to learning ranking functions for web search. Adv. Neural Info. Process. Syst., pp 1697-1704 (2008)

Zhou, J., Jiang, Y., Huang, B.: Source identification of infectious diseases in networks via label ranking.
PloS one 16(1), €0245344 (2021)

Zhou, Y., Qiu, G.: Random forest for label ranking. Expert Syst. Appl. 112, 99-109 (2018)

Zimmerman, D.W.: Comparative power of student t test and mann-whitney u test for unequal sample sizes
and variances. J. Exp. Edu. 55(3), 171-174 (1987)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Marcos Maroto-Gémez is a researcher and assistant professor at Carlos III of Madrid University. Currently,
he researches at Robotics Lab Research Group being his actual lines related to human—robot interaction,
decision-making, adaptation, autonomy, and machine learning applied to social robots.

Alvaro Castro-Gonzalez is a Member of the RoboticsLab Research Group and associate professor at the
Department of Systems Engineering and Automation of the Carlos III University of Madrid, Madrid,
Spain. He has been involved in several national, European, and corporate-sponsored research projects.
Her present research lines are related to human-robot interaction, social robots, expressiveness in robots,
decision-making, and artificial emotions.

José Carlos Castillo holds an M.Sc. degree in Advanced Computer Technologies (2008) and a PhD degree
in Computer Science (2012) from Castilla-La Mancha University, Spain. From 2006 to 2012, he worked
at the natural and artificial Interaction Systems (n&alS) group at the Albacete Research Institute of Infor-
matics, Spain, focusing on computer vision techniques to detect human activities and frameworks for
intelligent monitoring and activity interpretation. From October 2012 to September 2013, he worked as a
postdoctoral researcher at the Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST)
of the Technical University of Lisbon (UTL), where he focused on networked robot systems, robotics and
computer vision and intelligent control systems. In September 2013 he moved to the RoboticsLab of the
Universidad Carlos IIT de Madrid, where he is an Associate Professor working on social robotics and com-
puter vision techniques for human—robot interaction.

Maria Malfaz is an associate professor of the Systems Engineering and Automation Department at the

Carlos III University of Madrid. Her research area follows the line carried out in her thesis and, more
recently, she has been working on multimodal human-robot interaction systems. She belongs to several

@ Springer



Adaptive robot decision-making for user preference prediction 403

international scientific associations: IEEE-RAS (IEEE Robotics and Automation Society), IFAC (Inter-
national Association of Automatic Control), and CEA (Comité Espafiol de Automadtica). Moreover, she
is also member of research networks such as EURobotics (European Robotics Coordination Action), and
HispaRob (Plataforma Tecnoldgica Espafiola de Robdética).

Miguel Angel Salichs is a Full Professor of the Systems Engineering and Automation Department, Carlos
IIT University of Madrid. His research interests include autonomous social robots, multi-modal human—
robot interaction, mind models and cognitive architectures. He was a member of the Policy Committee
of the International Federation of Automatic Control (IFAC), the Chairman of the Technical Committee
on Intelligent Autonomous Vehicles of IFAC, a responsible of the Spanish National Research Program on
Industrial Design, a Production Member of the Spanish Society on Automation and Control (CEA), and
the Spanish Representative with the European Robotics Research Network (EURON). He is the Coordi-
nator of the Secretariat of the Spanish Robotics Technology Platform (HispaRob).

@ Springer



	An adaptive decision-making system supported on user preference predictions for human–robot interactive communication
	Abstract
	1 Introduction
	2 Related work
	2.1 Preference Learning for user preference estimation
	2.2 Robot adaptive behaviour

	3 Label ranking forest for preferences estimation
	3.1 Label ranking forest
	3.2 Ranking by pairwise comparison
	3.3 Top label as class

	4 Adaptive activity selection in the social robot mini
	4.1 Robot architecture
	4.2 Methodology
	4.3 Decision-making using preference prediction in Mini

	5 Experiment set-up and evaluation
	5.1 Building datasets from surveyed data
	5.2 Ranking correlation metrics
	5.3 Evaluation of the ranking algorithms
	5.4 Human–robot interaction assessment


	6 Results
	6.1 Algorithm selection
	6.1.1 hyperparams
	6.1.2 Prediction accuracy
	6.1.3 Training time
	6.1.4 Kendall τ-b rank correlation
	6.1.5 Spearman ρ rank correlation
	6.1.6 Best algorithm selection

	6.2 Case studies
	6.2.1 Case 1: a fully autonomous robot
	6.2.2 Case 2: a robot that gives the initiative to the user
	6.2.3 Case 3: a semi-autonomous robot

	6.3 Human–robot interaction results

	7 Discussion and limitations
	8 Conclusions
	Acknowledgements
	A Survey content
	A.1 Socio-demographical questions
	A.2 Habits questions
	A.3 Interest questions
	A.4 Preferences ratings

	References




