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With the extensive usage of social media platforms, spam information, especially rumors, has become a serious problem of social
network platforms. ,e rumors make it difficult for people to get credible information from Internet and cause social panic.
Existing detection methods always rely on a large amount of training data. However, the number of the identified rumors is always
insufficient for developing a stable detection model. To handle this problem, we proposed a deep transfer model to achieve
accurate rumor detection in social media platforms. In detail, an adaptive parameter tuning method is proposed to solve the
negative transferring problem in the parameter transferring process. Experiments based on real-world datasets demonstrate that
the proposed model achieves more accurate rumor detection and significantly outperforms state-of-the-art rumor
detection models.

1. Introduction

With the rapid development of mobile Internet technology,
online social networking (OSN), a novel information pub-
lishing and sharing platform, has become an essential part of
our daily life. Some OSN platforms, such as Facebook,
Twitter, Weibo, WeChat, and other social networking
platforms, have triggered a media revolution with the
interactivity, immediacy, and diversity, which have pro-
foundly affected all aspects of our society and economy. ,e
existence of false information makes it difficult for OSN
users to obtain credible information on OSN platforms.
Rumors are the most common false information, which are
false messages that spread among a large amount of people
and have mislead these people [1]. Due to easy access to
social media, rumors can spread extensively on social media,
bringing huge harm to society and causing a lot of economic
losses. For example, if there is a rumor about a bomb event in
a hotel, the income of the hotel will suffer from the prop-
agation of this rumor on social media platforms. Even worse,
malicious rumors may seriously violate the opinions of OSN

users, cause social panic, and even lead to a crisis of con-
fidence. ,e rumors on OSN have become a serious social
problem. However, it is unrealistic to rely on manual
methods to identify and filter rumors, and the average ac-
curacy of three human judges is only 57.33% [2]. ,erefore,
effective detection of rumors in OSN platforms is highly
desired. ,e research studies on automatic detection of
rumors have received increasing attention.

Most existing rumor detection methods employed
learning algorithms that incorporated a wide variety of
features to take rumor detection as a binary classification
task [3]. ,ese rumor detection models incorporated a wide
variety of features of the text content [4], user characteristics
[5], and diffusion patterns of the OSN messages [6] or simply
exploited the patterns used in regular message to discover
rumors [7]. ,ese approaches aim at extracting distinctive
features to describe rumors faithfully. However, these tra-
ditional machine learning methods fail to obtain an effective
classification model when the features are sparse. Ma et al.
[8] proposed an adaptive model and for the first time used
the recurrent neural networks to achieve microblog rumor
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detection. Recurrent neural network (RNN) models achieve
significant improvements over state-of-the-art learning al-
gorithms that rely on hand-crafted features. Chen et al. [3]
introduced CallAtRumors, a novel recurrent neural network
model based on soft attention mechanism to automatically
carry out early rumor detection by learning latent repre-
sentations from the sequential messages in OSN. Singh et al.
[9] used a convolutional neural network (CNN) model to
mine the semantic features of review texts, which was then
used to identify false reviews. However, these neural net-
work-based models require a large amount of training data,
and the size of training datasets affects the accuracy of the
model when the training data are insufficient.

Transfer learning (TL) is a branch of machine learning
(ML) algorithms, which leverages the knowledge stored
within a source domain and provides a method to transfer
the knowledge of the source domain to a target domain [10].
At the same time, transfer learning has benefited many real-
world applications where labelled data are abundant in
source domains but scarce in the target domain [11].
Existing studies have already provided the evidences for
applying TL on neural features. For the instance of image
processing, the deep neural networks exhibit an interesting
phenomenon that the model always tends to learn first-layer
features that resemble either Gabor filters or color blobs
[12, 13]. Donahue et al. [14] suggested that high-level layers
are also transferable in general visual recognition. Mou et al.
[15] further studied the transferability of neural layers.
Semwal et al. [10] reported the results and conclusions
obtained from extensive empirical experiments using a CNN
and tried to uncover primary rules to ensure a meaningful
transfer operation. ,e application of transfer learning in
text classification provides new ideas for solving the prob-
lems when labelled texts are insufficient to support the
training processes of models. However, without the
knowledge about the difference between the source and the
target domains, negative transferring [16] occurs when
knowledge is transferred from different domains. Negative
transferring refers to the phenomenon that instead of im-
proving the classification accuracy of the models, transfer
learning from other domains degrades the classification
accuracy on the target domain. Despite the fact that how to
avoid negative transferring is a very important issue, little
research has been done on this research field.

,e deep neural network incorporates the domain
knowledge into the parameters of their nodes during the
training process. We can transfer the related knowledge
embedded in neural networks to the rumor detection do-
main by reusing the parameters of the neural networks. ,is
paper proposes a deep transfer model based on CNN to
approach an accurate rumor detection scheme. In detail, we
propose a learning rate adaptive update method to solve the
negative transferring problem in the transfer process.

,e main contributions are listed as follows:

(1) A novel deep transfer model based on CNN for
rumor detection is proposed, which can effectively
identify rumors without sufficient training data. We
evaluate that the knowledge related to large-scale

datasets in the field of e-commerce reviews has
similar features with the knowledge about the
characteristics of rumors, which is used to train a
model whose parameters is transferred to the rumor
detection model.

(2) We propose a learning rate adaptive update method
to solve the negative transfer problem during the
parameter transfer process. In detail, based on the
stochastic gradient descent algorithm, we achieve an
adaptive learning rate updating method for fine-
tuning the rumor detection model obtained in the
transfer process.

(3) We implement the proposed detection scheme on an
open source deep learning platform, TensorFlow
[17]. ,e experiments based on real-world datasets
demonstrate that under the interference of the
common expressions frequently appearing both in
rumors and regular messages, the proposed scheme
achieves more accurate rumor detection compared
with the existing rumor detection approaches.

,e rest of the paper is organized as follows. In Section 2,
we analyze the related work. Section 3 gives details of our
proposed rumor detection model, and Section 4 provides the
performance evaluation based on TensorFlow. Section 5
concludes our paper.

2. Related Work

In this section, we focus on providing a brief review of the
work most closely related to effective and efficient rumor
detection. We outline related research approaches in three
fields: rumor detection, deep learning, and transfer learning.

2.1. Rumor Detection. Rumor is a powerful, pervasive, and
persistent force that misleads people and groups [1]. Rumor
detection has been a popular research topic in recent years.
Rumor is a research subject in psychology and social cog-
nition for a long time [18]. It is often viewed as an unverified
account or explanation of events circulating from person to
person and pertaining to an object, event, or issue in public
concern [19]. ,e challenges of rumor detection, such as the
veracity and accuracy of rumor with small data size, are
discussed in [20–22]. Derczynski et al. [20] used journalism
use case dataset [23] to accomplish support/rumor stance
classification and veracity prediction. Reference [23] con-
tains 330 conversational threads (297 in English for 8 events
in total, and 33 in German), which includes 4,222 reply
tweets. Ma et al. [21] created tweet dataset and microblog
dataset by crawlers and other ways. For the Twitter data, they
contain 498 rumors and 494 nonrumors. For Weibo data,
they collected nonrumor and rumor data in Chinese.
However, these datasets contains small-size data. In 2019,
interest in automated claim validation has greatly increased.
Gorrell et al. [22] extended the dataset compared with [23] in
that the dataset is substantially expanded to include Reddit
as well as Twitter data, and additional languages are also
included. In addition, we consider fake news [24, 25], and
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there are no agreed upon benchmark datasets for the fake
news detection problem. Datasets mentioned in [26] cannot
provide all possible features of interest, and these datasets
also have specific limitation that make them challenging to
use for fake news detection. BuzzFeedNews only contains
headlines and text for each news piece and covers news
articles from very few news agencies. LIAR includes mostly
short statements, rather than the entire news content. BS
Detector data are collected and annotated by using a de-
veloped news veracity checking tool, and the labels have not
been properly validated by human experts. ,e tweets in
CREDBANK are not really the social engagements for
specific news articles. To address the disadvantages of above
fake news detection datasets, Shu et al. [26] have an ongoing
project to develop a usable dataset, called FakeNewsNet, for
fake news detection on social media. It includes all men-
tioned news content and social context features with reliable
ground truth fake news labels. However, the free data site is
no longer available or the original fake news is not public.
,erefore, the dataset available for rumor detection is
insufficient.

Early exploration started from two special studies on
rumor propagation during natural disasters like earthquakes
and hurricanes [19, 27]. Castillo et al. [28] selected four types
of features, namely, message-based features, user-based
features, topic-based features, and propagation pattern-
based features, and then used the J48 decision tree to detect
rumors in Twitter. Zhang et al. [29] considered heteroge-
neous network and analyzed the structure of the information
diffusion graph of mobile social network (MSN) to learn the
latent factors of each piece of information and proposed a
diffusion model to explain the spread of information in
MSN. In [30], the major difference between rumors and
nonrumors was discussed. ,e existing rumor detection
methods mainly include the rumor detection methods based
on traditional machine learning [4, 5, 7] and the more
accurate rumor detection methods based on neural network
models [3, 6, 8, 31]. Tian et al. [32] proposed to learn user
attitude distribution for Twitter posts from their comments
and then combined it with content analysis for early de-
tection of rumors based on huge models when data for
information sources or propagation are scarce. However,
these existing rumor detection methods rely on a large
amount of labelled training data or huge models for mod-
eling. ,e number of the labelled rumors is always insuf-
ficient to train any of the existing neural network-based
detection models to cover the characteristics of various
rumors and cannot accurately detect rumors.

2.2. Deep Learning. Deep learning models simulate the
human brain’s thinking patterns to discover various char-
acteristics of texts. ,erefore, the accuracy of deep learning
models is often higher than that of the traditional rumor
detection technology. Recently, deep neural networks are
emerging as the prevailing technical solution to almost all
fields in natural language processing (NLP). Word em-
bedding is the basis for deep learning to solve many natural
language processing problems [33]. Liu et al. [31] used a

CNN model to abstract textual and temporal information in
social media and exploited postlevel textual information to
generate group embedding for further analysis. Kim [34]
applied CNN in text categorization. Experiments have
shown that the CNN text categorization model can obtain
higher accuracy than other machine learning models.
However, these deep learning models are not easy to con-
verge due to the huge number of their parameters.

2.3. Transfer Learning. Transfer Learning can alleviate the
lack of labelled training data for training a deep learning
model [10]. As illustrated in Figure 1, if the training data are
insufficient, the characteristics of the features in the source
domain cannot be identified by the deep layers, and transfer
learning can be used to improve the accuracy of models in a
domain by transferring knowledge from the related domains
[10]. In [15], the evidence has been discovered, which shows
that TL in NLP applications is more sensitive to the text
semantics. While TL has produced positive results within the
domain of image processing, its usage in NLP applications
still remains a fairly unexplored research area. Yang and
Zhang [33] proposed a transfer learning algorithm called
automatic transfer learning (AutoTL) for short text mining.
Johnson and Zhang [35] accomplished a semisupervised
framework to improve the text classification accuracy by
integrating knowledge from word vectors learned on
unlabelled data. Do and Gaspers [36] achieved a consid-
erable improvement in the accuracy of a language under-
standing task by initializing the parameters with an
additional unlabelled dataset.

In view of the excellent performance of transfer learning
for constructing a deep learning model without sufficient
training data, this paper proposes a scheme for rumor de-
tection based on transfer learning in the next section.

3. Rumor Detection Model Based on Deep
Transfer Learning

After the deep learning model completes its training process,
the domain knowledge will be fixed into the model pa-
rameters. When the training data are insufficient, an ef-
fective training model cannot be obtained, as shown in
Figure 2. In view of this essential characteristic, we propose a
rumor detection scheme based on parameter transferring.

In this section, we propose a deep transfer model,
namely, TL-CNN. It achieves accurate rumor detection by
using review evaluation knowledge in the e-commerce
domain. In detail, based on the stochastic gradient descent
algorithm, we propose an adaptive learning rate updating
method for fine-tuning of the model obtained in the transfer
process. ,e overall framework of the model is illustrated in
Figure 3. A basic detection model has the same structure as
the model used in the rumor detection process. Firstly, the
basic detection model transfers its model parameters ob-
tained in the training process on the polarity review data to
the rumor detection model. ,e basic convolutional neural
network-based detection model is proposed in Section 3.1,
which is illustrated in Figure 4. In addition, we adapt the
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parameters of the basic detection model to the rumor de-
tection process by performing a fine-tuning operation in
Section 3.1. In this way, we can obtain an effective rumor
detection model based on transfer deep learning.

3.1. Basic Detection Model. ,e convolutional neural net-
work (CNN) model is originally proposed in computer
vision and is proven to be effective in natural language
processing, semantic analysis, and other traditional NLP

Traditional machine learning

Different tasks

Train the
classification model of car

Train the
classification model of truck

Train the classification
model of pickup truck

(a)

Train the
classification model of car

Train the
classification model of truck

Train the classification
model of pickup truck

Transfer learning

Source tasks

Transfer knowledge

Target tasks

(b)

Figure 1: Difference between transfer learning and traditional machine learning.
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Figure 2: ,e effect of the training dataset size.

E-commerce reviews dataset Polarity review detection

Positive review

Negative review

Rumor dataset Rumor detection

The original detection model
transfers its model parameters

obtained in the training process on
the polarity review data to the

rumor detection process.

Rumors

Regular messages

Figure 3: ,e framework of TL-CNN.
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tasks [34]. It has been extensively applied in text classifi-
cation. As a common detection model, a basic CNN-based
detection model is presented in this section. It is feasible to
collect review texts with polarity data on e-commerce
platforms, and the polarity data provide a guideline for us to
evaluate whether the corresponding texts are rational.
,erefore, we can use review texts with polarity data to train
the basic detection model, and the parameters of this model
can be transferred to the rumor detection model to handle
the problem of training data insufficiency. ,e basic de-
tection model consists of five components: an embedded
layer, a convolutional layer, a pooling layer, a fully connected
layer, and an output layer. Among them, the convolutional
layer, the pooling layer, and the fully connected layer are
used to collect and mine features in the training data, the
parameters of which can be used in transfer learning process
in order to construct an accurate rumor detection model.
,e basic detection model is illustrated in Figure 4, and the
configuration of this model is depicted in Table 1.

3.1.1. Embedding Layer. ,e embedding layer is the first
layer of the basic detection model, which is used to pre-
process the raw data. In detail, the embedding layer for-
mulates the original input data as a matrix. For a task of text
classification, a sentence will be represented with a vector of
the identifiers of words, which is named as a word vector. All
the input data of the model consist of a n ×m matrix,
namely, input matrix, where n is the number of sentences
and m is the dimension of the word vector. ,e process of
text preprocessing can be formulated with formula (1),
where X represents the input matrix.

X � x1
�→
, x2
�→
, . . . , xn

�→( )T,
xi
→ � xi,1, xi,2, . . . , xi,m( ). (1)

3.1.2. Convolutional Layer. ,e convolutional layer is the
elemental layer of a convolutional neural network. ,e
convolutional layer consists of several convolutional units,
and the parameters of each convolutional unit are optimized
by a backpropagation algorithm. Each convolutional unit
can cover a part of the input matrix.

,e difference between our convolutional layer and the
existing convolutional layer is illustrated in Figure 5. It is
worth nothing that the existing convolutional neural net-
work model traverses all types of convolutional units for
mining the features of the inputted texts (Figure 5(a)). In our
convolutional layer (Figure 5(b)), since each line of the input
matrix represents a sentence of a text, the width of con-
volutional units is configured according to the width of the
input matrix. ,e purpose of the convolution operation is to
extract different local features of the inputted sentences. For
obtaining the processing result of each convolution unit, we
use xi,j to represent the word at row i and column j, usewm,n
to denote the weight of the word at rowm and column n, and
use b to denote the bias of this convolutional unit. Each
convolution result for different convolution units consists a
matrix, namely, feature map. ,e element at row i and
column j of the feature map, ai,j, is obtained with an ac-
tivation function f.

Convolution Max pooling Relu function

Sentence matrix m∗
n 3-region size (3, 4, 5)

Feature
maps

for each
unit size

Vectors
concatenated

together to form a
feature vector Rumor or not

...... ...... ...... ............ ...... ......

...... ...... ...... ............ ...... ......

...... ...... ...... ............ ...... ......

...... ...... ...... ............ ...... ......

Two Pepple Are InDied Sydney Siege

Paris Murder Suspects Cornered With Hostage Sentence

Figure 4: Basic detection model.

Table 1: Parameter configuration.

Attribute Value

Convolutional units 3, 4, 5
Feature maps 100
Activation function Softmax
Pooling 1-max pooling
Dropout rate 0.5
l2 norm constraint 3
Batch_size 50
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Ultimately, the corresponding eigenvalue of the con-
volution unit as well as the corresponding eigenvector is
obtained. In detail, we use formula (2) to calculate the
convolution units, where the results for the convolution
units of size 3, 4, and 5 are indicated by a(3)i,j , a(4)i,j , and a(5)i,j ,
respectively.

a(3)i,j � f ∑2
k�0

wm,kxi+m,j+k + b ,
a(4)i,j � f ∑3

k�0

wm,kxi+m,j+k + b ,
a(5)i,j � f ∑4

k�0

wm,kxi+m,j+k + b .
(2)

,e feature values obtained on the convolution units of a
specific size comprise the corresponding feature matrix.

A(3) �
a(3)1,1 · · · a(3)1,n

⋮ ⋱ ⋮
a(3)m,1 · · · a(3)m,n


,

A(4) �
a(4)1,1 · · · a(4)1,n

⋮ ⋱ ⋮
a(4)m,1 · · · a(4)m,n


,

A(5) �
a(5)1,1 · · · a(5)1,n

⋮ ⋱ ⋮
a(5)m,1 · · · a(5)m,n


.

(3)

3.1.3. Pooling Layer. To remove trivial eigenvalues from the
feature map, a max pooling-based layer is used to reduce the
number of features, which simplifies the computational
complexity of CNN and reduces the overfitting rate. Max
pooling operation is the most popular pooling operation,
which will take the maximum values in the feature map after
performing a dot product on the weight matrix and the

feature map. ,e weight matrix is valuable for obtaining the
most important features included in the feature map. ,is
paper uses the maximum pooling operation to process the
results of convolution layer and obtains a brief semantic
representation of the inputted texts, A, as shown in the
following formula:

A �

a(3) � max a(3)i,j( ),
a(4) � max a(4)i,j( ),
a(5) � max a(5)i,j( ),
· · · .


(4)

3.1.4. Fully Connected Layer. ,e fully connected layer is a
regular hidden layer of a multilayer neural network which
makes higher order decisions. It receives inputs from the
pooling layer. To avoid suffering from overfitting, a Softmax-
based fully connected layer is included in the basic detection
model. Softmax operation randomly discards some inputs
from the pooling layer.

,e Softmax operation pooling obtains the most im-
portant features that contribute to the classification process,
connecting the overall features of the inputted texts.

3.1.5. Output Layer. ,e output layer is responsible for
obtaining the final detection result. ,e weight matrix of this
layer is highly related to the characteristics of the detection
targets and is invaluable for transfer learning. ,e output
layer is defined as follows:

y �WA + b. (5)

Normalize y using the Softmax function to get the
probability whether a text D belongs to a specific category.

P(g |D) �
exp yg( )

exp y0( ) + exp y1( ), (6)

where g is equal to 0 or 1, y0 meansD does not belong to this
category, and y1 means D belongs to this category.

(a) (b)

Figure 5: Embedding layer. (a) Traditional convolutional neural network. (b) Our convolutional neural network.
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3.2. RumorDetectionModel Based onParameter Transferring.
,e transfer learning algorithms reuse the existing knowl-
edge to the target domain in order to solve the problem of
training data (i.e., labelled data) shortage. ,e hierarchical
architecture of the deep neural network model is very
suitable for transfer learning [15]. We use the parameter
transfer method to solve the problem of training data
shortage in the rumor detection domain. In detail, we
construct an original rumor detection model by reusing the
parameters of the aforementioned basic detection model
(Figure 6(a)). In order to avoid the negative transferring
under limited amount of labelled rumors, we further fine-
tune the original rumor detection model with a layerwise
scheme (Figure 6(c)).

3.2.1. Original Rumor Detection Model Based on Parameter
Transferring. As illustrated in Figure 6, we initialize an
original rumor detection model (TL-CNN-Strawman) by
reusing the parameters of the basic detection model, where
the rumor detection model has the same structure as the
basic detection model proposed in Section 3.1. ,e accuracy
rates of the basic detection model and TL-CNN-Strawman
are listed in Table 2, where accuracy rate is equal to the ratio
of the messages correctly classified to the total number of
messages. In a straightforward way, the basic detection
model is trained on a review dataset YELP-2, and TL-CNN-
Strawman is initialized by reusing the parameters of the
basic detection model. After cloning the parameters of the
basic detection model, TL-CNN-Strawman is additionally
trained on a small rumor dataset (FBN).

As depicted in Table 2, the accuracy of the basic de-
tection model on a review dataset YELP-2 is 89.71%, which
demonstrates that the basic detection model can effectively
detect the reviews with different polarities. However,
negative transferring occurs when the parameters of the
basic detection model are transferred to TL-CNN-
Strawman, the accuracy of which is only 67.85%, since the
labelled rumors of FBN are insufficient for fine-tuning TL-
CNN-Strawman. Without an effective fine-tuning method,
the rumor detection accuracy of TL-CNN-Strawman is
lower. Negative transferring occurred during reusing the
parameters of the basic detection model in TL-CNN-
Strawman.

In order to solve this problem, we need to fine-tune the
hyperparameters in the model training process to avoid
negative transferring, instead of reusing the parameters of
the basic detection model in a straightforward way. As
depicted in Figure 6(b), the parameters of TL-CNN-
Strawman could be left unstable if the labelled data are
insufficient for fine-tuning the model. In Figure 6(c), the
parameters of a frozen layer will be skipped during the
learning process, and we will focus on training other pa-
rameters. Since less parameters will be learned, the fine-
tuning process will converge in a short time. By applying this
layerwise fine-tuning mechanism in the training process of
our rumor detection model, we can tune different layers
more efficiently and handle the negative transferring
problem.

3.2.2. Adaptive Layerwise Fine-Tuning of Learning Rate.
To achieve an effective layerwise tuning scheme, we analyze
the effect of the hyperparameters in the training process.
Among them, the learning rate is the most important
hyperparameter that is related to the efficiency of the model
training process and the accuracy of the model training
results. With an applicable learning rate, we can obtain an
accurate model as soon as possible. If the learning rate is too
high, the model will miss the optimal point and need
multiple iterations to reach convergence. On the other hand,
a low learning rate always is related to a longer training
process and causes the model to fall into a local optimal
point. Different layers in the neural network can acquire
different types of features, and thus the parameters of these
layers should be tuned with different learning rates. With the
limited amount of training data in rumor detection domain,
we apply discriminative fine-tuning to configure each layer
with different learning rates, instead of using the same
learning rate for all layers of the rumor detection model.

To discover the optimal learning rate for each layer, we
propose a learning rate updating scheme to update the
learning rate in a reasonable way. In detail, stochastic
gradient descent (SGD) [37] is applied to adapt the learning
rate to the training process of a specific layer l. In this way,
loss function L(w) can reduce more rapidly, and the
layerwise training can converge only with a limited number
of labelled rumors.

,e adaptive learning rate updating rule is as follows:

(1) Updating learning rate μ for the t-th iterate.

]t � β]t− 1 +(1 − β)▽L wt− 1;xt− 1( )2, (7)

where ]t is the moving average of uncentered var-
iance over past first-order gradient of the loss
function ▽L(wt− 1;xt− 1), β is the decay rate for
computing ]t, wt− 1 is the parameter vector at time t,
and xt− 1 is the input from the last layer in the t − 1-th
literate.

μt �
μt− 1�����
]t + ε

√ , (8)

where μt is the learning rate in the t-th literate and ε
is the small hyperparameter for obtaining the stable
convergence. ,e learning rate, μt, is divided by
magnitude

��
]t

√
of the past first-order gradient of the

loss function. Intuitively, if the parameter vector has
large value of ▽L(wt− 1;xt− 1) in terms of the mag-
nitude in the past, the next literate yields a small
learning rate because

���
]i,t

√
in equation (8) is large.

(2) Updating the weight of this layer l.

wt � wt− 1 −
μt− 1�����
]t + ε

√ ▽L wt− 1;xt− 1( ). (9)

,e detailed updating process is introduced in Algo-
rithm 1. We first initialize the number of Batch_size b,
decay rate β, weight w, gradient ], learning rate μ, and
hyperparameter ε. ,e loop from line 2 to line 9 is
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performed repeatedly before convergence. In line 3, the
output of the last layer, x � x1, x2, . . . , xb{ }, is obtained. In
line 4, the loss function for this layer, Li(w) �
Li(yi, f(xi, w)), is calculated. In line 5, the moving average
of uncentered variance over past first-order gradient,
▽Li(wi,t− 1;xt− 1), is obtained. As the iteration process
continues, the value of the loss function continuously
decreases, and the learning rate μ is updated in line 6.
Additionally, we update the weights according to the
gradient in lines 7 and 8. By applying the aforementioned
fine-tuning method into the original rumor detection
model (TL-CNN-Strawman), an effective rumor detection
model (TL-CNN) is obtained.

4. Experiments

In order to evaluate the proposed rumor detection scheme,
we implemented the proposed rumor detection scheme and
baseline schemes on TensorFlow. TensorFlow is a machine
learning system that operates at large scale and heteroge-
neous environments. It is the second generation of artificial
intelligence learning system developed by Google. On the
real-world datasets, we comprehensively compare the pro-
posed scheme and the baseline schemes in terms of different
accuracy metrics.

4.1. Datasets

4.1.1. Yelp Polarity (YELP-2). ,e Yelp review dataset was
obtained from the 2015 Yelp dataset challenge [38]. ,e
dataset contains 1,569,264 samples with review texts. Two
tasks are performed on this dataset. ,e first one predicts the
total number of stars given by the user, and the other
predicts the polarity label by considering stars, 1 and 2 being
negative and 3, 4, and 5 being positive. ,is dataset includes
130,000 training samples and 10,000 test samples for each
state of ranking and has 280,000 training samples and 19,000
test samples for each polar state.

4.1.2. Five Breaking News (FBN). ,e FBN dataset is a small
rumor dataset that is about all five events and includes 5,802
labelled tweets [39]. ,e five events are Ferguson unrest,
Ottawa shooting, Sydney siege, Charlie Hebdo shooting, and
Germanwings plane crash.

,ese two datasets are used, respectively, in the basic
detection model and the rumor detection model obtained in
the transfer learning process, which is named as Ds and Dt.
,e detailed information of these two datasets is listed in
Table 3.

4.2. Implementation. We provide the relevant parameters
used in the proposed model in Table 1. ,e size of con-
volutional units is configured to be 3, 4, and 5. Each con-
volutional unit relates to a feature map. ,e dropout rate of
the fully connected layer is 0.5. ,e L2 regular term with a
coefficient 3 is used in the Softmax. During the training
process, the batch size is configured as 50.

W1

…

…

W2 W3 W
n

Input

dataset

A

(a)

Input

dataset

B …

(b)

Input

dataset

B …

oror or or

(c)

Figure 6: Transfer learning process.

Table 2: Accuracy rates of the original detection models.

Model Dataset Accuracy (%)

Basic YELP-2 89.71
TL-CNN-Strawman FBN 67.85
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We initially train the basic detection model on YELP-2
dataset. After the transfer learning process, we fine-tune the
obtained rumor detection model on FBN dataset. To ex-
tensively evaluate the performance of the rumor detection
model, we implement the proposed scheme (TL-CNN) on
TensorFlow as well as three state-of-the-art baseline
schemes. ,e detailed information of these three baseline
schemes is introduced as follows:

(i) VDCNN-based model:

VDCNN is a convolutional neural network-based
model proposed by Gereme and Zhu [40]. As the
depth of the model increases, the accuracy of the
solution can also increase.

(ii) Char-CNN-based model:

Based on a character-level convolutional network,
Char-CNN was proposed by Joo and Hwang [41] to
perform classification tasks, such as the Yelp po-
larity dataset and the Amazon review dataset.

(iii) RCNN-based model:

RCNN is a model proposed by Fang et al. [42],
which essentially incorporates RNN and CNN into
text categorization tasks. First, it applies a RNN
model to capture context information as much as
possible while learning word representation. To
capture key features of the text, this model addi-
tionally uses the maximum pooling layer to auto-
matically determine which words play a key role in
text categorization.

4.3.EvaluationMetrics. We use accuracy rate, precision rate,
recall rate, F1-measure and accuracy gain to evaluate the
effectiveness of the proposed scheme.

Accuracy rate is the ratio of the messages correctly
classified as rumors to the total number of messages.

Accuracy � TP + TN

TP + FP + TN + FN
, (10)

where TP, FP, FN, and TN are the abbreviations of true
positives, false positives, false negatives, and true negatives,
respectively.

Precision rate is calculated as the ratio of all messages
correctly classified as rumors (TP) to all messages classified
as rumors (TP+ FP).

Precision � TP

TP + FP
. (11)

Recall is the ratio of all messages correctly classified as
rumors (TP) to all messages that should be classified as
rumors (TP+ FN).

Recall � TP

TP + FN
. (12)

F1-measure is the harmonic mean of precision and
recall.

F1-measure � 2PR

P + R �
2TP

2TP + FP + FN
. (13)

Accuracy gain (α) is calculated as the ratio of Ae to Ac,
which is used to evaluate the accuracy increment of the
proposed scheme relative to baselines.

α � Ae
Ac
, (14)

where Ae represents the accuracy rate of our model and Ac
represents the accuracy rate of baselines.

Require:
Batch_size b;
decay rate β;
weight parameter w;
gradient parameter ];
Learning rate μ;
Hyperparameter ε;

(1) initialize parameter w, ], μ;
(2) while no convergence do
(3) Obtain x � x1, x2, . . . , xb{ } from the last layer.
(4) Calculate the loss function L(wt− 1;xt− 1);
(5) Calculate the moving average of uncentered variance over past first-order gradient of the loss function

]t � β]t− 1 + (1 − β)▽L(wt− 1;xt− 1)2
(6) Update the learning rate update: μt � (μt− 1/

�����
]t + ε

√ )
(7) Calculate the past first-order gradient of weights: Δwt− 1 � − (μt− 1/

�����
]t + ε

√ )▽L(wt− 1;xt− 1)
(8) Update weights of this layer: wt � wt− 1 + Δwt− 1

(9) end while

ALGORITHM 1: Adaptive learning rate update algorithm.

Table 3: Statistics for the datasets.

Datasets Domain type Class Size

YELP-2 Ds Positive/negative review 1,569,264
FBN Dt Regular message/rumor 5,802
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4.4. Performance Evaluation. To evaluate the accuracy of the
proposed rumor detection model TL-CNN, we compare the
rumor detection results of TL-CNN to the results of the
baseline models. As depicted in Figure 7, TL-CNN obtains
the best accuracy evaluation results. After the number of
training epochs reaches twelve times, the accuracy rate of
TL-CNN as well as the other three baseline models becomes
stable. ,e maximum accuracy rate of TL-CNN is 87.28%,
and the minimum accuracy rate is 79.91%. Compared with
Char-CNN, RCNN, and VDCNN, the accuracy rate of TL-
CNN has been improved by 4%, 7.7%, and 15.4%, respec-
tively. Our model achieves more accurate rumor detection.

In Figure 8, we use accuracy gains to evaluate the im-
provement of accuracy rate comparedwith baselines. When the
number of epochs is greater than 12, the accuracy gain values of
TL-CNN with respect to Char-CNN and RCNN tend to be
stable. From then on, although the accuracy gain value of TL-
CNN relative to VDCNN fluctuates within a large range, all
accuracy gains are higher than 1.10. ,erefore, TL-CNN im-
proves the accuracy of rumor detection.

A detailed result is listed in Table 4. ,e accuracy rate of
VDCNN is only 71.88%. RCNN achieves a better result
with an accuracy rate of 79.53%. ,e accuracy rate of Char-
CNN is higher compared with the other two baselines,
which is equal to 83.21%. Our model TL-CNN achieves the
best results with an accuracy rate of 87.28%, which is 4%
higher than Char-CNN. Similarly, the precision of
VDCNN, RCNN, and Char-CNN is 60.59%, 76.92%, and
78.80%, respectively, and the precision rate of our model is
79.12%. In terms of recall rate, Char-CNN achieves the best
results with a recall rate of 85.47%. ,e recall rate of our
model is higher than the recall rates of both VDCNN and
RCNN; however, it is lower than the recall rate of Char-
CNN. ,e reason for this is that our model considers the
lower false positives as the most important guiding prin-
ciple during the rumor detection process. As a result, our
model’s recall rate is slightly lower than that of Char-CNN.
TL-CNN achieves the best results in the F1-measure, which

is the comprehensive metric for accuracy evaluation. ,e
F1 value of our model is 0.825, while the F1 values of
VDCNN, RCNN, and Char-CNN are 0.597, 0.799, and
0.819, respectively.

,e proposed model was trained within 529.57 minutes
on Yelp and FBN. It trains 6.6963 data per second and tests
2.4361 data per second in average. A detailed result is listed
in Table 5. Although the training time of TL-CNN is longer
than that of the baselines, it achieves more accurate detection
results within similar testing time, even faster than VDCNN
and RCNN.

5. Conclusion

In this paper, we present an effective deep transfer model
based on convolutional neural network, TL-CNN, to detect
rumors with limited amount of training data. To achieve
that, considering the phenomenon of negative transferring
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Table 4: Accuracy evaluation.

Model Accuracy (%) Precision (%) Recall (%)
F1-

measure

VDCNN 71.88 60.59 59.12 0.5973
RCNN 79.53 76.92 82.79 0.7997
Char-CNN 83.21 78.80 85.47 0.8195
TL-CNN 87.28 79.12 84.76 0.8254

Table 5: Efficiency evaluation.

Model Training (min) Test (data/s)

VDCNN 1482.58 3.69
RCNN 356.19 5.17
Char-CNN 275.83 6.78
TL-CNN 529.57 6.70
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during the transfer learning process, we propose a learning
rate adaptive tuning method to avoid negative transferring.
,e extensive experiments on the real-world datasets
demonstrate that the proposed rumor detection model can
significantly improve the accuracy of rumor detection,
which can be applied to social media, e-commerce, and other
fields.

Data Availability

Previously reported text data, Yelp and FBN, were used to
support this study and are available at WOS:
000450913101042 and ArXiv:1610.07363v1. ,ese prior
studies (and datasets) are cited at relevant places within this
paper as references [38, 39]. Among them, Yelp review
dataset contains 1,569,264 items with review texts. ,e other
dataset, FBN dataset, is a rumor dataset, which contains
5,802 labelled tweet messages, including five events, Fer-
guson unrest, Ottawa shooting, Sydney siege, Charlie Hebdo
shooting, and Germanwings plane crash.
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