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Abstract—An adaptive diffusion augmented complex least mean
square (D-ACLMS) algorithm for collaborative processing of

the generality of complex signals over distributed networks is

proposed. The algorithm enables the estimation of both second
order circular (proper) and noncircular (improper) signals within

a unified framework of augmented complex statistics. The anal-

ysis shows that the performance advantage of the widely linear
D-ACLMS over the strictly linear D-CLMS increases with the

degree of noncircularity while maintaining similar performance

for proper data. Simulations on both synthetic benchmark and
real world noncircular data support the approach.

Index Terms—Adaptive diffusion, distributed estimation, non-

circular complex signals, widely linear modelling.

I. INTRODUCTION

A Number of modern applications, such as those arising in
environmental monitoring, target localization, and sensor

networks, require new classes of estimation techniques, based
on distributed networks of nodes embedded with cooperative
data processing. In such cases, we can employ limited cooper-
ation, incremental like techniques, or adaptive diffusion strate-
gies to implement cooperation among individual adaptive nodes
[1], [2]. These nodes are equipped with local learning capa-
bilities: they produce local estimates for the parameter of in-
terest and share information with only their neighbors. When
larger scale communication resources are available, distributed
adaptive algorithms can be derived that exploit more fully the
network connectivity and increase the degree of cooperation
among nodes. Owing to their localized and real-time mode of
operation, adaptive diffusion techniques offer enhanced robust-
ness to link and node failures and are scalable.
Standard complex-valued adaptive filtering algorithms are

normally considered generic extensions of the corresponding
algorithms in . However, consider a real-valued conditional
mean squared error (MSE) estimator , which esti-
mates the signal in terms of another observation . For zero
mean, jointly normal and , the optimal solution is the linear
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model given by , where is a vector
of fixed filter coefficients, the regressor
vector, and the vector transpose operator.
In the complex domain, since both the real and imagi-

nary parts of complex variables are real, we have
, , and thus

, where the
operators and extract respectively the real and imagi-
nary parts of a complex variable. Substitute
and to arrive at

(1)

leading to the widely linear estimator for complex-valued data
[3]–[5]

(2)

where and are complex-valued coefficient vectors. Such a
widely linear estimator is optimal for the generality of complex
signals (both proper and improper), and it simplifies into the
strictly linear model for proper data. In practice, the
widely linear estimate in (2) is based on a regressor vector pro-
duced by concatenating the input vector with its conjugate
, to give an augmented input vector ,

together with the corresponding augmented coefficient vector
. The corresponding augmented co-

variance matrix then becomes [6]

(3)
and contains the full second order statistical information. Hence,
in addition to the standard covariance matrix ,
we also need to consider the pseudo-covariance matrix,

; processes with vanishing pseudo-covariance,
, are termed second order circular (proper). The augmented
covariance matrix in (3) considers the improperness of the ob-
servation process in the widely linear estimation problem in
(2). A more general solution where the estimate and observation
are not jointly proper can be found in [7].
The augmented complex statistics has opened the possibility

to design adaptive filtering algorithms based on widely linear
models, suitable for the processing of both circular and non-
circular signals. These algorithms are usually termed “widely
linear” or “augmented” algorithms, such as the WL-LMS
algorithm in communications [8], and the augmented CLMS
(ACLMS) algorithm in adaptive filtering area [9], [10].
In this letter, the Diffusion ACLMS (D-ACLMS) algorithm is

introduced in order to provide cooperative adaptive estimation
of noncircular complex-valued signals, where the distributed
nodes cooperate for the estimation of the same global task. The
advantage of the widely linear D-ACLMS over the strictly linear
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Fig. 1. Topology of a distributed network with nodes.

D-CLMS is illustrated over simulations on both benchmark and
real-world noncircular wind signals.

II. DERIVATION OF D-ACLMS ALGORITHM

Consider a network with distributed nodes, where each
node has access to the local information at time
instant , where is the desired signal, and is a re-
gressor input vector of length , defined as

, both associated with node . As illustrated
in Fig. 1, each node in the network has access only to their
peer neighbors, and the diffusion protocols allow every node
to combine information collected from its neighborhood ,
which is the set of all the nodes linking to node , including
itself. By linearly combining the weight estimates in the neigh-
borhood of node , and following the derivation in [2], we can
motivate replacing the local weights for standard and conjugate
parts, that is and , with the weighted estimates

(4)

where the italic symbols with underscores denote the combined
weights vectors and at node for some combining

coefficients and satisfying . This
aggregate estimation at node can be interpreted as a weighted
linear combination which fuses information from nodes across
the network into node . The resulting aggregated weight vectors

and at node , can then be fed into its local adap-
tive filter in order to respond to local information and update
the local weights and . This way, the resulting co-
operative adaptive network provides a peer-to-peer estimation
framework that is robust to node and link failures and exploits
network connectivity.
In the context of widely linear adaptive filtering, the output

signal at node of a cooperative filter is given by

(5)

whereas the corresponding output error at the node is de-
fined as . Based on the global cost func-

tion we wish to optimize

, using the
calculus [11], the local weight updates for the standard part and
conjugate part at each node can be derived as1

(6)

(7)

1Notice that the standard Cauchy–Riemann derivative of a real function of
complex variables, such as the error power in the cost function does not exist,
however, the calculus shows that the steepest descent is in the direction of
the conjugate weight vector, i.e., [11].

TABLE I
COMPARISON OF THE COMPUTATIONAL COMPLEXITIES OF THE PROPOSED
D-ACLMS AND THE STRICTLY LINEAR D-CLMS (PER ITERATION)

The computational complexities, in terms of real multiplica-
tions and additions2, of the proposed D-ACLMS and the strictly
linear D-CLMS [1] are summarised in Table I, where is the
number of the neighboring nodes of node .

III. STABILITY ANALYSIS OF D-ACLMS ALGORITHM

To provide insight to the convergence of the D-ACLMS al-
gorithm, we shall next investigate the role of the degree of co-
operation and network topology on the system performance. To
that end, rewrite the local and global quantities as

in terms of the quantities that appear in (4), (6), and (7), and de-
note by , a diagonal matrix
containing the local step-sizes.
To evaluate performance, without loss in generality, consider

an improper teaching signal , given by [5]

(8)

where and are respectively the unknown optimal local
standard and conjugate weight vectors, and the symbol
denotes samples of doubly white3 noise with variance , statis-
tically independent of the input sequence . The D-ACLMS
algorithm can now be written in a compact form

where is the transition matrix and is
the network connection matrix representing the network
topology: a nonzero entry means that node is connected
to node . Moreover, , where
is an column vector.
The standard and conjugate weight error vectors for all the

nodes are given by

(9)

2Note that one complex multiplication requires four real multiplications and
two real additions, while one complex additions requires two real additions.

3The term “doubly white” refers to the white and mutually statistically inde-
pendent real and imaginary parts, with variance .
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where , , and their evolution is
governed by

Therefore, the evolution of the augmented weight error vector
is described by

(10)

and can be written more compactly as

where .
Under the assumption that the noise is statistically indepen-

dent of the regressor vectors and the independence among the
regressor vectors over space and time, upon applying the statis-
tical expectation operator on both sides of the above equation,
the evolution of the mean weight error vector is governed by

(11)

where is block diagonal and

is the augmented covariance matrix as de-
fined in (3). Hence, for the expression (11) to converge, that
is, , , for stability in the
mean , where are the eigenvalues for

and . Following the analysis in [1], it
can be shown that . In other words,
the spectral radius of is generally smaller than that of ,
and therefore cooperation under the diffusion protocol has a sta-
bilizing effect on the network.

A. Performance Dependence on the Degree of Noncircularity

The strictly linear D-CLMS can be summarised as [1]

(12)

and the evolution of its weight error vector follows the same
generic form as that in (11), with the standard covariance matrix
replacing the augmented covariancematrix. Since it does not ac-
count for the pseudocovariance, it cannot explain the noncircu-
larity (rotation dependent distribution) of input signals, and per-
forms suboptimally for improper data. Locally, for every node
in the network, the analysis in [5], [10] shows that the advantage
of the widely linear ACLMS over standard CLMS is more pro-
nounced with higher degrees of noncircularity. Since the diffu-
sion topology facilitates mutual communication between nodes,

Fig. 2. Network topology used in the simulations.

and each distributed node performs local adaptive estimation on
the same global task, the performance advantage of D-ACLMS
over D-CLMS is also more pronounced when processing im-
proper signals, whereas for proper signals their performances
are identical, as shown in the simulations.

IV. SIMULATIONS

The proposed D-ACLMS was compared with the standard
D-CLMS in a one step ahead prediction setting of both proper
and improper signals. Out of the several methods to select the
combination coefficients , such as the Metropolis [1],
Laplacian [12] and nearest neighbor rules [1], we used the
Metropolis network topology described by (see Fig. 2)

if

if

for

(13)
where and are respectively the numbers of nodes in the
neighborhood of nodes and . A network with nodes
was considered, with filter length , and the global step size

. Learning curves comparing D-CLMS andD-ACLMS
were produced by averaging 100 iterations of independent trials,
performed on benchmark complex-valued stable circular and
noncircular signals. Single trial simulations were performed on
real-world noncircular wind signals4.
The benchmark circular complex signal used in simulations

was a stable autogressive AR(4) process, with coefficient vector
and complex-valued doubly

white Gaussian driving noise , with zero mean and unit
variance [5]. The benchmark improper complex signal was an
autoregressive moving average ARMA(4,1) complex process,
which combined the improper MA(1) model in [13] with the
above stable AR(4) circular process, to give

(14)
where , and the driving noise
covariance and pseudoco-
variance , with the degree of
improperness .
Another benchmark noncircular signal considered was the

Ikeda signal (nonlinear and with coupled states), given by

(15)

4In , the wind vector can be represented as ,
where denotes the speed and the direction.
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TABLE II
COMPARISON OF DEGREES OF NONCIRCULARITY

FOR THE VARIOUS CLASSES OF SIGNALS

TABLE III
COMPARISON OF PREDICTION GAINS FOR THE VARIOUS

CLASSES OF CIRCULAR AND NONCIRCULAR SIGNALS

where and .
The real world noncircular wind signals were with different

dynamics, identified as regions high, medium or low based on
the changes in the wind intensity, for more detail see [5].
For a quantitative measurement of the degree of non-

circularity of a complex vector , we used the index
[14], where denotes

the matrix determinant operator; the degree of noncircularity
is normalised to within with the value of zero indicating
perfect circularity. Table II illustrates the degrees of noncircu-
larity for the signals considered.
The standard prediction gain

was employed to assess the performance, where and and
denote respectively the variance of the input signal

and the forward prediction error which is the averaged
error over all the nodes. Table III compares averaged prediction
gains Rp (dB) over 100 independent trials for the D-CLMS
and D-ACLMS trained cooperative networks. Observe that
for the circular AR(4) signal, the performances of the stan-
dard algorithms (noncooperative CLMS [15] and cooperative
D-CLMS) were similar to those of their widely linear counter-
parts (ACLMS and D-ACLMS), whereas for the noncircular
signals, there was an improvement in the prediction gain when
the widely linear algorithms were employed. In all the cases,
due to the cooperative mode of operation, the diffusion algo-
rithms outperformed their single node counterparts.
Fig. 3 shows the evolution of mean-square errors (MSEs)

for the noncircular ARMA process and Ikeda map for all the
algorithms considered—observe that the diffusion algorithms
achieved both faster convergence and smaller MSEs than their
noncooperative counterparts, and that the widely linear algo-
rithms outperformed the strictly linear ones.

V. CONCLUSION

We have introduced a diffusion ACLMS (D-ACLMS) algo-
rithm for distributed adaptive estimation of general complex-
valued signals (both circular and noncircular) in a cooperative
fashion. The advantage of the diffusion topology over nonco-
operative structures in terms of convergence speed and smaller
MSEs has been illustrated via analysis and simulations on both
synthetic and real world noncircular complex signals.

Fig. 3. Comparison of MSEs of the noncooperative CLMS and ACLMS and
cooperative D-CLMS and D-ACLMS algorithms on noncircular signals (a)
Noncircular ARMA and (b) Ikeda map.
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