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Abstract

A new impulsive noise removal filter, adaptive dynamically weighted median filter (ADWMF), is proposed. A popular

method for removing impulsive noise is a median filter whereas the weighted median filter and center weighted

median filter were also investigated. ADWMF is based on weighted median filter. In ADWMF, instead of fixed

weights, weightages of the filter are dynamically assigned with the results of noise detection. A simple and efficient

noise detection method is also used to detect noise candidates and dynamically assign zero or small weights to

the noise candidates in the window. This paper proposes an adaptive method which increases the window size

according to the amounts of impulsive noise. Simulation results show that the AMWMF works better for both

images with low and high density of impulsive noise than existing methods work.
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1 Introduction

Image processing is used in many scientific fields such as

astronomy, aerospace, photogrammetry, particle physics,

biology, medical sciences, geology, and science of mate-

rials [1]. Removing noise in an image is important for

improving image quality. Some filters like H-infinity filter

have been applied to practical industrial systems [2–4].

Usually, noise originates from taking pictures through a

defective sensor or transmitting images through a noisy

channel [5]. Such noise can be categorized into many

different types by probability distributions, such types

being impulsive noise, Gaussian noise, Rayleigh noise, and

Laplacian noise, to name a few [4, 6, 7].

Impulse noise is a random variation of image intensity.

The presence of impulse noise in image replaces inten-

sities of corrupted pixels by extreme values. Mathemat-

ical model of impulse noise is given in (1)

Y ¼

0; with probability p1
L−1; with probability p2
x; with probability 1−p1−p2

8

<

:

ð1Þ

where x denotes noise-free pixels of corrupted image.

Addition of impulse noise to images or frames of a video

is a problem that occurs in TV [8], CCTV, and MRI [6] due

to many reasons like unreliable sensor, power, and channel.

Because impulsive noise seriously deteriorates picture qual-

ity and disrupts image processing, an efficient noise-removal

algorithm is a core image processing technology.

Applying linear filters to image corrupted by impulsive

noise leads to image blurring [9, 10]. To address the prob-

lem of impulsive noise, researchers focused on applying

nonlinear filters. Tukey [11] introduced a powerful non-

linear filter called median filter, and many improved filters

have been proposed by other researchers. Huang et al.

[12] described an efficient method to apply Median to 2-D

images. Yin and Yang [13], Ko and Lee [14] proposed

weighted median, and center weighted median filters re-

spectively that apply weights to the window. Median filter

with adaptive window size was used by Hwang and

Hadded [15], Chang et al. [16], Juneja and Mohana [17]

and Ibrahim et al. [18] to propose adaptive median filter

(AMF) and its different types.

Toh and Isa [19] proposed a modified adaptive median

filter that extends window size when current window does

not have any noise-free pixel. Bhateja et al. [20] proposed

a method similar to [19]; however, the maximum allow-

able size of window became 9 × 9. If 9 × 9 window sur-

rounding noisy pixel does not have any known noise-free

pixel, it replaces the noisy pixel with previously processed
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or previous noise-free pixel. Bhadouria et al. [21] proposed

a median-based method that extends the window up to

maximum allowable size of 9 × 9 when there is no noise-

free pixel in the window. If 9 × 9 window does not have

noise-free pixels, it replaces the corrupted pixel by mean of

all pixels in 3 × 3 window. Afzal et al. [22] simply replaces

the corrupted pixel with the next noise-free pixel.

Many researches used two-stage approach that first de-

tects location of impulse noise and then apply median or

other filters derived from median on those detected loca-

tions only to avoid blurring. To detect impulsive noise,

Vijaykumar et al. [23] used absolute difference of all the

pixels of 3 × 3 window with the center pixel and decides

the center pixel to be noisy if less than two differences are

greater than threshold. This algorithm fails in regions with

high density of noise as more than two differences will be

greater that threshold. Jampur et al. [24] and Luo [25]

used fuzzy-based techniques to detect impulse noise and

then applies heuristic median and median filters respect-

ively on those detected pixels. Heuristic median filter uses

average of non-noisy pixels that results in an average filter

which causes blurring. Luo [25] uses degree of member-

ship in replacing noisy pixel that may result in a value that

does not exist in that region.

Duan and Zhang [26] divides the sorted window across

every pixel in two intervals [0, med] and [med, 255] and

compare the pixel intensity with locations corresponding

to maximum difference in those two intervals to select

noise candidates. Noise candidates are further processed

with four convolutional kernels as used by Zhang and

Karim [27] along the four directions. In algorithm pro-

posed by Zhang and Karim [27], if a particular direction

have excess of noise, the absolute difference will be

smaller in that direction which will results the value to be

smaller than the threshold, resulting in detection as non-

noisy pixel. Ng and Ma [28] first detects noise candidate

the same as Duan and Zhang [26] did; it then applies the

same technique to noise candidates but using 3 × 3

window this time to have final selection of noisy pixels.

Lee [29] uses absolute difference of median of 5 × 5 win-

dow and average of 3 × 3 window with center pixel and

compares them with a threshold. It is a time efficient

algorithm for low-density noise. Ghanekar [30] detects

candidates by comparing pixel with extreme values in a

3 × 3 window, then performs the final detection by choos-

ing minimum and maximum locations among locations of

four maximum differences, and compares pixel with in-

tensity values at those minimum and maximum locations.

Some researchers used techniques other than median

filter for removing impulse noise. Deng and An [31] and

Sadri et al. [32] used wavelet. Wang et al. [33] and Liu et al.

[34] used dictionary learning-based impulse noise removal

techniques. Dictionary learning-based techniques are very

complex and result in changing properties of input image

as they replace patches of input image with patches stored

in predefined dictionary. Wavelet-based methods, on the

other hand, are far more complex. Median-based methods

are simple methods that are powerful for removal of

impulse noise and preserve edges well.

In this paper, adaptive dynamically weighted median

filter (ADWMF) is proposed which combines weighted

median filter with an impulse noise detection algorithm.

Previous switching filters use static window size for a

noisy image whose size depends on the total noise density

of the image. Such techniques fail to remove noise when

certain regions have comparatively excessive amount of

noise due to uneven distribution of noisy pixels in the

corrupted image. Conventional adaptive filters, on the

other hand, extend window size when there is no noise-

free pixel in window or median of window is a noisy pixel.

Such algorithms do not consider performance when ex-

tending the window size. Instead of using fixed window

size for an image, the proposed method changes window

size according to the amount of noisy pixels present in a

region. The proposed method uses an efficiently modified

version of simple noise detection method, and it is used to

propose the ADWMF. After detecting impulsive noise

candidates, the weighted median filter is modified by dy-

namically assigning zero weights to the noise candidates

in the window. Finally, this paper proposes an adaptive

filter which increases the window size according to the

amounts of impulsive noise candidates in a region.

Window size in each region is determined by using

number of noisy pixels in that region. Thresholds for

changing window size according to number of noisy

pixels in a region are defined after extensive simulations

that ensure best possible results on the basis of minimum

mean square error. Simulation results show that ADWMF

works better for both images with low and high density of

impulsive noise than existing methods work.

The rest of this paper is organized as follows: Section 2

describes some of the conventional methods. Section 3 de-

scribes proposed impulse noise detection algorithm, pro-

posed dynamically weighted median filter, and proposed

adaptive dynamically weighted median filter (AMWMF).

Section 4 shows the results and discussion of the proposed

filter followed by conclusion in Section 5.

2 Problem statement

Before introducing some conventional and proposed fil-

ters, it is suitable to introduce some notations that will be

used in this paper. Image will be represented by notation

I. X(i, j) will be used to represent an input pixel on which

a particular impulse noise removal filter will be applied;

notation Y(i, j) will be used to represent the output of a

particular filter to replace X(i, j). A (2N + 1) × (2N + 1)

window that is used across X(i, j) for a particular filter is

represented by W and is given in (2)
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W ¼ q; tð Þj−N≤q≤N ;−N≤q≤Nf g ð2Þ

So the pixels in window W can be represented by X(i +

q, j + t). Median filter proposed by Tukey [8] is given in (3)

Y i; jð Þ ¼ MED X iþ q; jþ qð Þj q; tð Þ∈Wf g ð3Þ

Adaptive median filter (AMF) [12, 13, 17, 18] uses

median filters adaptively. It mostly increases the win-

dow size by comparing median value with extreme

values of image. The problem with AMF is that there

might have background pixels which equal the ex-

treme values of image. In such a case, AMF will keep

extending its window size until the window contains

a median value that is not equal to one of two ex-

treme values. To improve the performance, weighted

median (WM) filter [13] was proposed by assigning

weightage to each location with the help of weighted

window. WM value of a pixel X(i, j) is

WM i; jð Þ ¼ MED X iþ q; jþ tð Þ⋄W iþ q; jþ tð Þj q; tð Þ∈W½ �

ð4Þ

where ◊ is the repetition operator such that

K⋄X ¼ X;X;X;……;X
z}|{

K times

ð5Þ

Figure 1 shows the weightage windows which are used

for cases of 3 × 3 and 5 × 5 WM filters. It can be

observed that locations near to center have high

amount of weights compared to the locations that are

away from the center. The sum of all weights in win-

dow should be odd. The center weighted median

(CWM) [14] is a special case of WM which assigns

weight to center pixel only. Duan et al. [35] proposed

a method which uses a rank ordered mean (ROM)

filter based on a noise detection. Steps for noise re-

moval are as follows:

Fig. 1 Weighting windows used in the WM filter. a 3 × 3 window. b

5 × 5 window

Fig. 2 Flowchart for impulsive noise detection
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1) Sort all the pixels X(i + q, j + t) except X(i, j) itself to

get r ¼ r1; r2;…:; r 2Nþ1ð Þ2−1. If X i; jð Þ > r 2Nþ1ð Þ2−1 or

X(i, j) < r1, then select it as noisy pixel and apply

ROM filter to it by skipping remaining steps for

noise detection. If X i; jð Þ ¼ r 2Nþ1ð Þ2−1 or X(i, j) = r1,

then select X(i, j) as noise candidate and move to the

second step. If none of the above conditions are

satisfied, select the pixel as noise-free pixel.

2) Take the sum of absolute difference of X(i, j) with

elements in horizontal, vertical, main diagonal, and

auxiliary diagonal with respect to X(i, j) and store

them in m1 ,m2 ,m3, and m4 respectively. Calculate

m =min[m1,m2,m3,m4].

3) If m > T, then pixel X(i, j) is a noisy pixel, and else, it

is a noise-free pixel.

4) Apply ROM filter to pixels that are detected as a

noise.

Since ROM filter uses average of two values in win-

dow, it blurs the image. Also, if a certain direction

among four directions have excess of noise, the sum of

absolute difference along that direction will be less than

T. Noise detection algorithm will select X(i, j) as noise-

free pixel no matter it is noisy or not.

Ibrahim et al. [18] modified AMF to propose an adap-

tive filter named simple adaptive median filter (SAMF).

SAMF uses non-noisy pixels for calculating median value

of selected window. It first detects noisy pixels, extends

the window if numbers of non-noisy pixels are less than 8,

and replace the detected noisy pixel with median of non-

noisy pixels in the window. Another modification is the

automatic evaluation of minimum window size like

Wmin ¼ 2Rmin þ 1 ð6Þ

where

Rmin ¼ ⌊ 1

2

ffiffiffiffiffiffiffiffi

7

1−σ

r

⌋ ð7Þ

(M,N) = (row, column) in image, σ ¼ K
MN

, K is the

number of detected noisy pixels in image, and ⌊⌋ corre-

sponds to rounding off to closest integer value. If num-

ber of “noise-free pixels” is even, median value will be

Table 1 False caught (FC) and true left (TL) comparison

30% 50% 90%

Ghanekar BDND Proposed Ghanekar BDND Proposed Ghanekar BDND Proposed

FC TL FC TL FC TL FC TL FC TL FC TL FC TL FC TL FC TL

Banana 0 0 0.75 0 0 0 0 0 0.41 0 0 0 0 0.15 0.19 1.01 0 0

Briefcase 2.7 1.75 4.23 0 3.1 0 1.34 2.54 2.14 0 1.33 0 1.14 3.43 0.74 1.34 1.12 0

Brush 13.78 3.98 15.1 0 13.3 0 7.34 4.38 7.76 0 7.04 0 6.14 4.84 1.4 1.53 5.86 0

Coffee 3.08 0.26 4.43 0 3.07 0 1.56 0.38 2.29 0 1.55 0 1.25 0.61 1.13 1.12 1.25 0

Egg 0.35 0 1.14 0 0.35 0 0.18 0.02 0.59 0 0.18 0 0.14 0.15 0.35 1.12 0.14 0

Flower 0.76 0.07 1.4 0 0.76 0 0.4 0.1 0.73 0 0.4 0 0.31 0.22 0.48 1.15 0.31 0

Golf cart 1.46 0.04 2.6 0 1.46 0 0.74 0.08 1.3 0 0.74 0 0.57 0.18 0.83 1.14 0.57 0

Grater 0.26 0 1.13 0 0.26 0 0.13 0 0.57 0 0.13 0 0.1 0.14 0.35 0.96 0.11 0

Kettle 0.09 2.41 2.82 0 0.98 0 0.01 3.03 1.33 0 0.07 0 0 4.11 0.42 0.73 0.02 0

Lena 0 0 0.55 0 0 0 0 0 0.34 0 0 0 0 0.06 0.27 0.97 0 0

Camera 0.1 0 0.74 0 0.1 0 0.04 0.01 0.39 0 0.04 0 0.03 0.16 0.32 1.29 0.03 0

Average 2.05 0.77 3.18 0 2.13 0 1.07 0.96 1.62 0 1.04 0 0 0.15 0.19 1.01 0 0

Fig. 3 A weighting window used in the WM filter. a 5 × 5 Gaussian surface. b Intensity values of a Gaussian surface. c Weighting window

after normalization
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replaced by the average of two values that does not exist

in its neighborhood region.

3 Proposed work

Proposed filter consists of two steps, noise detection and

noise removal. Both stages are incorporated to each

other. Firstly, impulse noise is detected by the proposed

efficient method, and one of 3 × 3, 5 × 5, and 7 × 7

dynamically weighted median filters (DWMs) is applied

according to the number of noisy pixels in windows.

3.1 Proposed impulse noise detection

A new simple impulse noise detection technique is pro-

posed by modifying impulse detection method proposed

Fig. 4 Flowchart of the proposed DWMF
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by Ghanekar [30]. Figure 2 shows the whole flowchart

of the proposed impulse noise detection method. The

method in [30] is divided in two stages. First stage is

based on noise candidate detection, and its steps are

given as:

1) Move 3 × 3 window across every pixel x(m, n) at

location (m, n).

2) For each window W 3
m;nð Þ, order the pixels in

ascending order to get R(m, n) = [r1(m, n), r2(m, n),

……, r9(m, n)].

3) If x(m, n) = r1(m, n) or x(m, n) = r9(m, n), then pixel

x(m, n) is a noisy candidate, and else, it is a noise

free pixel.

Second stage is based on final selection of noisy

pixels by processing noise candidates using steps

given below

1) Move 11 × 11 window W 11
m1;;n1ð Þ across all noisy

candidates at locations (m1, n1), and sort the window

to get (8) as

R m1; n1ð Þ ¼ r1 m1; ; n1ð Þ; r2 m1; ; n1ð Þ;……; r121 m1; ; n1ð Þ½ � ð8Þ

2) Compute the distance vector D(m1, n1) = [d1(m1, n1),

d2(m1, n1),… . ., d120(m1, n1)] where di(m1, n1) = r(i +

1)(m1, n1) − ri(m1, n1).

3) Find first the four largest distances dmax1 = di(m1,

n1) , dmax2 = dj(m1, n1) , dmax3 = dk(m1, n1), and dmax4

= dl(m1, n1) where dmax1 > dmax2 > dmax3 > dmax4.

4) If (x(m1, n1) <wmin or x(m1, n1) >wmax), select x(m1,

n1) as noisy pixel, where wmin = r(p + 1) and wmax = rt.

p =min[i, j, k, l] and t =max[i, j, k, l].

Method in [30] is an efficient algorithm, but its second

stage has a minor problem that diverts true detection

from 100% accuracy. Let us consider an example shown

below. A 5 × 5 window is used instead of 11 × 11 for

better understanding.

W x
m1;;n1ð Þ ¼

18 20 18 20 18

255 0 18 18 18

18 18 0 20 18

20 20 18 20 18

20 18 20 20 18

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

:

If pixel x(m1, n1) in a region with uniform values is af-

fected by pepper noise, then D(m1, n1) will contain less

than four non-zero values as shown below.

D m1; ; n1ð Þ

¼ 0; 0; 18; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 0; 0; 0; 0; 0; 0; 0; 255½ �

In this case, dmax1 = 255 , dmax2 = 18 , dmax3 = 2, and

dmax4 = 0 with i = 24 , j = 3 , k = 16, and l = 1. Hence, p = 1

will results in wmin = r2 = 0. Since the condition x(m1, n1) <

wmin is not satisfied, the algorithm will results in detection

of x(m1, n1) as noise-free pixel. To avoid this drawback of

detection method in [30], an extra step was added to algo-

rithm in [30] after application of fourth step of stage.

if dp m1; n1ð Þ ¼ 0ð Þ then
wmin ¼ rpþ1

þ 1
end if

The results of proposed impulse noise detection were

compared with boundary discriminative noise detection

(BDND) [28] algorithm and Ghanekar method [30]. For

comparison purpose, BDND [28] algorithm was se-

lected because it provides 100% true detection whereas

Ghanekar method [30] was selected to show improve-

ment in results. Performance of an impulse noise detec-

tion algorithm depends on its capability to detect all

the true positives effectively in the presence of false

positives as less as possible. Because if a noise detector

detects too much false positives, non-noisy pixels at the

locations of false positives will be treated as noisy

pixels; hence, their intensity values will be replaced by a

new value causing the distortion of information along

with increase in image blurring.

Table 1 shows false caught (FC) and true left (TL)

comparison of BDND [28], Ghanekar [30], and proposed

Table 2 Average MSE (× 103) comparison for different nos. of noisy pixels

Filters 1 2 3 4 8 11 12 13 19 20 21

Median 3 × 3 0.66 0.93 1.20 1.58 201.17

Median 5 × 5 0.99 1.05 1.11 1.24 1.39 1.62 1.82 2.11 47.03 53.31 50.43

Median 7 × 7 1.17 1.23 1.45 1.42 1.75 1.50 1.49 1.63 1.90 1.8 1.85

W median 3 × 3 0.75 1.10 1.45 20.131 219.25

W median 5 × 5 0.83 0.90 0.95 1.08 1.25 1.92 2.95 5.15 74.12 73.78 64.52

W median 7 × 7 0.95 0.98 1.12 1.09 1.36 1.19 1.18 1.31 1.54 1.49 1.56

Proposed 3 × 3 0.63 0.64 0.78 0.95 297.3

Proposed 5 × 5 0.79 0.8 0.86 0.91 0.94 1.02 1.07 1.14 2.14 1.90 2.55

Proposed 7 × 7 1.25 1.12 0.99 1.08 1.33 1.09 1.12 1.13 1.35 1.18 1.15
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algorithm for 11 test images. It can be seen from Table 1

that false caught are minimum for proposed algorithm

as compared to BDND and is nearly equal to Ghanekar.

True left is 0% for BDND and proposed algorithm

whereas 0–4.38% true left for Ghanekar as can be seen

from Table 1.

3.2 Adaptive dynamically weighted median filter

Weighted median (WM) filter discussed in Section 2 is

followed in this paper. Proposed algorithm addresses a

problem that is faced by WM filter in case of presence of

noise in nearest neighborhood of noisy pixel. In weighted

median filter, if center pixel is noisy or its nearest neighbors

are noisy pixels, those noisy pixels will get high weightage

and hence will be repeated more. In such case, probability of

selection of noisy pixel as median value becomes higher.

Even if size of window increases in case of selection of 0

(lowest intensity) or L − 1(highest intensity) as median value,

window will keep increasing until the sum of weightage for

non-noisy pixels exceeds the sum of weightage of noisy

pixels. A new dynamically weighted median filter

(DWMF) assigns weightage of 0 to those locations in a

W*W window that are detected as noisy pixels using

proposed impulse noise detection algorithm. Before

discussing steps for proposed adaptive dynamically

weighted median filter (ADWMF), some statistics and

Fig. 5 Flowchart of the proposed ADWMF

Table 3 Final selected filters for specific range of number of

noisy pixels

No. of noisy pixels 1–3 4–12 13–onward

Best filter DWMF 3 × 3 DWMF 5 × 5 DWMF 7 × 7
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calculations that were helpful in proposing adaptive

weighted median filter are discussed.

3.2.1 Window selection

Automatic selection of weightage window can be made

using 2D Gaussian surface. Gaussian function has the

property that its intensity increases as move towards cen-

ter. Figure 3 shows the process of obtaining 5 × 5 weigh-

tage window using 5 × 5 Gaussian surface. Figure 3a shows

the intensity values of 5 × 5 Gaussian surface. Intensity

values (X) in Fig. 3b were sorted in ascending order as

S ¼ s 1;rð Þjs 1;r−1ð Þ≤s 1; rð Þ; r ¼ 1; 2;… :: 2N þ 1ð Þ2; s 1;rð Þ∈X
� �

ð9Þ

Weights were assigned to those locations using

H ¼ h 1;lð Þ jh 1;lþ1ð Þ ¼ h 1;lð Þ þ 1∀s 1;lþ1ð Þ > s 1;lð Þ; h 1;1ð Þ ¼ 1
� �

ð10Þ

All those weights assigned to sorted elements were

placed in corresponding locations of weightage window

according to original locations of sorted elements of 5 × 5

Gaussian surface to get weightage window shown in

Fig. 3c. Weightage windows for other window sizes were

also obtained using Gaussian surface in the same way.

3.2.2 Dynamically weighted median filter

Figure 4 shows the flowchart of dynamically weighted

median filter (DWMF). Weighted median filter is modi-

fied with the help of impulse noise detection algorithm

to propose DWMF. Binary image Ib and noisy image I

are input of DWMF. Binary image Ib can be obtained

using proposed impulse noise detection algorithm. W*W

patches, Wn and Wb, are selected across all detected

noisy pixels in both noisy image I and binary image Ib
respectively. Weightage window Wweights of size W*W is

calculated, but those locations of Wweights are removed

where Wb have the values of 1 (if all entries of Wb are 1,

Wweights is replaced by Wb to avoid exception). In such

way, detected noisy pixels get weightage of 0. Assigned

weights in Wweights are shifted if gaps are observed in

Wweights due to removal of elements at noisy locations.

For example, if all elements that correspond to weigh-

tage of 4 are detected as noisy pixels, weightage of 4 is

removed from Wweights. Hence, there is a jump of 2 is

observed when moving from weightage of 3 to 5 in

Wweights. In such case, weights are reassigned to decrease

the number of repetitions. The modified window is

summed, and weight of one of the highest weights is

incremented in case if the sum is even. The condition of

odd sum is imposed in order to avoid having averaged

value of two pixels as a result of DWMF. Final weightage

window WR is created after confirming the odd sum of

Table 4 PSNR comparison for 30% noise (dB)

AMF AWMF SAMF [21] [20] Proposed

Banana 38.54 37.83 39.07 40.12 38.32 40.19

Briefcase 31.91 31.15 32.59 33.5 31.8 33.36

Brush 33.85 33.41 21.91 26.39 33.74 35.18

Coffee 32.86 32.61 33.19 33.61 32.7 35.35

Egg 39.28 38.52 40.22 41.05 39.08 41.23

Flower 35.43 34.69 36.06 37.06 34.98 37.03

Golf cart 31.37 31.07 30.53 32.2 31.31 31.53

Grater 34.17 33.69 34.57 35.68 34.1 35.79

Kettle 32.9 32.46 34.27 35.4 32.77 35.64

Lena 34 33.31 34.78 36.41 33.89 36.12

Camera 33.7 33.15 33.95 35.93 33.66 35.57

Average 34.3 33.8 33.7 35.2 34.2 36.1

Fig. 6 Test images used for performance evaluation
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repeated window to create repetition array AR. Noisy

pixel is replaced by median value of AR.

3.2.3 Statistics calculation for adaptive criteria

As it is discussed in Section 1, using the same window for

an image on the basis of total noise density of image

results in failure of removal of noise in case when some

regions of image contain more noisy pixels compared to

other. However, extending window adaptively without

considering performance might not be a good option as

well. Considering these problems, the proposed ADWMF

uses windows of different sizes according to the number

of noisy pixels present in a region. Window is extended

when numbers of noisy pixels are greater than threshold

set for the current window. These thresholds are defined

on the basis of minimum mean square error.

Binary image containing locations of detected noisy

pixels was obtained using the proposed impulse noise

detection. Using that binary image, numbers of detected

noisy pixels in 3 × 3, 5 × 5, and 7 × 7 windows were

counted to apply the corresponding DWMF filter. The

formula for mean square error used is given as

MSE ¼
Xn

k¼1

Ik−Î k
� �2

=n ð11Þ

where

I = Image

n = Number of pixels

k = kth noisy pixel

Ik = Original kth pixel value.

Î k = Recovered kth pixel value.

Equation (11) was applied to all 11 test images. Aver-

age MSEs were calculated for median, weighted me-

dian, and DWMF with 3 × 3, 5 × 5, and 7 × 7

windows to see the possibility of achieving low MSE

with combination of hybrid filter of more than one

filter or switching between different window sizes, but

MSE for DWMF was smaller as compared to median

Table 8 MSSIM comparison for 50% noise

AMF AWMF SAMF [21] [20] Proposed

Banana 0.927 0.921 0.941 0.942 0.927 0.948

Briefcase 0.844 0.832 0.876 0.876 0.844 0.885

Brush 0.893 0.888 0.846 0.847 0.893 0.922

Coffee 0.914 0.908 0.932 0.928 0.914 0.947

Egg 0.934 0.927 0.948 0.95 0.934 0.956

Flower 0.915 0.903 0.942 0.94 0.915 0.948

Golf cart 0.819 0.808 0.836 0.86 0.819 0.866

Grater 0.9 0.892 0.916 0.925 0.9 0.931

Kettle 0.891 0.881 0.917 0.916 0.891 0.926

Lena 0.896 0.886 0.919 0.922 0.896 0.928

Camera 0.907 0.899 0.926 0.931 0.907 0.937

Average 0.895 0.886 0.909 0.912 0.895 0.927

Table 7 MSSIM comparison for 30% noise

AMF AWMF SAMF [21] [20] Proposed

Banana 0.966 0.962 0.968 0.968 0.966 0.975

Briefcase 0.927 0.918 0.933 0.933 0.926 0.941

Brush 0.949 0.945 0.897 0.893 0.949 0.963

Coffee 0.96 0.958 0.963 0.958 0.96 0.974

Egg 0.971 0.967 0.972 0.972 0.971 0.98

Flower 0.964 0.958 0.97 0.968 0.964 0.976

Golf cart 0.916 0.91 0.91 0.926 0.916 0.936

Grater 0.955 0.951 0.956 0.96 0.955 0.969

Kettle 0.948 0.944 0.957 0.956 0.948 0.965

Lena 0.953 0.947 0.958 0.958 0.953 0.966

Camera 0.958 0.953 0.961 0.963 0.958 0.971

Average 0.952 0.947 0.95 0.95 0.951 0.965

Table 6 PSNR comparison for 90% noise (dB)

AMF AWMF SAMF [21] [20] Proposed

Banana 23.9 18.93 30.54 30.65 28.13 30.71

Briefcase 19.88 16.78 21.88 22.97 21.16 23.6

Brush 20.97 17.68 14.77 17.43 24.74 27.16

Coffee 20.02 16.98 22.56 23.41 21.7 24.23

Egg 24.06 18.98 28.81 29.63 26.75 29.32

Flower 21.18 17.52 25.03 25.85 23.05 25.85

Golf cart 20.3 17.59 23.18 23.21 21.77 23.54

Grater 21.66 17.9 26.25 26.36 24.1 26.63

Kettle 20.14 16.8 23.97 24.86 22.21 24.69

Lena 20.44 16.99 24.9 25.26 22.38 25.21

Camera 20.31 17.03 24.76 25.24 22.98 25.09

Average 21.2 17.5 24.2 24.9 23.53 26

Table 5 PSNR comparison for 50% noise (dB)

AMF AWMF SAMF [21] [20] Proposed

Banana 34.92 34.36 36.47 36.56 34.78 36.57

Briefcase 27.94 27.42 29.69 30.14 27.81 29.91

Brush 30.33 29.99 19.2 22.82 30.28 31.75

Coffee 29.05 28.75 30.4 30.23 28.91 31.56

Egg 35.2 34.5 36.67 37.11 34.87 37.47

Flower 31.42 30.69 33.19 33.37 31.1 33.59

Golf cart 27.75 27.38 28.38 29.43 27.7 28.92

Grater 30.46 29.98 31.72 32.59 30.42 32.25

Kettle 29.16 28.69 31.05 31.72 29.05 31.76

Lena 29.92 29.23 31.71 32.78 29.76 31.39

Camera 29.91 29.46 31.02 32.46 29.76 32.55

Average 30.5 30 30.8 31.7 30.4 32.5
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and weighted median filters. For example, to calculate sta-

tistics for DWMF 3 × 3, a 3 × 3 window was moved across

every detected noisy pixel and numbers of detected noisy

pixels were calculated in that window. All pixels which

have the same number of noisy pixels in a 3 × 3 window

were grouped together. Similarly, other cases which have

different numbers of noisy pixels from 2 to 9 were also

calculated and grouped to calculate MSEs together. Simi-

larly for 5 × 5 and 7 × 7 windows, the cases which have

different numbers of noisy pixels were in group.

Table 2 shows the average MSEs with applications of me-

dian, weighted median, and DWMF using 3 × 3, 5 × 5, and

7 × 7 windows for selected number of noisy pixels. From

the table, we can find that the DWMF provides better per-

formances for any window size than the other filters. Since

the number of noisy pixel cannot exceed the total number

of pixels of a window, the maximum number of noisy pixels

in a 3 × 3 window becomes 8. MSE for all filters with all

three window sizes were examined to see the possibility of

proposing a hybrid filter, but it can be seen from the table

that proposed DWMF have smaller MSE for all cases. Salt

and pepper noise with 30, 50, and 90% densities were added

to all 11 test images to obtain statistics for improving. Table 3

shows the selected filters which provide the best perfor-

mances according to the different numbers of noisy pixels.

3.3 Proposed adaptive filter

Figure 5 shows the flowchart of the proposed algorithm.

Proposed filter consists of two steps, noise detection and

noise removal. Both stages are incorporated to each

other. Result of impulse noise detection is a binary

image with values of 0 for non-noisy region and values

of 1 for noisy pixel region. Numbers of noisy pixels are

counted across all detected pixels using 3 × 3 and 5 × 5

windows, and then, a dynamically weighted median filter

(DWM) with a specific window size is adaptively applied

according to the presence of number of noisy pixels in a

region. Impulse noise detection is not only used to count

Table 12 CPU elapsed time comparison for 90% noise

AMF AWMF SAMF [21] [20] Proposed

Banana 5.9 6.1 4.9 6.4 2.3 8.4

Briefcase 5.7 6 4.7 6 2.2 8.5

Brush 9.2 11 6.3 8.5 3 9.8

Coffee 7.4 7.5 6 7.7 2.8 10.4

Egg 6.5 6.3 5.1 6.6 2.4 9

Flower 6.5 7.1 6.6 7.7 2.6 9.4

Golf cart 7.6 7.2 5.4 7 2.5 9.7

Grater 5.2 5.4 4.3 5.5 2 7.8

Kettle 5.4 5.5 4.5 5.9 2.1 8.5

Lena 6 6.3 5 6.4 2.3 9.5

Camera 5.7 5.9 4.7 6.1 2.2 9

Average 6.5 6.8 5.2 6.7 2.4 9.1

Table 11 CPU elapsed time comparison for 50% noise

AMF AWMF SAMF [21] [20] Proposed

Banana 2.7 3.1 2.4 3.3 1.5 4.5

Briefcase 3.2 1.7 2.4 3.2 1.6 4.2

Brush 8 1.9 4.8 5.4 4.6 4.6

Coffee 4.4 3.1 3.2 4.3 2.1 5.1

Egg 3 3.8 2.6 3.5 1.6 4.3

Flower 3.2 5.4 2.7 3.7 1.7 4.5

Golf cart 3.4 2.7 2.8 3.9 1.8 4.6

Grater 2.5 2.8 2.2 3 1.3 3.7

Kettle 2.5 2.8 2.2 3.1 1.4 3.9

Lena 2.8 3.1 2.5 3.4 1.5 4.5

camera 2.7 3 2.4 3.3 1.5 4.2

Average 3.5 3 2.7 3.6 1.9 4.4

Table 10 CPU elapsed time comparison for 30% noise

AMF AWMF SAMF [21] [20] Proposed

Banana 1.6 2.2 1.5 2.1 1.1 2.19

Briefcase 2 2.6 1.5 2 1.2 2.29

Brush 6.6 3.1 2.5 3.2 2.9 4.61

Coffee 2.9 1.9 1.9 2.7 1.8 3.01

Egg 1.6 3 1.5 2.2 1.2 2.3

Flower 1.8 3.1 1.6 2.2 1.3 2.39

Golf cart 1.9 2.8 1.7 2.4 1.3 2.45

Grater 1.3 2.1 1.3 1.8 0.9 1.95

Kettle 1.4 1.8 1.3 1.9 0.9 2.05

Lena 1.5 2 1.5 2.1 1 2.38

Camera 1.5 1.9 1.4 1.9 1 2.24

Average 2.2 2.4 1.6 2.2 1.3 2.5

Table 9 MSSIM comparison for 90% noise

AMF AWMF SAMF [21] [20] Proposed

Banana 0.718 0.619 0.827 0.836 0.768 0.834

Briefcase 0.528 0.464 0.652 0.656 0.565 0.674

Brush 0.64 0.576 0.672 0.676 0.692 0.767

Coffee 0.657 0.58 0.786 0.791 0.703 0.811

Egg 0.713 0.625 0.82 0.843 0.758 0.833

Flower 0.582 0.496 0.757 0.785 0.641 0.779

Golf cart 0.455 0.405 0.566 0.599 0.49 0.591

Grater 0.627 0.543 0.75 0.77 0.674 0.768

Kettle 0.61 0.538 0.735 0.753 0.659 0.758

Lena 0.6 0.516 0.74 0.765 0.65 0.754

Camera 0.635 0.562 0.751 0.786 0.684 0.771

Average 0.615 0.539 0.732 0.751 0.662 0.758

Khan and Lee EURASIP Journal on Advances in Signal Processing  (2017) 2017:67 Page 10 of 14



the number of noisy pixels but also used in assigning

weightage of 0 to detected noisy locations in 3 × 3,

5 × 5, and 7 × 7 windows.

Thresholds given in Table 3 are used to propose

ADWMF. Steps for ADWMF are given as:

1) Get binary image Ib by applying proposed noise

detection on noisy image I.

2) Calculate the number of detected noisy pixels per

N ×N window by centering every detected noisy

pixel using 3 × 3, 5 × 5 and 7 × 7 windows on Ib.

3) Create binary image I3bDWM showing locations where

numbers of detected noisy pixels are 1, 2, or 3 in 3 × 3

window calculated using step 2. In those locations

where I3bDWM is 1, apply 3 × 3 DWMF. Subtract I3bDWM

from Ib to know about remaining detected locations.

4) Repeat step 3 by creating I5bDWM and I7bDWM using

Table 3 and apply 5 × 5 DWMF and 7 × 7 DWMF

respectively. Subtract I5bDWM from Ib after applying

5 × 5 DWMF so that 7 × 7 DWMF does not

reprocess pixels processed by 5 × 5 DWMF.

4 Results and discussion

Figure 6 shows the set of images used for compari-

sons of algorithms. Performance evaluation was made

on the basis of comparison of peak signal-to-noise ra-

tio (PSNR) and mean structural similarity (MSSIM) of

adaptive DWMF with methods proposed by adaptive

median filter (AMF), adaptive weighted median filter

(AWMF), Ibrahim et al. [19] (AdFuz), Bhadouria [21],

and Bhateja et al. [20].

Fig. 8 Zoomed results with 50% impulsive noise. a Original image. b AMF. c AWMF. d Bhateja [20]. e SAMF. f Bhadouria [21]. g Proposed ADWMF

Fig. 7 Zoomed results with 30% impulsive noise. a Original image. b AMF. c AWMF. d Bhateja [20]. e SAMF. f Bhadouria [21]. g Proposed ADWMF
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PSNR calculation was done using (12) as given below

PSNRI ¼ 10log10 Max2I =MSEI

� �
ð12Þ

Tables 4, 5, and 6 show the PSNR comparisons of pro-

posed ADWMF with conventional methods for 30, 50,

and 90% noise densities respectively. Adaptive weighted

median filter (AWMF) is an adaptive form of simple

weighted median filter. PSNR comparisons show that

the proposed method outperforms all other methods for

both low- and high-density noise. Tables 7, 8, and 9

show the MSSIM comparisons of all methods. The pro-

posed method outperformed all other methods in both

PSNR and MSSIM comparisons.

Tables 10, 11, and 12 show the CPU elapsed time com-

parisons to show the complexity of all methods. For 30

and 50% noise densities, the proposed method provides

slightly higher complexity compared to other methods;

however, for 90% noise, the proposed method needs more

time since 7 × 7 window is used too often.

Figures 7, 8, and 9 show the zoomed results of all

methods. SAMF among conventional methods performs

well for low-density noise; however, for higher densities,

it provides artifacts along edges. For 90% noise density,

AMF and AWMF fail to remove noise, whereas SAMF,

Bhadouria [20], and Bhateja [21] restore all noisy pixels,

however, at the cost of blurring along edges. The pro-

posed method not only preserves edges for low density

of noise but also performs very well for noise density as

high as 90%. Conventional method totally fails to pre-

serve regions that have pure white or pure black

background as in Fig. 8, because pure white or pure

black regions provide confusion as they have same in-

tensity as of the impulse noise; however, the proposed

method, irrespective of intensity values, provides edge

and detail preservation in all cases.

5 Conclusions

A new impulse noise removal filter, dynamically weighted

median filter (DWMF) along with modified impulse noise

detection method, is proposed in this paper. Conventional

modified versions of switching median filters extend win-

dow size either according to the total noise density of

image that results in failure to remove noise from regions

that have excessive noise in a region due to uneven distri-

bution of noise in different regions. Conventional versions

of adaptive median filters extend its window size either

when none of noise-free pixel is available or when median

filter of a window is a noisy pixel. Such approaches does

not consider the performance analysis. Proposed method

overcomes problems mentioned above by considering

both different amounts of noisy pixels in each region as

well as ensuring the best performance. The proposed

method first detects locations of noisy pixels in image

followed by noise removal stage. Proposed impulse noise

detection algorithm is a modified version of impulse noise

detection algorithm proposed by Ghanekar [30]. Weighted

median filter is modified by assigning weights dynamically

by combining it with proposed impulse noise detection

technique to propose DWMF. Impulse noise detection al-

gorithm is not only used for assigning weights dynamically

Fig. 9 Zoomed results with 90% impulsive noise. a Original image. b AMF. c AWMF. d Bhateja [20]. e SAMF. f Bhadouria [21]. g Proposed ADWMF
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but also used with DWMF to propose a new adaptive filter

named adaptive dynamically weighted median filter

(ADWMF). Experiments were performed to evaluate the

thresholds at which DWMF should switch to a larger

window to provide better performance. Statistics of those

experiments were used to propose ADWMF. Switching of

window for ADWMF is made on the basis of number of

detected noisy pixels in a specific region instead of apply-

ing DWMF of a specific size for whole image on the basis

of total noise density present in it. ADWMF can be ap-

plied to any kind of image whether effected by low or high

density of noise. It is not necessary for noise to be evenly

distributed in image; ADWMF can restore the image even

if some portions have access of noise density. Both object-

ive and subjective simulations were performed which

show that ADWMF outperforms conventional methods.

In future, after researching about the possibility where

the proposed noise detection and filtering approach can

be applied to some practical industrial processes [36, 37],

it might be investigated.
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