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AN ADAPTIVE EDGE ELEMENT METHOD

WITH PERFECTLY MATCHED ABSORBING LAYERS

FOR WAVE SCATTERING BY BIPERIODIC STRUCTURES

GANG BAO, PEIJUN LI, AND HAIJUN WU

Abstract. An edge element adaptive strategy with error control is developed
for wave scattering by biperiodic structures. The unbounded computational
domain is truncated to a bounded one by a perfectly matched layer (PML)
technique. The PML parameters, such as the thickness of the layer and the
medium properties, are determined through sharp a posteriori error estimates.
Numerical experiments are presented to illustrate the competitive behavior of
the proposed adaptive method.

1. Introduction

We consider the prediction of the scattered modes that arise when an electro-
magnetic wave is incident on some biperiodic structure. The electromagnetic fields
in the whole space are governed by the following time harmonic (time dependence
e−iωt) Maxwell’s equations:

(1.1) curlE− iωµH = 0, curlH+ iωεE = 0.

Here E and H are the electric field and the magnetic field, respectively. The
physical structure is described by the dielectric permittivity ε(x) ∈ (L∞(R3))3×3

and magnetic permeability µ(x) ∈ (L∞(R3))3×3, x = (x1, x2, x3)
T. The dielectric

permittivity ε(x) and the magnetic permeability µ(x) are assumed to be periodic
in the x1 and x2 direction with periods L1 and L2, respectively:

ε(x1 + n1L1, x2 + n2L2, x3) = ε(x1, x2, x3),

µ(x1 + n1L1, x2 + n2L2, x3) = µ(x1, x2, x3),

for all x1, x2, x3 ∈ R, where n1, n2 are integers. Assume that Im ε(x) is a positive
semi-definite matrix and that Re ε(x) and µ(x) are positive definite matrices. As-
sume also that the medium is homogeneous away from the region {(x1, x2, x3)
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Figure 1. Geometry of the grating problem.

b(2) < x3 < b(1)} that contains the structure, i.e., that there exist constants
ε(j), µ(j), j = 1, 2, such that

ε(x) = ε(1)I, µ(x) = µ(1)I, in Ω(1) := {x : x3 ≥ b(1)},
ε(x) = ε(2)I, µ(x) = µ(2)I, in Ω(2) := {x : x3 ≤ b(2)},

where I is the 3 × 3 identity matrix. It is further assumed that ε(1) > 0 and
µ(j) > 0, j = 1, 2. However ε(2) may be complex according to the substrate material
used in Ω(2). Due to the periodic structure, the usual Sommerfeld or Silver-Müller
radiation condition is no longer valid. Instead, the following radiation condition
based on diffraction theory is employed: (E,H) is composed of bounded outgoing
waves in Ω(1) and Ω(2) plus the incident wave (EI,HI) in Ω(1).

Scattering theory in biperiodic structures has many important applications in
micro-optics, where the biperiodic structures are also termed as 2D gratings or
crossed gratings. We refer to Dobson and Friedman [27], Abboud [1], Bao [7], Bao,
Dobson, and Cox [11], Bao and Dobson [10], Bao and Zhou [13], Li [33], Yachin and
Yasumoto [49], and Chang, Li, Chu, and Opsal [20] for the existence, uniqueness,
and numerical approximations of solutions to 2D grating problems. An introduction
to grating problems can be found in Petit [41]. A more recent review on diffractive
optics technology and its mathematical modeling can be found in Bao, Cowsar, and
Masters [9].

Recently, we have developed an adaptive finite nodal element method combining
with the PML technique (Chen and Wu [24] and Bao, Chen, and Wu [8]) for 1D
gratings (two-dimensional problems). The method can deal with extremely general
diffractive structures and materials. It is stable, quickly convergent, and easy to
implement by using existing FEM software for bounded domains. Moreover, the
method produces the approximate electric field or magnetic field near the grating
structure directly, which can be used in solving optimal design or inverse prob-
lems. There are two main difficulties in applying finite element methods to grating
problems. The first is to truncate the open domain into a bounded computational
domain. The second difficulty is concerned with resolving the singularity of the solu-
tions. Usually, the grating surface is piecewise smooth and the dielectric coefficient
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ε(x) is discontinuous across the surface. Thus the solution of (1.1) has singularities
that slow down the finite element convergence when using uniform mesh refine-
ments. In [24, 8], we applied a PML technique to truncate the unbounded domain
and employed modern techniques of adaptive finite elements based on a posteriori

error estimates to handle the second difficulty.
The PML technique, which was first proposed by Berenger [15, 16], is an impor-

tant and popular mesh termination technique in computational wave propagation
due to its effectiveness, simplicity, and flexibility [23, 25, 32, 45, 46]. The idea is to
surround the computational domain by a nonphysical PML medium which has the
remarkable property of being reflectionless for incident waves of any frequency or
any incident direction, and waves decay exponentially in magnitude into the PML
medium. In practical computations, the PML medium must be truncated and the
truncation boundary generates reflected waves which can pollute the solution in
the computational domain. We refer to [12, 18, 21] for convergence analyses of the
PML problems for 3D Maxwell’s equations.

A posteriori error estimates, which measure the actual discrete errors without
the knowledge of limit solutions, are computable quantities in terms of the discrete
solution. They are essential in designing algorithms for mesh modification that
equidistribute the computational effort and optimize the computation. One of the
main advantages of adaptivity is that it provides an effective approach for modeling
multiscale phenomena [6, 8, 14, 22, 24, 35, 37, 48, 47]. For the convergence of
adaptive finite element methods, we refer to Dörfler [28], Morin, Nochetto, and
Siebert [38, 39], Mekchay and Nochetto [34], and Chen and Dai [22]. For the
quasi-optimality of adaptive finite element methods, we refer to Binev, Dahmen
and DeVore [17], and Stevenson [44]. The adaptive FEM is attractive for grating
problems whose solutions often have singularities due to the discontinuity of the
dielectric coefficient. We refer to related work [21, 23, 19] for solving scattering
problems in general media (nonperiodic) by using finite element methods together
with the PML technique.

The purpose of this paper is to extend our previous work on 1D gratings ([24, 8])
to crossed gratings and to develop efficient numerical methods for solving the 2D
grating problems. However, the techniques differ significantly because of the more
complicated Maxwell’s equations model in the case of 2D gratings.

We obtain the following results:

• Convergence of PML. Under assumptions for the uniqueness of the solution
to the original scattering problem and on the PML medium parameter, we
prove that the truncated PML problem attains a unique solution in H(curl)
and obtain an error estimate between the solution of the scattering prob-
lem and the solution of the truncated PML problem in the computational
domain. The error estimate implies particularly that the PML solution
converges exponentially to the scattering solution when either the PML
medium parameter or the thickness of the layer is increased.

• A posteriori error estimates of edge element methods and an adaptive al-

gorithm. To simplify the analysis and implementation, we first eliminate
the nonhomogeneous Dirichlet boundary condition on the upper truncated
boundary by subtracting the difference between the incident field and its
mirror reflection in the PML medium to obtain a modified PML prob-
lem. Then we use Nédélec’s edge element to discretize the modified PML

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4 GANG BAO, PEIJUN LI, AND HAIJUN WU

problem and derive a a posteriori error estimate between the edge element
solution and the original scattering solution in the computation domain.
We emphasize that the a posteriori error estimate does not depend on the
PML solution. One benefit of the modification is that, unlike our work
for 1D grating [24, 8], we do not need the “exponential decay factors” for
error indicators in the PML regions because the fields in the PML region
already decay. The a posteriori error estimate, which consists of two parts,
the PML error and the finite element discretization error, is used to design
an adaptive algorithm to determine the PML parameters and choose ele-
ments for refinements. We present two numerical examples to illustrate the
features of our adaptive algorithm.

The layout of the paper is as follows. In Section 2, the properties of the quasi-
periodic functions in H(curl) are discussed, a variational formulation for the 2D
grating problem is introduced by using the transparent boundary condition, the
PML formulation is presented, and existence, uniqueness, and convergence of the
PML formulation are studied. Section 3 is devoted to the introduction of the edge
element discretization. A crucial a posteriori error estimate is also stated. In
Section 4, we prove the a posteriori error estimate, which offers the basis for the
adaptive method. In Section 5, we discuss the implementation of the adaptive
method and present two numerical examples to illustrate the competitive behavior
of the method. The paper is completed with the proofs of several technical lemmas
in the appendix.

2. PML formulation and convergence

In this section, we introduce variational formulations for the 2D grating prob-
lem using the PML technique, which will be useful for subsequent edge element
approximations, and the convergence analysis of the PML solution.

Let (EI,HI) be the incoming plane waves that are incident upon the grating
surface from the top:

(2.1) EI = peiq·x, HI = seiq·x, s =
q × p

ωµ(1)
, p · q = 0,

where q = (α1, α2,−β)T = ω
√

ε(1)µ(1)(sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1)
T, and

θ1, θ2 are incident angles satisfying 0 ≤ θ1 < π/2, 0 ≤ θ2 < 2π. We are interested
in quasi-periodic solutions, i.e., solutions (E,H) of (1.1) such that (Eα,Hα) =
(E,H)e−i(α1x1+α2x2) are periodic in x1 and x2 with period L1 > 0 and L2 > 0,
respectively.

2.1. Notation. In this subsection we introduce some notation and discuss the
properties of quasi-periodic functions in H(curl). For any cuboid domain

G = {0 < x1 < L1, 0 < x2 < L2, a < x3 < b} ,
denote by L2(G) the space of complex square integrable functions in G, and let

H(curl, G) =
{
ϕ ∈ (L2(G))3, curlϕ ∈ (L2(G))3

}

with the norm

‖ϕ‖H(curl,G) =
(
‖ϕ‖2(L2(G))3 + ‖curlϕ‖2(L2(G))3

)1/2
.
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Introduce the following periodic functional spaces:

C∞
per(G) =

{
f = f̃ |G : f̃ ∈ C∞(R3),

f̃(x1 + n1L1, x2 + n2L2, x3) = f̃(x1, x2, x3), ∀n1, n2 ∈ Z
}
,

C∞
0,per(G) =

{
f ∈ C∞

per(G) : suppf ⊂ {a < x3 < b}
}
,

Hper(curl, G) = the closure of
(
C∞

per(G)
)3

in H(curl, G).

By using a similar argument to that for characterizing the spaceH0(curl) (cf. [31,
Theorem 2.12] or [36, Theorem 3.33]) and using the convergence theory of Fourier
series [29], we have the following lemma, which gives an alternative characterization
of functions in Hper(curl, G). The proof is omitted to save space.

Lemma 2.1. Let ν1 = (1, 0, 0)T, ν2 = (0, 1, 0)T. Then

Hper(curl, G) =
{
ϕ ∈ H(curl, G) : ϕ(0, x2, x3)× ν1 = ϕ(L1, x2, x3)× ν1,

ϕ(x1, 0, x3)× ν2 = ϕ(x1, L2, x3)× ν2
}
.

(2.2)

We remark that any ϕ ∈ Hper(curl, G) has a Fourier expansion which is conver-
gent in the H(curl, G) norm:

ϕ =
∑

n∈Z2

ϕ̂nen, where en = ei
(

2πn1
L1

x1+
2πn2
L2

x2

)
.

Next we consider the quasi-periodic functions. Define

(2.3) Hqper(curl, G) =
{
ϕ : e−i(α1x1+α2x2)ϕ ∈ Hper(curl, G)

}
.

From Lemma 2.1,

Hqper(curl, G) =
{
ϕ ∈ H(curl, G) : eiα1L1ϕ(0, x2, x3)× ν1 = ϕ(L1, x2, x3)× ν1,

eiα2L2ϕ(x1, 0, x3)× ν2 = ϕ(x1, L2, x3)× ν2
}
.

(2.4)

Let

Ω = {x : 0 < x1 < L1, 0 < x2 < L2, and b(2) < x3 < b(1)}.
Denote by Γ(j) = {x : 0 < x1 < L1, 0 < x2 < L2, x3 = b(j)}, j = 1, 2, the upper and
lower faces of Ω. For any smooth vector field ψ = (ψ1, ψ2, ψ3)

T, denote by

ψΓ(j) =
(
ψ1(x1, x2, b

(j)), ψ2(x1, x2, b
(j)), 0

)T

its tangential component on the surface Γ(j). For any vector field ϕ = (ϕ1, ϕ2, ϕ3)
T

defined on Γ(j), curlΓ(j) ϕ =
∂ϕ2

∂x1
− ∂ϕ1

∂x2
is the surface scalar curl of the field ϕ.

Introduce the following tangential functional spaces:

TL2(Γ(j)) =
{
ϕ ∈ (L2(Γ(j)))3, ϕ3 = 0

}
,

TH−1/2
qper (curl,Γ(j)) =

{
ϕ ∈ (H−1/2(Γ(j)))3, curlΓ(j) ϕ ∈ H−1/2(Γ(j)), ϕ3 = 0,

e−i(α1x1+α2x2)ϕm,m = 1, 2, are periodic distributions

with period Lℓ in the xℓ (ℓ = 1, 2) direction
}
.
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We refer to [29] for the definition of periodic distributions. It is well known that
any periodic distribution f with period Lℓ in the xℓ (ℓ = 1, 2) direction has the
following expansion [29, 42]:

f =
∑

n∈Z2

bne
i

(
2πn1
L1

x1+
2πn2
L2

x2

)
,

where {bn}n∈Z2 is a sequence of complex numbers satisfying

(2.5) |bn| ≤ cm(1 + |n|)m, n ∈ Z2, for some m = 0, 1, 2, . . . .

Here cm is an appropriate positive number. Let

(2.6) αn
j = 2πn/Lj + αj , j = 1, 2, n integer.

Then any quasi-periodic distribution F with period Lℓ in the xℓ (ℓ = 1, 2) direction
can be written

F =
∑

n=(l,m)∈Z2

bne
i(αl

1x1+αm
2 x2),

where bn satisfies (2.5).
For any quasi-periodic tangential vector field ϕ, which has the expansion

ϕ =
∑

l,m∈Z

(
ϕl,m,1, ϕl,m,2, 0

)T
ei(α

l
1x1+αm

2 x2),

its TL2(Γ(j)) norm may be represented as

‖ϕ‖2TL2(Γ(j)) = L1L2

∑

l,m∈Z

(
|ϕl,m,1|2 + |ϕl,m,2|2

)
.

Using series coefficients, the norm on the space TH
−1/2
qper (curl,Γ(j)) can be charac-

terized by

‖ϕ‖2
TH

−1/2
qper (curl,Γ(j))

= L1L2

∑

l,m∈Z

(
1 + (αl

1)
2 + (αm

2 )2
)−1/2

×
[
|ϕl,m,1|2 + |ϕl,m,2|2 +

∣∣αl
1ϕl,m,2 − αm

2 ϕl,m,1

∣∣2
]
.

(2.7)

The following trace regularity result for Hqper(curl,Ω) is useful in subsequent
analysis.

Lemma 2.2. Let γ0 = max{
√
1 + (b(1) − b(2))−1,

√
2}. Then

‖ψΓ(j)‖
TH

−1/2
qper (curl,Γ(j))

≤ γ0 ‖ψ‖H(curl,Ω) ∀ψ ∈ Hqper(curl,Ω).

Proof. First we have

(b(1) − b(2))
∣∣∣ξ(b(j))

∣∣∣
2

=

∫ b(1)

b(2)
|ξ(x3)|2 dx3 +

∫ b(1)

b(2)

∫ b(j)

x3

d

dτ
|ξ(τ )|2 dτdx3

≤
∫ b(1)

b(2)
|ξ(x3)|2 dx3 + (b(1) − b(2))

∫ b(1)

b(2)
2 |ξ(x3)| |ξ′(x3)| dx3,

which implies by the Cauchy-Schwarz inequality that

(2.8)

∣∣ξ(b(j))
∣∣2

(
1 + (αl

1)
2 + (αm

2 )2
)1/2 ≤ (γ0)

2

∫ b(1)

b(2)
|ξ(x3)|2 dx3 +

∫ b(1)

b(2)
|ξ′(x3)|2 dx3

1 + (αl
1)

2 + (αm
2 )2

.
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Since ψ is quasi-periodic, it has the following expansion:

ψ =
∑

l,m∈Z

(
ψl,m,1(x3), ψl,m,2(x3), ψl,m,3(x3)

)T
ei(α

l
1x1+αm

2 x2).

A simple calculation yields that

‖ψ‖2H(curl,Ω) = L1L2

∑

l,m∈Z

∫ b(1)

b(2)

(
|ψl,m,1(x3)|2 + |ψl,m,2(x3)|2 + |ψl,m,3(x3)|2

+
∣∣iαm

2 ψl,m,3(x3)− ψ′
l,m,2(x3)

∣∣2 +
∣∣ψ′

l,m,1(x3)− iαl
1ψl,m,3(x3)

∣∣2(2.9)

+
∣∣αl

1ψl,m,2(x3)− αm
2 ψl,m,1(x3)

∣∣2
)
dx3.

From the definition (2.7),

‖ψΓ(j)‖2
TH

−1/2
qper (curl,Γ(j))

=

L1L2

∑

l,m∈Z

∣∣ψl,m,1(b
(j))
∣∣2 +

∣∣ψl,m,2(b
(j))
∣∣2 +

∣∣αl
1ψl,m,2(b

(j))− αm
2 ψl,m,1(b

(j))
∣∣2

(
1 + (αl

1)
2 + (αm

2 )2
)1/2 .

Moreover, it follows from (2.8) that
∣∣ψl,m,1(b

(j))
∣∣2 +

∣∣ψl,m,2(b
(j))
∣∣2 +

∣∣αl
1ψl,m,2(b

(j))− αm
2 ψl,m,1(b

(j))
∣∣2

(
1 + (αl

1)
2 + (αm

2 )2
)1/2

≤
∫ b(1)

b(2)

{
(γ0)

2
(
|ψl,m,1(x3)|2 + |ψl,m,2(x3)|2 +

∣∣αl
1ψl,m,2(x3)− αm

2 ψl,m,1(x3)
∣∣2
)

+
(
1 + (αl

1)
2 + (αm

2 )2
)−1
(
2
∣∣ψ′

l,m,1(x3)− iαl
1ψl,m,3(x3)

∣∣2

+ 2(αl
1)

2 |ψl,m,3(x3)|2 + 2
∣∣iαm

2 ψl,m,3(x3)− ψ′
l,m,2(x3)

∣∣2 + 2(αm
2 )2 |ψl,m,3(x3)|2

+
∣∣αl

1ψ
′
l,m,2(x3)− iαl

1α
m
2 ψl,m,3(x3) + iαl

1α
m
2 ψl,m,3(x3)− αm

2 ψ′
l,m,1(x3)

∣∣2
)}

dx3

≤
∫ b(1)

b(2)

{
(γ0)

2
(
|ψl,m,1(x3)|2 + |ψl,m,2(x3)|2 +

∣∣αl
1ψl,m,2(x3)− αm

2 ψl,m,1(x3)
∣∣2
)

+ 2
(
1 + (αl

1)
2 + (αm

2 )2
)−1
((

1 + (αm
2 )2
) ∣∣ψ′

l,m,1(x3)− iαl
1ψl,m,3(x3)

∣∣2

+
(
1 + (αl

1)
2
) ∣∣iαm

2 ψl,m,3(x3)− ψ′
l,m,2(x3)

∣∣2 +
(
(αl

1)
2+(αm

2 )2
)
|ψl,m,3(x3)|2

)}
dx3,

which implies, together with (2.9), that Lemma 2.2 holds. �

2.2. A variational formulation of the grating problem. Based on the capacity
operator [3], we introduce the variational formulation with transparent boundary
condition, which serves as the basis of the analysis in this paper.

We wish to reduce the problem to the bounded domain Ω. The radiation condi-
tion for the diffraction problem insists that (E,H) is composed of bounded outgoing
plane waves in Ω(1) and Ω(2), plus the incident wave (EI,HI) in Ω(1). Denote by

E
(1)
I = EI, H

(1)
I = HI, E

(2)
I = H

(2)
I = 0.

Since (Eα,Hα) = (E,H)e−i(α1x1+α2x2) is periodic, it follows from the Fourier
series expansion of (Eα,Hα) and the method of separation of variables that (E,H)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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has the following Rayleigh expansion in Ω(1) and Ω(2):

E−E
(j)
I =

∑

l,m∈Z

p
(j)
l,meiq

(j)
l,m·x,

H−H
(j)
I =

∑

l,m∈Z

s
(j)
l,meiq

(j)
l,m·x, x ∈ Ω(j), j = 1, 2,

(2.10)

where

(2.11) s
(j)
l,m =

1

ωµ(j)
q
(j)
l,m × p

(j)
l,m, p

(j)
l,m · q(j)l,m = 0,

(2.12) q
(j)
l,m = (αl

1, α
m
2 , (−1)j−1β

(j)
l,m)T,

and β
(j)
l,m satisfy:

(2.13) (β
(j)
l,m)2 = ω2ε(j)µ(j) − (αl

1)
2 − (αm

2 )2, Imβ
(j)
l,m ≥ 0, j = 1, 2.

Note that β
(1)
0,0 = β by definition. Here, we exclude resonances by assuming that

ω2ε(j)µ(j) �= (αl
1)

2 + (αm
2 )2 for all l,m ∈ Z, j = 1, 2.

Let ν stand for the unit outer normal to ∂Ω. Noting that ν = (0, 0, (−1)j−1) on
Γ(j), it follows from (2.11)–(2.13) that

s
(j)
l,m × ν|Γ(j) =

1

ωµ(j)β
(j)
l,m

(
ω2ε(j)µ(j)p

(j)
l,m,1 + αm

2

(
αl
1p

(j)
l,m,2 − αm

2 p
(j)
l,m,1

)
,

ω2ε(j)µ(j)p
(j)
l,m,2 − αl

1

(
αl
1p

(j)
l,m,2 − αm

2 p
(j)
l,m,1

)
, 0
)T

,

(2.14)

where p
(j)
l,m,1 and p

(j)
l,m,2 are the first and second components of the vector p

(j)
l,m,

respectively.

For any tangential vector field ϕ ∈ TH
−1/2
qper (curl,Γ(j)) which has the expansion

ϕ =
∑

l,m∈Z

(ϕ
(j)
l,m,1, ϕ

(j)
l,m,2, 0)

Tei(α
l
1x1+αm

2 x2),

define the following capacity operator T (j):

T (j)ϕ =
∑

l,m∈Z

(r
(j)
l,m,1, r

(j)
l,m,2, 0)

Tei(α
l
1x1+αm

2 x2), j = 1, 2,(2.15)

where

r
(j)
l,m,1 =

ω2ε(j)µ(j)ϕ
(j)
l,m,1 + αm

2

(
αl
1ϕ

(j)
l,m,2 − αm

2 ϕ
(j)
l,m,1

)

ωµ(j)β
(j)
l,m

,

r
(j)
l,m,2 =

ω2ε(j)µ(j)ϕ
(j)
l,m,2 − αl

1

(
αl
1ϕ

(j)
l,m,2 − αm

2 ϕ
(j)
l,m,1

)

ωµ(j)β
(j)
l,m

.

(2.16)

With this notation in mind, it follows from (2.14) and the Rayleigh expansion
(E,H) in Ω(j), j = 1, 2, defined in (2.10), that the following transparent boundary
conditions hold:

(2.17) (H−HI)×ν = T (1)(E−EI)Γ(1) on Γ(1), H×ν = T (2)EΓ(2) on Γ(2).
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We next present a variational formulation of the Maxwell system (1.1) in the
space Hqper(curl,Ω). By eliminating the magnetic field H from (1.1), we obtain

(2.18) curlµ−1 curlE− ω2εE = 0 in Ω.

Multiplying the complex conjugate of a test function ψ inHqper(curl,Ω), integrating
over Ω, and using integration by parts, we arrive at the variational form for the
scattering problem (1.1): find E ∈ Hqper(curl,Ω) such that

(2.19) A(E, ψ) = 〈fI, ψ〉 ∀ψ ∈ Hqper(curl,Ω),

where the sesquilinear form

(2.20) A(ϕ, ψ) =

∫

Ω

µ−1 curlϕ · curl ψ̄ −
∫

Ω

ω2εϕ · ψ̄ − iω
2∑

j=1

∫

Γ(j)

T (j)ϕΓ(j) · ψ̄Γ(j)

and

〈fI, ψ〉 = iω

∫

Γ(1)

(
HI × ν − T (1)(EI)Γ(1)

)
· ψ̄Γ(1)

= −2iω

∫

Γ(1)

(
T (1)(EI)Γ(1)

)
· ψ̄Γ(1) .

(2.21)

Here we have used the identity

(2.22) HI × ν = −T (1)(EI)Γ(1) on Γ(1).

Throughout the paper, it is assumed that the variational problem (2.19) attains
a unique weak solution in Hqper(curl,Ω). Then the general theory in Babuška and
Aziz [5, Chap. 5] implies that there exists a constant γ1 > 0 such that the following
inf-sup condition holds:

(2.23) sup
0�=ψ∈Hqper(curl,Ω)

|A(ϕ, ψ)|
‖ψ‖H(curl,Ω)

≥ γ1 ‖ϕ‖H(curl,Ω) ∀ϕ ∈ Hqper(curl,Ω).

See Bao and Dobson [10] and Ammari and Bao [2] for additional discussions on
the solvability of the variational problem in the isotropic case. The questions on
existence and uniqueness in the present general case are open.

2.3. PML formulation. Now we turn to the introduction of absorbing PML lay-
ers. The computational domain Ω is surrounded with two PML layers of thickness
δ(1) and δ(2) in Ω(1) and Ω(2), respectively. The specially designed model medium
in the PML layers should basically be chosen so that either the wave never reaches
its external boundary or the amplitude of the reflected wave is so small that it does
not essentially contaminate the solution in Ω. Let s(τ ) = s1(τ ) + is2(τ ) be the
model medium property which is continuous and satisfies

s1 = 1, s2 = 0, if b(2) ≤ τ ≤ b(1), and s1 ≥ 1, s2 > 0, otherwise.(2.24)

We remark that, in contrast to the original PML condition which takes s1 ≡ 1 in
the PML region, a variable s1 is allowed in order to attenuate both the outgoing
and evanescent waves there. The advantage of this extension makes our method
insensitive to the distance of the PML region from the structure. Following the
general idea in designing PML absorbing layers [30, 45], we introduce the PML by
complex coordinate stretching:

(2.25) x̂3 =

∫ x3

0

s(τ )dτ .
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Let

x̂ = (x1, x2, x̂3)
T.

It is clear that x̂3 = x3 for x ∈ Ω and

curl diag
(
1, 1, s(x3)

)
ϕ = diag

(
s(x3), s(x3), 1

)
curlx̂ ϕ.

Introduce the new field (Ê, Ĥ):

Ê(x) =

{
E

(j)
I (x) + diag

(
1, 1, s(x3)

)(
E(x̂)−E

(j)
I (x̂)

)
, if x ∈ Ω(j),

E(x), if x ∈ Ω;

Ĥ(x) =

{
H

(j)
I (x) + diag

(
1, 1, s(x3)

)(
H(x̂)−H

(j)
I (x̂)

)
, if x ∈ Ω(j),

H(x), if x ∈ Ω.

(2.26)

It follows from (1.1) and (2.25) that the field (Ê, Ĥ) satisfies the following Maxwell-
type equations:

(2.27)

curl(Ê−EI(x)) = iωµ̂(Ĥ−HI(x)),

curl(Ĥ−HI(x)) = −iωε̂(Ê−EI(x)), if x ∈ Ω(1),

curl Ê = iωµ̂Ĥ, curlx Ĥ = −iωε̂Ê, otherwise.

where

ε̂ = diag
(
s(x3), s(x3), 1/s(x3)

)
ε, µ̂ = diag

(
s(x3), s(x3), 1/s(x3)

)
µ.(2.28)

Define the PML regions

Ω(1,PML) = {x : 0 < x1 < L1, 0 < x2 < L2 and b(1) < x3 < b(1) + δ(1)},
Ω(2,PML) = {x : 0 < x1 < L1, 0 < x2 < L2 and b(2) − δ(2) < x3 < b(2)}.

It is easy to see from (2.26) and the Rayleigh expansion (2.10) that the outgoing

waves (Ê(x) − EI(x), Ĥ(x) − HI(x)) in Ω(1) and (Ê(x), Ĥ(x)) in Ω(2) decay ex-
ponentially as |x3| → ∞. The perfect conductor boundary condition can thus be
imposed on

Γ(1,PML) = {x : 0 < x1 < L1, 0 < x2 < L2, x3 = b(1) + δ(1)},
Γ(2,PML) = {x : 0 < x1 < L1, 0 < x2 < L2, x3 = b(2) − δ(2)}

to truncate the PML media. We arrive at the following truncated PML problem:
Find a quasi-periodic field (EPML(x),HPML(x)) such that

(2.29)

{
curlEPML − iωµ̂HPML = fH , curlHPML + iωε̂EPML = fE ,
EPML × ν = EI(x)× ν on Γ(1,PML), EPML × ν = 0 on Γ(2,PML),

where

(2.30)

{
fH = curlEI(x)− iωµ̂HI(x), fE = curlHI(x) + iωε̂EI(x), if x ∈ Ω(1,PML);

fH = fE = 0, otherwise.

We next present a weak formulation of the PML problem (2.29) in

D =
{
x : 0 < x1 < L1, 0 < x2 < L2, b

(2) − δ(2) < x3 < b(1) + δ(1)
}
.

Eliminating the magnetic field HPML from (2.29) yields

(2.31) curl(µ̂−1 curlEPML)− ω2ε̂EPML = g in D,
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where

(2.32) g(x) =

{
curl

(
µ̂−1 curlEI(x)

)
− ω2ε̂EI(x), if x ∈ Ω(1,PML);

0, otherwise.

For G = D,Ω,Ω(1,PML), or Ω(2,PML), introduce the sesquilinear form aG :Hqper(curl,
G)×Hqper(curl, G) → C as

(2.33) a
G
(ϕ, ψ) =

∫

G

µ̂−1 curlϕ · curl ψ̄ −
∫

G

ω2ε̂ϕ · ψ̄.

Define
◦

Hqper(curl, D) = {ϕ ∈ Hqper(curl, D), ϕ × ν = 0 on Γ(j,PML), j = 1, 2}.
The weak formulation of the PML model (2.29) reads as follows: find EPML ∈
Hqper(curl, D), such that EPML×ν = EI×ν on Γ(1,PML),EPML×ν = 0 on Γ(2,PML),
and

(2.34) aD(E
PML, ψ) =

∫

D

g · ψ̄, ∀ψ ∈
◦

Hqper(curl, D).

We discuss the existence and convergence of the above weak formulation in the next
subsection, and introduce its edge element discretization in Section 3.

2.4. Convergence of the PML solution. Our goal is to prove the existence and
uniqueness of the solution of the above PML problem (2.34) and derive an error
estimate between EPML and E, the solution of the original 2D grating problem
(2.19) in Ω. To achieve this goal, we first find an equivalent formulation of (2.34)
in the domain Ω. For any vector v = (v1, v2, v3)

T, denote v′ = (v1, v2,−v3)
T.

Similar to the Rayleigh expansion (2.10), it deduces from (2.29) and (2.30) that,
for x ∈ Ω(j,PML), j = 1, 2,

EPML(x)−E
(j)
I (x) = diag

(
1, 1, s(x3)

) ∑

l,m∈Z

(
p
(j)
l,meiq

(j)
l,m·x̂ − ζ

(j)
l,m(p

(j)
l,m)′ei(q

(j)
l,m)′·x̂

)T
,

HPML(x)−H
(j)
I (x) = diag

(
1, 1, s(x3)

) ∑

l,m∈Z

(
s
(j)
l,meiq

(j)
l,m·x̂ + ζ

(j)
l,m(s

(j)
l,m)′ei(q

(j)
l,m)′·x̂

)T
,

(2.35)

where q
(j)
l,m is defined in (2.12), p

(j)
l,m and s

(j)
l,m satisfy

s
(j)
l,m =

1

ωµ(j)
q
(j)
l,m × p

(j)
l,m, p

(j)
l,m · q(j)l,m = 0,

and

(2.36) ζ
(1)
l,m = e2iβ

(1)
l,m

∫ b(1)+δ(1)

0
s(τ)dτ , ζ

(2)
l,m = e

2iβ
(2)
l,m

∫ 0

b(2)−δ(2)
s(τ)dτ

.

It is clear that
(
EPML(x)−E

(j)
I (x)

)
Γ(j)

=
∑

l,m∈Z

(
p
(j)
l,m,1, p

(j)
l,m,2, 0

)T
eiq

(j)
l,m·x

(
1− ζ

(j)
l,me(−1)j2iβ

(j)
l,mb(j)

)
,

(
HPML(x)−H

(j)
I (x)

)
× ν

=
∑

l,m∈Z

(s
(j)
l,m × ν)eiq

(j)
l,m·x

(
1 + ζ

(j)
l,me(−1)j2iβ

(j)
l,mb(j)

)
on Γ(j).

(2.37)
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For any tangential vector field ϕ ∈ TH
−1/2
qper (curl,Γ(j)) which has the expansion

ϕ =
∑

l,m∈Z

(ϕ
(j)
l,m,1, ϕ

(j)
l,m,2, 0)

Tei(α
l
1x1+αm

2 x2),

define the following capacity operator T (j,PML):

(2.38) T (j,PML)ϕ =
∑

l,m∈Z

(r
(j)
l,m,1, r

(j)
l,m,2, 0)

T coth(−iβ
(j)
l,mσ(j))ei(α

l
1x1+αm

2 x2), j = 1, 2,

where coth(τ ) = eτ+e−τ

eτ−e−τ , r
(j)
l,m,1 and r

(j)
l,m,2 are defined in (2.16), and

(2.39) σ(1) =

∫ b(1)+δ(1)

b(1)
s(τ )dτ, σ(2) =

∫ b(2)

b(2)−δ(2)
s(τ )dτ.

Since
(
1+ζ

(j)
l,me(−1)j2iβ

(j)
l,mb(j)

)
/
(
1−ζ

(j)
l,me(−1)j2iβ

(j)
l,mb(j)

)
= coth(−iβ

(j)
l,mσ(j)), it follows

from (2.37)–(2.39) that
(
HPML −HI

)
× ν = T (1,PML)

(
EPML −EI

)
Γ(1) on Γ(1),

HPML × ν = T (2,PML)
(
EPML

)
Γ(2) on Γ(2).

(2.40)

Introduce the sesquilinear form APML : Hqper(curl,Ω)×Hqper(curl ,Ω) → C,
(2.41)

APML(ϕ, ψ) =

∫

Ω

µ−1 curlϕ · curl ψ̄−
∫

Ω

ω2εϕ · ψ̄− iω

2∑

j=1

∫

Γ(j)

T (j,PML)ϕΓ(j) · ψ̄Γ(j)

and the following variational PML problem: Find EPML ∈ Hqper(curl,Ω) such that

(2.42) APML(EPML, ψ) = 〈fPML
I , ψ〉 ∀ψ ∈ Hqper(curl,Ω),

where

〈fPML
I , ψ〉 = iω

∫

Γ(1)

(
HI × ν − T (1,PML)(EI)Γ(1)

)
· ψ̄Γ(1)

= −iω

∫

Γ(1)

(
T (1)(EI)Γ(1) + T (1,PML)(EI)Γ(1)

)
· ψ̄Γ(1) ,

(2.43)

where the identity (2.22) is used. The following lemma establishes the relationship
between this variational problem and the weak formulation (2.34) straightforward
from the above derivations, and hence the details of its proof are omitted.

Lemma 2.3. Any solution of the problem (2.34) restricted to Ω is a solution of

(2.42). Conversely, any solution of the problem (2.42) can be uniquely extended to

the whole domain D as a solution of (2.34).

Next, we turn to estimate the error between E and EPML. Clearly, it suffices to
estimate the error between the capacity operators T (j) and T (j,PML). For j = 1, 2,
let

(2.44) U (j) =
{
(l,m) : Re (β

(j)
l,m)2 = ω2Re (ε(j)µ(j))− (αl

1)
2 − (αm

2 )2 > 0
}
,

and

β
(j)
+ = min

{∣∣∣Re (β(j)
l,m)2

∣∣∣
1/2

: (l,m) ∈ U (j)

}
,

β
(j)
− = min

{∣∣∣Re (β(j)
l,m)2

∣∣∣
1/2

: (l,m) /∈ U (j)

}
.

(2.45)
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Define β
(j)
+ = 0 if U (j) is empty. We have the following estimate for β

(j)
l,m.

Lemma 2.4. Let s(τ ) = s1(τ ) + is2(τ ) be the model medium property satisfying

(2.24). Then

Re
(
− iβ

(j)
l,ms(τ )

)
= Re β

(j)
l,ms2(τ ) + Imβ

(j)
l,ms1(τ )

≥ max

{
min(β

(j)
+ s2(τ ), β

(j)
− s1(τ )), s1(τ )

(
ω2

2

(∣∣∣ε(j)µ(j)
∣∣∣− Re (ε(j)µ(j))

))1/2
}
.

Proof. From the definition (2.13) of β
(j)
l,m, we have Im ((β

(j)
l,m)2) = ω2Im (ε(j)µ(j)),

and hence

Reβ
(j)
l,m =

1√
2

(√
(ω2Im (ε(j)µ(j)))2 + (Re (β

(j)
l,m)2)2 +Re (β

(j)
l,m)2

)1/2

,

Imβ
(j)
l,m =

1√
2

(√
(ω2Im (ε(j)µ(j)))2 + (Re (β

(j)
l,m)2)2 − Re (β

(j)
l,m)2

)1/2

.

(2.46)

Since Re (β
(j)
l,m)2 ≤ ω2Re (ε(j)µ(j)), this yields

Imβ
(j)
l,m ≥

(
ω2

2

(∣∣∣ε(j)µ(j)
∣∣∣− Re (ε(j)µ(j))

))1/2

.

Furthermore,

Re β
(j)
l,m ≥ β

(j)
+ if j ∈ U (j) and Imβ

(j)
l,m ≥ β

(j)
− if j /∈ U (j).

The proof is completed by combining the above two estimates. �

The following lemma plays a key role in the subsequent analysis.

Lemma 2.5. For any ϕ, ψ ∈ Hqper(curl,Ω),∣∣∣∣ω
∫

Γ(j)

(T (j) − T (j,PML))ϕΓ(j) · ψ̄Γ(j)

∣∣∣∣

≤ M (j) ‖ϕΓ(j)‖
TH

−1/2
qper (curl,Γ(j))

‖ψΓ(j)‖
TH

−1/2
qper (curl,Γ(j))

,

where

M (j) =
2max

(∣∣ω2ε(j)µ(j)
∣∣ , 1
)

µ(j)(eΛ(j) − 1)

×max

{(
1+ω2Re (ε(j)µ(j))−(β

(j)
+ )2

)1/2
(
(ω2Im (ε(j)µ(j))2+(β

(j)
+ )4

)1/4 ,

(
1+ω2Re (ε(j)µ(j))+(β

(j)
−

)2
)1/2

(
(ω2Im (ε(j)µ(j)))2+(β

(j)
−

)4
)1/4 + 1

}
,

Λ(j) = max
{
2min(β

(j)
+ σ

(j)
I , β

(j)
− σ

(j)
R ), σ

(j)
R

(
2ω2
(∣∣ε(j)µ(j)

∣∣− Re (ε(j)µ(j))
))1/2}

,

and σ
(j)
R , σ

(j)
I are the real and imaginary parts of σ(j) defined in(2.39), i.e., σ(j) =

σ
(j)
R + iσ

(j)
I .

Proof. For any ϕ, ψ ∈ Hqper(curl,Ω), their tangential components on Γ(j) have the
following expansions:

ϕΓ(j) =
∑

l,m∈Z

(ϕ
(j)
l,m,1, ϕ

(j)
l,m,2, 0)

Tei(α
l
1x1+αm

2 x2),

ψΓ(j) =
∑

l,m∈Z

(ψ
(j)
l,m,1, ψ

(j)
l,m,2, 0)

Tei(α
l
1x1+αm

2 x2).
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It follows from the definitions of T (j) and T (j,PML) that

ω

∫

Γ(j)

(T (j) − T (j,PML))ϕΓ(j) · ψ̄Γ(j)dx1dx2

= L1L2

∑

l,m∈Z

ω
(
r
(j)
l,m,1ψ̄

(j)
l,m,1 + r

(j)
l,m,2ψ̄

(j)
l,m,2

)(
1− coth(−iβ

(j)
l,mσ(j))

)

= L1L2

∑

l,m∈Z

(
1− coth(−iβ

(j)
l,mσ(j))

)

µ(j)β
(j)
l,m

(
ω2ε(j)µ(j)

(
ϕ
(j)
l,m,1ψ̄

(j)
l,m,1

+ ϕ
(j)
l,m,2ψ̄

(j)
l,m,2

)
−
(
αl
1ϕ

(j)
l,m,2 − αm

2 ϕ
(j)
l,m,1

)(
αl
1ψ̄

(j)
l,m,2 − αm

2 ψ̄
(j)
l,m,1

))
.

(2.47)

To prove the lemma, it is required to estimate

C
(j)
l,m =

∣∣∣
(
1− coth(−iβ

(j)
l,mσ(j))

)(
1 + (αl

1)
2 + (αm

2 )2
)1/2

/(µ(j)β
(j)
l,m)
∣∣∣

=
2

µ(j)
∣∣∣e−2iβ

(j)
l,mσ(j) − 1

∣∣∣

⎛
⎜⎝

(
1 + ω2Re (ε(j)µ(j))− Re (β

(j)
l,m)2

)2

(ω2Im (ε(j)µ(j)))2 + (Re (β
(j)
l,m)2)2

⎞
⎟⎠

1/4

.

(2.48)

From Lemma 2.4,
∣∣∣e−2iβ

(j)
l,mσ(j) − 1

∣∣∣ ≥
∣∣∣e−2iβ

(j)
l,mσ(j)

∣∣∣− 1 ≥ eΛ
(j) − 1.(2.49)

Let F (j)(t) =

(
1 + ω2Re (ε(j)µ(j))− t

)2

(ω2Im (ε(j)µ(j)))2 + t2
. It can be verified that F (j)(t) increases

for t < K(j) = −
(
ω2Im (ε(j)µ(j))

)2
/
(
ω2Re (ε(j)µj) + 1

)
and decreases for K(j) <

t ≤ ω2Re (ε(j)µ(j)). Therefore,
(
1 + ω2Re (ε(j)µ(j))− Re (β

(j)
l,m)2

)2

(ω2Im (ε(j)µ(j)))2 + (Re (β
(j)
l,m)2)2

= F (j)
(
Re (β

(j)
l,m)2

)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{(
1+ω2Re (ε(j)µ(j))−(β

(j)
+ )2

)2

(ω2Im (ε(j)µ(j)))2+(β
(j)
+ )4

,

(
1+ω2Re (ε(j)µ(j))+(β

(j)
−

)2
)2

(ω2Im (ε(j)µ(j)))2+(β
(j)
−

)4

}

if K(j) > −(β
(j)
− )2

F (K(j)) = (1+ω2Re (ε(j)µ(j)))2

(ω2Im (ε(j)µ(j)))2
+ 1

≤ (1+ω2Re (ε(j)µ(j)))
(
1+ω2Re (ε(j)µ(j))+(β

(j)
−

)2
)

(ω2Im (ε(j)µ(j)))2+(β
(j)
−

)4
+ 1 otherwise

≤ max

{(
1+ω2Re (ε(j)µ(j))−(β

(j)
+ )2

)2

(ω2Im (ε(j)µ(j)))2+(β
(j)
+ )4

,

(
1+ω2Re (ε(j)µ(j))+(β

(j)
−

)2
)2

(ω2Im (ε(j)µ(j)))2+(β
(j)
− )4

+ 1

}
.

(2.50)

We have by substituting (2.49) and (2.50) into (2.48) that

C
(j)
l,m ≤ 2

µ(j)(eΛ(j) − 1)

×max

{(
1+ω2Re (ε(j)µ(j))−(β

(j)
+ )2

)1/2
(
(ω2Im (ε(j)µ(j)))2+(β

(j)
+ )4

)1/4 ,

(
1+ω2Re (ε(j)µ(j))+(β

(j)
−

)2
)1/2

(
(ω2Im (ε(j)µ(j)))2+(β

(j)
−

)4
)1/4 + 1

}
.

The proof of the lemma follows from plugging this estimate into (2.47) and using
the Cauchy-Schwarz inequality. �
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ADAPTIVE METHODS FOR WAVE SCATTERING PROBLEMS 15

Theorem 2.6. Let γ0 and γ1 be the constants in Lemma 2.2 and in the inf-sup
condition (2.23), respectively. Suppose (M (1) + M (2))(γ0)

2 < γ1. Then the PML

problem (2.34) has a unique solution EPML. Moreover, it contains the following

error estimate:

‖|E−EPML‖|Ω := sup
0�=ψ∈Hqper(curl,Ω)

∣∣A(E−EPML, ψ)
∣∣

‖ψ‖H(curl,Ω)

≤ γ0M
(1)
∥∥EPML −EI

∥∥
TH

−1/2
qper (curl,Γ(1))

+ γ0M
(2)
∥∥EPML

∥∥
TH

−1/2
qper (curl,Γ(2))

.

(2.51)

Proof. By Lemma 2.3, it suffices to show that the variational problem (2.42) has
a unique solution. We resort to the general existence and uniqueness results for
sesquilinear forms in [5, Chapter 5]. The key point is to show the inf-sup condition
for the sesquilinear form APML : Hqper(curl,Ω) × Hqper(curl,Ω) → C defined in

(2.41). Due to Lemma 2.2, Lemma 2.5, and the assumption (M (1) +M (2))(γ0)
2 <

γ1, it is obvious: for any ϕ, ψ ∈ Hqper(curl,Ω),

|APML(ϕ, ψ)| ≥ |A(ϕ, ψ)| −
2∑

j=1

∣∣∣∣ω
∫

Γ(j)

(
T (j)ϕΓ(j) − T (j,PML)ϕΓ(j)

)
· ψ̄Γ(j)

∣∣∣∣

≥ |A(ϕ, ψ)| − (M (1) +M (2))(γ0)
2 ‖ϕ‖H(curl,Ω) ‖ψ‖H(curl,Ω) .

It remains to prove the estimate (2.51). By (2.19)–(2.21), (2.41)–(2.43), and
Lemma 2.3 we conclude that

A(E−EPML, ψ) = −iω

∫

Γ(1)

(
T (1)(EI)Γ(1) − T (1,PML)(EI)Γ(1)

)
· ψ̄Γ(1)

+APML(EPML, ψ)−A(EPML, ψ)

= iω

∫

Γ(1)

(T (1) − T (1,PML))
(
EPML −EI)Γ(1)

)
· ψ̄Γ(1)

+ iω

∫

Γ(2)

(T (2) − T (2,PML))EPML · ψ̄Γ(1) , ∀ψ ∈ Hqper(curl,Ω).(2.52)

The proof is complete after using Lemma 2.5 and Lemma 2.2. �

Now let us take a closer look at the structure of the constant M (j), which controls
the modeling error of the PML equation towards the original grating problem. Once

the incoming plane wave is fixed, the numbers β
(j)
+ , β

(j)
− are fixed according to (2.45).

Thus the constant M (j) approaches zero exponentially as the PML parameters

σ
(j)
R , σ

(j)
I tend to infinity. From the definition (2.39), the quantities σ

(j)
R , σ

(j)
I can be

calculated by the medium property s(τ ), which is usually taken as a power function:

s(τ ) =

⎧
⎪⎪⎨
⎪⎪⎩

1 + σ
(1)
m

(τ − b(1)

δ(1)

)m
if τ ≥ b(1),

1 + σ
(2)
m

(b(2) − τ

δ(2)

)m
if τ ≤ b(2),

m ≥ 1.

Thus we have

σ
(j)
R =

(
1 +

Reσ
(j)
m

m+ 1

)
δ(j), σ

(j)
I =

Imσ
(j)
m

m+ 1
δ(j).(2.53)
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16 GANG BAO, PEIJUN LI, AND HAIJUN WU

It is obvious that either enlarging the thickness δ(j) of the PML layers or enlarging

the medium parameters Reσ
(j)
m and Imσ

(j)
m will reduce the PML approximation

error.

3. The discrete problem

In this section we introduce Nédeléc’s element approximations [40] of the PML
problems (2.34) and (2.42). Let Mh be a regular tetrahedral mesh of the domain
D. Note that any tetrahedron T ∈ Mh is considered to be closed. We assume

that any element T must be completely included in Ω(1,PML), Ω(2,PML), or Ω. To
deal with the quasi-periodic boundary condition, we assume further that the mesh
is periodic in both the x1 and x2 directions; that is, the projection of the surface
mesh on any face of D perpendicular to the x1-axis (or the x2-axis) into its opposite
face coincides with the surface mesh on the opposite face. Denote by Fh the set of

all faces of tetrahedrons in Mh. Let Vh(D) ⊂
◦

Hqper(curl, D) be an edge element
space that contains the lowest order Nédélec’s edge element space
(3.1)

V 1
h (D) =

{
vh ∈

◦

Hqper(curl, D) : vh|T = aT + bT × x, aT , bT ∈ C
3, ∀T ∈ Mh

}
.

To simplify the theoretical analysis, we first eliminate the nonhomogeneous
Dirichlet boundary condition of the PML problem (2.34) by subtracting EI(x) −
Er

I (x) from EPML in Ω(1,PML), where

curl
(
µ̂−1 curlEr

I (x)
)
− ω2ε̂Er

I (x) = 0 in Ω(1,PML),

Er

I × ν = EI × ν, on Γ(1), Er

I × ν = 0 on Γ(1,PML).
(3.2)

We notice that Er

I may be regarded as a mirror reflection of the incident field EI

in the PML medium. Then the PML problem (2.34) can be rewritten as: Find

(3.3) ẼPML =

{
EPML −EI(x) +Er

I (x) in Ω(1,PML),
EPML otherwise,

ẼPML ∈
◦

Hqper(curl, D),

such that

(3.4) a
D
(ẼPML, ψ) =

∫

Γ(1)

1

µ(1)
curl(EI − Er

I )× ν3 · ψ̄Γ(1) , ∀ψ ∈
◦

Hqper(curl, D),

where ν3 = (0, 0, 1)T. It follows from (3.2) and the definitions of T (1) (2.15) and
T (1,PML) (2.38) that

1

µ(1)
curl(EI −Er

I )× ν3 = −iω
(
T (1)(EI)Γ(1) + T (1,PML)(EI)Γ(1)

)

= − i

µ(1)

(
1 + coth(−iβσ(1))

)(
p1β + p3α1, p2β + p3α2, 0

)T
eiq·x on Γ(1),

(3.5)

where (p1, p2, p3)
T = p. We have from (2.43) that

(3.6) aD(Ẽ
PML, ψ) = 〈fPML

I , ψ〉, ∀ψ ∈
◦

Hqper(curl, D).

The edge element approximation to the PML problem (3.4) reads as follows:

Find ẼPML
h ∈ Vh(D) such that

(3.7) aD (Ẽ
PML
h , ψh) = 〈fPML

I , ψh〉, ∀ ψh ∈ Vh(D).

The discrete problem (3.7) is assumed to attain a unique solution ẼPML
h ∈ Vh(D).
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Given a face F ∈ Fh, hF stands for its length. For any T ∈ Mh, we denote by
hT its diameter and introduce the residuals

R
(1)
T := ω2ε̂ẼPML

h

∣∣
T
− curl

(
µ̂−1 curl ẼPML

h

∣∣
T

)
,

R
(2)
T := − div

(
ω2ε̂ẼPML

h

∣∣
T

)
.

(3.8)

Given an interior side F ∈ Fh, which is the common side of T1 and T2 ∈ Mh, we
define the jump residuals across F as

J
(1)
F =

⎧
⎨
⎩

µ̂−1
(
curl ẼPML

h

∣∣
T1

− curl ẼPML
h

∣∣
T2

)
× νF , if F �⊂ Γ(1),(

curl ẼPML
h

∣∣
T1

−curl ẼPML
h

∣∣
T2

)
×νF

µ(1) +
curl(EI−E

r

I )×ν3

µ(1) , if F ⊂ Γ(1),

J
(2)
F =

{
ω2
(
ε̂ẼPML

h

∣∣
T2

− ε̂ẼPML
h

∣∣
T1

)
· νF , if F �⊂ Γ(1),

ω2ε
(
ẼPML

h

∣∣
T2

− ẼPML
h

∣∣
T1

)
· νF − ω2ε(EI −Er

I ) · ν3, if F ⊂ Γ(1).

(3.9)

Here ν3 = (0, 0, 1)T and the unit normal vector νF to F points from T2 to T1.
Define

Γ10 = {(x1, x2, x3) : x1 = 0, 0 < x2 < L2, b
(2) − δ(2) < x3 < b(1) + δ(1)},

Γ11 = {(x1, x2, x3) : x1 = L1, 0 < x2 < L2, b
(2) − δ(2) < x3 < b(1) + δ(1)},

Γ20 = {(x1, x2, x3) : x2 = 0, 0 < x1 < L1, b
(2) − δ(2) < x3 < b(1) + δ(1)},

Γ21 = {(x1, x2, x3) : x2 = L2, 0 < x1 < L1, b
(2) − δ(2) < x3 < b(1) + δ(1)}.

For some element T ∈ Mh, if F = Γj0 ∩ ∂T and the corresponding face F ′ on Γj1

is a face of some element T ′, then we define the jump residual as

J
(1)
F = µ̂−1

(
curl ẼPML

h

∣∣
T
− e−iαjLj curl ẼPML

h

∣∣
T ′

)
× νj ,

J
(1)
F ′ = µ̂−1

(
eiαjLj curl ẼPML

h

∣∣
T
− curl ẼPML

h

∣∣
T ′

)
× νj .

(3.10)

Here ν1 = (1, 0, 0)T and ν2 = (0, 1, 0)T. Moreover, we define

(3.11) J
(1)
F = (0, 0, 0)T if F ⊂ Γ(1,PML) ∪ Γ(2,PML) and J

(2)
F = 0 if F ⊂ ∂D.

For any T ∈ Mh, denote by η
T

the local error estimator, which is defined as
follows:

η
T
= hT

(∥∥∥R(1)
T

∥∥∥
2

(L2(T ))3
+
∥∥∥R(2)

T

∥∥∥
2

L2(T )

)1/2

+
(1
2

∑

F⊂∂T

hF

( ∥∥∥J (1)
F

∥∥∥
2

(L2(F ))3
+
∥∥∥J (2)

F

∥∥∥
2

L2(F )

))1/2
.

(3.12)

The following theorem is the main result in this paper.

Theorem 3.1. There exists a constant C > 0, depending only on the minimum

angle of the mesh Mh, such that the following a posteriori error estimate holds:

‖|E− ẼPML
h ‖|Ω ≤γ2

0M
(1)
∥∥∥ẼPML

h −EI

∥∥∥
H(curl,Ω)

+ γ2
0M

(2)
∥∥∥ẼPML

h

∥∥∥
H(curl,Ω)

+ C
[
1 + γ0 max |s(x3)| (C(1) + C(2))

]( ∑

T∈Mh

η2T

)1/2
,

where the constants γ0, M
(j), and C(j), j = 1, 2 are defined in Lemmas 2.2, 2.5,

and 4.3, respectively.
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18 GANG BAO, PEIJUN LI, AND HAIJUN WU

The proof of this theorem will be given in Section 4. We notice that when the

PML parameters σ
(j)
R and σ

(j)
I tend to infinity, the constants M (j) decay exponen-

tially and the constants C(j) remain bounded.

4. A posteriori error analysis

In this section we prove the a posteriori error estimate of Theorem 3.1.

4.1. Error representation formula. For any ψ ∈ Hqper(curl,Ω), we extend it to

be a function in
◦

Hqper(curl, D). Denote the extension by ψ̃ such that ψ̃ = ψ in Ω
and

curl(µ̂−1 curl ¯̃ψ)− ω2ε̂ ¯̃ψ = 0 in Ω(j,PML),

ψ̃ × ν(j) = ψ × ν(j) on Γ(j), j = 1, 2,
(4.1)

where ν(j) is the unit outer normal to Ω(j,PML).

Lemma 4.1. For any ϕ and ψ ∈ Hqper(curl,Ω),

iω

∫

Γ(j)

T (j,PML)ϕΓ(j) · ψ̄Γ(j) =

∫

Γ(j)

1

µ(j)
(ϕ× ν(j)) · (curl ¯̃ψ)Γ(j) .(4.2)

Proof. Define φ ∈ Hqper(curl,Ω
(j,PML)) as follows:

{
curl(µ̂−1 curlφ)− ω2ε̂φ = 0 in Ω(j,PML),
φ× ν(j) = ϕ× ν(j) on Γ(j), and φ× ν(j) = 0 on Γ(j,PML).

It is easy to verify that (see (2.29) and (2.40))

1

µ(j)
curlφ× ν(j) = −iωT (j,PML)ϕΓ(j) on Γ(j).

By noting that µ̂−1 is diagonal in Ω(j,PML) and µ̂−1 = (µ(j))−1I on Γ(j) we conclude
by integration by parts that
∫

Γ(j)

1

µ(j)
(φ× ν(j)) · (curl ¯̃ψ)Γ(j) = −

∫

Γ(j)

1

µ(j)
(curl ¯̃ψ × ν(j)) · (φΓ(j))

= −
∫

Ω(j,PML)

(
µ̂−1 curl ¯̃ψ · curlφ− ω2ε̂ ¯̃ψ · φ

)

= −
∫

Ω(j,PML)

(
µ̂−1 curlφ · curl ¯̃ψ − ω2ε̂φ · ¯̃ψ

)

= −
∫

Γ(j)

1

µ(j)
(curlφ× ν(j)) · ( ¯̃ψΓ(j)) = iω

∫

Γ(j)

T (j,PML)ϕΓ(j) · ψ̄Γ(j) ,

which completes the proof. �

From now on, for convenience, we denote ψ̃, the PML extension of ψ, also by ψ.

Lemma 4.2 (The error representational formula). For any ψ ∈ Hqper(curl,Ω),

which is extended to be a function in
◦

Hqper(curl, D) according to (4.1), and ψh ∈
Vh(D),
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A(E− ẼPML
h , ψ) =

∫

Γ(1)

1

µ(1)
curl(EI −Er

I )× ν3 · (ψ − ψh)Γ(1)− a
D
(ẼPML

h , ψ − ψh)

+ iω

∫

Γ(1)

(T (1) − T (1,PML))(ẼPML
h −EI)Γ(1) · ψ̄Γ(1)

+ iω

∫

Γ(2)

(T (2) − T (2,PML))(ẼPML
h )Γ(2) · ψ̄Γ(2) .

Proof. First from (2.19)–(2.21), (2.41)–(2.43), and (3.6) we have

A(E− ẼPML
h ,ψ) = A(E, ψ)−APML(EPML, ψ) +APML(ẼPML

h , ψ)−A(ẼPML
h , ψ)

+APML(EPML, ψ)−APML(ẼPML
h , ψ)

= 〈fI − fPML
I , ψ〉+ iω

2∑

j=1

∫

Γ(j)

(T (j) − T (j,PML))(ẼPML
h )Γ(j) · ψ̄Γ(j)

+ a
D
(ẼPML, ψ)−APML(ẼPML

h , ψ)

= iω

∫

Γ(1)

(T (1) − T (1,PML))(ẼPML
h −EI)Γ(1) · ψ̄Γ(1)

+ iω

∫

Γ(2)

(T (2) − T (2,PML))(ẼPML
h )Γ(2) · ψ̄Γ(2)

+ a
D
(ẼPML, ψ)−APML(ẼPML

h , ψ).

It follows from (2.33), Lemma 4.1, (4.1), and integration by parts that

APML(ẼPML
h , ψ) = a

Ω
(ẼPML

h , ψ)− iω
2∑

j=1

∫

Γ(j)

T (j,PML)(ẼPML
h )Γ(j) · ψ̄Γ(j)

= aΩ(Ẽ
PML
h , ψ)−

2∑

j=1

∫

Γ(j)

1

µ(j)
(ẼPML

h )× ν(j) · (curl ψ̄)Γ(j)

= aΩ(Ẽ
PML
h , ψ) +

2∑

j=1

a
Ω(j,PML)

(ẼPML
h , ψ)

= a
D
(ẼPML

h , ψ),

which completes the proof by using (3.6) and (3.7). �

We remark that evaluating the various terms in the error representation formula
would yield the desired a posteriori error estimate in Theorem 3.1. To achieve this
goal, we need to prove stability estimates for the extension (4.1) of the function ψ in
Ω(j,PML). We have the following lemma, whose proof will be given in Appendix A.1.

Lemma 4.3. For any ψ ∈ Hqper(curl,Ω), let ψ be extended to the whole domain

D according to (4.1). Then the following estimates hold, for j = 1, 2 :

(∥∥s−1ψ
∥∥2
(L2(Ω(j,PML)))3 +

∥∥s−1 curlψ
∥∥2
(L2(Ω(j,PML)))3

)1/2
≤ γ0C

(j) ‖ψ‖H(curl,Ω) ,
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where γ0 is defined in Lemma 2.2 and

C(j) =
4

√
16(δ(j))2

(
1+ω2Re (ε(j)µ(j))

)
+4

1−e−Λ(j)

√√√√ ω2Re (ε(j)µ(j))+|ω2ε(j)µ(j)|2√
(ω2Im (ε(j)µ(j)))2+min

{
(β

(j)
+ )4, (β

(j)
−

)4
} + 2,

where Λ(j) is defined in Lemma 2.5.

4.2. Proof of Theorem 3.1. Noticing that D is a cuboid, we have the following

Hodge decomposition (cf. Theorem 3.45 in [36]): For any ψ ∈
◦

Hqper(curl, D), there

exist ψ(1) ∈ (H1(D))3 and ψ(2) ∈ H1
0 (D) such that

(4.3) ψ = ψ(1) + gradψ(2), divψ(1) = 0,

and by a similar argument as Theorem 2.3 in [26] the following identity holds:
∥∥∥ψ(1)

∥∥∥
(H1(D))3

=
∥∥∥ψ(1)

∥∥∥
H(curl,D)

.

It is clear that
∣∣∣ψ(1)

∣∣∣
2

(H1(D))3
+
∣∣∣ψ(2)

∣∣∣
2

H1(D)
≤
∥∥∥ψ(1)

∥∥∥
2

H(curl,D)
+
∣∣∣ψ(2)

∣∣∣
2

H1(D)

=
∥∥∥curlψ(1)

∥∥∥
2

(L2(D))3
+
∥∥∥ψ(1)

∥∥∥
2

(L2(D))3
+
∣∣∣ψ(2)

∣∣∣
2

H1(D)

= ‖curlψ‖2(L2(D))3 + ‖ψ‖2(L2(D))3 = ‖ψ‖2H(curl,D) .

(4.4)

Notice that gradψ(2)×ν = 0 on ∂D, where ν is the unit outer normal to ∂D. Since

ψ ∈
◦

Hqper(curl, D), we have from (2.4) that ψ(1) ∈
◦

Hqper(curl, D) ∩ (H1(D))3.
Denote by Uh(D) ⊂ H1

0 (D) the standard continuous piecewise linear finite ele-
ment space. Clearly,

(4.5) gradUh(D) ⊆ V 1
h (D).

Here V 1
h (D) is the lowest order Nédélec’s edge element space defined in (3.1). For

any element T ∈ Mh, denote by T̃ the point sets that contain all elements in Mh

sharing at least one vertex with T . For any face F ∈ Fh, denote by F̃ =
⋃
{T̃ :

F ⊂ ∂T}. Let Ph : H1
0 (D) �→ Uh(D) be the Scott-Zhang interpolation operator

[43]. Then
∥∥∥ψ(2) − Phψ

(2)
∥∥∥
L2(T )

≤ ChT

∣∣∣ψ(2)
∣∣∣
H1(T̃ )

,

∥∥∥ψ(2) − Phψ
(2)
∥∥∥
L2(F )

≤ Ch
1/2
F

∣∣∣ψ(2)
∣∣∣
H1(F̃ )

.
(4.6)

Here C is a constant depending only on the minimum angle of the mesh, and hT

and hF are the diameters of T and F , respectively.

The following lemma introduces an interpolation operator Qh :
◦

Hqper(curl, D)∩
(H1(D))3 �→ V 1

h (D) satisfying the estimates (4.8) and (4.9). The operator is similar
to the operator introduced by Beck, Hiptmair, Hoppe, and Wohlmuth [14] for
the non-quasi-periodic boundary condition. The proof of the lemma is given in
Appendix A.2.
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Lemma 4.4. There exists a linear projection Qh :
◦

Hqper(curl, D) ∩ (H1(D))3 �→
V 1
h (D) satisfying the following estimates:

∥∥∥Qhψ
(1)
∥∥∥
(L2(T ))3

≤ C
(∥∥∥ψ(1)

∥∥∥
(L2(T̃ ))3

+ hT

∣∣∣ψ(1)
∣∣∣
(H1(T̃ ))3

)
,(4.7)

∥∥∥ψ(1) −Qhψ
(1)
∥∥∥
(L2(T ))3

≤ ChT

∣∣∣ψ(1)
∣∣∣
(H1(T̃ ))3

,(4.8)

∥∥∥ψ(1) −Qhψ
(1)
∥∥∥
(L2(F ))3

≤ Ch
1/2
F

∣∣∣ψ(1)
∣∣∣
(H1(F̃ ))3

.(4.9)

Next we turn to the a posteriori error estimate. For any ψ = ψ(1) + gradψ(2)

satisfying the Hodge decomposition (4.3), let

(4.10) ψ
(1)
h = Qhψ

(1), ψ
(2)
h = Phψ

(2), ψh = ψ
(1)
h + gradψ

(2)
h .

It follows from the error representation formula (Lemma 4.2) that

A(E− ẼPML
h ,ψ)

=

∫

Γ(1)

1

µ(1)
curl(EI −Er

I )× ν3 · (ψ(1) − ψ
(1)
h + grad(ψ(2) − ψ

(2)
h ))Γ(1)

− aD(Ẽ
PML
h , ψ(1) − ψ

(1)
h + grad(ψ(2) − ψ

(2)
h ))(4.11)

+ iω

∫

Γ(1)

(T (1) − T (1,PML))(ẼPML
h −EI)Γ(1) · ψ̄Γ(1)

+ iω

∫

Γ(2)

(T (2) − T (2,PML))(ẼPML
h )Γ(2) · ψ̄Γ(2)

:= II + III + IV + V.

First, we have from (2.33) that

II + III =

∫

Γ(1)

1

µ(1)
curl(EI −Er

I )× ν3 · (ψ(1) − ψ
(1)
h + grad(ψ(2) − ψ

(2)
h ))Γ(1)

+

∫

D

ω2ε̂ẼPML
h ·

(
ψ(1) − ψ

(1)
h + grad (ψ(2) − ψ

(2)
h )
)

−
∫

D

µ̂−1 curl ẼPML
h · curl (ψ(1) − ψ

(1)
h )

=

∫

Γ(1)

1

µ(1)
curl(EI −Er

I )× ν3 · (ψ(1) − ψ
(1)
h )Γ(1)

+

∫

Γ(1)

1

µ(1)
curl(EI −Er

I )× ν3 · (grad(ψ(2) − ψ
(2)
h ))Γ(1)

+
∑

T∈Mh

{∫

T

ω2ε̂ẼPML
h · (ψ(1) − ψ

(1)
h ) +

∫

T

ω2ε̂ẼPML
h · grad (ψ(2) − ψ

(2)
h )

−
∫

T

µ̂−1 curl ẼPML
h · curl (ψ(1) − ψ

(1)
h )
}
.
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A direct calculation and (3.2) yield

∫

Γ(1)

1

µ(1)
curl(EI −Er

I )× ν3 · (grad(ψ(2) − ψ
(2)
h ))Γ(1)

= −
∫

Γ(1)

1

µ(1)
curl curl(EI −Er

I ) · ν3(ψ(2) − ψ
(2)
h )

= −
∫

Γ(1)

ω2ε(EI −Er

I ) · ν3(ψ(2) − ψ
(2)
h ).

Therefore by integration by parts and using (3.8)–(3.11),

II + III =
∑

F∈Fh,F⊂Γ(1)

∫

F

1

µ(1)
curl(EI −Er

I )× ν3 · (ψ(1) − ψ
(1)
h )Γ(1)

−
∑

F∈Fh,F⊂Γ(1)

∫

F

ω2ε(EI − Er

I ) · ν3(ψ(2) − ψ
(2)
h )

+
∑

T∈Mh

{∫

T

(
ω2ε̂ẼPML

h − curl
(
µ̂−1 curl ẼPML

h

))
· (ψ(1) − ψ

(1)
h )

−
∫

T

div
(
ω2ε̂ẼPML

h

)
· (ψ(2) − ψ

(2)
h )

+
∑

F∈Fh,F⊂∂T

[
−
∫

F

µ̂−1 curl ẼPML
h × ν · (ψ(1) − ψ

(1)
h )F

+

∫

F

ω2ε̂ẼPML
h · ν(ψ(2) − ψ

(2)
h )
]}

=
∑

T∈Mh

{∫

T

R
(1)
T · (ψ(1) − ψ

(1)
h ) +

∫

T

R
(2)
T (ψ(2) − ψ

(2)
h )
}

+
∑

F∈Fh,F �⊂Γ11∪Γ21

{∫

F

J
(1)
F · (ψ(1) − ψ

(1)
h )F +

∫

F

J
(2)
F (ψ(2) − ψ

(2)
h )
}
.

Here (ψ(1)−ψ
(1)
h )F = −ν× (ν× (ψ(1)−ψ

(1)
h )) is the tangential component of ψ(1)−

ψ
(1)
h along F . It follows from (4.6), (4.8)–(4.9), the Cauchy-Schwarz inequality, and

(4.4) that

|II + III|

≤
∑

T∈Mh

{
ChT

∥∥∥R(1)
T

∥∥∥
(L2(T ))3

∣∣∣ψ(1)
∣∣∣
(H1(T̃ ))3

+ ChT

∥∥∥R(2)
T

∥∥∥
L2(T )

∣∣∣ψ(2)
∣∣∣
H1(T̃ )

}

+
∑

F∈Fh

{
Ch

1/2
F

∥∥∥J (1)
F

∥∥∥
(L2(F ))3

∣∣∣ψ(1)
∣∣∣
(H1(F̃ ))3

+ Ch
1/2
F

∥∥∥J (2)
F

∥∥∥
L2(F )

∣∣∣ψ(2)
∣∣∣
H1(F̃ )

}

≤ C
( ∑

T∈Mh

η2T

)1/2( ∣∣∣ψ(1)
∣∣∣
2

(H1(D))3
+
∣∣∣ψ(2)

∣∣∣
2

H1(D)

)1/2

≤ C
( ∑

T∈Mh

η2T

)1/2
‖ψ‖H(curl,D) .
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From Lemma 4.3 we obtain

(4.12) |II + III| ≤ C
[
1 + γ0 max |s(x3)| (C(1) +C(2))

]( ∑

T∈Mh

η2T

)1/2
‖ψ‖H(curl,Ω) .

Secondly, the estimate of |IV + V| follows from Lemmas 2.5 and 2.2:
(4.13)

|IV + V| ≤ γ2
0

(
M (1)

∥∥∥ẼPML
h −EI

∥∥∥
H(curl,Ω)

+M (2)
∥∥∥ẼPML

h

∥∥∥
H(curl,Ω)

)
‖ψ‖H(curl,Ω) .

Combining (4.12) and (4.13) yields the desired estimate.

5. Implementation and numerical examples

The implementation of the adaptive algorithm is based on the Comsol Multi-
physics software package. The second-order Nédélec’s edge element is used in the
numerical tests. Numerically, we consider nonmagnetic materials, i.e., µ(x) = I
and µ(1) = µ(2) = 1. We use the a posteriori error estimate from Theorem 3.1 to
determine the PML parameters. Recall that we choose the PML medium property
as the power function, and thus we need to specify only the thickness δj of the
layers and the medium parameters σm

j (see (2.53)). Theorem 3.1 shows that the a

posteriori error estimate consists of two parts: the PML error EPML and the finite
element discretization error EFEM, where

EPML = γ2
0M

(1)
∥∥∥ẼPML

h −EI

∥∥∥
H(curl,Ω)

+ γ2
0M

(2)
∥∥∥ẼPML

h

∥∥∥
H(curl,Ω)

,(5.1)

EFEM =

( ∑

T∈Mh

η2T

)1/2

.(5.2)

Notice from the definition of M (j) in Lemma 2.5 that M (j)/
(
2/(eΛ

(j) − 1)
)
is

bounded. In practice, we first choose δj and σm
j such that 2/(eΛ

(j) − 1) ≤ 10−8 ,
which makes the PML error negligible compared with the finite element discretiza-
tion errors. Once the PML region and the medium property are fixed, we use
the standard finite element adaptive strategy to modify the mesh according to the
a posteriori error estimate (5.2). The adaptive algorithm used in this paper is
described as follows:

Algorithm 5.1. Given tolerance TOL > 0. Let m = 2.

• Choose δ1, δ2, and σm
j such that 2/(eΛ

(j) − 1) ≤ 10−8 (j = 1, 2).
• Generate an initial mesh Mh over D.

• While EFEM > TOL do

– Choose a set of elements M̂h ⊂ Mh such that

⎛
⎝ ∑

T∈M̂h

η2
T

⎞
⎠

1/2

> 0.6

( ∑

T∈Mh

η2
T

)1/2

;

then refine the elements in M̂h. Denote the new mesh by Mh also.

– Solve the discrete problem (3.7) on Mh.

– Compute error estimators on Mh.

end while
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We remark that, due to the periodic structure of the grating problem, we mod-
ified the local tetrahedral mesh refinement algorithm by Arnold, Mukherjee, and
Pouly [4] to maintain the periodicity of the meshes in both the x1 and x2 directions,
which either the algorithm of COMSOL Multiphysics or the algorithm of [4] does
not take into account.

We report two examples to demonstrate the competitiveness of our algorithm.
In all of the experiments, let λ, θ1, θ2, and p = (p1, p2, p3)

T denote the wavelength,
the incident angles, and the polarization of the incident wave, respectively, and let
n denote the refractive index. We scale the error estimator by a factor of 6× 10−3

in the following examples.

Example 5.1. To test our code, we consider the simplest grating structure, a flat
plane. Assume that a plane wave (EI,HI) is incident on the flat plane {x3 = 0},
which separates two homogeneous media: vacuum (n1 = 1) and silver (n2 = 0.22+
6.71i). In our experiment, the parameters are chosen as λ = 1µm, θ1 = π/6, θ2 =
π/6, p1 = p2 = 1. For this problem, the exact zero-order reflection efficiency is
0.9784459. The computation domain is chosen as Ω = [0, 0.5]×[0, 0.5]×[−0.25, 0.25].

The mesh plot and the surface plot of the amplitude of the field ẼPML
h after 13

adaptive iterations are shown in Figure 2. The mesh has 36118 tetrahedrons and
the total number of degrees of freedom (DoFs) on the mesh is 235476. Figure 3

shows the error of ẼPML
h in the H(curl,Ω) norm (left: solid line), the a posteriori

error estimate (left: circles), and the error of the zero-order reflection efficiencies
(right) as a function of the total number of DoFs. It is shown that the decay

of ‖ẼPML
h −E‖H(curl,Ω) is O(1/N2/3) and the convergence rate of the zero-order

reflection efficiencies is about O(1/N4/3), where N is the total number of DoFs.

Figure 2. The mesh plot and the surface plot of the amplitude

of the field ẼPML
h after 13 adaptive iterations for Example 5.1.

Example 5.2. Consider the checkerboard grating that was analyzed by Li [33]
using a new Fourier modal method. A top view of it along with the unit cell and
the computational domain are shown in Figure 4. The length, width, and height
of the shadowed cubic are 1.25µm, 1.25µm, and 1µm. The grating parameters are:
λ = 1µm, θ1 = 0, θ2 = 0, p1 = p2 = 1, the refractive indices of the shadowed cubic
and the superstrate are 1.5, and the refractive index of the other part is 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ADAPTIVE METHODS FOR WAVE SCATTERING PROBLEMS 25

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

DoFs

H
(c

u
rl
,Ω

) 
e
rr

o
r 

o
f 
e
le

c
tr

ic
 f
ie

ld

Slope: −2/3

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

DoFs

E
rr

o
r 

o
f 
z
e
ro

−
o
rd

e
r 

re
fl
e
c
ti
o
n
 e

ff
ic

ie
n
c
y

Slope: −4/3

Figure 3. The error of ẼPML
h in the H(curl,Ω) norm (left: solid

line) and the a posteriori error estimate (left: circles), and the
error of the zero-order reflection efficiencies (right) versus the total
number of degrees of freedom for Example 5.1. The dotted line
gives the reference slope.

Figure 4. A top view of the grating along with the unit cell (left),
and the computational domain (right) for Example 5.2.

Figure 5 shows that the efficiencies are convergent (left) and that the decay
of the a posteriori error estimates is O(1/N2/3) (right). The mesh plot and the

surface plot of the amplitude of the field ẼPML
h after 10 adaptive iterations are

shown in Figure 6. The mesh has 60042 tetrahedrons and the total number of
DoFs on the mesh is 391244. The meshes near the upper PML boundary are rather
coarse, which shows that the total computational cost is insensitive to the thickness
of the PML absorbing layer. Recall that thicker PML layers allow a smaller PML
medium property, which enhances numerical stability. Table 1 shows the diffraction
efficiencies of the transmitted orders of the checkerboard grating. The maximum
error between our results and those of Li [33] is about 8.13× 10−4.
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Figure 5. Transmission efficiencies (solid lines) and reflection ef-
ficiencies (dotted lines) versus the total number of DoFs (left), and
the a posteriori error estimates versus the total number of DoFs
(right) for Example 5.2.

Figure 6. The mesh plot and the surface plot of the amplitude

of the field ẼPML
h after 10 adaptive iterations for Example 5.2.

Table 1. Diffraction efficiencies of the transmitted orders of the
checkerboard grating in Example 5.2.

Diffraction order -1 0 1
-1 0.0431 0.1287 0.0623
0 0.1284 0.1757 0.1288
1 0.0622 0.1287 0.0430

Appendix A. Proofs of technical lemmas

A.1. Proof of Lemma 4.3. By a similar argument for (2.35), ψ satisfies the
following expansion in Ω(j,PML):

(A.1) ψ̄ = diag
(
1, 1, s(x3)

) ∑

l,m∈Z

(
(p

(j)
l,m)′e−i(q

(j)
l,m)′·x̂ − ζ

(j)
l,mp

(j)
l,me−iq

(j)
l,m·x̂

)T
,
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where q
(j)
l,m = (αl

1, α
m
2 , (−1)j−1β

(j)
l,m)T is defined in (2.12), p

(j)
l,m = (p

(j)
l,m,1, p

(j)
l,m,2,

p
(j)
l,m,3)

T satisfies p
(j)
l,m · q(j)l,m = 0, and

ζ
(j)
l,m = e2i(−1)j−1β

(j)
l,m

∫ b(1)+(−1)j−1δ(j)

0
s(τ)dτ

is defined in (2.36). Denote by

(A.2) ξj±l,m(x3) = ±ei(−1)j−1β
(j)
l,m

∫ x3
0 s(τ)dτ − ζ

(j)
l,me−i(−1)j−1β

(j)
l,m

∫ x3
0 s(τ)dτ .

Then ψ̄ can be rewritten as
(A.3)

ψ̄ =
∑

l,m∈Z

(
p
(j)
l,m,1ξ

j+
l,m(x3), p

(j)
l,m,2ξ

j+
l,m(x3), s(x3)p

(j)
l,m,3ξ

j−
l,m(x3)

)T
e−iαl

1x1−iαm
2 x2 .

It is clear that
d

dx3
ξj±l,m(x3) = i(−1)jβ

(j)
l,ms(x3)ξ

j∓
l,m(x3).

Therefore
(A.4)

curl ψ̄ =
∑

l,m∈Z

⎛
⎜⎝
−
[
iαm

2 p
(j)
l,m,3 + i(−1)jβ

(j)
l,mp

(j)
l,m,2

]
s(x3)ξ

j−
l,m(x3)[

iαl
1p

(j)
l,m,3 + i(−1)jβ

(j)
l,mp

(j)
l,m,1

]
s(x3)ξ

j−
l,m(x3)[

− iαl
1p

(j)
l,m,2 + iαm

2 p
(j)
l,m,1

]
ξj+l,m(x3)

⎞
⎟⎠ e−iαl

1x1−iαm
2 x2 .

Let I(1) = [b(1), b(1) + δ(1)] and I(2) = [b(2) − δ(2), b(2)]. From a direct calculation,
we deduce from (A.3) and (A.4) that

∥∥s−1ψ
∥∥2
(L2(Ω(j,PML)))3 +

∥∥s−1 curlψ
∥∥2
(L2(Ω(j,PML)))3

=

∫

I(j)

|s(x3)|−2
∫ L1

0

∫ L2

0

(∣∣ψ̄
∣∣2 +

∣∣curl ψ̄
∣∣2
)
dx1dx2dx3

= L1L2

∫

I(j)

|s(x3)|−2
∑

l,m∈Z

[ ∣∣∣p(j)l,m,1

∣∣∣
2 ∣∣∣ξj+l,m(x3)

∣∣∣
2

+
∣∣∣p(j)l,m,2

∣∣∣
2 ∣∣∣ξj+l,m(x3)

∣∣∣
2

+ |s(x3)|2
∣∣∣p(j)l,m,3

∣∣∣
2 ∣∣∣ξj−l,m(x3)

∣∣∣
2

+
∣∣∣αl

1p
(j)
l,m,2 − αm

2 p
(j)
l,m,1

∣∣∣
2 ∣∣∣ξj+l,m(x3)

∣∣∣
2

+
∣∣∣αm

2 p
(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,2

∣∣∣
2

|s(x3)|2
∣∣∣ξj−l,m(x3)

∣∣∣
2

+
∣∣∣αl

1p
(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,1

∣∣∣
2

|s(x3)|2
∣∣∣ξj−l,m(x3)

∣∣∣
2 ]

dx3.

Since |s(x3)|−1 ≤ 1, we have

∥∥s−1ψ̄
∥∥2
(L2(Ω(j,PML)))3 +

∥∥s−1 curl ψ̄
∥∥2
(L2(Ω(j,PML)))3

≤ L1L2

∫

I(j)

∑

l,m∈Z

[( ∣∣∣p(j)l,m,1

∣∣∣
2

+
∣∣∣p(j)l,m,2

∣∣∣
2

+
∣∣∣αl

1p
(j)
l,m,2 − αm

2 p
(j)
l,m,1

∣∣∣
2 ) ∣∣∣ξj+l,m(x3)

∣∣∣
2

+
( ∣∣∣αm

2 p
(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,2

∣∣∣
2

+
∣∣∣αl

1p
(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,1

∣∣∣
2

(A.5)

+
∣∣∣p(j)l,m,3

∣∣∣
2 ) ∣∣∣ξj−l,m(x3)

∣∣∣
2 ]

dx3.
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On the other hand, from (A.3), the tangential component of ψ̄ on the surface Γ(j)

is

ψ̄Γ(j) =
∑

l,m∈Z

(
p
(j)
l,m,1ξ

j+
l,m(b(j)), p

(j)
l,m,2ξ

j+
l,m(b(j)), 0

)T
e−iαl

1x1−iαm
2 x2 .

Hence, it is follows from (2.7) that

∥∥ψ̄Γ(j)

∥∥2
TH

−1/2
qper (curl,Γ(j))

=L1L2

∑

l,m∈Z

(
1 + (αl

1)
2 + (αm

2 )2
)−1/2

∣∣∣ξj+l,m(b(j))
∣∣∣
2

×
[∣∣∣p(j)l,m,1

∣∣∣
2

+
∣∣∣p(j)l,m,2

∣∣∣
2

+
∣∣∣αl

1p
(j)
l,m,2 − αm

2 p
(j)
l,m,1

∣∣∣
2
]
.

(A.6)

From Lemma 2.2, it suffices to prove that

∥∥s−1ψ̄
∥∥2
(L2(Ω(j,PML)))3 +

∥∥s−1 curl ψ̄
∥∥2
(L2(Ω(j,PML)))3

≤ (C(j))2
∥∥ψ̄Γ(j)

∥∥2
TH

−1/2
qper (curl,Γ(j))

.
(A.7)

To this end, we will estimate the terms on the right-hand side of (A.5).

Since p
(j)
l,m · q(j)l,m = 0, we have

(A.8) p
(j)
l,m,3 =

(−1)j

β
(j)
l,m

(
αl
1p

(j)
l,m,1 + αm

2 p
(j)
l,m,2

)

and

(A.9)
∣∣∣p(j)l,m,3

∣∣∣
2

≤ 1∣∣∣β(j)
l,m

∣∣∣
2

(
(αl

1)
2 + (αm

2 )2
)( ∣∣∣p(j)l,m,1

∣∣∣
2

+
∣∣∣p(j)l,m,2

∣∣∣
2 )

.

From (A.8) and the definition (β
(j)
l,m)2 = ω2ε(j)µ(j) − (αl

1)
2 − (αm

2 )2 in (2.13), we
conclude that

αm
2 p

(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,2 =

(−1)j

β
(j)
l,m

[
ω2ε(j)µ(j)p

(j)
l,m,2 − αl

1

(
αl
1p

(j)
l,m,2 − αm

2 p
(j)
l,m,1

)]
,

αl
1p

(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,1 =

(−1)j

β
(j)
l,m

[
ω2ε(j)µ(j)p

(j)
l,m,1 + αm

2

(
αl
1p

(j)
l,m,2 − αm

2 p
(j)
l,m,1

)]
.

From the identity |a+ b|2 = |a|2+ |b|2+2Re (āb), the fact that Re (ω2ε(j)µ(j)) > 0,
and some direct calculations, we have

∣∣∣αm
2 p

(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,2

∣∣∣
2

+
∣∣∣αl

1p
(j)
l,m,3 + (−1)jβ

(j)
l,mp

(j)
l,m,1

∣∣∣
2

≤ 1∣∣∣β(j)
l,m

∣∣∣
2

[∣∣∣ω2ε(j)µ(j)
∣∣∣
2 ( ∣∣∣p(j)l,m,1

∣∣∣
2

+
∣∣∣p(j)l,m,2

∣∣∣
2 )

+
(
(αl

1)
2 + (αm

2 )2
) ∣∣∣αl

1p
(j)
l,m,2 − αm

2 p
(j)
l,m,1

∣∣∣
2
]
.

(A.10)
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Next we estimate
∫
I(j)

∣∣∣ξj±l,m(x3)
∣∣∣
2

dx3. From (A.2) and Lemma 2.4, we conclude

that
∣∣∣ξj±l,m(x3)

∣∣∣ =
∣∣∣ei(−1)j−1β

(j)
l,m

∫ x3
0 s(τ)dτ

∣∣∣ ·
∣∣∣∣±1− e

2i(−1)j−1β
(j)
l,m

∫ b(j)+(−1)j−1δ(j)

x3
s(τ)dτ

∣∣∣∣

≤ 2
∣∣∣ei(−1)j−1β

(j)
l,m

∫ x3
0 s(τ)dτ

∣∣∣ ,
∣∣∣ξj+l,m(b(j))

∣∣∣ ≥
∣∣∣∣ei(−1)j−1β

(j)
l,m

∫ b(j)

0
s(τ)dτ

∣∣∣∣
(
1−
∣∣∣∣e

2i(−1)j−1β
(j)
l,m

∫ b(j)+(−1)j−1δ(j)

b(j)
s(τ)dτ

∣∣∣∣
)

≥
∣∣∣∣ei(−1)j−1β

(j)
l,m

∫ b(j)

0
s(τ)dτ

∣∣∣∣
(
1− e−Λ(j)

)
.

Here Λ(j) is defined in Lemma 2.5. Therefore
∣∣∣ξj±l,m(x3)

∣∣∣
/ ∣∣∣ξj+l,m(b(j))

∣∣∣ ≤ 2

1− e−Λ(j)

∣∣∣∣e
i(−1)j−1β

(j)
l,m

∫ x3

b(j)
s(τ)dτ

∣∣∣∣

=
2

1− e−Λ(j)
× e

(−1)j−1
∫ x3

b(j)
Re (iβ

(j)
l,ms(τ))dτ

≤ 2

1− e−Λ(j)
× e

−(−1)j−1
∫ x3

b(j)
Im (β

(j)
l,m)s1(τ)dτ

≤ 2

1− e−Λ(j)
× e−(−1)j−1Im (β

(j)
l,m)(x3−b(j)).

Here we have used s1(τ ) ≥ 1 to derive the last inequality. Thus
(A.11)∫

I(j)

∣∣∣ξj±l,m(x3)
∣∣∣
2

dx3

/∣∣∣ξj+l,m(b(j))
∣∣∣
2

≤ 4

(1− e−Λ(j))2
min

{
δ(j),

1

2Im (β
(j)
l,m)

}
.

Combining the estimates (A.5) and (A.9)–(A.11), we attain that

∥∥s−1ψ̄
∥∥2
(L2(Ω(j,PML)))3 +

∥∥s−1 curl ψ̄
∥∥2
(L2(Ω(j,PML)))3

(A.12)

≤ L1L2

∑

l,m∈Z

(
1 +

(αl
1)

2 + (αm
2 )2 +

∣∣ω2ε(j)µ(j)
∣∣2

∣∣∣β(j)
l,m

∣∣∣
2

)
min

{
2δ(j),

1

Im (β
(j)
l,m)

}

× 2

(1− e−Λ(j))2

∣∣∣ξj+l,m(b(j))
∣∣∣
2 ( ∣∣∣p(j)l,m,1

∣∣∣
2

+
∣∣∣p(j)l,m,2

∣∣∣
2

+
∣∣∣αl

1p
(j)
l,m,2 − αm

2 p
(j)
l,m,1

∣∣∣
2 )

.

It remains to estimate (cf. (A.6) and (A.7))

(αl
1)

2 + (αm
2 )2 +

∣∣ω2ε(j)µ(j)
∣∣2

∣∣∣β(j)
l,m

∣∣∣
2 and

(
1 + (αl

1)
2 + (αm

2 )2
)1/2

min
{
2δ(j),

1

Im (β
(j)
l,m)

}
.

First, it follows from (2.13) and the definitions of β
(j)
+ and β

(j)
− in (2.45) that

∣∣∣β(j)
l,m

∣∣∣
2

=
(
(ω2Im (ε(j)µ(j)))2 + (Re (β

(j)
l,m)2)2

)1/2

≥
(
(ω2Im (ε(j)µ(j)))2 +min

{
(β

(j)
+ )4, (β

(j)
− )4

})1/2
.
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Thus from (2.13),

(αl
1)

2 + (αm
2 )2 +

∣∣ω2ε(j)µ(j)
∣∣2

∣∣∣β(j)
l,m

∣∣∣
2 =

ω2Re (ε(j)µ(j))− Re (β
(j)
l,m)2 +

∣∣ω2ε(j)µ(j)
∣∣2

∣∣∣β(j)
l,m

∣∣∣
2

≤ ω2Re (ε(j)µ(j)) +
∣∣ω2ε(j)µ(j)

∣∣2
∣∣∣β(j)

l,m

∣∣∣
2 + 1(A.13)

≤ ω2Re (ε(j)µ(j)) +
∣∣ω2ε(j)µ(j)

∣∣2
(
(ω2Im (ε(j)µ(j)))2 +min

{
(β

(j)
+ )4, (β

(j)
− )4

})1/2 + 1.

Secondly, it is clear from (2.46) that
∣∣∣Im (β

(j)
l,m)
∣∣∣
2

≥ −Re (β
(j)
l,m)2. Therefore, if

(αl
1)

2 + (αm
2 )2 > ω2Re (ε(j)µ(j)) + 1/(2δ(j))2, then from (2.13),

1 + (αl
1)

2 + (αm
2 )2∣∣∣Im (β

(j)
l,m)
∣∣∣
2 ≤ 1 + (αl

1)
2 + (αm

2 )2

(αl
1)

2 + (αm
2 )2 − ω2Re (ε(j)µ(j))

≤ (2δ(j))2
(
1 + ω2Re (ε(j)µ(j))

)
+ 1.

On the other hand, if (αl
1)

2 + (αm
2 )2 ≤ ω2Re (ε(j)µ(j)) + 1/(2δ(j))2, then

(
1 + (αl

1)
2 + (αm

2 )2
)
(2δ(j))2 ≤ (2δ(j))2

(
1 + ω2Re (ε(j)µ(j))

)
+ 1.

By combining the above two estimates we deduce
(A.14)
(
1+(αl

1)
2+(αm

2 )2
)1/2

min
{
2δ(j),

1

Im (β
(j)
l,m)

}
≤
√
(2δ(j))2

(
1 + ω2Re (ε(j)µ(j))

)
+ 1.

Now, (A.7) follows from plugging (A.13) and (A.14) into (A.12). This completes
the proof upon using Lemma 2.2.

A.2. Proof of Lemma 4.4. For each face F ∈ Fh with edges {e1, e2, e3}, let
wj , j = 1, 2, 3 be the nodal basis function of V 1

h corresponding to ej . Suppose that
F is the face f123 of a tetrahedron element T with vertices Aj , j = 1, 2, 3, 4 and that
e1, e2, e3 are the edges A2A3, A3A1, A1A2, respectively. By using the barycentric
coordinates (λ1, λ2, λ3, λ4), wj , j = 1, 2, 3 may be expressed as

w1 = λ2∇λ3 − λ3∇λ2, w2 = λ3∇λ1 − λ1∇λ3, w3 = λ1∇λ2 − λ2∇λ1.

We construct a dual basis {φk} of {wi × ν} as follows:

(A.15)

∫

F

(wj × ν) · φk = δjk, j, k = 1, 2, 3.

Here ν is a unit normal vector to F . We claim that

(A.16) ‖φk‖(L∞(F ))3 ≤ Ch−1
F and hence ‖φk‖(L2(F ))3 ≤ C.

Without loss of generality, we shall prove that (A.16) holds for k = 1. We find
y = (y1, y2, y3)

T such that

φ1 = y1w1 × ν + y2w2 × ν + y3w3 × ν,

∫

F

(wj × ν) · φ1 = δj1, j = 1, 2, 3.
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It is clear that y is the solution of the linear system:

(A.17) AF y = (1, 0, 0)T, where AF =
(∫

F

(wj × ν) · (wk × ν)
)
3×3

.

We shall show that AF is invertible.
Let bjk = (∇λj × ν) · (∇λk × ν). Since

∑4
j=1 ∇λj = 0 and ∇λ4 is perpendicular

to the face f123, we have, for j, k = 1, 2, 3,

3∑

k=1

bjk = 0 and bjk = bkj .

Therefore, AF can be rewritten as

AF =
|F |
12

⎛
⎜⎝

3b22 + 3b33 − b11 −3b33 + b11 + b22 −3b22 + b33 + b11

−3b33 + b11 + b22 3b11 + 3b33 − b22 −3b11 + b22 + b33

−3b22 + b33 + b11 −3b11 + b22 + b33 3b11 + 3b22 − b33

⎞
⎟⎠ .

It follows from ∇λ1⊥f234 that

|∇λ1| = 1/the height of T to the face f234,

which implies that

b11 = |∇λ1 × ν|2 =
|e1|2

4 |F |2
. Similarly, b22 =

|e2|2

4 |F |2
, b33 =

|e3|2

4 |F |2
.

Straightforward computations show that

detAF =
|e1|2 + |e2|2 + |e3|2

576 |F | ≥ c0,

where c0 is a positive constant depending only on the minimum angle of the elements
in the mesh. Thus AF is invertible. Since AF = O(1), we have A−1

F = O(1), which

implies that y = A−1
F (1, 0, 0)T = O(1), i.e., (A.16) holds.

Now for each edge e, we assign one of those faces with edge e and call it Fe.
We have to comply with the restriction that for e on the boundary, Fe also on the
boundary, and that if e is on Γ10 (or Γ20) and e′ is the corresponding edge on Γ11

(or Γ21), then Fe′ is also the corresponding face of Fe. Then we can define

Qhψ
(1) =

∑

e∈Eh

(∫

Fe

(ψ(1) × ν) · φFe
e

)
we,

where Eh is the set of all edges in Mh, we is the basis function corresponding to
the edge e, and φFe

e is the dual basis function corresponding to we. By virtue of
(A.15) this defines a projection. Obviously the boundary condition is respected.
Let Te ∈ Mh be an element with Fe as one of its faces. Then

∣∣∣∣
∫

Fe

(ψ(1) × ν) · φFe
e

∣∣∣∣ ≤
∥∥∥ψ(1)

∥∥∥
(L2(Fe))3

∥∥φFe
e

∥∥
(L2(Fe))3

≤ C
∥∥∥ψ(1)

∥∥∥
(L2(Fe))3

,

where we have used (A.16). By the scaled trace inequality, we have
∥∥∥ψ(1)

∥∥∥
2

(L2(Fe))3
≤ C

(
h−1
e

∥∥∥ψ(1)
∥∥∥
2

(L2(Te))3
+ he

∣∣∣ψ(1)
∣∣∣
2

(H1(Te))3

)
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



32 GANG BAO, PEIJUN LI, AND HAIJUN WU

Therefore,

∥∥∥Qhψ
(1)
∥∥∥
2

(L2(T ))3
≤ ChT

∑

e∈Eh
e⊂∂T

∣∣∣∣
∫

Fe

(ψ(1) × ν)φFe
e

∣∣∣∣
2

≤ ChT

∑

e∈Eh
e⊂∂T

(
h−1
e

∥∥∥ψ(1)
∥∥∥
2

(L2(Te))3
+ he

∣∣∣ψ(1)
∣∣∣
2

(H1(Te))3

)

≤ C
( ∥∥∥ψ(1)

∥∥∥
2

(L2(T̃ ))3
+ h2

T

∣∣∣ψ(1)
∣∣∣
2

(H1(T̃ ))3

)
.

This proves the first estimate in the lemma.
Since Qh is a projection, we know that QhcT = cT for any constant cT . Thus∥∥∥ψ(1) −Qhψ

(1)
∥∥∥
L2(T )

= inf
cT

∥∥∥(ψ(1) + cT )−Qh(ψ
(1) + cT )

∥∥∥
L2(T )

≤ C inf
cT

( ∥∥∥ψ(1) + cT

∥∥∥
(L2(T̃ ))3

+ hT

∣∣∣ψ(1) + cT

∣∣∣
(H1(T̃ ))3

)
≤ ChT

∣∣∣ψ(1)
∣∣∣
(H1(T̃ ))3

,

where we have used the Bramble-Hilbert Lemma to derive the last inequality. This
proves (4.8). The estimate (4.9) is a direct consequence of (4.8) by the scaled trace
inequality.
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