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a b s t r a c t 

This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology- 

control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for het- 

erogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich 

supernodes as well as ordinary sensor nodes that are supposed to be connected to the 

supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus 

of ADPV is to secure supernode connectivity in the presence of node failures, and ADPV 

achieves this goal by dynamically adjusting the sensor nodes’ transmission powers. The 

ADPV algorithm involves two phases: a single initialization phase, which occurs at the 

beginning, and restoration phases, which are invoked each time the network’s supernode 

connectivity is broken. Restoration phases utilize alternative routes that are computed at 

the initialization phase by the help of a novel optimization based on the well-known set- 

packing problem. Through extensive simulations, we demonstrate that ADPV is superior in 

preserving supernode connectivity. In particular, ADPV achieves this goal up to a failure 

of 95% of the sensor nodes; while the performance of DPV is limited to 5%. In turn, by 

our adaptive algorithm, we obtain a two-fold increase in supernode-connected lifetimes 

compared to DPV algorithm. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Wireless sensor networks (WSNs) are typically com- 

posed of large numbers of tiny sensor nodes that are ca- 

pable of sensing, processing and transmitting data over 

wireless channels. Such networks can be used in numer- 

ous fields, such as battlefield surveillance [1–3] , environ- 

mental monitoring [4–6] and traffic control [7–9] . Sen- 

sor nodes collaborate in a distributed, autonomous and 
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self-organized manner to accomplish a certain task, usu- 

ally in an environment with no infrastructure. 

Sensor nodes in WSNs should be low-cost and should 

have small form-factor. This restricts sensor nodes in 

many ways as they have limited energy, short transmis- 

sion range, relatively slow CPU and small memory. These 

limitations bring out many challenges unique to WSNs, 

such as very low power consumption. Since sensor nodes 

are battery powered and these batteries are usually not 

rechargeable, coming up with solutions that reduce energy 

consumption and prolong network lifetime are very im- 

portant. Numerous studies address this problem [10–13] 

in literature. According to Li and Mohapatra [14] , 90% of 

a sensor network’s energy is still available after first node 
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dies. Despite this substantial amount of remaining energy, 

the existence of highly-loaded and bottleneck nodes cause 

early network demise. There are numerous studies that ad- 

dress balancing energy consumption among nodes to en- 

sure that all nodes will run out of energy at about the 

same time [15] . Low-energy Adaptive Clustering Hierarchy 

(LEACH) [16] is a well-known early study that uses dy- 

namic transmission ranges to better balance the load and 

prolong network lifetime. There are also some recent stud- 

ies which re-establish lost connectivity by adjusting trans- 

mission ranges. CoRAD [17] and RESP [32] can be listed 

as some of those studies. With the recent developments 

in the hardware of WSNs, dynamic transmission range as- 

signment has become even more effective [18] . 

Fault-tolerance is another critical issue in WSNs. Due 

to the error-prone nature of wireless communication, links 

may fail, packets can get corrupted or congestion may oc- 

cur [19,20] . There are also factors that cause long-term 

faults in sensor nodes, such as energy depletion, hardware 

failure, link breaks, malicious attacks. Multi-hop commu- 

nication multiplies the chances of faulty incidents for a 

packet stream traveling from a source to a destination. 

Therefore, fault-tolerance methods, including fault-tolerant 

topology control, are essential for improving WSN reliabil- 

ity as well as network lifetime. 

As stated by Liu et al. [21] , most existing works on 

fault-tolerant topology-control aim to obtain k -vertex con- 

nectivity between any two sensor nodes, where the topol- 

ogy is guaranteed to remain connected until the failure of 

the k th sensor node. 

In this study, the focus is on two-tiered heteroge- 

neous WSNs, where the network consists of two differ- 

ent types of nodes: resource-rich supernodes and simple 

sensor nodes with limited battery power. In this network 

model, sensor nodes are connected to the set of supern- 

odes via multi-hop paths. To reflect this asymmetry, [22] 

proposes k -vertex supernode connectivity, where each sen- 

sor is connected to at least one supernode by k vertex- 

disjoint paths. In such topologies, the sensor nodes remain 

connected to the supernodes as long as at most k − 1 sen- 

sor nodes fail. 

Most studies on fault-tolerance propose static solutions, 

that is, they do not adapt the topology to the changing 

network conditions. Bagci et al. [23] propose a static al- 

gorithm called the Disjoint Path Vector (DPV) to optimize 

total transmission power for a given k -vertex supernode- 

connected network. That study does not consider residual 

battery energy and disregards the unbalanced load distri- 

bution on sensor nodes. As a result, k -vertex supernode 

connectivity is achieved but may not be preserved for a 

sufficient amount of time. 

In this study, we propose a novel adaptive and dis- 

tributed topology-control algorithm, Adaptive Disjoint Path 

Vector (ADPV), which efficiently constructs a k -vertex 

supernode-connected network topology and adapts the 

topology to node failures, which in turn increases network 

lifetime. The contribution is two-fold. First, the residual 

battery power levels of individual sensor nodes are consid- 

ered to prolong k -vertex supernode connectivity. Second, 

an adaptive solution is proposed to restore, if necessary, k - 

vertex supernode connectivity after a node failure. 

The remainder of the paper is organized as follows: 

Section 2 gives some background information and dis- 

cusses the related studies. In Section 3 , we present our 

proposed adaptive topology-control solution. The results 

for simulation experiments are presented in Section 4 . Fi- 

nally, Section 5 concludes the paper. 

2. Related work 

In this section, we give a brief overview of some of the 

prominent recent work addressing fault-tolerance, connec- 

tivity restoration and heterogeneity in WSNs. We also give 

a brief overview of the DPV algorithm [23] . 

Fault-tolerance techniques can be categorized into four 

[24] : prevention, detection, isolation, and recovery. Preven- 

tion attains network connectivity and establishes redun- 

dant links/nodes when necessary. Detection monitors traf- 

fic and sends alerts when any indication of fault happens, 

such as a decrease in packet delivery rate, which would 

imply a packet loss, interruption, or delay. Isolation diag- 

noses and identifies the alert. As for recovery , after detect- 

ing and identifying the fault, the system should be able to 

recover in either a centralized or distributed manner. Note 

that due to the nature of WSNs it is essential for the re- 

covery scheme to be a distributed method. 

The replication and redundancy of components prone 

to failure is the most commonly used method for fault pre- 

vention and recovery [21] . For instance, if some nodes have 

problems and fail to sense the environment, the redundant 

nodes in the vicinity can still provide data. Keeping redun- 

dant links or multiple paths also provides fault-tolerance 

when some communication links are broken due to node 

failures or communication errors. 

2.1. Connectivity restoration in WSNs 

There are three approaches to connectivity restoration 

in WSNs: mobile node relocation, relay node placement 

and topology-control via transmission range adjustment. In 

the first approach, as the nodes are mobile, the main idea 

is to reposition the existing alive nodes to restore connec- 

tivity. One example of this method is PADRA, developed by 

Akkaya et al. [25] . In this approach, each node chooses one 

of its neighbors to be the failure handler, which will start 

recovery if the node dies. The restoration process only oc- 

curs if the entire network gets disconnected, in which case 

the closest node that can take the dead node’s place is re- 

located to that position. 

In the relay node placement approach [26–31] , the ob- 

jective is to place a minimum number of relay nodes in a 

region where sensor nodes are randomly deployed so that 

the resulting network topology is fault-tolerant. 

These first two approaches, that is, mobile node relo- 

cation and relay node placement, may not be practical in 

real-world scenarios because sensor nodes are often de- 

ployed in remote and inhospitable regions with harsh en- 

vironments that render manual node placement or relo- 

cation infeasible. Note that due to the dynamic nature of 

WSNs, node placement and/or relocation must be repeated 

periodically. In addition, these approaches require overall 
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Fig. 1. Initial network. 

Fig. 2. Optimized network. 

network information, something that is also not suitable 

for most real-world applications. 

As a remedy to the problems discussed above, 

topology-control emerges as a third approach for connec- 

tivity restoration. In this approach, the topology is con- 

trolled by adjusting the sensor nodes’ transmission ranges. 

One example of this method is RESP [32] , which is an 

energy-aware topology-control algorithm that ensures k - 

edge connectivity for flat networks. The RESP algorithm 

assumes sensor nodes are aware of their location in- 

formation via GPS or other localization techniques, and 

periodically updates the network topology to adapt to sen- 

sor nodes’ residual battery power levels. Because of en- 

suring k -edge connectivity, but not k -vertex connectiv- 

ity, RESP cannot keep the network connected up to k − 1 

node failures. Another recent approach, Energy-harvesting 

Heterogeneous WSN (EHWSN) [33] , also aims to pre- 

serve k -vertex supernode-connectivity for heterogeneous 

WSNs. EHWSN is a centralized approach and ignores resid- 

ual battery power levels, therefore not scalable and not 

energy-aware. 

2.2. DPV algorithm 

The aim of the DPV algorithm [23] is to minimize the 

total transmission power of a WSN while maintaining k - 

vertex disjoint paths from each sensor node to the set of 

supernodes. The DPV algorithm gets a k -vertex supernode- 

connected network topology as an input and generates a 

subnetwork consisting of the same set of sensors but fewer 

connections. The output of the DPV algorithm is a to- 

tal transmission power optimized and k -vertex supernode- 

connected network topology. Consider the example topol- 

ogy given in Fig. 1 , which consists of one supernode and 

three sensor nodes. When the aim is to provide one-vertex 

supernode connectivity, DPV removes three edges and op- 

timizes the given network topology, as in Fig. 2 . The main 

contribution of DPV is its efficiency in computing such net- 

work topologies. The DPV algorithm requires O(n �2 ) mes- 

sage transmissions, whereas the best alternative [22] in- 

curs O( �5 ) messages, where n is the number of sensor 

nodes and � refers to the maximum degree of a sensor 

node. Note that we assume a dense network, where � is 

sufficiently large. The DPV algorithm consists of five main 

stages: 

1. Collecting path information and calculating disjoint 

paths, 

2. Calculating the set of required neighbors, 

3. Notifying the nodes in the disjoint paths and updating 

the required neighbors, 

4. Removing the non-required neighbors and 

5. Reducing the power level to a point sufficient only to 

reach the farthest required neighbor. 

2.3. Power consumption model 

Our ADPV algorithm aims at prolonging network life- 

time, and thus it should first model the amount of time 

until the battery powers of the sensor nodes are depleted. 

The ADPV algorithm uses a well-known power consump- 

tion model, proposed by Heinzelman et al. [34,35] . This 

approach is based on the observation that the main factor 

in WSN power consumption is data communication, which 

consists of two factors: data transmission and data recep- 

tion. In this model, the power to transmit a bit to a dis- 

tance of d is 

P t (d) = α1 + α2 × d n , (1) 

where α1 and α2 are parameters that depend on the trans- 

mitter circuitry, and n is the path loss exponent for the 

environment, which often has a value between 2 and 4. In 

our power consumption model, α1 , α2 , and n are assumed 

to be 50 nJ/bit, 100 pJ / bit / m 2 and 2, respectively. 

In our model, the energy consumption for data recep- 

tion is a constant value per bit. We represent this constant 

with β and assume it equals 50 nJ/bit. 

For our experiments, we assume all sensor nodes are 

sensing the environment and generating traffic at a fixed 

rate. We also assume that data aggregation is applied and 

that all nodes on a path carry the same load. Therefore, to- 

tal power consumption for receiving a bit and transferring 

it to the next hop equals: 

P f (d) = β + α1 + α2 × d n . (2) 

If the residual battery energy level of sensor node i is de- 

noted as e i , then the lifetime of node i equals: 

l i = e i / ((r ri × β) + (r ri + r gi ) × (α1 + α2 × d n i )) , (3) 

where r ri is the incoming data rate to node i , r gi is the data 

rate generated in node i and d i is the transmission range. 

3. Adaptive disjoint path vector algorithm 

In this section, we present our novel adaptive and dis- 

tributed algorithm, ADPV, which aims to construct and 

maintain a k -vertex supernode-connected topology to pro- 

long the k -vertex supernode-connected lifetime of the net- 

work. The ADPV algorithm controls the topology by adjust- 

ing the transmission ranges of sensor nodes, and to comply 

with real-life situations it considers node failures. The al- 

gorithm requires only one-hop neighborhood information 

and constructs the network topology by a series of mes- 

sage exchanges. 



F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 107 

Fig. 3. Sample scenario. 

The ADPV algorithm consists of two phases: initializa- 

tion and restoration. It collects necessary information and 

builds an initial topology during the initialization phase. 

Whenever a node failure breaks k -vertex supernode con- 

nectivity, ADPV restores connectivity within the restora- 

tion phase. Similar to DPV, ADPV utilizes disjoint paths and 

within each restoration phase each sensor node decides 

whether or not to change its disjoint paths. At the end of 

each restoration phase, sensor nodes’ transmission ranges 

are adjusted according to the intended topology. The main 

differences between ADPV and DPV are as follows: 

• ADPV is an adaptive approach, adapting to node failures 

and remaining energy levels, whereas DPV is a static 

one. 

• ADPV considers residual battery power levels of sensor 

nodes, therefore it is an energy-aware solution. DPV on 

the other hand ignores sensor nodes’ remaining energy 

levels. 

• ADPV balances energy consumption and optimizes the 

lifetime of disjoint paths, as opposed to DPV, which op- 

timizes the total transmission power of sensor nodes. 

• ADPV significantly prolongs both one-vertex and k - 

vertex supernode-connected lifetimes of the network 

with its solutions for restoration path selection, k - 

vertex supernode-connectivity verification and connec- 

tivity restoration. 

3.1. Network model 

Consider a mission critical border surveillance system 

that is integrated with a two-tiered heterogeneous wireless 

sensor network. In this network, there are supernodes lo- 

cated on each tower and regular sensor nodes that are uni- 

formly distributed into the target area as shown in Fig. 3 . 

In this network, sensor nodes are responsible for detect- 

ing potential intrusion activities and inform the towers by 

forwarding data to the supernodes located at those towers. 

Since it is common to lose some sensor nodes because of 

energy depletion, harsh environmental conditions or hos- 

tile activities of intruders, it is desired for every sensor 

node to have more than a certain number of independent 

paths to the supernodes. In the figure, we can see a sol- 

dier crossing the border, and a sensor node close-by in- 

forms some towers via three disjoint paths. 

This network model is first described in [22] , and also 

used by the DPV algorithm. In this model, the network 

consists of M supernodes that are deployed at known lo- 

cations and N sensor nodes that are randomly distributed 

in the 2D plane so that M < < N . We assume the su- 

pernodes have transmission ranges long enough to com- 

municate with the base station or any other supernode 

in the network. Therefore, we do not model and are not 

concerned with supernode-to-supernode communication. 

We are only interested in sensor-to-sensor and sensor-to- 

supernode communication. 

We represent the initial network topology with an 

undirected weighted graph G = (V, E) , where V is the set 

of nodes and E = { v i , v j | dist(v i , v j ) < R max } is the set of 
edges; dist(v i , v j ) defines the distance between nodes v i 

and v j . 

3.2. Problem definition 

We first give the formal definition of k -vertex supern- 

ode connectivity. 

Definition 1 ( k -vertex supernode connectivity [22] ) . An 

heterogeneous WSN is said to be k -vertex supernode- 

connected if removal of any k − 1 sensor nodes does not 

disconnect any sensor node from all the supernode(s), 

that is, each sensor node is still connected to some 

supernode(s). 

Initially we are given a k -vertex supernode-connected 

network with M supernodes and N sensor nodes, where 

the sensor node transmission range can be adjusted up to 

a predefined constant R max . As we model node failures, the 

number of active sensor nodes decreases during the net- 

work lifetime. We use N t to denote the set of active sensor 

nodes at time t , where time is represented by discrete time 

intervals. Our problem is to determine the transmission 

ranges of all active sensor nodes at any time, such that the 

resulting topology is still k -vertex supernode-connected, so 

that network lifetime can be improved. Now, we formally 

state the problem of maximizing fault-tolerant lifetime. 

Definition 2 (Fault-tolerant lifetime maximization) . Given 

a k -vertex supernode-connected WSN G = (V, E) with a 

set M ⊂V of supernode vertices and a set N t ⊂V of active 

sensor node vertices, such that M ∩ N t = ∅ , find a set of 

edges F ⊂ E such that G (V, E − F ) is k -vertex supernode- 

connected and 
∑ | N t | 

i =1 
l i is maximized, where l i is the life- 

time of the minimum lifetime path among the disjoint 

paths of v ∈ N t . 

3.3. Residual battery power level-aware disjoint path 

selection 

The ADPV algorithm adapts the network topology dy- 

namically during network operation by adjusting the sen- 

sor nodes’ transmission ranges according to residual en- 

ergy levels. For instance, if a node has low remaining 

energy, it should choose closer neighbors; otherwise, it 
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may choose farther ones. In this way, we attain a fair dis- 

tribution of total residual energy among sensor nodes. 

The DPV algorithm is not an energy-aware solution, and 

ignores sensor nodes’ residual energy levels. This design 

may cause early battery depletion, since a node with low 

residual energy may be assigned to a high transmission 

power range. The ADPV algorithm, on the other hand, takes 

residual energy levels into consideration when selecting 

disjoint paths. Estimating the lifetime of each sensor node 

on a path lies at the core of our approach. The motivation 

behind this method is that a chain is only as strong as its 

weakest link, and thus a path survives only as long as all 

nodes survive in the path. Therefore, the shortest node life- 

time on the path determines the lifetime of the path. The 

ADPV algorithm chooses a set of disjoint paths such that 

the minimum lifetime of those paths is maximized. 

We formally define the lifetime of a path as follows: Let 

a path P consists of nodes n 0 , n 1 , . . , n l , in which n 0 is the 

starting sensor node and n l is a supernode. Let b i denote 

the residual energy level of sensor node n i and d i denote 

the distance between n i and n i +1 for each 0 ≤ i < l . Then, 

the lifetime of P is defined as: 

Lifetime (P ) = min 
0 ≤i<l 

{ b i / (β + α1 + α2 × d n i ) } , (4) 

where β , α1 , α2 and n are the constant parameters of 

power consumption, defined in Section 2.3 . 

3.4. Initialization phase 

This section describes our proposed approach for select- 

ing alternative routes in the initialization phase of the al- 

gorithm, where those routes are to be used to restore con- 

nectivity during restoration phases. In ADPV, each sensor 

node keeps alternative routes, here referred to as restora- 

tion paths, that start with that node. 

The primary goal is to consume the minimum possible 

resources while attaining high-quality restoration paths. 

The resources include memory, CPU, and network. Regard- 

ing memory, for instance, if all possible paths from sensor 

nodes to supernodes were held, the memory requirement 

would be intractable. In [36] , Valiant discusses the average 

number of paths from a node to a given set of nodes. In 

terms of CPU, Bagci et al. [23] show that the complexity 

of selecting k disjoint paths from a pool of p alternatives is 

O( p k ). Therefore, with a higher number of restoration paths 

of size r , it takes longer to compute a disjoint path set of 

size k during each restoration phase. As for the network, 

which is last but not least, we aim to communicate us- 

ing minimum number of messages. Each restoration path 

incurs communication between its nodes in order to up- 

date its lifetime. As a result, we should maintain a very 

restricted set of restoration paths for the sake of network 

performance, but at the same time, the amount of those 

paths should be high enough to restore connectivity when- 

ever needed. 

To overcome these restrictions and efficiently construct 

restoration paths, ADPV employs a well-known method, 

called maximum set packing (MSP) [37] . This method is 

the optimization version of the set packing (SP) problem 

and asks for the maximum number of pairwise disjoint 

sets among a family of sets. More formally, for a given uni- 

verse U and a family S of subsets of U , MSP is a subfamily 

C ⊆ S of sets such that all sets in C are pairwise disjoint, 

and C uses as many sets as possible, so that the size of 

the packing ‖C‖ is maximum. Maximum set packing is NP- 

hard [38] and cannot be approximated within any constant 

factor [39] . 

Algorithm 3.1 Maximum Set Packing (MSP). 

Input: S 
Output: M 

1: M ← ∅ ; 
2: while S � = ∅ do 

3: m ← MinIntersectingPath ( S); 
4: M ← M 

⋃ 
m ; 

5: for all Path p ∈ S do 

6: if p 
⋂ 

m � = ∅ then 

7: S ← S − p; 
8: end if 
9: end for 

10: end while 

There is a well-known greedy heuristic, shown in 

Algorithm 3.1 , to solve the MSP problem and it runs in 

polynomial time. We employ this heuristic to construct 

restoration paths. At the beginning, we have a pool of can- 

didate paths of a relatively large size. The heuristic per- 

forms with many iterations, where each iteration selects 

the most diverse path from the pool. We use the term di- 

verse as being disjoint with others, that is, the one that is 

disjoint to the largest number of paths among others in 

the pool. We add the selected path into the restoration 

path set and remove all the paths from the pool that in- 

tersect with the selected path. The iterations continue un- 

til the pool becomes empty or the number of restoration 

paths reaches a predefined threshold. Since the initial sen- 

sor node and the destination supernode do not violate dis- 

joincy, ADPV represents each path by the set of its inter- 

mediate sensor nodes. 

Algorithm 3.2 Path Information Collection in ADPV. 

Input: I, L , k 
Output: D , R 
1: T ← ∅ ; 
2: R ← ∅ ; 
3: for all received PathInfo message I do 

4: D ← MinDisSet ( T , k ); 
5: c ← Cost( D ); 
6: U ← I.T ∪ T ; 
7: R ← MaxSetPacking ( R ∪ U); ( Algorithm 3.1 ) 
8: U 

′ ← MaxSetPacking ( U); 
9: Sort( U 

′ ); 
10: T ′ ← { p i ∈ U 

′ | i < = L } ;
11: D 

′ ← MinDisSet ( T ′ , k ); 
12: c ′ ← Cost( D 

′ ); 
13: if c ′ < c then 

14: T ← T ′ ; 
15: Transmit PathInfo( T ); 
16: end if 
17: end for 

Algorithm 3.2 shows path-information-collection 

and restoration-path-selection procedures. The variables 
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Table 1 

ADPV notations. 

I Received pathInfo message 

L Maximum number of paths to be stored 

k Disjoint connectivity degree 

R Set of restoration paths 

T and T ′ Set of local paths 

D and D ′ Set of disjoint paths 

c and c ′ Cost of disjoint paths, which equals the 

minimum lifetime of the disjoint paths 

U Union of two path sets 

S Set of paths 

M Set of paths in MSP 

m , p , r Variables referencing paths 

sr Supernode ratio 

n Total number of sensors 

� Maximum degree of a node 

r Amount of a node’s restoration paths 

l Average path length in the restoration set 

n 0 , n 1 , .., n i Number of remaining sensor nodes after each 

restoration phase 

used in the pseudo codes are defined in Table 1 . In 

Algorithm 3.2 , each sensor node maintains a local path set 

along with disjoint and restoration path sets. As an input, 

the algorithm takes a ‘PathInfo’ message that contains 

the local path set of the sender node and generates two 

outputs, which are the disjoint path and restoration path 

sets of size k and a relatively large size, respectively. 

Local paths are logical paths that are used for informing 

neighbor nodes about the paths they can use over the 

sender node. Therefore, local paths have a very critical 

role in determining disjoint and restoration path sets and 

need to be selected very carefully. When a sensor node 

receives a ‘PathInfo’ message containing a local path set, 

it first calculates the union of the sender’s and receiver’s 

local path sets. It then executes the MSP procedure on this 

union to eliminate paths that have too many sensor nodes 

in common. The procedure then determines a candidate 

local path set T ′ as the first L minimum-cost path of the 

remaining set. While doing so, the procedure also updates 

the restoration paths by executing the MSP procedure on 

the union of local sets and the current restoration path 

set. 

Using the candidate local path set, the set of dis- 

joint paths with minimum cost is calculated using 

Algorithm 3.3 . In this algorithm, all disjoint subsets with 

k elements are traversed and the one with the minimum 

cost is selected. If the minimum-cost disjoint path set has 

a smaller cost than the current disjoint path set, both the 

disjoint and the local paths are updated and a ‘PathInfo’ 

message containing the new local path set is transmitted 

to the set of neighbors. This process continues until there 

are no more updates in the disjoint path sets. 

After determining the disjoint paths, each sensor node 

determines its required neighbors, which include the 

neighbors that disjoint paths use the edges between. After 

determining the required neighbors, each node adjusts its 

transmission power to reach its farthest neighbor accord- 

ing to the resulting topology. 

Algorithm 3.3 Finding Disjoint Paths to Supernodes 

( MinDisSet ). 

Input: T and k 
Output: D 

1: D ← ∅ ; 
2: if | T | > k then 

3: Q ← { q ⊂ T | | q | = k } ; 
4: c ← ∞ ; 
5: q min ← ∅ ; 
6: for all q ∈ Q do 

7: if q consists of disjoint paths then 

8: if Cost( q ) < c then 

9: c ← Cost( q ); 
10: q min ← q ; 
11: end if 
12: end if 
13: end for 
14: D ← q min ; 
15: end if 

3.5. Connectivity restoration phase 

We start the connectivity restoration procedure only 

when k -vertex supernode connectivity is broken due to 

node failure. Thus, the first step after a node failure is 

to check whether the network is still k -vertex supernode- 

connected or not. As this is a costly operation [40] , ADPV 

employs a simple distributed greedy heuristic with no false 

positives. That is, if ADPV postulates the network is k - 

vertex supernode-connected, then the network is definitely 

connected. However, the network can still be connected 

even if ADPV claims it is not. Therefore, ADPV ensures 

strong k -vertex supernode connectivity. 

When a node failure occurs, ADPV ensures all the 

node’s neighbors initiate a failure message to inform others 

about the failure. Upon receiving a failure message, a sen- 

sor node removes all paths including the failed node from 

its restoration set. Since frequent transmission power ad- 

justment is difficult to realize in practice, we employ peri- 

odical transmission power control, and during each period 

we check whether any failed nodes exist on any of the dis- 

joint paths. If a failed node disconnects a disjoint path, the 

restoration process takes place. Note that this event does 

not necessarily imply k -vertex supernode disconnectivity, 

yet because ADPV takes early action it never allows the 

connectivity to break. After deciding k -vertex supernode 

connectivity must be restored, ADPV applies a two-step 

process: updating the lifetimes of the restoration paths and 

computing minimum-cost disjoint paths from the restora- 

tion set. 

In the first step, path lifetimes in the restoration set 

are updated via messages transmitted along the path from 

the source node to the destination supernode. Each node 

redirects a received message to the next hop in the path 

and returns a message that contains updated lifetime in- 

formation of the sensor nodes back along that path. In the 

second step, minimum-cost disjoint paths are computed 

using the previously discussed disjoint-path-selection al- 

gorithm, Algorithm 3.3 . An overview of the connectivity- 

checking and connectivity-restoration procedures are given 

in Algorithm 3.4 . 
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Fig. 4. Sample connectivity restoration for k = 2 . 

Algorithm 3.4 Connectivity Restoration in ADPV. 

Input: k , R , D 

Output: D 

1: F ailed Nod es ← ∅ ; 
2: for all received node failure message δ do 

3: for all Path r ∈ R do 

4: if r contains δ.FailedNode then 

5: R ← R − r; 
6: end if 
7: end for 
8: F ailed Nod es ← F ailed Nod es ∪ δ.F ailed Nod e 
9: if certain time elapsed since last period then 

10: for all Path p ∈ D do 

11: if (p ∩ F ailed Nod es ) � = ∅ then 

12: UpdateCosts ( R ); 
13: D ← MinDisSet ( R, k ); 
14: break; 
15: end if 
16: end for 
17: F ailed Nod es ← ∅ ; 
18: end if 
19: end for 

For instance, continuing from the example given in 

Section 2.2 , for k = 2 , ADPV optimizes the topology shown 

in Fig. 1 , as in Fig. 4 (a). In this topology, all initial energy 

levels are equal. Assuming the data generation rate is uni- 

form for all nodes, the power consumption of nodes x, y 

and z are 1.2, 2 and 1, respectively. With this power con- 

sumption, node y dies first (100/2 = 50 s later), both node 

x and node z lose one of their disjoint paths and the net- 

work becomes one-vertex, but not two-vertex, supernode- 

connected. The ADPV algorithm restores connectivity, as in 

Fig. 4 (b), by adjusting the transmission range of z, which 

introduces a link from node z to supernode A. Because of 

its increasing power consumption, node z happens to be 

the second dying node (50/5 = 10 s later) and thus node x 

loses two-vertex supernode connectivity once more. How- 

ever, because it has no alternative routes, it adjusts its 

transmission power again and works as a connected node, 

as in Fig. 4 (c), for the rest of its life (28/1 = 28 more 

seconds). For this network, the two-vertex supernode- 

connected lifetime is broken when node z dies. Therefore, 

ni 

Fig. 5. One-hop neighbors of node i . 

the two-vertex supernode-connected lifetime of this net- 

work equals 60 s and the one-vertex supernode-connected 

lifetime equals 88 s. 

Lemma 1. The connectivity restoration process of ADPV en- 

sures k-vertex supernode connectivity. 

Proof. By definition, the network gets k -vertex supernode- 

connected if each sensor in the network is connected to 

at least one supernode with k -vertex disjoint paths. This 

translates into the disjoint path set of each sensor node of 

being size k , and if there exist more than k paths in the 

restoration set, ADPV chooses a disjoint set and ensures k - 

vertex supernode connectivity. �

Lemma 2. In the restoration path set, there are at most �

paths, where � is the maximum degree of a sensor node. 

Proof. We are going to prove this by contradiction. As dis- 

cussed in Section 3.5 , each sensor node keeps a maximum 

set pack of some size in their restoration sets, so that each 

path in the set is pairwise disjoint with the others. Let �

denote the maximum degree of a node and assume there 

exists a node, say node i , that has more than � paths 

in its restoration set. Since there are more than � paths 

that are using at most � neighbors, according to the pi- 

geonhole principle, there exist two restoration paths that 

use the same neighbor. Let Fig. 5 represent node i and its 

one-hop neighbors. If the neighbor that two paths have in 

common is a supernode, then node i will have exactly the 

same two paths in its restoration set, which is not pos- 

sible, because the MSP procedure calculates the union of 

the selected paths to guarantee diversity. If that neighbor 



F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 111 

is a sensor node, those paths will not be disjoint, which 

violates the MSP definition. Therefore, no neighbor, neither 

sensor node nor supernode, can have two paths in com- 

mon, and the number of elements in the restoration set 

cannot exceed �. �

3.6. Running time analysis 

We compute the lifetime of a restoration path via mes- 

sages transmitted along the path from the source node to 

the destination supernode. Each node redirects a received 

message to the next hop in the path and returns a mes- 

sage that contains the sensors’ updated lifetime informa- 

tion back along the same path. Therefore, for each restora- 

tion path, the number of messages equals two times the 

length of the path. We assume that path length is bounded 

by a constant, say l , following previous studies [23] . No- 

tice that the number of restoration paths is less than or 

equal to �, where � is the maximum degree of a node. 

Then, there are at most l × � messages in total, and 

thus, the message complexity is O( �) at each connectivity- 

restoration phase. In the worst case, for each sensor node, 

connectivity restoration is carried out for O( �) times, as 

the restoration path set embodies at most l × � nodes. 

Therefore, at each sensor node, total message complex- 

ity becomes O( �2 ) for connectivity restoration. For path 

information collection, ADPV has the message complexity 

of O( n �), which also equals that of DPV [23] . Therefore, 

the total message complexity becomes O( �2 ) + O( n �) = 

O( n �). 

The ADPV algorithm consumes computational power in 

the initialization phase for disjoint and restoration path 

construction and during the connectivity restoration phase 

for determining new disjoint paths from the restoration 

set. During the initialization phase, when sensor nodes re- 

ceive a ‘PathInfo’ message, they calculate the union of the 

local path information and the received paths in the in- 

coming message. The running time complexity of this step 

depends on the number of paths ( p ) in the local path in- 

formation table. In ADPV, since the maximum number of 

paths that can be stored in a sensor node’s path informa- 

tion table is set to a constant value, both calculating the 

union of the two path information tables and sorting the 

paths according to their costs take constant time. 

In the initialization phase, there are two more pro- 

cedures that consumes processing power: maximum set 

packing and disjoint-path-selection algorithms. The greedy 

heuristic for MSP, shown in Algorithm 3.1 , is used twice: 

once for constructing the restoration path and again for se- 

lecting the local path information table. As discussed in the 

second lemma, the number of restoration paths is limited 

by the maximum degree of node ( �), and the number of 

paths in the local path information table is a constant ( l ). 

Therefore, the MSP algorithm consists of numerous itera- 

tions, each consisting of two steps: i) selecting the mini- 

mum intersecting path and ii) removing the paths that in- 

tersect with it. In the latter step, the algorithm traverses 

all path pairs and determines the minimum intersecting 

one. The activity of removing the intersecting paths also 

traverses the set once more. Considering set size is rep- 

resented by s , the running time complexity of the MSP 

algorithm equals O( s 2 + s ). Therefore, the MSP running 

time complexity in each step is O( �2 + � + l 2 + l), which 

can be reduced to O( �2 ). 

To calculate the minimum disjoint set, Algorithm 3.3 

enumerates all subsets of size k and finds the set with the 

minimum cost. Enumerating all these subsets takes O( p k ), 

where p represents the number of paths in the given set. 

Since the input of the minimum disjoint set procedure 

is the local path information table, which has a constant 

number of elements, the running time complexity of the 

minimum disjoint set calculation is also a constant. 

Considering that the message transmission complexity 

of ADPV is O( n �) and the dominating step (MSP) is exe- 

cuted once for every incoming message, the running time 

complexity of the total initialization phase is O( n �3 ). 

For the restoration phases, as discussed above, the max- 

imum number of restoration phases a node can execute 

is O( l �), and in each phase there are two operations: up- 

dating path costs, which only uses message transmissions, 

and calculating the minimum disjoint set from the restora- 

tion set. Since the maximum number of elements in the 

restoration set is �, the running time complexity for deter- 

mining the minimum-cost disjoint paths from the restora- 

tion set will be O( �k ), and the total running time com- 

plexity of the restoration phases will be O( �k +1 ). 

Since n > > �, and the commonly accepted values of k 

are 2 and 3 [22] , the ADPV running time complexity equals 

O( n �3 ). 

3.7. Expected number of restorations in ADPV 

In this section we discuss theoretical expectations re- 

sulting from the ADPV algorithm and analyze how many 

times ADPV can restore k -vertex supernode connectivity 

for a given node. Since ADPV can restore such connectiv- 

ity when there are at least k paths in the restoration set, 

we will determine the expected number of node failures 

before a node cannot restore its connectivity. Let n denote 

the number of sensor nodes in the network and assume 

the sensor node batteries deplete uniformly in any order 

with the same probability ρ . The parameters used in this 

section are given in Table 1 . 

Considering that the number of sensor nodes in the 

restoration set equals r × l , the expected number of sen- 

sor nodes that die before one of these r × l sensor nodes 

dies equals: 

n 

r × l 
. (5) 

For example, if there are 100 nodes in the entire net- 

work and 20 take part in the restoration set, then the ex- 

pected number of node failures before one of the nodes 

in the restoration set fails equals five. When a node on a 

path dies, then that path will no longer be valid and there- 

fore will be removed from the restoration sets available. 

As a result, with a node failure, the number of restora- 

tion paths will diminish by one. Therefore, when the first 

node on a restoration set dies, r − 1 paths, which con- 

sist of (r − 1) × l sensor nodes, will remain. At the same 

time, the number of remaining sensor nodes in the entire 
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network will equal: 

n −
n 

r × l 
. (6) 

Continuing from the previous example, 100 − 5 = 95 

sensor nodes will remain in the entire network after the 

first node in the restoration set dies. The remaining sensor 

nodes after the i th restoration path removal can be gener- 

alized as follows: 

n i +1 = n i −
n i 

(r − i ) × l 
, (7) 

which also equals: 

n i +1 = n i ×

(

1 −
1 

(r − i ) × l 

)

(8) 

and which can also be written as a product of: 

n i +1 = n ×

i 
∏ 

j=0 

(

1 −
1 

(r − j) × l 

)

. (9) 

Since ADPV can restore k -vertex supernode connectivity 

when there are at least k paths in the restoration set, the 

number of sensor nodes when k -vertex supernode connec- 

tivity of the given node cannot be restored equals n r−k +1 

and can be calculated as: 

n r−k +1 = n ×

r−k 
∏ 

j=0 

(

1 −
1 

(r − j) × l 

)

. (10) 

Then by changing the parameter to t = r − j, 

n r−k +1 = n ×

r 
∏ 

t= k 

(

1 −
1 

t × l 

)

. (11) 

According to the above formula, the number of success- 

ful restorations will be proportional to the sensor node 

count. Also, with the increasing average path length, the 

number of remaining sensors increases, which in turn de- 

creases the possibility of successful restorations. There- 

fore, choosing paths with smaller path lengths may be 

preferable. 

4. Experiments and results 

In this section we report our measurements regarding 

lifetime and other metrics for the DPV and ADPV algo- 

rithms and try to evaluate ADPV’s success. For this eval- 

uation, we implemented ADPV using an extended ver- 

sion of a custom simulator, which has also been used for 

evaluating the DPV algorithm. We added a time dimen- 

sion and a battery model into the existing framework and 

thus provided an environment that could evaluate network 

lifetime. 

4.1. Experimental setup 

In our experiments, we assumed that sensor nodes 

and supernodes are uniformly and randomly deployed 

in an area of 600 m x 600 m and that the initial 

maximum transmission range R max of the sensor nodes 

is set at 100 m. We repeated our experiments for 

{ 100 , 150 , . . . , 500 } sensor node, for k = 2 , 3 (as these are 

Table 2 

Simulation parameters. 

Deployment area 600 m x 600 m 

Initial transmission range of sensor nodes: R max 100 m 

Number of sensor nodes: N [10 0 . . . 50 0] 

Number of supernodes: M 5% and 10% of N 

Degree of disjoint connectivity: k 2 and 3 

Packet loss rate 10% 

commonly accepted k values), and for a supernode ratio 

( sr ) of 5% and 10% over the region. Finally, we assumed a 

packet loss rate of 10% for each message transmission. As 

a result, we had 9 × 2 × 2 experimental instances, and on 

each we executed both algorithms 20 times and reported 

the averages. Our simulation parameters are summarized 

in Table 2 . 

4.2. Results 

In Fig. 6 , we compare the node failure tolerance of DPV 

and ADPV. For each algorithm, we measure performance 

in terms of the fraction of dead sensor nodes when the 

network gets (i) supernode disconnected and (ii) k -vertex 

supernode disconnected. If there exists a path (single or 

multi-hop) between a sensor node and any one of the su- 

pernodes, then the sensor node is said to be connected. 

If every (alive) sensor node in the network has k disjoint 

paths to the set of supernodes, then the network is con- 

sidered as k -vertex supernode-connected. With these mea- 

surements we determine the maximum number of node 

failures that can occur before supernode connectivity is 

broken. Here, we observe the most striking result, and at 

the same time, evidence of this study’s motivation regard- 

ing the instability of static algorithms and effectiveness of 

ADPV for keeping the network supernode-connected. As 

seen in the figure, even before the failure of 5% of the sen- 

sor nodes, the network’s supernode connectivity is broken 

when we employ the DPV algorithm. This result limits us- 

ing DPV as a fault-tolerant alternative. On the other hand, 

ADPV successfully keeps the network supernode-connected 

up to failure of about 95% of the sensor nodes. 

In the figure, we observe that when the network be- 

comes denser, ADPV keeps it supernode-connectivity for 

longer. This result can be attributed to ADPV becoming 

more effective at finding alternative routes due to the in- 

creasing number of sensor nodes. For instance, in one ex- 

treme, when we examine the results of a 500-node net- 

work for k = 2 and sr = 10% , as shown in Fig. 6 (a), we 

see that the network is still supernode-connected up to 

a failure of 95% of the sensor nodes. In the other ex- 

treme, where the number of initially deployed sensor 

nodes equals 100, ADPV sustains supernode connectivity 

up to the failure of 20% of the sensor nodes. Looking into 

each of the sub-figures, when the initial number of sensor 

nodes is between 250 and 300, we notice that ADPV suc- 

ceeds in keeping supernode connectivity even after the ac- 

tive sensor nodes are halved. Considering all experimental 

instances, on average, ADPV maintains supernode connec- 

tivity up to a failure of 52% of sensor nodes for k = 2 , and 

55% of sensor nodes for k = 3 . Since the optimized net- 

work topologies for k = 3 contain more connections, it is 
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Fig. 6. Percentage of failed sensor nodes when the network becomes (i) supernode disconnected and (ii) k -vertex supernode disconnected. 

expected that those networks will have a higher tolerance 

for node failures. On the other hand, more connections will 

consume more battery power, which will affect network 

lifetime. We therefore also examine lifetime measurements 

of the networks for the same set of scenarios. 

Further, as we can observe in Fig. 6 , network topolo- 

gies generated by the DPV algorithm become k -vertex su- 

pernode disconnected after the failure of at most 1% of the 

sensor nodes. Even though the initial optimized topologies 

generated by DPV are k -vertex supernode-connected, after 

the failure of a few sensor nodes, the remaining topolo- 

gies become at most (k − 1) -vertex supernode-connected. 

The ADPV algorithm, on the other hand, maintains two- 

vertex supernode connectivity up to a failure of 32% of 

sensor nodes, and three-vertex supernode connectivity up 

to a failure of 21% of sensor nodes, on average among all 

experimental instances. 

In Fig. 7 , we compare the lifetime results of the same 

set of experimental instances with those of Fig. 6 . A promi- 

nent aspect of ADPV is considering the sensor nodes’ re- 

maining energy levels; as a result, energy depletion occurs 

less frequently. This factor, when coupled with the adap- 

tive nature of the algorithm, results in longer network life- 

times. 

As we observe in Fig. 7 , in terms of one-vertex 

supernode-connected lifetimes, on average, ADPV results 

in a two-fold increase with respect to DPV. For the same 

experimental instances, ADPV provides respectively 65% 

and 46% longer two-vertex and three-vertex supernode- 

connected lifetimes than DPV. As we observe in the figures, 

network density has almost no effect on the lifetimes of 

the topologies generated by DPV. On the other hand, ADPV 

successfully prolongs the network lifetime almost propor- 

tionally to the network density for all k = 1 , 2 , 3 . 

We observe in Fig. 7 (c) and (d) that if the number of 

sensor nodes drops below a certain threshold (in our case, 

150 sensor nodes in a 600 m x 600 m area when sr = 10% , 

and 200 sensor nodes when sr = 5% ), it is hard to restore 

three-vertex supernode connectivity. This finding suggests 

that a minimum number of sensor nodes for every k and 

sr value is necessary to restore k -vertex supernode con- 

nectivity. Figs. 6 and 7 , respectively compare node fail- 

ure tolerance and network lifetime for different values of 

sr = 5% , 10% and k = 2 , 3 . According to the results, with the 
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Fig. 7. Lifetime comparison of the DPV and ADPV algorithms. 
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Fig. 8. Lifetime and node failure tolerance of DPV and ADPV algorithms for k = 4 . 
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Fig. 9. Number of message transmissions in DPV and ADPV algorithms. 

increasing number of supernodes, lifetime also increases, 

however, the relation between the increase in the number 

of supernodes and the increase in the lifetime is sublin- 

ear, and therefore, we expect that the increase in the life- 

time becomes insubstantial as the number of supernodes 

exceeds a certain threshold. We also notice that, with the 

increasing k value, more disjoint paths are required and 

this makes providing alternative routes harder. In Fig. 8 (a) 

and (b), we compare DPV and ADPV algorithms for k = 4 

in terms of network lifetime and node failure tolerance, re- 

spectively. As seen in Fig. 8 (a), ADPV successfully prolongs 

both one-vertex and four-vertex supernode-connected life- 

times of the network. Also, in Fig. 8 (b), we see that ADPV 

can preserve four-vertex supernode-connectivity up to the 

failure of 50% of the sensor nodes on dense networks, 

which in turn, achieves almost a two-fold increase in the 

four-vertex supernode-connected lifetime. 

Another important metric we measure during our anal- 

ysis is the number of message transmissions. Message 

transmission is an important metric because we must not 

only consider power consumption in the resulting topolo- 

gies but also consider the power required to generate those 

topologies, which can be viewed as a fixed cost of ob- 

taining the final topologies. If this cost is high, then the 

power efficiency of the resulting topology might become 

meaningless. In Fig. 9 , we compare the number of DPV 

and ADPV message transmissions. To simulate the worst- 
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Fig. 10. Number of connectivity restorations. 

case scenario of ADPV, we set the waiting period in the 

restoration phase to zero, which means that every node 

failure that affects disjoint paths will trigger a restoration 

phase for that node. According to the results, for k = 2 , 

ADPV makes at least 2.25 times and at most three times 

the message transmissions than DPV does, and for k = 3 , 

ADPV makes at least three times and at most 3.5 times the 

message transmissions of DPV. As seen in the sub-figures, 
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the number of message transmissions of both algorithms 

increases almost linearly with the number of sensor nodes, 

and the ratio of these message counts does not signifi- 

cantly change. We should note that when, for instance, as- 

suming k = 3 , as seen in Fig. 10 , ADPV restores supernode 

connectivity almost 350 times more than DPV does, with 

only 3.5 times the message transmissions. Considering the 

extra messages in ADPV are used for updating the residual 

energy levels of the remaining active sensor nodes in the 

disjoint paths, these messages are very crucial for better 

load balancing and for making maximum use of the avail- 

able sensor nodes. 

5. Conclusion 

In this study, we present ADPV, an adaptive, energy- 

aware and distributed topology-control algorithm. The mo- 

tivation of this algorithm is to prolong the supernode- 

connected lifetime of given heterogeneous WSNs. The 

ADPV algorithm consists of two phases: initialization and 

restoration. During initialization, ADPV computes alter- 

native routes in the network. To determine routes effi- 

ciently ADPV employs a novel method based on set pack- 

ing. Whenever k -vertex supernode connectivity is broken, 

the restoration phase is activated. To restore connectivity, 

ADPV utilizes those alternative routes and adjusts the sen- 

sor nodes’ transmission ranges accordingly. The ADPV al- 

gorithm is a distributed algorithm in both the initializa- 

tion and restoration phases. A broad set of conducted sim- 

ulations agrees well with the theoretical anticipation that 

ADPV can significantly prolong supernode-connected life- 

times of heterogeneous WSNs. Our adaptive algorithm in- 

creases the durability of network connectivity against node 

failures, from 5% up to 95%. As for k -vertex connectivity, 

we are able to keep the network two- and three-vertex 

supernode-connected up to the failure of 90% and 75% of 

sensor nodes, respectively. 

In this study, we assume that supernodes are station- 

ary and arbitrarily deployed with no concern for sensor 

node positions. It would be an interesting future work to 

relax these assumptions. For instance, supernodes could be 

placed with respect to positions of already-deployed sen- 

sor nodes. In this way, one would have opportunity to find 

more center-like positions within sensor nodes, and in turn 

improve system efficiency. Similarly, instead of being sta- 

tionary, supernodes can be mobile and thus could be repo- 

sitioned to further increase network lifetime. 
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