
Ad Hoc Networks 44 (2016) 104–117

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

An adaptive, energy-aware and distributed fault-tolerant

topology-control algorithm for heterogeneous wireless

sensor networks

Fatih Deniz a , ∗, Hakki Bagci a , Ibrahim Korpeoglu
b , Adnan Yazıcı a

a Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
b Department of Computer Engineering, Bilkent University, Ankara, Turkey

a r t i c l e i n f o

Article history:

Received 2 December 2015

Revised 20 February 2016

Accepted 22 February 2016

Available online 3 March 2016

Keywords:

Topology control

Fault-tolerance

Energy efficiency

Prolonged network lifetime

k -connectivity

Heterogeneous wireless sensor networks

a b s t r a c t

This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology-

control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for het-

erogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich

supernodes as well as ordinary sensor nodes that are supposed to be connected to the

supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus

of ADPV is to secure supernode connectivity in the presence of node failures, and ADPV

achieves this goal by dynamically adjusting the sensor nodes’ transmission powers. The

ADPV algorithm involves two phases: a single initialization phase, which occurs at the

beginning, and restoration phases, which are invoked each time the network’s supernode

connectivity is broken. Restoration phases utilize alternative routes that are computed at

the initialization phase by the help of a novel optimization based on the well-known set-

packing problem. Through extensive simulations, we demonstrate that ADPV is superior in

preserving supernode connectivity. In particular, ADPV achieves this goal up to a failure

of 95% of the sensor nodes; while the performance of DPV is limited to 5%. In turn, by

our adaptive algorithm, we obtain a two-fold increase in supernode-connected lifetimes

compared to DPV algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wireless sensor networks (WSNs) are typically com-

posed of large numbers of tiny sensor nodes that are ca-

pable of sensing, processing and transmitting data over

wireless channels. Such networks can be used in numer-

ous fields, such as battlefield surveillance [1–3] , environ-

mental monitoring [4–6] and traffic control [7–9] . Sen-

sor nodes collaborate in a distributed, autonomous and

∗ Corresponding author. Tel.: +90 5531866846.

E-mail addresses: fatih.deniz@tcmb.gov.tr , fatihdeniz@gmail.com

(F. Deniz), hakkibagci@gmail.com (H. Bagci), korpe@cs.bilkent.edu.tr

(I. Korpeoglu), yazici@ceng.metu.edu.tr (A. Yazıcı).

self-organized manner to accomplish a certain task, usu-

ally in an environment with no infrastructure.

Sensor nodes in WSNs should be low-cost and should

have small form-factor. This restricts sensor nodes in

many ways as they have limited energy, short transmis-

sion range, relatively slow CPU and small memory. These

limitations bring out many challenges unique to WSNs,

such as very low power consumption. Since sensor nodes

are battery powered and these batteries are usually not

rechargeable, coming up with solutions that reduce energy

consumption and prolong network lifetime are very im-

portant. Numerous studies address this problem [10–13]

in literature. According to Li and Mohapatra [14] , 90% of

a sensor network’s energy is still available after first node

http://dx.doi.org/10.1016/j.adhoc.2016.02.018

1570-8705/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.adhoc.2016.02.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2016.02.018&domain=pdf
mailto:fatih.deniz@tcmb.gov.tr
mailto:fatihdeniz@gmail.com
mailto:hakkibagci@gmail.com
mailto:korpe@cs.bilkent.edu.tr
mailto:yazici@ceng.metu.edu.tr
http://dx.doi.org/10.1016/j.adhoc.2016.02.018

F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 105

dies. Despite this substantial amount of remaining energy,

the existence of highly-loaded and bottleneck nodes cause

early network demise. There are numerous studies that ad-

dress balancing energy consumption among nodes to en-

sure that all nodes will run out of energy at about the

same time [15] . Low-energy Adaptive Clustering Hierarchy

(LEACH) [16] is a well-known early study that uses dy-

namic transmission ranges to better balance the load and

prolong network lifetime. There are also some recent stud-

ies which re-establish lost connectivity by adjusting trans-

mission ranges. CoRAD [17] and RESP [32] can be listed

as some of those studies. With the recent developments

in the hardware of WSNs, dynamic transmission range as-

signment has become even more effective [18] .

Fault-tolerance is another critical issue in WSNs. Due

to the error-prone nature of wireless communication, links

may fail, packets can get corrupted or congestion may oc-

cur [19,20] . There are also factors that cause long-term

faults in sensor nodes, such as energy depletion, hardware

failure, link breaks, malicious attacks. Multi-hop commu-

nication multiplies the chances of faulty incidents for a

packet stream traveling from a source to a destination.

Therefore, fault-tolerance methods, including fault-tolerant

topology control, are essential for improving WSN reliabil-

ity as well as network lifetime.

As stated by Liu et al. [21] , most existing works on

fault-tolerant topology-control aim to obtain k -vertex con-

nectivity between any two sensor nodes, where the topol-

ogy is guaranteed to remain connected until the failure of

the k th sensor node.

In this study, the focus is on two-tiered heteroge-

neous WSNs, where the network consists of two differ-

ent types of nodes: resource-rich supernodes and simple

sensor nodes with limited battery power. In this network

model, sensor nodes are connected to the set of supern-

odes via multi-hop paths. To reflect this asymmetry, [22]

proposes k -vertex supernode connectivity, where each sen-

sor is connected to at least one supernode by k vertex-

disjoint paths. In such topologies, the sensor nodes remain

connected to the supernodes as long as at most k − 1 sen-

sor nodes fail.

Most studies on fault-tolerance propose static solutions,

that is, they do not adapt the topology to the changing

network conditions. Bagci et al. [23] propose a static al-

gorithm called the Disjoint Path Vector (DPV) to optimize

total transmission power for a given k -vertex supernode-

connected network. That study does not consider residual

battery energy and disregards the unbalanced load distri-

bution on sensor nodes. As a result, k -vertex supernode

connectivity is achieved but may not be preserved for a

sufficient amount of time.

In this study, we propose a novel adaptive and dis-

tributed topology-control algorithm, Adaptive Disjoint Path

Vector (ADPV), which efficiently constructs a k -vertex

supernode-connected network topology and adapts the

topology to node failures, which in turn increases network

lifetime. The contribution is two-fold. First, the residual

battery power levels of individual sensor nodes are consid-

ered to prolong k -vertex supernode connectivity. Second,

an adaptive solution is proposed to restore, if necessary, k -

vertex supernode connectivity after a node failure.

The remainder of the paper is organized as follows:

Section 2 gives some background information and dis-

cusses the related studies. In Section 3 , we present our

proposed adaptive topology-control solution. The results

for simulation experiments are presented in Section 4 . Fi-

nally, Section 5 concludes the paper.

2. Related work

In this section, we give a brief overview of some of the

prominent recent work addressing fault-tolerance, connec-

tivity restoration and heterogeneity in WSNs. We also give

a brief overview of the DPV algorithm [23] .

Fault-tolerance techniques can be categorized into four

[24] : prevention, detection, isolation, and recovery. Preven-

tion attains network connectivity and establishes redun-

dant links/nodes when necessary. Detection monitors traf-

fic and sends alerts when any indication of fault happens,

such as a decrease in packet delivery rate, which would

imply a packet loss, interruption, or delay. Isolation diag-

noses and identifies the alert. As for recovery , after detect-

ing and identifying the fault, the system should be able to

recover in either a centralized or distributed manner. Note

that due to the nature of WSNs it is essential for the re-

covery scheme to be a distributed method.

The replication and redundancy of components prone

to failure is the most commonly used method for fault pre-

vention and recovery [21] . For instance, if some nodes have

problems and fail to sense the environment, the redundant

nodes in the vicinity can still provide data. Keeping redun-

dant links or multiple paths also provides fault-tolerance

when some communication links are broken due to node

failures or communication errors.

2.1. Connectivity restoration in WSNs

There are three approaches to connectivity restoration

in WSNs: mobile node relocation, relay node placement

and topology-control via transmission range adjustment. In

the first approach, as the nodes are mobile, the main idea

is to reposition the existing alive nodes to restore connec-

tivity. One example of this method is PADRA, developed by

Akkaya et al. [25] . In this approach, each node chooses one

of its neighbors to be the failure handler, which will start

recovery if the node dies. The restoration process only oc-

curs if the entire network gets disconnected, in which case

the closest node that can take the dead node’s place is re-

located to that position.

In the relay node placement approach [26–31] , the ob-

jective is to place a minimum number of relay nodes in a

region where sensor nodes are randomly deployed so that

the resulting network topology is fault-tolerant.

These first two approaches, that is, mobile node relo-

cation and relay node placement, may not be practical in

real-world scenarios because sensor nodes are often de-

ployed in remote and inhospitable regions with harsh en-

vironments that render manual node placement or relo-

cation infeasible. Note that due to the dynamic nature of

WSNs, node placement and/or relocation must be repeated

periodically. In addition, these approaches require overall

106 F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117

Fig. 1. Initial network.

Fig. 2. Optimized network.

network information, something that is also not suitable

for most real-world applications.

As a remedy to the problems discussed above,

topology-control emerges as a third approach for connec-

tivity restoration. In this approach, the topology is con-

trolled by adjusting the sensor nodes’ transmission ranges.

One example of this method is RESP [32] , which is an

energy-aware topology-control algorithm that ensures k -

edge connectivity for flat networks. The RESP algorithm

assumes sensor nodes are aware of their location in-

formation via GPS or other localization techniques, and

periodically updates the network topology to adapt to sen-

sor nodes’ residual battery power levels. Because of en-

suring k -edge connectivity, but not k -vertex connectiv-

ity, RESP cannot keep the network connected up to k − 1

node failures. Another recent approach, Energy-harvesting

Heterogeneous WSN (EHWSN) [33] , also aims to pre-

serve k -vertex supernode-connectivity for heterogeneous

WSNs. EHWSN is a centralized approach and ignores resid-

ual battery power levels, therefore not scalable and not

energy-aware.

2.2. DPV algorithm

The aim of the DPV algorithm [23] is to minimize the

total transmission power of a WSN while maintaining k -

vertex disjoint paths from each sensor node to the set of

supernodes. The DPV algorithm gets a k -vertex supernode-

connected network topology as an input and generates a

subnetwork consisting of the same set of sensors but fewer

connections. The output of the DPV algorithm is a to-

tal transmission power optimized and k -vertex supernode-

connected network topology. Consider the example topol-

ogy given in Fig. 1 , which consists of one supernode and

three sensor nodes. When the aim is to provide one-vertex

supernode connectivity, DPV removes three edges and op-

timizes the given network topology, as in Fig. 2 . The main

contribution of DPV is its efficiency in computing such net-

work topologies. The DPV algorithm requires O(n �2) mes-

sage transmissions, whereas the best alternative [22] in-

curs O(�5) messages, where n is the number of sensor

nodes and � refers to the maximum degree of a sensor

node. Note that we assume a dense network, where � is

sufficiently large. The DPV algorithm consists of five main

stages:

1. Collecting path information and calculating disjoint

paths,

2. Calculating the set of required neighbors,

3. Notifying the nodes in the disjoint paths and updating

the required neighbors,

4. Removing the non-required neighbors and

5. Reducing the power level to a point sufficient only to

reach the farthest required neighbor.

2.3. Power consumption model

Our ADPV algorithm aims at prolonging network life-

time, and thus it should first model the amount of time

until the battery powers of the sensor nodes are depleted.

The ADPV algorithm uses a well-known power consump-

tion model, proposed by Heinzelman et al. [34,35] . This

approach is based on the observation that the main factor

in WSN power consumption is data communication, which

consists of two factors: data transmission and data recep-

tion. In this model, the power to transmit a bit to a dis-

tance of d is

P t (d) = α1 + α2 × d n , (1)

where α1 and α2 are parameters that depend on the trans-

mitter circuitry, and n is the path loss exponent for the

environment, which often has a value between 2 and 4. In

our power consumption model, α1 , α2 , and n are assumed

to be 50 nJ/bit, 100 pJ / bit / m 2 and 2, respectively.

In our model, the energy consumption for data recep-

tion is a constant value per bit. We represent this constant

with β and assume it equals 50 nJ/bit.

For our experiments, we assume all sensor nodes are

sensing the environment and generating traffic at a fixed

rate. We also assume that data aggregation is applied and

that all nodes on a path carry the same load. Therefore, to-

tal power consumption for receiving a bit and transferring

it to the next hop equals:

P f (d) = β + α1 + α2 × d n . (2)

If the residual battery energy level of sensor node i is de-

noted as e i , then the lifetime of node i equals:

l i = e i / ((r ri × β) + (r ri + r gi) × (α1 + α2 × d n i)) , (3)

where r ri is the incoming data rate to node i , r gi is the data

rate generated in node i and d i is the transmission range.

3. Adaptive disjoint path vector algorithm

In this section, we present our novel adaptive and dis-

tributed algorithm, ADPV, which aims to construct and

maintain a k -vertex supernode-connected topology to pro-

long the k -vertex supernode-connected lifetime of the net-

work. The ADPV algorithm controls the topology by adjust-

ing the transmission ranges of sensor nodes, and to comply

with real-life situations it considers node failures. The al-

gorithm requires only one-hop neighborhood information

and constructs the network topology by a series of mes-

sage exchanges.

F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 107

Fig. 3. Sample scenario.

The ADPV algorithm consists of two phases: initializa-

tion and restoration. It collects necessary information and

builds an initial topology during the initialization phase.

Whenever a node failure breaks k -vertex supernode con-

nectivity, ADPV restores connectivity within the restora-

tion phase. Similar to DPV, ADPV utilizes disjoint paths and

within each restoration phase each sensor node decides

whether or not to change its disjoint paths. At the end of

each restoration phase, sensor nodes’ transmission ranges

are adjusted according to the intended topology. The main

differences between ADPV and DPV are as follows:

• ADPV is an adaptive approach, adapting to node failures

and remaining energy levels, whereas DPV is a static

one.

• ADPV considers residual battery power levels of sensor

nodes, therefore it is an energy-aware solution. DPV on

the other hand ignores sensor nodes’ remaining energy

levels.

• ADPV balances energy consumption and optimizes the

lifetime of disjoint paths, as opposed to DPV, which op-

timizes the total transmission power of sensor nodes.

• ADPV significantly prolongs both one-vertex and k -

vertex supernode-connected lifetimes of the network

with its solutions for restoration path selection, k -

vertex supernode-connectivity verification and connec-

tivity restoration.

3.1. Network model

Consider a mission critical border surveillance system

that is integrated with a two-tiered heterogeneous wireless

sensor network. In this network, there are supernodes lo-

cated on each tower and regular sensor nodes that are uni-

formly distributed into the target area as shown in Fig. 3 .

In this network, sensor nodes are responsible for detect-

ing potential intrusion activities and inform the towers by

forwarding data to the supernodes located at those towers.

Since it is common to lose some sensor nodes because of

energy depletion, harsh environmental conditions or hos-

tile activities of intruders, it is desired for every sensor

node to have more than a certain number of independent

paths to the supernodes. In the figure, we can see a sol-

dier crossing the border, and a sensor node close-by in-

forms some towers via three disjoint paths.

This network model is first described in [22] , and also

used by the DPV algorithm. In this model, the network

consists of M supernodes that are deployed at known lo-

cations and N sensor nodes that are randomly distributed

in the 2D plane so that M < < N . We assume the su-

pernodes have transmission ranges long enough to com-

municate with the base station or any other supernode

in the network. Therefore, we do not model and are not

concerned with supernode-to-supernode communication.

We are only interested in sensor-to-sensor and sensor-to-

supernode communication.

We represent the initial network topology with an

undirected weighted graph G = (V, E) , where V is the set

of nodes and E = { v i , v j | dist(v i , v j) < R max } is the set of
edges; dist(v i , v j) defines the distance between nodes v i

and v j .

3.2. Problem definition

We first give the formal definition of k -vertex supern-

ode connectivity.

Definition 1 (k -vertex supernode connectivity [22]) . An

heterogeneous WSN is said to be k -vertex supernode-

connected if removal of any k − 1 sensor nodes does not

disconnect any sensor node from all the supernode(s),

that is, each sensor node is still connected to some

supernode(s).

Initially we are given a k -vertex supernode-connected

network with M supernodes and N sensor nodes, where

the sensor node transmission range can be adjusted up to

a predefined constant R max . As we model node failures, the

number of active sensor nodes decreases during the net-

work lifetime. We use N t to denote the set of active sensor

nodes at time t , where time is represented by discrete time

intervals. Our problem is to determine the transmission

ranges of all active sensor nodes at any time, such that the

resulting topology is still k -vertex supernode-connected, so

that network lifetime can be improved. Now, we formally

state the problem of maximizing fault-tolerant lifetime.

Definition 2 (Fault-tolerant lifetime maximization) . Given

a k -vertex supernode-connected WSN G = (V, E) with a

set M ⊂V of supernode vertices and a set N t ⊂V of active

sensor node vertices, such that M ∩ N t = ∅ , find a set of

edges F ⊂ E such that G (V, E − F) is k -vertex supernode-

connected and
∑ | N t |

i =1
l i is maximized, where l i is the life-

time of the minimum lifetime path among the disjoint

paths of v ∈ N t .

3.3. Residual battery power level-aware disjoint path

selection

The ADPV algorithm adapts the network topology dy-

namically during network operation by adjusting the sen-

sor nodes’ transmission ranges according to residual en-

ergy levels. For instance, if a node has low remaining

energy, it should choose closer neighbors; otherwise, it

108 F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117

may choose farther ones. In this way, we attain a fair dis-

tribution of total residual energy among sensor nodes.

The DPV algorithm is not an energy-aware solution, and

ignores sensor nodes’ residual energy levels. This design

may cause early battery depletion, since a node with low

residual energy may be assigned to a high transmission

power range. The ADPV algorithm, on the other hand, takes

residual energy levels into consideration when selecting

disjoint paths. Estimating the lifetime of each sensor node

on a path lies at the core of our approach. The motivation

behind this method is that a chain is only as strong as its

weakest link, and thus a path survives only as long as all

nodes survive in the path. Therefore, the shortest node life-

time on the path determines the lifetime of the path. The

ADPV algorithm chooses a set of disjoint paths such that

the minimum lifetime of those paths is maximized.

We formally define the lifetime of a path as follows: Let

a path P consists of nodes n 0 , n 1 , . . , n l , in which n 0 is the

starting sensor node and n l is a supernode. Let b i denote

the residual energy level of sensor node n i and d i denote

the distance between n i and n i +1 for each 0 ≤ i < l . Then,

the lifetime of P is defined as:

Lifetime (P) = min
0 ≤i<l

{ b i / (β + α1 + α2 × d n i) } , (4)

where β , α1 , α2 and n are the constant parameters of

power consumption, defined in Section 2.3 .

3.4. Initialization phase

This section describes our proposed approach for select-

ing alternative routes in the initialization phase of the al-

gorithm, where those routes are to be used to restore con-

nectivity during restoration phases. In ADPV, each sensor

node keeps alternative routes, here referred to as restora-

tion paths, that start with that node.

The primary goal is to consume the minimum possible

resources while attaining high-quality restoration paths.

The resources include memory, CPU, and network. Regard-

ing memory, for instance, if all possible paths from sensor

nodes to supernodes were held, the memory requirement

would be intractable. In [36] , Valiant discusses the average

number of paths from a node to a given set of nodes. In

terms of CPU, Bagci et al. [23] show that the complexity

of selecting k disjoint paths from a pool of p alternatives is

O(p k). Therefore, with a higher number of restoration paths

of size r , it takes longer to compute a disjoint path set of

size k during each restoration phase. As for the network,

which is last but not least, we aim to communicate us-

ing minimum number of messages. Each restoration path

incurs communication between its nodes in order to up-

date its lifetime. As a result, we should maintain a very

restricted set of restoration paths for the sake of network

performance, but at the same time, the amount of those

paths should be high enough to restore connectivity when-

ever needed.

To overcome these restrictions and efficiently construct

restoration paths, ADPV employs a well-known method,

called maximum set packing (MSP) [37] . This method is

the optimization version of the set packing (SP) problem

and asks for the maximum number of pairwise disjoint

sets among a family of sets. More formally, for a given uni-

verse U and a family S of subsets of U , MSP is a subfamily

C ⊆ S of sets such that all sets in C are pairwise disjoint,

and C uses as many sets as possible, so that the size of

the packing ‖C‖ is maximum. Maximum set packing is NP-

hard [38] and cannot be approximated within any constant

factor [39] .

Algorithm 3.1 Maximum Set Packing (MSP).

Input: S
Output: M

1: M ← ∅ ;
2: while S � = ∅ do

3: m ← MinIntersectingPath (S);
4: M ← M

⋃
m ;

5: for all Path p ∈ S do

6: if p
⋂

m � = ∅ then

7: S ← S − p;
8: end if
9: end for

10: end while

There is a well-known greedy heuristic, shown in

Algorithm 3.1 , to solve the MSP problem and it runs in

polynomial time. We employ this heuristic to construct

restoration paths. At the beginning, we have a pool of can-

didate paths of a relatively large size. The heuristic per-

forms with many iterations, where each iteration selects

the most diverse path from the pool. We use the term di-

verse as being disjoint with others, that is, the one that is

disjoint to the largest number of paths among others in

the pool. We add the selected path into the restoration

path set and remove all the paths from the pool that in-

tersect with the selected path. The iterations continue un-

til the pool becomes empty or the number of restoration

paths reaches a predefined threshold. Since the initial sen-

sor node and the destination supernode do not violate dis-

joincy, ADPV represents each path by the set of its inter-

mediate sensor nodes.

Algorithm 3.2 Path Information Collection in ADPV.

Input: I, L , k
Output: D , R
1: T ← ∅ ;
2: R ← ∅ ;
3: for all received PathInfo message I do

4: D ← MinDisSet (T , k);
5: c ← Cost(D);
6: U ← I.T ∪ T ;
7: R ← MaxSetPacking (R ∪ U); (Algorithm 3.1)
8: U

′ ← MaxSetPacking (U);
9: Sort(U

′);
10: T ′ ← { p i ∈ U

′ | i < = L } ;
11: D

′ ← MinDisSet (T ′ , k);
12: c ′ ← Cost(D

′);
13: if c ′ < c then

14: T ← T ′ ;
15: Transmit PathInfo(T);
16: end if
17: end for

Algorithm 3.2 shows path-information-collection

and restoration-path-selection procedures. The variables

F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 109

Table 1

ADPV notations.

I Received pathInfo message

L Maximum number of paths to be stored

k Disjoint connectivity degree

R Set of restoration paths

T and T ′ Set of local paths

D and D ′ Set of disjoint paths

c and c ′ Cost of disjoint paths, which equals the

minimum lifetime of the disjoint paths

U Union of two path sets

S Set of paths

M Set of paths in MSP

m , p , r Variables referencing paths

sr Supernode ratio

n Total number of sensors

� Maximum degree of a node

r Amount of a node’s restoration paths

l Average path length in the restoration set

n 0 , n 1 , .., n i Number of remaining sensor nodes after each

restoration phase

used in the pseudo codes are defined in Table 1 . In

Algorithm 3.2 , each sensor node maintains a local path set

along with disjoint and restoration path sets. As an input,

the algorithm takes a ‘PathInfo’ message that contains

the local path set of the sender node and generates two

outputs, which are the disjoint path and restoration path

sets of size k and a relatively large size, respectively.

Local paths are logical paths that are used for informing

neighbor nodes about the paths they can use over the

sender node. Therefore, local paths have a very critical

role in determining disjoint and restoration path sets and

need to be selected very carefully. When a sensor node

receives a ‘PathInfo’ message containing a local path set,

it first calculates the union of the sender’s and receiver’s

local path sets. It then executes the MSP procedure on this

union to eliminate paths that have too many sensor nodes

in common. The procedure then determines a candidate

local path set T ′ as the first L minimum-cost path of the

remaining set. While doing so, the procedure also updates

the restoration paths by executing the MSP procedure on

the union of local sets and the current restoration path

set.

Using the candidate local path set, the set of dis-

joint paths with minimum cost is calculated using

Algorithm 3.3 . In this algorithm, all disjoint subsets with

k elements are traversed and the one with the minimum

cost is selected. If the minimum-cost disjoint path set has

a smaller cost than the current disjoint path set, both the

disjoint and the local paths are updated and a ‘PathInfo’

message containing the new local path set is transmitted

to the set of neighbors. This process continues until there

are no more updates in the disjoint path sets.

After determining the disjoint paths, each sensor node

determines its required neighbors, which include the

neighbors that disjoint paths use the edges between. After

determining the required neighbors, each node adjusts its

transmission power to reach its farthest neighbor accord-

ing to the resulting topology.

Algorithm 3.3 Finding Disjoint Paths to Supernodes

(MinDisSet).

Input: T and k
Output: D

1: D ← ∅ ;
2: if | T | > k then

3: Q ← { q ⊂ T | | q | = k } ;
4: c ← ∞ ;
5: q min ← ∅ ;
6: for all q ∈ Q do

7: if q consists of disjoint paths then

8: if Cost(q) < c then

9: c ← Cost(q);
10: q min ← q ;
11: end if
12: end if
13: end for
14: D ← q min ;
15: end if

3.5. Connectivity restoration phase

We start the connectivity restoration procedure only

when k -vertex supernode connectivity is broken due to

node failure. Thus, the first step after a node failure is

to check whether the network is still k -vertex supernode-

connected or not. As this is a costly operation [40] , ADPV

employs a simple distributed greedy heuristic with no false

positives. That is, if ADPV postulates the network is k -

vertex supernode-connected, then the network is definitely

connected. However, the network can still be connected

even if ADPV claims it is not. Therefore, ADPV ensures

strong k -vertex supernode connectivity.

When a node failure occurs, ADPV ensures all the

node’s neighbors initiate a failure message to inform others

about the failure. Upon receiving a failure message, a sen-

sor node removes all paths including the failed node from

its restoration set. Since frequent transmission power ad-

justment is difficult to realize in practice, we employ peri-

odical transmission power control, and during each period

we check whether any failed nodes exist on any of the dis-

joint paths. If a failed node disconnects a disjoint path, the

restoration process takes place. Note that this event does

not necessarily imply k -vertex supernode disconnectivity,

yet because ADPV takes early action it never allows the

connectivity to break. After deciding k -vertex supernode

connectivity must be restored, ADPV applies a two-step

process: updating the lifetimes of the restoration paths and

computing minimum-cost disjoint paths from the restora-

tion set.

In the first step, path lifetimes in the restoration set

are updated via messages transmitted along the path from

the source node to the destination supernode. Each node

redirects a received message to the next hop in the path

and returns a message that contains updated lifetime in-

formation of the sensor nodes back along that path. In the

second step, minimum-cost disjoint paths are computed

using the previously discussed disjoint-path-selection al-

gorithm, Algorithm 3.3 . An overview of the connectivity-

checking and connectivity-restoration procedures are given

in Algorithm 3.4 .

110 F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117

x y

z
A

Supernode

Sensor node

Residual Energy: 100

Consump�on: 1.2
Residual Energy: 100

Consump�on: 2

Residual Energy: 100

Consump�on: 1

x

x->A

x->y->A

Disjoint Paths

y

y->A

y->x->A

z

z->y->A

z->x->A

a

x

z
A

Residual Energy: 40

Consump�on: 1.2

Residual Energy: 50

Consump�on: 5

x

x->A

x->z->A

Disjoint Paths

z

z->A

z->x->A

b

x

A

Residual Energy: 28

Consump�on: 1

x

x->A

Disjoint Paths

c

Fig. 4. Sample connectivity restoration for k = 2 .

Algorithm 3.4 Connectivity Restoration in ADPV.

Input: k , R , D

Output: D

1: F ailed Nod es ← ∅ ;
2: for all received node failure message δ do

3: for all Path r ∈ R do

4: if r contains δ.FailedNode then

5: R ← R − r;
6: end if
7: end for
8: F ailed Nod es ← F ailed Nod es ∪ δ.F ailed Nod e
9: if certain time elapsed since last period then

10: for all Path p ∈ D do

11: if (p ∩ F ailed Nod es) � = ∅ then

12: UpdateCosts (R);
13: D ← MinDisSet (R, k);
14: break;
15: end if
16: end for
17: F ailed Nod es ← ∅ ;
18: end if
19: end for

For instance, continuing from the example given in

Section 2.2 , for k = 2 , ADPV optimizes the topology shown

in Fig. 1 , as in Fig. 4 (a). In this topology, all initial energy

levels are equal. Assuming the data generation rate is uni-

form for all nodes, the power consumption of nodes x, y

and z are 1.2, 2 and 1, respectively. With this power con-

sumption, node y dies first (100/2 = 50 s later), both node

x and node z lose one of their disjoint paths and the net-

work becomes one-vertex, but not two-vertex, supernode-

connected. The ADPV algorithm restores connectivity, as in

Fig. 4 (b), by adjusting the transmission range of z, which

introduces a link from node z to supernode A. Because of

its increasing power consumption, node z happens to be

the second dying node (50/5 = 10 s later) and thus node x

loses two-vertex supernode connectivity once more. How-

ever, because it has no alternative routes, it adjusts its

transmission power again and works as a connected node,

as in Fig. 4 (c), for the rest of its life (28/1 = 28 more

seconds). For this network, the two-vertex supernode-

connected lifetime is broken when node z dies. Therefore,

ni

Fig. 5. One-hop neighbors of node i .

the two-vertex supernode-connected lifetime of this net-

work equals 60 s and the one-vertex supernode-connected

lifetime equals 88 s.

Lemma 1. The connectivity restoration process of ADPV en-

sures k-vertex supernode connectivity.

Proof. By definition, the network gets k -vertex supernode-

connected if each sensor in the network is connected to

at least one supernode with k -vertex disjoint paths. This

translates into the disjoint path set of each sensor node of

being size k , and if there exist more than k paths in the

restoration set, ADPV chooses a disjoint set and ensures k -

vertex supernode connectivity. �

Lemma 2. In the restoration path set, there are at most �

paths, where � is the maximum degree of a sensor node.

Proof. We are going to prove this by contradiction. As dis-

cussed in Section 3.5 , each sensor node keeps a maximum

set pack of some size in their restoration sets, so that each

path in the set is pairwise disjoint with the others. Let �

denote the maximum degree of a node and assume there

exists a node, say node i , that has more than � paths

in its restoration set. Since there are more than � paths

that are using at most � neighbors, according to the pi-

geonhole principle, there exist two restoration paths that

use the same neighbor. Let Fig. 5 represent node i and its

one-hop neighbors. If the neighbor that two paths have in

common is a supernode, then node i will have exactly the

same two paths in its restoration set, which is not pos-

sible, because the MSP procedure calculates the union of

the selected paths to guarantee diversity. If that neighbor

F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 111

is a sensor node, those paths will not be disjoint, which

violates the MSP definition. Therefore, no neighbor, neither

sensor node nor supernode, can have two paths in com-

mon, and the number of elements in the restoration set

cannot exceed �. �

3.6. Running time analysis

We compute the lifetime of a restoration path via mes-

sages transmitted along the path from the source node to

the destination supernode. Each node redirects a received

message to the next hop in the path and returns a mes-

sage that contains the sensors’ updated lifetime informa-

tion back along the same path. Therefore, for each restora-

tion path, the number of messages equals two times the

length of the path. We assume that path length is bounded

by a constant, say l , following previous studies [23] . No-

tice that the number of restoration paths is less than or

equal to �, where � is the maximum degree of a node.

Then, there are at most l × � messages in total, and

thus, the message complexity is O(�) at each connectivity-

restoration phase. In the worst case, for each sensor node,

connectivity restoration is carried out for O(�) times, as

the restoration path set embodies at most l × � nodes.

Therefore, at each sensor node, total message complex-

ity becomes O(�2) for connectivity restoration. For path

information collection, ADPV has the message complexity

of O(n �), which also equals that of DPV [23] . Therefore,

the total message complexity becomes O(�2) + O(n �) =

O(n �).

The ADPV algorithm consumes computational power in

the initialization phase for disjoint and restoration path

construction and during the connectivity restoration phase

for determining new disjoint paths from the restoration

set. During the initialization phase, when sensor nodes re-

ceive a ‘PathInfo’ message, they calculate the union of the

local path information and the received paths in the in-

coming message. The running time complexity of this step

depends on the number of paths (p) in the local path in-

formation table. In ADPV, since the maximum number of

paths that can be stored in a sensor node’s path informa-

tion table is set to a constant value, both calculating the

union of the two path information tables and sorting the

paths according to their costs take constant time.

In the initialization phase, there are two more pro-

cedures that consumes processing power: maximum set

packing and disjoint-path-selection algorithms. The greedy

heuristic for MSP, shown in Algorithm 3.1 , is used twice:

once for constructing the restoration path and again for se-

lecting the local path information table. As discussed in the

second lemma, the number of restoration paths is limited

by the maximum degree of node (�), and the number of

paths in the local path information table is a constant (l).

Therefore, the MSP algorithm consists of numerous itera-

tions, each consisting of two steps: i) selecting the mini-

mum intersecting path and ii) removing the paths that in-

tersect with it. In the latter step, the algorithm traverses

all path pairs and determines the minimum intersecting

one. The activity of removing the intersecting paths also

traverses the set once more. Considering set size is rep-

resented by s , the running time complexity of the MSP

algorithm equals O(s 2 + s). Therefore, the MSP running

time complexity in each step is O(�2 + � + l 2 + l), which

can be reduced to O(�2).

To calculate the minimum disjoint set, Algorithm 3.3

enumerates all subsets of size k and finds the set with the

minimum cost. Enumerating all these subsets takes O(p k),

where p represents the number of paths in the given set.

Since the input of the minimum disjoint set procedure

is the local path information table, which has a constant

number of elements, the running time complexity of the

minimum disjoint set calculation is also a constant.

Considering that the message transmission complexity

of ADPV is O(n �) and the dominating step (MSP) is exe-

cuted once for every incoming message, the running time

complexity of the total initialization phase is O(n �3).

For the restoration phases, as discussed above, the max-

imum number of restoration phases a node can execute

is O(l �), and in each phase there are two operations: up-

dating path costs, which only uses message transmissions,

and calculating the minimum disjoint set from the restora-

tion set. Since the maximum number of elements in the

restoration set is �, the running time complexity for deter-

mining the minimum-cost disjoint paths from the restora-

tion set will be O(�k), and the total running time com-

plexity of the restoration phases will be O(�k +1).

Since n > > �, and the commonly accepted values of k

are 2 and 3 [22] , the ADPV running time complexity equals

O(n �3).

3.7. Expected number of restorations in ADPV

In this section we discuss theoretical expectations re-

sulting from the ADPV algorithm and analyze how many

times ADPV can restore k -vertex supernode connectivity

for a given node. Since ADPV can restore such connectiv-

ity when there are at least k paths in the restoration set,

we will determine the expected number of node failures

before a node cannot restore its connectivity. Let n denote

the number of sensor nodes in the network and assume

the sensor node batteries deplete uniformly in any order

with the same probability ρ . The parameters used in this

section are given in Table 1 .

Considering that the number of sensor nodes in the

restoration set equals r × l , the expected number of sen-

sor nodes that die before one of these r × l sensor nodes

dies equals:

n

r × l
. (5)

For example, if there are 100 nodes in the entire net-

work and 20 take part in the restoration set, then the ex-

pected number of node failures before one of the nodes

in the restoration set fails equals five. When a node on a

path dies, then that path will no longer be valid and there-

fore will be removed from the restoration sets available.

As a result, with a node failure, the number of restora-

tion paths will diminish by one. Therefore, when the first

node on a restoration set dies, r − 1 paths, which con-

sist of (r − 1) × l sensor nodes, will remain. At the same

time, the number of remaining sensor nodes in the entire

112 F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117

network will equal:

n −
n

r × l
. (6)

Continuing from the previous example, 100 − 5 = 95

sensor nodes will remain in the entire network after the

first node in the restoration set dies. The remaining sensor

nodes after the i th restoration path removal can be gener-

alized as follows:

n i +1 = n i −
n i

(r − i) × l
, (7)

which also equals:

n i +1 = n i ×

(

1 −
1

(r − i) × l

)

(8)

and which can also be written as a product of:

n i +1 = n ×

i
∏

j=0

(

1 −
1

(r − j) × l

)

. (9)

Since ADPV can restore k -vertex supernode connectivity

when there are at least k paths in the restoration set, the

number of sensor nodes when k -vertex supernode connec-

tivity of the given node cannot be restored equals n r−k +1

and can be calculated as:

n r−k +1 = n ×

r−k
∏

j=0

(

1 −
1

(r − j) × l

)

. (10)

Then by changing the parameter to t = r − j,

n r−k +1 = n ×

r
∏

t= k

(

1 −
1

t × l

)

. (11)

According to the above formula, the number of success-

ful restorations will be proportional to the sensor node

count. Also, with the increasing average path length, the

number of remaining sensors increases, which in turn de-

creases the possibility of successful restorations. There-

fore, choosing paths with smaller path lengths may be

preferable.

4. Experiments and results

In this section we report our measurements regarding

lifetime and other metrics for the DPV and ADPV algo-

rithms and try to evaluate ADPV’s success. For this eval-

uation, we implemented ADPV using an extended ver-

sion of a custom simulator, which has also been used for

evaluating the DPV algorithm. We added a time dimen-

sion and a battery model into the existing framework and

thus provided an environment that could evaluate network

lifetime.

4.1. Experimental setup

In our experiments, we assumed that sensor nodes

and supernodes are uniformly and randomly deployed

in an area of 600 m x 600 m and that the initial

maximum transmission range R max of the sensor nodes

is set at 100 m. We repeated our experiments for

{ 100 , 150 , . . . , 500 } sensor node, for k = 2 , 3 (as these are

Table 2

Simulation parameters.

Deployment area 600 m x 600 m

Initial transmission range of sensor nodes: R max 100 m

Number of sensor nodes: N [10 0 . . . 50 0]

Number of supernodes: M 5% and 10% of N

Degree of disjoint connectivity: k 2 and 3

Packet loss rate 10%

commonly accepted k values), and for a supernode ratio

(sr) of 5% and 10% over the region. Finally, we assumed a

packet loss rate of 10% for each message transmission. As

a result, we had 9 × 2 × 2 experimental instances, and on

each we executed both algorithms 20 times and reported

the averages. Our simulation parameters are summarized

in Table 2 .

4.2. Results

In Fig. 6 , we compare the node failure tolerance of DPV

and ADPV. For each algorithm, we measure performance

in terms of the fraction of dead sensor nodes when the

network gets (i) supernode disconnected and (ii) k -vertex

supernode disconnected. If there exists a path (single or

multi-hop) between a sensor node and any one of the su-

pernodes, then the sensor node is said to be connected.

If every (alive) sensor node in the network has k disjoint

paths to the set of supernodes, then the network is con-

sidered as k -vertex supernode-connected. With these mea-

surements we determine the maximum number of node

failures that can occur before supernode connectivity is

broken. Here, we observe the most striking result, and at

the same time, evidence of this study’s motivation regard-

ing the instability of static algorithms and effectiveness of

ADPV for keeping the network supernode-connected. As

seen in the figure, even before the failure of 5% of the sen-

sor nodes, the network’s supernode connectivity is broken

when we employ the DPV algorithm. This result limits us-

ing DPV as a fault-tolerant alternative. On the other hand,

ADPV successfully keeps the network supernode-connected

up to failure of about 95% of the sensor nodes.

In the figure, we observe that when the network be-

comes denser, ADPV keeps it supernode-connectivity for

longer. This result can be attributed to ADPV becoming

more effective at finding alternative routes due to the in-

creasing number of sensor nodes. For instance, in one ex-

treme, when we examine the results of a 500-node net-

work for k = 2 and sr = 10% , as shown in Fig. 6 (a), we

see that the network is still supernode-connected up to

a failure of 95% of the sensor nodes. In the other ex-

treme, where the number of initially deployed sensor

nodes equals 100, ADPV sustains supernode connectivity

up to the failure of 20% of the sensor nodes. Looking into

each of the sub-figures, when the initial number of sensor

nodes is between 250 and 300, we notice that ADPV suc-

ceeds in keeping supernode connectivity even after the ac-

tive sensor nodes are halved. Considering all experimental

instances, on average, ADPV maintains supernode connec-

tivity up to a failure of 52% of sensor nodes for k = 2 , and

55% of sensor nodes for k = 3 . Since the optimized net-

work topologies for k = 3 contain more connections, it is

F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 113

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

100 150 200 250 300 350 400 450 500

N
o

d
e

 F
a

il
u

re
 T

o
le

ra
n

ce
 (

%
)

Number of Sensor Nodes

ADPV Connected

ADPV 2-Connected

DPV Connected

DPV 2-Connected

(a) k=2, sr=10%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

100 150 200 250 300 350 400 450 500

N
o

d
e

 F
a

il
u

re
 T

o
le

ra
n

ce
 (

%
)

Number of Sensor Nodes

ADPV Connected

ADPV 2-Connected

DPV Connected

DPV 2-Connected

(b) k=2, sr=5%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

100 150 200 250 300 350 400 450 500

N
o

d
e

 F
a

il
u

re
 T

o
le

ra
n

ce
 (

%
)

Number of Sensor Nodes

ADPV Connected

ADPV 3-Connected

DPV Connected

DPV 3-Connected

(c) k=3, sr=10%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

100 150 200 250 300 350 400 450 500

N
o

d
e

 F
a

il
u

re
 T

o
le

ra
n

ce
 (

%
)

Number of Sensor Nodes

ADPV Connected

ADPV 3-Connected

DPV Connected

DPV 3-Connected

(d) k=3, sr=5%

Fig. 6. Percentage of failed sensor nodes when the network becomes (i) supernode disconnected and (ii) k -vertex supernode disconnected.

expected that those networks will have a higher tolerance

for node failures. On the other hand, more connections will

consume more battery power, which will affect network

lifetime. We therefore also examine lifetime measurements

of the networks for the same set of scenarios.

Further, as we can observe in Fig. 6 , network topolo-

gies generated by the DPV algorithm become k -vertex su-

pernode disconnected after the failure of at most 1% of the

sensor nodes. Even though the initial optimized topologies

generated by DPV are k -vertex supernode-connected, after

the failure of a few sensor nodes, the remaining topolo-

gies become at most (k − 1) -vertex supernode-connected.

The ADPV algorithm, on the other hand, maintains two-

vertex supernode connectivity up to a failure of 32% of

sensor nodes, and three-vertex supernode connectivity up

to a failure of 21% of sensor nodes, on average among all

experimental instances.

In Fig. 7 , we compare the lifetime results of the same

set of experimental instances with those of Fig. 6 . A promi-

nent aspect of ADPV is considering the sensor nodes’ re-

maining energy levels; as a result, energy depletion occurs

less frequently. This factor, when coupled with the adap-

tive nature of the algorithm, results in longer network life-

times.

As we observe in Fig. 7 , in terms of one-vertex

supernode-connected lifetimes, on average, ADPV results

in a two-fold increase with respect to DPV. For the same

experimental instances, ADPV provides respectively 65%

and 46% longer two-vertex and three-vertex supernode-

connected lifetimes than DPV. As we observe in the figures,

network density has almost no effect on the lifetimes of

the topologies generated by DPV. On the other hand, ADPV

successfully prolongs the network lifetime almost propor-

tionally to the network density for all k = 1 , 2 , 3 .

We observe in Fig. 7 (c) and (d) that if the number of

sensor nodes drops below a certain threshold (in our case,

150 sensor nodes in a 600 m x 600 m area when sr = 10% ,

and 200 sensor nodes when sr = 5%), it is hard to restore

three-vertex supernode connectivity. This finding suggests

that a minimum number of sensor nodes for every k and

sr value is necessary to restore k -vertex supernode con-

nectivity. Figs. 6 and 7 , respectively compare node fail-

ure tolerance and network lifetime for different values of

sr = 5% , 10% and k = 2 , 3 . According to the results, with the

114 F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117

15

20

25

30

35

40

45

50

55

60

65

100 150 200 250 300 350 400 450 500

L
if

e
�

m
e

 (
s)

Number of Sensor Nodes

ADPV Connected

ADPV 2-Connected

DPV Connected

DPV 2-Connected

(a) k=2, sr=10%

15

20

25

30

35

40

45

100 150 200 250 300 350 400 450 500

L
if

e
�

m
e

 (
s)

Number of Sensor Nodes

ADPV Connected

ADPV 2-Connected

DPV Connected

DPV 2-Connected

(b) k=2, sr=5%

15

20

25

30

35

40

45

50

100 150 200 250 300 350 400 450 500

Li
fe

�
m

e
 (

s)

Number of Sensor Nodes

ADPV Connected

ADPV 3-Connected

DPV Connected

DPV 3-Connected

(c) k=3, sr=10%

15

17

19

21

23

25

27

29

31

33

35

100 150 200 250 300 350 400 450 500

Li
fe

�
m

e
 (

s)

Number of Sensor Nodes

ADPV Connected

ADPV 3-Connected

DPV Connected

DPV 3-Connected

(d) k=3, sr=5%

Fig. 7. Lifetime comparison of the DPV and ADPV algorithms.

15

20

25

30

35

40

45

50

55

60

150 200 250 300 350 400 450 500

e
mit

efi
L

(s
)

Number of Sensor Nodes

ADPV Connected

ADPV 4-Connected

DPV Connected

DPV 4-Connected

(a) Lifetime comparison

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

150 200 250 300 350 400 450 500

N
o

d
e

er
uli

a
F

ec
n

ar
el

oT
(%

)

Number of Sensor Nodes

ADPV Connected

ADPV 4-Connected

DPV Connected

DPV 4-Connected

(b) Node failure tolerance comparison

Fig. 8. Lifetime and node failure tolerance of DPV and ADPV algorithms for k = 4 .

F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 115

0

5000

10000

15000

20000

25000

30000

100 150 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

 T
ra

n
sm

is
si

o
n

s

Number of Sensor Nodes

ADPV

DPV

(a) k=2, sr=10%

0

5000

10000

15000

20000

25000

30000

35000

40000

100 150 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

 T
ra

n
sm

is
si

o
n

s

Number of Sensor Nodes

ADPV

DPV

(b) k=2, sr=5%

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

100 150 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

 T
ra

n
sm

is
si

o
n

s

Number of Sensor Nodes

ADPV

DPV

(c) k=3, sr=10%

0

10000

20000

30000

40000

50000

60000

100 150 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

M
e

ss
a

g
e

 T
ra

n
sm

is
si

o
n

s

Number of Sensor Nodes

ADPV

DPV

(d) k=3, sr=5%

Fig. 9. Number of message transmissions in DPV and ADPV algorithms.

increasing number of supernodes, lifetime also increases,

however, the relation between the increase in the number

of supernodes and the increase in the lifetime is sublin-

ear, and therefore, we expect that the increase in the life-

time becomes insubstantial as the number of supernodes

exceeds a certain threshold. We also notice that, with the

increasing k value, more disjoint paths are required and

this makes providing alternative routes harder. In Fig. 8 (a)

and (b), we compare DPV and ADPV algorithms for k = 4

in terms of network lifetime and node failure tolerance, re-

spectively. As seen in Fig. 8 (a), ADPV successfully prolongs

both one-vertex and four-vertex supernode-connected life-

times of the network. Also, in Fig. 8 (b), we see that ADPV

can preserve four-vertex supernode-connectivity up to the

failure of 50% of the sensor nodes on dense networks,

which in turn, achieves almost a two-fold increase in the

four-vertex supernode-connected lifetime.

Another important metric we measure during our anal-

ysis is the number of message transmissions. Message

transmission is an important metric because we must not

only consider power consumption in the resulting topolo-

gies but also consider the power required to generate those

topologies, which can be viewed as a fixed cost of ob-

taining the final topologies. If this cost is high, then the

power efficiency of the resulting topology might become

meaningless. In Fig. 9 , we compare the number of DPV

and ADPV message transmissions. To simulate the worst-

0

50

100

150

200

250

300

350

400

100 150 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

C
o

n
n

e
c�

v
it

y
 R

e
st

o
ra

�
o

n
s

Number of Sensor Nodes

for k=3

for k=2

Fig. 10. Number of connectivity restorations.

case scenario of ADPV, we set the waiting period in the

restoration phase to zero, which means that every node

failure that affects disjoint paths will trigger a restoration

phase for that node. According to the results, for k = 2 ,

ADPV makes at least 2.25 times and at most three times

the message transmissions than DPV does, and for k = 3 ,

ADPV makes at least three times and at most 3.5 times the

message transmissions of DPV. As seen in the sub-figures,

116 F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117

the number of message transmissions of both algorithms

increases almost linearly with the number of sensor nodes,

and the ratio of these message counts does not signifi-

cantly change. We should note that when, for instance, as-

suming k = 3 , as seen in Fig. 10 , ADPV restores supernode

connectivity almost 350 times more than DPV does, with

only 3.5 times the message transmissions. Considering the

extra messages in ADPV are used for updating the residual

energy levels of the remaining active sensor nodes in the

disjoint paths, these messages are very crucial for better

load balancing and for making maximum use of the avail-

able sensor nodes.

5. Conclusion

In this study, we present ADPV, an adaptive, energy-

aware and distributed topology-control algorithm. The mo-

tivation of this algorithm is to prolong the supernode-

connected lifetime of given heterogeneous WSNs. The

ADPV algorithm consists of two phases: initialization and

restoration. During initialization, ADPV computes alter-

native routes in the network. To determine routes effi-

ciently ADPV employs a novel method based on set pack-

ing. Whenever k -vertex supernode connectivity is broken,

the restoration phase is activated. To restore connectivity,

ADPV utilizes those alternative routes and adjusts the sen-

sor nodes’ transmission ranges accordingly. The ADPV al-

gorithm is a distributed algorithm in both the initializa-

tion and restoration phases. A broad set of conducted sim-

ulations agrees well with the theoretical anticipation that

ADPV can significantly prolong supernode-connected life-

times of heterogeneous WSNs. Our adaptive algorithm in-

creases the durability of network connectivity against node

failures, from 5% up to 95%. As for k -vertex connectivity,

we are able to keep the network two- and three-vertex

supernode-connected up to the failure of 90% and 75% of

sensor nodes, respectively.

In this study, we assume that supernodes are station-

ary and arbitrarily deployed with no concern for sensor

node positions. It would be an interesting future work to

relax these assumptions. For instance, supernodes could be

placed with respect to positions of already-deployed sen-

sor nodes. In this way, one would have opportunity to find

more center-like positions within sensor nodes, and in turn

improve system efficiency. Similarly, instead of being sta-

tionary, supernodes can be mobile and thus could be repo-

sitioned to further increase network lifetime.

Acknowledgments

This work is supported in part by a research Grant from

TUBITAK with Grant no. 114R082.

References

[1] D. Ghataoura, J. Mitchell, G. Matich, Networking and application

interface technology for wireless sensor network surveillance and
monitoring, Commun. Mag. IEEE 49 (10) (2011) 90–97, doi: 10.1109/

MCOM.2011.6035821 .
[2] M. Durisic , Z. Tafa , G. Dimic , V. Milutinovic , A survey of military

applications of wireless sensor networks, in: Embedded Computing
(MECO), 2012 Mediterranean Conference on, 2012, pp. 196–199 .

[3] Z. Sun , P. Wanga , M. Vuran , M. Al-Rodhaan , A. Al-Dhelaan , I. Aky-
ildiz , Bordersense: border patrol through advanced wireless sensor

networks, Ad Hoc Netw. 9 (3) (2011) 468–477 .
[4] S. Zhuiykov , Solid-state sensors monitoring parameters of water

quality for the next generation of wireless sensor networks, Sens.
Actuators B: Chem. 161 (1) (2012) 1–20 .

[5] A. Mainwaring , J. Polastre , R. Szewczyk , D. Culler , J. Anderson , Wire-

less sensor networks for habitat monitoring, in: In Proceedings
of ACM Wireless Sensor Networks and Applications(WSNA), 2002,

pp. 88–97 .
[6] M. Hefeeda, M. Bagheri, Wireless sensor networks for early detection

of forest fires, in: Mobile Adhoc and Sensor Systems, 2007. MASS
2007. IEEE Internatonal Conference on, 2007, pp. 1–6, doi: 10.1109/

MOBHOC.2007.4428702 .
[7] B. Placzek , Selective data collection in vehicular networks for traf-

fic control applications, Transp. Res. Part C: Emerg. Technol. 23 (0)

(2012) 14–28 . Data Management in Vehicular Networks
[8] C. Wenjie, C. Lifeng, C. Zhanglong, T. Shiliang, A realtime dynamic

traffic control system based on wireless sensor network, in: Paral-
lel Processing, 2005. ICPP 2005 Workshops. International Conference

Workshops on, 2005, pp. 258–264, doi: 10.1109/ICPPW.2005.16 .
[9] S. Coleri , S. Cheung , P. Varaiya , Sensor networks for monitoring traf-

fic, in: In Allerton Conference on Communication, Control and Com-

puting, 2004 .
[10] W. Wang, V. Srinivasan, K. Chua, Using mobile relays to prolong the

lifetime of wireless sensor networks, in: Proceedings of the 11th An-
nual International Conference on Mobile Computing and Network-

ing, in: MobiCom ’05, ACM, New York, NY, USA, 2005, pp. 270–283,
doi: 10.1145/1080829.1080858 .

[11] S. Halder, A. Ghosal, S. Bit, A pre-determined node deployment strat-

egy to prolong network lifetime in wireless sensor network, Com-
put. Commun. 34 (11) (2011) 1294–1306, doi: 10.1016/j.comcom.2011.

01.004 .
[12] G. Anastasi, M. Conti, M. Francesco, A. Passarella, Energy conser-

vation in wireless sensor networks: a survey, Ad Hoc Netw. 7 (3)
(2009) 537–568, doi: 10.1016/j.adhoc.2008.06.003 .

[13] Y. Chen, Q. Zhao, On the lifetime of wireless sensor networks, Com-

mun. Lett. IEEE 9 (11) (2005) 976–978, doi: 10.1109/LCOMM.2005.
11010 .

[14] J. Li, P. Mohapatra, An analytical model for the energy hole problem
in many-to-one sensor networks, in: Vehicular Technology Confer-

ence, 20 05. VTC-20 05-Fall. 20 05 IEEE 62nd, vol. 4, 2005, pp. 2721–
2725, doi: 10.1109/VETECF.2005.1559043 .

[15] J. Zhang, Y. Liu, D. Sun, B. Li, Prolonging the lifetime of wireless

sensor networks by utilizing feedback control, Wirel. Netw. 20 (7)
(2014) 2095–2107, doi: 10.1007/s11276- 014- 0726- x .

[16] W. Heinzelman , A. Chandrakasan , H. Balakrishnan , Energy-efficient
communication protocols for wireless microsensor networks, in: In-

ternational Conference on System Sciences, 20 0 0 .
[17] P. Kar, A. Roy, S. Misra, Connectivity reestablishment in self-

organizing sensor networks with dumb nodes, ACM Trans. Auton.

Adapt. Syst. 10 (4) (2016) 28:1–28:30, doi: 10.1145/2816820 .
[18] V. Rao , P. Priyesh , S. Kar , Adaptive transmission power protocol for

heterogeneous wireless sensor networks, in: Communications (NCC),
2015 Twenty First National Conference on, 2015, pp. 1–5 .

[19] A. Woo, T. Tong, D. Culler, Taming the underlying challenges of re-
liable multihop routing in sensor networks, in: Proceedings of the

1st International Conference on Embedded Networked Sensor Sys-
tems, in: SenSys ’03, ACM, New York, NY, USA, 2003, pp. 14–27,

doi: 10.1145/9584 91.9584 94 .

[20] L. Paradis , Q. Han , A survey of fault management in wireless sensor
networks, J. Netw. Syst. Manag. 15 (2) (2007) 171–190 .

[21] H. Liu, A. Nayak, I. Stojmenovic, Fault-Tolerant Algorithms/Protocols
in Wireless Sensor Networks, Guide to Wireless Sensor Net-

works, Springer London, London, 2009, pp. 261–291, doi: 10.1007/
978- 1- 84882- 218- 4 _ 10 .

[22] M. Cardei, S. Yang, J. Wu, Algorithms for fault-tolerant topology in

heterogeneous wireless sensor networks, Parallel Distrib. Syst. IEEE
Trans. 19 (4) (2008) 545–558, doi: 10.1109/TPDS.2007.70768 .

[23] H. Bagci, I. Korpeoglu, A. Yazici, A distributed fault-tolerant topology
control algorithm for heterogeneous wireless sensor networks, Par-

allel Distrib. Syst. IEEE Trans. PP (99) (2014), doi: 10.1109/TPDS.2014.
2316142 . 1–1

[24] A. Tanenbaum , M. Steen , Distributed systems, Citeseer, 2002 .

[25] K. Akkaya, F. Senel, A. Thimmapuram, S. Uludag, Distributed re-
covery from network partitioning in movable sensor/actor networks

via controlled mobility, Comput. IEEE Trans. 59 (2) (2010) 258–271,
doi: 10.1109/TC.2009.120 .

http://dx.doi.org/10.1109/MCOM.2011.6035821
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0002
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0003
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0004
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0005
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0005
http://dx.doi.org/10.1109/MOBHOC.2007.4428702
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0007
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0007
http://dx.doi.org/10.1109/ICPPW.2005.16
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0009
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0009
http://dx.doi.org/10.1145/1080829.1080858
http://dx.doi.org/10.1016/j.comcom.2011.01.004
http://dx.doi.org/10.1016/j.adhoc.2008.06.003
http://dx.doi.org/10.1109/LCOMM.2005.11010
http://dx.doi.org/10.1109/VETECF.2005.1559043
http://dx.doi.org/10.1007/s11276-014-0726-x
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0016
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0016
http://dx.doi.org/10.1145/2816820
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0018
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0018
http://dx.doi.org/10.1145/958491.958494
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0020
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0020
http://dx.doi.org/10.1007/978-1-84882-218-4_10
http://dx.doi.org/10.1109/TPDS.2007.70768
http://dx.doi.org/10.1109/TPDS.2014.2316142
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0024
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0024
http://dx.doi.org/10.1109/TC.2009.120

F. Deniz et al. / Ad Hoc Networks 44 (2016) 104–117 117

[26] X. Han , X. Cao , E. Lloyd , C.-C. Shen , Fault-tolerant relay node place-
ment in heterogeneous wireless sensor networks, IEEE Trans. Mob.

Comput. 9 (5) (2010) 643–656 .
[27] E. Lloyd , G. Xue , Relay node placement in wireless sensor networks,

IEEE Trans. Comput. 56 (1) (2007) 134–138 .
[28] A. Kashyap , S. Khuller , M. Shayman , Relay Placement for Higher Or-

der Connectivity in Wireless Sensor Networks, in: INFOCOM 2006.

25th IEEE International Conference on Computer Communications.
Proceedings, 2006, pp. 1–12 .

[29] J. Tang , B. Hao , A. Sen , Relay node placement in large scale wireless
sensor networks, Comput. Commun. 29 (4) (2006) 490–501 .

[30] W. Zhang , G. Xue , S. Misra , Fault-Tolerant Relay Node Placement in
Wireless Sensor Networks: Problems and Algorithms, in: INFOCOM

2007. 26th IEEE International Conference on Computer Communica-
tions. IEEE, 2007, pp. 1649–1657 .

[31] X. Cheng , D. Du , L. Wang , B. Xu , Relay sensor placement in wireless

sensor networks, Wirel. Netw. 14 (3) (2008) 347–355 .
[32] X. Wang, M. Sheng, M. Liu, D. Zhai, Y. Zhang, Resp: A k-connected

residual energy-aware topology control algorithm for ad hoc net-
works, in: Wireless Communications and Networking Conference

(WCNC), 2013 IEEE, 2013, pp. 1009–1014, doi: 10.1109/WCNC.2013.
6554702 .

[33] Z. Yin, F. Li, M. Shen, Y. Wang, Fault-tolerant topology for energy-

harvesting heterogeneous wireless sensor networks, in: Communica-
tions (ICC), 2015 IEEE International Conference on, 2015, pp. 6761–

6766, doi: 10.1109/ICC.2015.7249403 .
[34] W. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient

communication protocol for wireless microsensor networks, in: Sys-
tem Sciences, 20 0 0. Proceedings of the 33rd Annual Hawaii Interna-

tional Conference on, 20 0 0, doi: 10.1109/HICSS.20 0 0.926982 .

[35] W. Heinzelman , A. Chandrakasan , A. Smith , An application-specific
protocol architecture for wireless microsensor networks, IEEE Trans.

Wirel. Commun. 1 (2002) 660–670 .
[36] L. Valiant, The complexity of enumeration and reliability problems,

SIAM J. Comput. 8 (3) (1979) 410–421, doi: 10.1137/0208032 .
[37] M. Garey , D. Johnson , Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman & Co., New York, NY,

USA, 1979 .
[38] R. Karp , Reducibility among combinatorial problems, in: R. Miller,

J. Thatcher, J. Bohlinger (Eds.), Complexity of Computer Compu-
tations, The IBM Research Symposia Series, Springer US, 1972,

pp. 85–103 .
[39] E. Hazan, S. Safra, O. Schwartz, On the complexity of approximating

k-set packing, Comput. Complex. 15 (1) (2006) 20–39, doi: 10.1007/

s0 0 037-0 06-0205-6 .
[40] S. Even, An algorithm for determining whether the connectivity of

a graph is at least k, SIAM J. Comput. 4 (3) (1975) 393–396, doi: 10.
1137/0204034 .

Fatih Deniz received his BS and MS degrees
from Bilkent University (2007) and Middle East

Technical University (2010), respectively, both
in Computer Science. He is a PhD candidate

in the Department of Computer Engineering,

METU. He has worked in the Central Bank
of the Republic of Turkey as an IT specialist

since 2012. His research interests include fault-
tolerant topology-control algorithms in wireless

sensor networks.

Hakki Bagci received his MS (2007) and PhD

(2014) degrees from Bilkent University and
Middle East Technical University, respectively,

both in Computer Science. He worked as a re-

searcher at the National Scientific and Techno-
logical Research Council of Turkey (TUBITAK)

from 2004 to 2014. His research interests in-
clude distributed-algorithm design for wireless

sensor networks.

Ibrahim Korpeoglu is an associate professor

in the Department of Computer Engineering,
Bilkent University, Ankara, Turkey. He received

his MS (1996) and PhD (20 0 0) degrees from
University of Maryland at College Park, both

in Computer Science. He received his BS de-
gree (summa cum laude) in Computer Engineer-

ing from Bilkent University in 1994. Since 2002,

he has been a faculty member in the Depart-
ment of Computer Engineering, Bilkent Univer-

sity. Previously, he worked at several research
and development companies in the USA includ-

ing Ericsson, IBM T.J. Watson Research Center,
Bell Laboratories and Bell Communications Research (Bellcore). He re-

ceived Bilkent University Distinguished Teaching Award in 2006 and the

IBM Faculty Award in 2009. He is a member of ACM and a senior member
of IEEE.

Adnan Yazici is a full professor in and the

chair of the Department of Computer Engineer-

ing at Middle East Technical University, Ankara,
Turkey. He received his PhD in Computer Sci-

ence from the Department of EECS at Tu-
lane University in the US, in 1991. His current

research interests include intelligent database
systems, spatio-temporal databases, multimedia

and video databases and wireless multimedia

sensor networks. Prof. Dr. Yazici has published
more than 180 international technical papers.

He received the IBM Faculty Award in 2011
and the Parlar Foundation’s Young Investigator

Award in 2001. Prof. Dr. Yazici was a Conference Co-Chair of the 23rd IEEE
International Conferences on Data Engineering in 2007, the 38th Very

Large Data Bases Conference in 2012 and Program Co-Chair of the Flex-

ible Query Answering Systems Conference in 2011. He is the director of
the Multimedia Database Lab at METU. He is a member of ACM and a

senior member of IEEE.

http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0026
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0027
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0028
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0029
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0029
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0029
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0029
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0030
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0030
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0030
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0030
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0031
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0031
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0031
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0031
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0031
http://dx.doi.org/10.1109/WCNC.2013.6554702
http://dx.doi.org/10.1109/ICC.2015.7249403
http://dx.doi.org/10.1109/HICSS.2000.926982
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0035
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0035
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0035
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0035
http://dx.doi.org/10.1137/0208032
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0037
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0037
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0037
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0038
http://refhub.elsevier.com/S1570-8705(16)30059-2/sbref0038
http://dx.doi.org/10.1007/s00037-006-0205-6
http://dx.doi.org/10.1137/0204034

	An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks
	1 Introduction
	2 Related work
	2.1 Connectivity restoration in WSNs
	2.2 DPV algorithm
	2.3 Power consumption model

	3 Adaptive disjoint path vector algorithm
	3.1 Network model
	3.2 Problem definition
	3.3 Residual battery power level-aware disjoint path selection
	3.4 Initialization phase
	3.5 Connectivity restoration phase
	3.6 Running time analysis
	3.7 Expected number of restorations in ADPV

	4 Experiments and results
	4.1 Experimental setup
	4.2 Results

	5 Conclusion
	 Acknowledgments
	 References

