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Summary. Searching for an effective dimension reduction space is an important problem in
regression, especially for high dimensional data. We propose an adaptive approach based on
semiparametric models, which we call the (conditional) minimum average variance estimation
(MAVE) method, within quite a general setting. The MAVE method has the following advantages.
Most existing methods must undersmooth the nonparametric link function estimator to achieve a
faster rate of consistency for the estimator of the parameters (than for that of the nonparametric
function). In contrast, a faster consistency rate can be achieved by the MAVE method even with-
out undersmoothing the nonparametric link function estimator. The MAVE method is applicable
to a wide range of models, with fewer restrictions on the distribution of the covariates, to the
extent that even time series can be included. Because of the faster rate of consistency for the
parameter estimators, it is possible for us to estimate the dimension of the space consistently.
The relationship of the MAVE method with other methods is also investigated. In particular, a
simple outer product gradient estimator is proposed as an initial estimator. In addition to theo-
retical results, we demonstrate the efficacy of the MAVE method for high dimensional data sets
through simulation. Two real data sets are analysed by using the MAVE approach.

Keywords: Average derivative estimation; Dimension reduction; Generalized linear models;
Local linear smoother; Multiple time series; Non-linear time series analysis; Nonparametric
regression; Principal Hessian direction; Projection pursuit; Semiparametrics; Sliced inverse
regression estimation

1. Introduction

Let y and X be respectively R-valued and R
p-valued random variables. Without prior knowledge

about the relationship between y and X, the regression function g.x/ = E.y|X = x/ is often
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modelled in a flexible nonparametric fashion. When the dimension of X is high, recent efforts

have been expended in finding the relationship between y and X efficiently. The final goal is

to approximate g.x/ by a function having simplifying structure which makes estimation and

interpretation possible even for moderate sample sizes. There are essentially two approaches: the

first is largely concerned with function approximation and the second with dimension reduction.

Examples of the former are the additive model approach of Hastie and Tibshirani (1986) and

the projection pursuit regression proposed by Friedman and Stuetzle (1981); both assume that

the regression function is a sum of univariate smooth functions. Examples of the latter are the

dimension reduction of Li (1991) and the regression graphics of Cook (1998).

A regression-type model for dimension reduction can be written as

y = g.BT
0 X/ + "; (1.1)

where g is an unknown smooth link function, B0 = .β1; : : : ;βD/ is a p × D orthogonal matrix

(BT
0 B0 = ID×D) with D < p and E."|X/ = 0 almost surely. The last condition allows " to be

dependent on X. When model (1.1) holds, the projection of the p-dimensional covariates X

onto the D-dimensional subspace BT
0 X captures all the information that is provided by X on y.

We call the D-dimensional subspace BT
0 X the effective dimension reduction (EDR) space. Li

(1991) introduced the EDR space in a similar but more general context; the difference disappears

for the case of additive noise as in model (1.1). See also Carroll and Li (1995), Chen and Li (1989)

and Cook (1994). Note that the space spanned by the column vectors of B0 is uniquely defined

under some mild conditions (given in Section 3) and is our focus of interest. For convenience,

we shall refer to these column vectors as EDR directions, which are unique up to orthogonal

transformations. The estimation of the EDR space includes the estimation of the directions,

namely B0, and the corresponding dimension of the EDR space. For specific semiparametric

models, methods have been introduced to estimate B0. Next, we give a brief review of these

methods.

One of the important approaches is the projection pursuit regression proposed by Friedman

and Stuetzle (1981). Huber (1985) has given a comprehensive discussion. Chen (1991) has inves-

tigated a projection pursuit type of regression model. The primary focus of projection pursuit

regression is more on the approximation of g.x/ by a sum of ridge functions gk.·/, namely

g.X/ ≈
D
∑

k=1

gk.βT
k X/;

than on looking for the EDR space.

A simple approach that is directly related to the estimation of EDR directions is the aver-

age derivative estimation (ADE) proposed by Härdle and Stoker (1989). For the single-index

model y = g1.βT
1 X/ + ", the expectation of the gradient ▽g1.X/ is a scalar multiple of β1. A

nonparametric estimator of ∇g1.X/ leads to an estimator of β1. There are several limitations of

ADE.

(a) To estimate β1, the condition E{g′
1.βT

1 X/} �= 0 is needed. This condition is violated when

g1.·/ is an even function and X is symmetrically distributed.

(b) As far as we know, there is no successful extension to the case of more than one EDR

direction.

The sliced inverse regression (SIR) method proposed by Li (1991) is perhaps up to now the

most powerful method for searching for EDR directions and dimension reduction. However, the

SIR method imposes some strong probabilistic structure on X. Specifically, the method requires
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that, for any constant vector bT = .b1; : : : ; bp/, there are constants c0 and cT = .c1; : : : ; cD/

depending on b such that, for the directions B0 in model (1.1),

E.bTX|BT
0 X/ = c0 + cTBT

0 X: (1.2)

As pointed out by Cook and Weisberg in their discussion of Li (1991), the most important

family of distributions satisfying condition (1.2) is that of elliptically symmetric distributions.

Now, in time series analysis we typically set X = .yt−1; : : : ; yt−p/T, where {yt} is a time series.

Then it is easy to prove that elliptical symmetry of X for all p with (second-order) stationarity

of {yt} implies that {yt} is time reversible, a feature which is the exception rather than the rule

in time series analysis. (For a discussion of time reversibility, see, for example, Tong (1990).)

Another aspect of searching for the EDR space is the determination of the corresponding

dimension. The method proposed by Li (1991) can be applied to determine the dimension of

the EDR space in some cases but for reasons mentioned above it is typically not relevant for

time series data.

In this paper, we shall propose a new method to estimate the EDR directions. We call it the

(conditional) minimum average variance estimation (MAVE) method. Our approach is inspired

by the SIR method, the ADE method and the idea of local linear smoothers (see, for example,

Fan and Gijbels (1996)). It is easy to implement and needs no strong assumptions on the proba-

bilistic structure of X. Specifically, our methods apply to model (1.1) including its generalization

within the additive noise set-up. The joint density function of covariate X is needed if we search

for the EDR space globally. However, if we have some prior information about the EDR direc-

tions and we look for them locally, then existence of density of X in the directions around EDR

directions will suffice. These cases include those in which some of the covariates are categorical

or functionally related. The observations need not be independent, e.g. time series data. On

the basis of the properties of the MAVE method, we shall propose a method to estimate the

dimension of the EDR space, which again does not require strong assumptions on the design

X and has wide applicability.

Let Z be an R
q-valued random variable. A general semiparametric model can be written as

y = G{φ.BT
0 X/; Z; θ} + "; (1.3)

where G is a known smooth function up to a parameter vector θ ∈ R
l, φ.·/: R

D �→ R
D′

is

an unknown smooth function and E."|X; Z/ = 0 almost surely. Special cases are the general-

ized partially linear single-index model of Carroll et al. (1997) and the single-index functional

coefficient model in Xia and Li (1999). Searching for the EDR space BT
0 X in model (1.3) is of

theoretical as well as practical interest. However, the existing methods are not always appropriate

for this model. An extension of our method to handle this model will be discussed.

The rest of this paper is organized as follows. Section 2 describes the MAVE procedure and

gives some results. Section 3 discusses some comparisons with existing methods and proposes

a simple average outer product of gradients (OPG) estimation method and an inverse MAVE

method. To check the feasibility of our approach, we have conducted many simulations, typical

ones of which are reported in Section 4. In Section 5 we study the circulatory and respiratory

data of Hong Kong and the hitters’ salary data of the USA using the MAVE methodology. In

practice, we standardize our observations. Appendix A establishes the efficiency of the algorithm

proposed. Some of our theoretical proofs are very lengthy and not included here. However, they

are available on request from the authors. Finally, the programs are available at

http://www.blackwellpublishers.co.uk/rss/
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2. Estimation of effective dimension reduction space

2.1. The estimation of effective dimension reduction directions

Let us denote the working dimension by d with 1 � d � p. Therefore, we need to estimate only

a set of orthogonal vectors. There are many related methods for this and similar purposes.

Most of the existing methods adopt two separate cost functions. The first is used to estimate

the link function and the second the directions based on the estimated link function. See,

for example, Hall (1989), Härdle and Stoker (1989) and Carroll et al. (1997). It is therefore

not surprising that the performance of the direction estimator suffers from the bias problem

in nonparametric estimation. Härdle et al. (1993) noticed this and overcame the problem for

a single-index model by minimizing a cross-validation-type sum of squares of the residuals

simultaneously with respect to the bandwidth and the directions. However, the cross-validation-

type sum of squares of residuals affects the performance of estimation. See Xia et al. (1999).

Moreover, the minimization is not trivial. Härdle et al. (1993) used the grid search method in

their simulations, which is quite inefficient when the dimension is high.

Consider the simple regression model (1.1). The direction B0 is the solution of

min
B

[E{y − E.y|BTX/}2]: (2.1)

For any orthogonal matrix B = .β1; : : : ;βd/, the conditional variance given BTX is

σ2
B.BTX/ = E[{y − E.y|BTX/}2|BTX]: (2.2)

It follows that

E{y − E.y|BTX/}2 = E{σ2
B.BTX/}:

Therefore, minimizing expression (2.1) is equivalent to minimizing, with respect to B,

E{σ2
B.BTX/} subject to BTB = I: (2.3)

We shall call this MAVE. Suppose that {.Xi; yi/ i = 1; 2; : : : ; n} is a sample from .X; y/. Let

gB.v1; : : : ; vd/ = E.y|βT
1 X = v1; : : : ;βT

d X = vd/:

For any given X0, a local linear expansion of E.yi|BTXi/ at X0 is

E.yi|BTXi/ ≈ a + bTBT.Xi − X0/; (2.4)

where a = gB.BTX0/ and bT = .b.1/; : : : ; b.d// with

b.k/ =
@gB.v1; : : : ; vd/

@vk

∣

∣

∣

v1=βT
1

X0; : : : ; vd=βT
d

X0

; k = 1; : : : ; d:

Note that the right-hand side of approximation (2.4) is the tangent plane of gB at BTX0. The
residuals are then

yi − gB.BTXi/ ≈ yi − {a + bTBT.Xi − X0/}:

Following the idea of local linear smoothing estimation, we can estimate σ2
B.BTX0/ by exploiting

the approximation

n
∑

i=1

{yi − E.yi|BTXi/}
2wi0 ≈

n
∑

i=1

[yi − {a + bTBT.Xi − X0/}]2wi0; (2.5)
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where wi0 � 0 are some weights with Σ
n
i=1wi0 = 1 and typically centred at BTX0. The choice of

the weights wi0 plays a key role in searching for the EDR directions. We shall discuss this issue

in detail later. Usually,

wi0 = Kh{BT.Xi − X0/}
/ n
∑

l=1

Kh{BT.Xl − X0/};

where Kh.·/ = hdK.·=h/ and d is the dimension of K.·/. For ease of exposition, K.·/ denotes

different kernel functions at different places. The estimators of a and b are just the minimum

point of approximation (2.5). Therefore, the estimator of σ2
B at BTX0 is just the minimum value

of expression (2.5), namely

σ̂2
B.BTX0/ = min

a;b

(

n
∑

i=1

[yi − {a + bTBT.Xi − X0/}]2wi0

)

: (2.6)

Under some mild conditions, we have σ̂2
B.BTX0/ − σ2

B.BTX0/ = oP .1/. On the basis of expres-

sions (2.1), (2.3) and (2.6), we can estimate the EDR directions by solving the minimization

problem

min
B:BTB=I

{

n
∑

j=1

σ̂2
B.BTXj/

}

= min
B:BTB=I

aj;bj;j=1;:::;n

(

n
∑

j=1

n
∑

i=1

[yi − {aj + bT
j BT.Xi − Xj/}]2wij

)

; (2.7)

where bT
j = .bj1; : : : ; bjd/. The MAVE method or the minimization in problem (2.7) can be

seen as a combination of nonparametric function estimation and direction estimation, which is

executed simultaneously with respect to the directions and the nonparametric link function. As

we shall see, we benefit from this simultaneous minimization.

If the weights depend on B, the implementation of the minimization in problem (2.7) is non-

trivial. The weight wi0 in approximation (2.5) should be chosen such that the value of wi0 is a

function of the distance between Xi and X0. Next, we give two choices of wi0.

2.1.1. Multidimensional kernel weight

To simplify problem (2.7), a natural choice is

wi0 = Kh.Xi − X0/

/

n
∑

l=1

Kh.Xl − X0/:

This kind of weight can be used as an initial step of estimation. Given d, we obtain a set of

directions B̂ via the minimization in problem (2.7). Let S. B̂/ denote the subspace spanned

by the column vectors of B̂. The distance between the space S.B0/, the space spanned by the

column vectors of B0, and the space S. B̂/ can be measured by ‖.I − B0BT
0 / B̂‖ if d < D and

‖.I − B̂B̂
T

/B0‖ if d � D. Here and later, obvious augmentations by zero vectors are understood

and the distance is denoted by m.B̂; B0/.

Theorem 1. Suppose that conditions 1–6 (in Appendix A) hold, model (1.1) is true and as

n → ∞ both nhp=log.n/ → ∞ and h → 0. If d < D, then

m.B̂; B0/ = OP .h2 + h−1δ2
n/;

where δn = {log.n/=nhp}1=2. If d � D, then
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m.B̂; B0/ = OP .h3 + h−1δ2
n/:

Provided that the dimension is chosen correctly, the rate of consistency forB̂ is OP{h3
opt log.n/}

if we use the optimal bandwidth hopt of the regression function estimation in the sense of

minimizing the mean integrated squared errors. This is faster than the rate that is achieved

by the other methods, which is OP .h2
opt/. Note that the consistency rate for the local linear

estimator of the link function is also OP .h2
opt/. The faster rate is due to minimizing the average

(conditional) variance with respect to both directions and the local linearization of the link

function. Moreover, if we extend the idea to higher order local polynomial smoothers, root n

consistency for the estimator of B0 can be achieved; see the discussion in Section 6.

2.1.2. Refined kernel weight

If we know the dimension of the EDR space, which is usually less than p, we can then search for

the EDR directions in a lower dimensional space, thereby reducing the effect of high dimension

and improving the accuracy of the estimation. Suppose that we have an initial estimator of B0,

say B̂. Let

w̃ij = Kh{B̂
T

.Xi − Xj/}
/ n
∑

l=1

Kh{B̂
T

.Xl − Xj/}: (2.8)

Re-estimate B0 by the minimization in problem (2.7) with weights w̃ij replacing wij. By an abuse

of notation, we denote the new estimator of B0 by B̂ also. Replace B̂ in equation (2.8) by the latest

B̂ and estimate B0. Repeat this procedure until B̂ converges; we call the limit the refined MAVE

(RMAVE) estimator. Results similar to those of theorem 1 can be obtained. We here use a lower

dimensional kernel and the bandwidth now is smaller than that used in the multidimensional

wij, leading to a faster rate of consistency.

One of the referees has drawn our attention to an unpublished paper by W. H. Wong and X.

Shen, who have been working on a similar problem. They have proposed the nearest neighbour

method and used the weights

wij =
1

n
1{Xi is one of the N nearest observations to Xj};

where N < n is a suitable integer and 1A denotes the indicator function of the set A.

2.2. Dimension of effective dimension reduction space

Methods have been proposed for the determination of the number of the EDR directions. See,

for example, Li (1992), Schott (1994) and Cook (1998). Their approaches tend to be based

on similar probabilistic assumptions on the covariates X imposed by SIR. We now propose

an alternative approach within our set-up. It is well known that a cross-validation approach

penalizes the complexity of the model. See, for example, Stone (1974). We now extend the

cross-validation method of Cheng and Tong (1992) and Yao and Tong (1994) to solve the above

problem. A similar extension may be effected by using the approach of Auestad and Tjøstheim

(1990), which is asymptotically equivalent to the cross-validation method.

Suppose that β1;: : : ;βD are the EDR directions, i.e. y = g.βT
1 X; : : : ;βT

DX/ + " with E."|X/ = 0

almost surely. If D < p, we can nominally extend the number of directions to p, say {β1, : : : ,

βD; : : : ;βp}, such that they are perpendicular to one another. Now, the problem becomes the

selection of the covariates among {βT
1 X; : : : ;βT

p X}. However, because β1; : : : ;βp are unknown,

we must replace βks by their estimators β̂ks. As we have proved that the rate of consistency of
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the β̂ks is faster than that of the nonparametric link function estimators, the replacement is

justified. Let

âd0;j =
n
∑

i=1;i�=j

K
.i;j/
hd

yi

/ n
∑

i=1;i�=j

K
.i;j/
hd

;

where K
.i;j/
hd

= Khd
{ β̂

T

1 .Xi − Xj/; : : : ;β̂
T

d .Xi − Xj/}. Here, we use the suffix d to highlight the

fact that the bandwidth depends on the working dimension d. Let

CV.d/ = n−1
n
∑

j=1

.yj − âd0;j/2; d = 1; : : : ; p:

Suppose that model (1.1) holds and BT
d X has a density fd.v1; : : : ; vd/ with compact support,

where Bd = .β1; : : : ;βd/. For ease of exposition, we temporarily abbreviate g.v1; : : : ; vD/ to g.v/

and fd.v1; : : : ; vd/ to fd.v/. When d � D, we have

CV.d/ = σ2 + h4
d

∫

[1

2
tr{▽2g.v/} + f −1

d .v/ ▽T g.v/ ▽ fd.v/
]2

fd.v/ dv1 : : : dvd

+
αd

nhd
d

{1 + oP .1/} + OP .n−1=2 + h5
d/;

where σ2 = var."/,

αd = E{E."2|BTX/=fd.BTX/}

∫

K2.v1; : : : ; vd/dv1 : : : dvd

and ▽2g.v/ is a d×d matrix whose .i; j/th element is @2g.v/=@vi@vj. If hd is monotonic increasing

such that hd+1
d+1 = o.hd

d/, then CV.d/ increases with d. Note that the optimal bandwidth hd ∼
n−1=.d+4/ satisfies this requirement. When d < D, it is not difficult to see that CV.d/ > CV.D/

because of the lack of fit. To include the case that y and X are independent, we define

CV.0/ = n−1
n
∑

i=1

.yi − ȳ/2:

It is easy to see that CV.0/ = σ2 + OP .n−1=2/. Thus, we estimate the dimension of EDR space

as

d̂ = arg min
0�d�p

{CV.d/} :

Theorem 2. Suppose that the assumptions 1–6 (in Appendix A) hold. Under model (1.1) with

X having a density with compact support, we have

d̂ → D in probability

If X is not bounded, we may consider only a compact domain over which the density is

positive. Then we have a small probability of overestimating the dimension (Cheng and Tong,

1992; Yao and Tong, 1994). Note that ad0;j is the Nadaraya–Watson estimator of a. We can use

alternatively the local linear estimator for ad0;j, which also leads to a consistent d̂. However,

the local linear estimator involves more complicated computation. Moreover, as far as cross-

validatory determination of the dimension is concerned, our experience shows that using the

local linear estimator tends to lead to a poorer performance in comparison with using the

Nadaraya–Watson estimator. Empirical evidence suggests that using the latter tends to incur a

smaller bandwidth and to lead to a heavier penalty for overfitting.
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2.3. Bandwidth and algorithm

An important feature of the MAVE method is that we do not need to undersmooth the link

function estimator for the EDR direction estimator to achieve a higher rate of consistency than

the former. Therefore, the optimal bandwidth in the sense of mean integrated squared error

can be used and, in practice, a variable bandwidth is normally recommended, e.g. (in obvious

notation)

Kh.u1; : : : ; ud/ =
K.u1=h.1/; : : : ; ud=h.d//

d
∏

k=1

h.k/

;

h = .h.1/; : : : ; h.d// and d is the dimension of K.·/. There are many ways to obtain such a

bandwidth h. See, for example, Fan and Gijbels (1996) and Yang and Tschernig (1999).

Our search procedure is as follows.

Step 1 (directions): for each d, 1 � d � p, we search for the d directions as follows.

(a) Initial value: use the multidimensional kernel weight to obtain an initial estimate of

possible EDR directions β̂1; β̂2; : : : ; β̂d by minimizing problem (2.7).

(b) Refined estimation: let B̂ = . β̂1; : : : ; β̂d/ constitute the latest estimator of B. Therefore

we obtain refined kernel weights by using equation (2.8). We refine the estimator via ex-

pression (2.7) using the refined kernel weights. Continue this procedure until convergence.

The CV(d) values can be obtained by using the final estimators of the directions.

Step 2 (dimension and output results): compare the CV(d), 0 � d � p. The d with the smallest

CV(d) value is the estimated dimension. The corresponding estimator of B in step 1(b) gives

the estimated EDR directions.

Let B̂a and B̂b be the estimators of B in two adjacent iterations in step 1(b). A suggested

stopping rule for step 1(b) is when the distances m. B̂a; B̂b/ in several adjacent iterations are

each less than a pre-set tolerance. Next, we describe one method to implement the minimization

in problem (2.7). For any d, let B = .β1; : : : ;βd/ be the initial value (set β1 = β2 = : : : = βd = 0

in step 1(a)). Bl;k = .β1; : : : ;βk−1/ and Br;k = .βk+1; : : : ;βd/, k = 1; 2; : : : ; d. Minimize

Sn;k =
n
∑

j=1

n
∑

i=1







yi − aj − .Xi − Xj/T.Bl;k;β; Br;k/





cj

dj

ej











2

wij

subject to BT
l;kβ = 0 and BT

r;kβ = 0;

where cj is a .k−1/×1 vector, dj a scalar and ej a .d−k/×1 vector. This is a typical constrained

quadratic programming problem. See, for example, Rao (1973), page 232. Let

Cj =
n
∑

i=1

wij.Xi − Xj/;

Dj =
n
∑

i=1

wij.Xi − Xj/.Xi − Xj/T;

Ej =
n
∑

i=1

wijyi;

Fj =
n
∑

i=1

wij.Xi − Xj/yi:
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With β given, the .aj; cj; dj; ej/ which minimizes Sn;k is given by









aj

cj

dj

ej









=
(

1 CT
j .Bl;k;β; Br;k/

.Bl;k;β; Br;k/TCj .Bl;k;β; Br;k/TDj.Bl;k;β; Br;k/

)−1

×
(

Ej

.Bl;k;β; Br;k/TFj

)

;

j = 1; : : : ; n: If aj; cj, dj and ej are given, then the β which minimizes Sn;k is given by

(

β

λ

)

=





n
∑

j=1

d2
j Dj B̃k

B̃T
k 0





+ 



n
∑

j=1

dj

{

Fj − ajCj − DjB̃k

(

cj

ej

)}

0



 ;

where B̃k = .Bl;k; Br;k/ and A+ denotes the Moore–Penrose inverse of a matrix A. Here λ is the

usual Lagrangian multiplier for the constraint minimization. Finally, we normalize β.

3. Links with other methods and generalization

3.1. Outer product of gradients estimation

Suppose that y = g̃.X/+" with E."|X/ = 0 almost surely. Consider the minimization in problem

(2.6). Under assumptions 1–6 (in Appendix A) and

wi0 = Kh.Xi − X0/

/

n
∑

l=1

Kh.Xl − X0/;

we have

min
a;b

(

n
∑

i=1

[yi − {a + bTBT.Xi − X0/}]2wi0

)

= σ̂2.X0/ + h2 ▽T g̃.X0/

×.Ip×p − BBT/ ▽ g̃.X0/ + oP .h2/;

where σ̂2.X0/ = Σ
n
i=1"2

i wi0 does not depend on B. Thus, the minimization problem (2.7)

depends mainly on

E{▽Tg̃.X/.Ip×p − BBT/ ▽ g̃.X/} = tr[.Ip×p − BBT/E{▽g̃.X/ ▽T g̃.X/}]

= tr[E{▽g̃.X/ ▽T g̃.X/}] − tr[BTE{▽g̃.X/ ▽T g̃.X/}B]:

Therefore, the B which minimizes this equation is the first d eigenvectors corresponding to the d

largest eigenvalues of E{▽g̃.X/ ▽Tg̃.X/}, which is the average OPG of g̃.·/.

Lemma 1. Suppose that g̃.·/ is differentiable. If model (1.1) is true, then B0 is in the space

spanned by the first D eigenvectors of E[▽g̃.X/ ▽T g̃.X/] corresponding to the largest D

eigenvalues.

This relationship was also noticed in Li (1991). By lemma 1, it is easy to see that the EDR

space is unique up to orthogonal transformations if the density function of X has a compact

support. We may use lemma 1 and propose the following estimation procedure. First, estimate
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the gradients by local polynomial smoothing. Specifically, we consider the local linear fitting in

the form of the minimization problem

min
aj;bj

(

n
∑

i=1

[{yi − aj − bT
j .Xi − Xj/}2wij]

)

: (3.1)

We then estimate E{▽g̃.X/ ▽T g̃.X/} by

Σ̂ =
1

n

n
∑

j=1

b̂j b̂T
j ;

where b̂j is the minimizer from expression (3.1). Finally, we estimate the EDR directions by the

first d eigenvectors of Σ̂. We call this method the method of OPG estimation.

Theorem 3. Let β̂1; : : : ; β̂d be the first d eigenvectors of Σ̂ corresponding to the largest

d eigenvalues, and B̂ = .β̂1; : : : ; β̂d/. Suppose that conditions 1–6 (in Appendix A) hold and

model (1.1) is true. If nhp=log.n/ → ∞ and h → 0, then

m.B̂; B0/ = OP .h2 + δ2
nh−1/:

Unlike the ADE method, the OPG method still works even if E {▽g̃.X/}= 0. Moreover, the

OPG method can handle multiple EDR directions simultaneously whereas the ADE method

can only handle the first EDR direction (i.e. the single-index model). We can further refine the

OPG estimator using refined weights as in the RMAVE method. Compared with the MAVE

method, the OPG method still suffers from the effect of the bias term in nonparametric function

estimation. Therefore, the rate of consistency is slower than that of the MAVE method when

the dimension is chosen correctly. However, the OPG method is easy to implement and can be

used as an initial value of other estimation methods. Li (1992) proposed the principal Hessian

directions (PHD) method by estimating the Hessian matrix of g.·/. Similarly to the OPG method,

the directions are the eigenvectors of the Hessian matrix. For a normally distributed design X,

the Hessian matrix can be properly estimated simply by Stein’s lemma. However, the PHD

method assumes some probabilistic structure on design X which is frequently violated in time

series analysis. More fundamentally, the PHD method involves estimators of second derivatives

whereas the OPG method involves only the first derivatives, which are considerably simpler and

easier to estimate.

3.2. Inverse regression minimum average (conditional) variance estimation

We start with

w̄ij = Kh.yi − yj/

/

n
∑

l=1

Kh.yl − yj/: (3.2)

Now, with this weight function, the minimization in equation (2.6) becomes the minimization

of
n
∑

i=1

[yi − {a + bβT.Xi − X0/}]2w̄i0;

and the MAVE method involves the minimization of

n
∑

i=1

n
∑

j=1

[yi − {aj + bjβ
T.Xi − Xj/}]2w̄ij:
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A ‘dual’ of this is the minimization of

n
∑

j=1

n
∑

i=1

{βTXi − cj − dj.yi − yj/}2w̄ij: (3.3)

This may be considered an alternative derivation of the SIR method. The extension of expression

(3.3) to more than one direction can be stated as follows. Suppose that the first k directions have

been calculated and are denoted by β̂1; : : : ; β̂k respectively. To obtain the .k + 1/th direction,

we need to perform

min
α1j;:::;αkj;cj;dj;β

[

n
∑

j=1

n
∑

i=1

{βTXi + α1j β̂
T

1 Xi + : : : + αkj β̂
T

k Xi − cj − dj.yi − yj/}2w̄ij

]

subject to βT.β̂1; : : : ; β̂k/ = 0 and ‖β‖ = 1: (3.4)

We call the estimation method based on minimizing expression (3.3) with w̄ij as defined in

equation (3.2) the inverse MAVE (IMAVE) method. The IMAVE method is in line with the

most predictable variate (Hotelling, 1935). The minimizations in expressions (3.3) and (3.4) can

be seen as looking for linear combinations of X that are most predictable from y. Under a similar

assumption on X as in SIR, we have the following result.

Theorem 4. Suppose that equation (1.2) and assumptions 1, 2(b), 3(b), 4, 5(b) and 6 (in

Appendix A) hold. Let b̂ = .β̂1; : : : ; β̂d/. If h → 0 and nh=log.n/ → ∞, then

m.B̂; B0/ = OP{h2 + log.n/=nh + n−1=2}:

This result is similar to that of Zhu and Fang (1996). As noted previously, the assumption on

the design X can be a handicap as far as applications of the IMAVE method are concerned.

Interestingly, simulations show that the SIR method and the IMAVE method can sometimes

produce useful results in the case of independent data even when this assumption is mildly

violated. However, for time series data, we find that this is often not so.

3.3. Semiparametric multi-index models

Consider the general model (1.3). Suppose that G.v; Z; θ/ is differentiable. For ease of exposition

we set D′ = 1. Let G′.v; Z; θ/ = @G.v; Z; θ/=@v. For BTXi close to BTX0 we have

G{φ.BTXi/; Zi; θ} ≈ G{φ.BTX0/; Zi; θ} + G′{φ.BTX0/; Zi; θ} ▽T φ.BTX0/BT.Xi − X0/:

To estimate B, we minimize

n
∑

j=1

n
∑

i=1

{yi − G.aj; Zi; θ/ − G′.aj; Zi; θ/bT
j BT.Xi − Xj/}2wij

with respect to aj; bj; j = 1; : : : ; n, θ and B. Similarly, we may first use the multidimensional

kernel weight to obtain an initial estimate and then repeatedly use the refined kernel weight.

Model (1.3) includes many models with a fixed dimension of EDR space. Examples are the

single-index model of Ichimura and Lee (1991), the generalized partially linear single-index

model of Carroll et al. (1997) and Xia et al. (1999) and the single-index coefficient regression

model of Xia and Li (1999). Here the estimation of the unknown function is also important.

An obvious question is whether we can estimate both the function and the directions (multi-

indices) with their optimal rates of consistency simultaneously. This problem has attracted much

attention. See, for example, Härdle et al. (1993), Severini and Wong (1992) and Carroll et al.

(1997).
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For most methods, the estimator of the direction suffers from the effect of the bias in the

estimator of the unknown link function. Therefore, undersmoothing the estimator of the link

function is necessary for the estimator of the direction to achieve its optimal rate of consistency.

We are not aware of any recommended method to select the undersmooth bandwidth. By mini-

mizing a cross-validation-type sum of squares of residuals simultaneously with respect to both

the bandwidth and the direction, Härdle et al. (1993) have given a positive answer to the question

raised in the previous paragraph. However, we have discussed the problems with this approach

in Section 2. In contrast, the MAVE-type methods can handle all the models mentioned above

effectively. Specifically, when D′ = 1, the root n rate of consistency for the direction estimator

can be obtained and at the same time the optimal rate of consistency for the nonparametric

function estimator can be achieved.

3.4. Discrete or functionally related covariates

Generally, dimension reduction methods cannot be applied to models with discrete or function-

ally related covariates because they are not estimable, in the sense that there can be more than

one dimension reduction space up to orthogonal transformations.

We believe that, provided that the link function can be approximated locally by ‘tangent’

planes, the MAVE method can still be practically useful for discrete or functionally related

covariates. The limiting accuracy will, of course, depend on the accuracy of the tangent plane

approximation. We must keep in mind two points:

(a) the bandwidth cannot be selected to be smaller than a critical value because we must use

adjacent points to estimate the ‘tangent’ plane and

(b) if none of the X design points has repeated measurements then bandwidth selection

methods based on cross-validation may be considered. If the latter methods are ruled

out, a feasible alternative may be one based on the idea of the nearest neighbours as

follows. For any point xk, we choose a nearest neighbour of xk which includes observations

.x̃1; ỹ1/; : : : ; .x̃p̃; ỹp̃/, such that the plane y = a + bTX is estimable, i.e. there is a unique

solution of .a; b/ to mina;b{Σ
p̃

i=1.ỹi − a − bTX̃i/
2}; cf. the nearest neighbour method due

to Wong and Shen (unpublished) mentioned in Section 2.

If X includes continuous covariates as well as categorical or functionally related covariates,

then the RMAVE method still applies with appropriate initial values. If we carry out a global

search for the EDR directions, the procedure may be trapped by directions with positive proba-

bility due to the categorical data. If we have some prior information about the EDR directions

such that we only need to search for the directions locally, then the density requirement can be

relaxed, namely the density function of BTX exists for all B ∈ B = {B: BTB = ID and ‖B − B0‖
< c} for some c > 0. Suppose further that E.XXT|BTX = v/ and E.X|BTX = v/ exist and

have continuous second-order derivatives. Then the RMAVE method in our paper applies

with appropriate initial values in B and the search for the directions conducted within the

same region.

4. Simulations

In this section, we carry out simulations to check the performance of the proposed OPG method

and the MAVE-type methods. We shall use the square-distance function m2, where m was defined

in Section 2, to measure the error of estimation when we compare our method with others.
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4.1. Example 1

We first adopt the examples used in Li (1991). Let p = 10 and "; x1; x2; : : : ; x10 be indepen-

dent random variables each with a standard normal distribution. Consider two regression

models:

y = x1.x1 + x2 + 1/ + 0:5"; (4.1)

y = x1={0:5 + .x2 + 1:5/2} + 0:5": (4.2)

The sample size is set at n = 200 or n = 400 and 100 replications are drawn in each case. Let

β1 = .1; 0; : : : ; 0/T, β2 = .0; 1; : : : ; 0/T and B0 = .β1;β2/. Fig. 1 shows the means of the estima-

tion errors m2.β̂1; B0/ and m2.β̂2; B0/; they are labelled ‘1’ and ‘2’ for β1 and β2 respectively. In

our simulations, the IMAVE method outperforms the SIR method but is outperformed by the

MAVE method. The RMAVE method performs best of all the methods. Zhu and Fang (1996)

proposed a kernel smooth version of the SIR method. However, their method does not show a

significant improvement over that of the original SIR method.

Fig. 1. Means of m2.β̂1; B0/ (labelled 1) and m2.β̂2; B0/ (labelled 2) (broken curves are based on the MAVE
method; full curves are based on the IMAVE method; wavy curves are based on the SIR method; bold curves
are based on the RMAVE method; the horizontal axes give the numbers of slices or the bandwidth (in square
brackets) for the SIR method or IMAVE method respectively): (a) model (4.1), sample size 200, bandwidths
1–3 (MAVE method) and 0.1–1 (RMAVE method); (b) model (4.1), sample size 400, bandwidths 1–2 (MAVE
method) and 0.1–1 (RMAVE method); (c) model (4.2), sample size 200, bandwidths 1–3 (MAVE method)
and 0.1–1 (RMAVE method); (d) model (4.2), sample size 400, bandwidths 1–2 (MAVE method) and 0.1–1
(RMAVE method)
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4.2. Example 2

Consider the model

y = XTβ1.XTβ2/2 + .XTβ3/.XTβ4/ + 0:5"; (4.3)

where X ∼ N.0; I10/ and " ∼ N.0; 1/ and they are independent. In model (4.3), the co-

efficients β1 = .1; 2; 3; 4; 0; 0; 0; 0; 0; 0/T=
√

30, β2 = .−2; 1; − 4; 3; 1; 2; 0; 0; 0; 0/T=
√

35, β3 =
.0; 0; 0; 0; 2; −1; 2; 1; 2; 1/T=

√
15, β4 = .0; 0; 0; 0; 0; 0; −1; −1; 1; 1/T=2 and there are four EDR

directions. Let B0 = .β1;β2;β3;β4/. In our simulations, the SIR method and the IMAVE method

perform quite poorly for this model. Next, we use this model to check the OPG method and the

MAVE method.

With sample size n = 100, 200, 400, 200 independent samples are drawn in each case. The

average distance from the estimated EDR directions to S.B0/ is calculated for the PHD method

(Li, 1992), the OPG method, the MAVE method and the RMAVE method. The results are listed

in Table 1. The results suggest that the MAVE method performs better than the OPG method,

which performs better than the PHD method, whereas the RMAVE method shows a significant

improvement over the MAVE method. Our method for the estimation of the number of EDR

directions also gives satisfactory results.

4.3. Example 3

We next consider the non-linear time series model

yt = −1 + 0:4βT
1 Xt−1 − cos

(π

2
βT

2 Xt−1

)

+ exp{−.βT
3 Xt−1/2} + 0:2"t; (4.4)

where Xt−1 = .yt−1; : : : ; yt−6/T, the " are independent and identically distributed N.0; 1/, β1 =
.1; 0; 0; 2; 0; 0/T=

√
5, β2 = .0; 0; 1; 0; 0; 2/T=

√
5 and β3 = .−2; 2; −2; 1; −1; 1/T=

√
15. Fairly

large simulations suggest that there is no discernible symmetry for the covariates; the SIR

method does not appear appropriate or to perform well.

Now, the simulation results summarized in Table 2 show that both the OPG method and

the MAVE method have quite small estimation errors. As expected, the RMAVE method works

Table 1. Average m2(β̂k; B0/ for model (4.3) by using different methods

n Method m2(β̂k ,B0) Frequencies of estimated
numbers of EDR directions

k = 1 k = 2 k = 3 k = 4

100 PHD 0.2769 0.2992 0.4544 0.5818 f1 = 0; f2 = 10; f3 = 23,
OPG 0.1524 0.2438 0.3444 0.4886 f4 = 78; f5 = 44; f6 = 32;
MAVE 0.1364 0.1870 0.2165 0.3395 f7 = 11; f8 = 1; f9 = 1;
RMAVE 0.1137 0.1397 0.1848 0.3356 f10 = 0

200 PHD 0.1684 0.1892 0.3917 0.6006 f1 = 0; f2 = 0; f3 = 5;
OPG 0.0713 0.1013 0.1349 0.2604 f4 = 121; f5 = 50; f6 = 16;
MAVE 0.0710 0.0810 0.0752 0.1093 f7 = 8; f8 = 0; f9 = 0;
RMAVE 0.0469 0.0464 0.0437 0.0609 f10 = 0

400 PHD 0.0961 0.1151 0.3559 0.6020 f1 = 0; f2 = 0; f3 = 0;
OPG 0.0286 0.0388 0.0448 0.0565 f4 = 188; f5 = 16; f6 = 6,
MAVE 0.0300 0.0344 0.0292 0.0303 f7 = 0; f8 = 0; f9 = 0;
RMAVE 0.0170 0.0119 0.0116 0.0115 f10 = 0
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Table 2. Average m2(β̂k, B0) for model (4.4) by using different methods

n Method m2(β̂k ,B0) Frequency of estimated
number of EDR directions

k = 1 k = 2 k = 3

100 PHD 0.1582 0.2742 0.3817 f1 = 3; f2 = 73;
OPG 0.0427 0.1202 0.2803 f3 = 94; f4 = 25;
MAVE 0.0295 0.1201 0.2924 f5 = 4; f6 = 1
RMAVE 0.0096 0.1712 0.2003

200 PHD 0.1565 0.2656 0.3690 f1 = 0; f2 = 34;
OPG 0.0117 0.0613 0.1170 f3 = 160; f4 = 5;
MAVE 0.0059 0.0399 0.1209 f5 = 1; f6 = 0
RMAVE 0.0030 0.0224 0.0632

300 PHD 0.1619 0.2681 0.3710 f1 = 0; f2 = 11;
OPG 0.0076 0.0364 0.0809 f3 = 185; f4 = 4;
MAVE 0.0040 0.0274 0.0666 f5 = 0; f6 = 0
RMAVE 0.0017 0.0106 0.0262

better than the MAVE method, which outperforms the OPG method. The PHD method does

not fare very well. The number of the EDR directions is also estimated correctly most of the time.

5. Examples

5.1. Circulatory and respiratory problems in Hong Kong

Consider the effect of the levels of pollutants and weather on the total number yt of daily hos-

pital admissions of patients suffering from circulatory and respiratory problems. The pollutant

and weather data are the daily average levels of sulphur dioxide (x1t .µg m−3)), nitrogen diox-

ide (x2t .µg m−3)), respirable suspended particulates (x3t .µg m−3)), ozone (x4t .µg m−3)),

temperature (x5t .◦C)) and relative humidity (x6t (%)). The data were collected daily in Hong

Kong from January 1st, 1994, to December 31st, 1995, and are shown in Fig. 2. The basic

question is this: are the prevailing levels of the pollutants a cause for concern?

A naı̈ve approach may be to start with a simple linear regression model such as

yt = 255:45

.20:64/

− 0:55x1t

.0:18/

+ 0:58x2t

.0:17/

+ 0:18x3t

.0:13/

− 0:33x4t

.0:11/

− 0:12x5t

.0:46/

− 0:16x6t

.0:23/

: (5.1)

Note that the coefficients of x3t , x5t and x6t are not significantly different from 0 (at the 5%

level of significance) by reference to their standard errors shown inside the parentheses and the

negative and significant coefficients of x1t and x4t are difficult to interpret. Refinements of this

model are, of course, possible within the linear framework but are unlikely to throw much light

with respect to the opening question because, as we shall see, the situation is quite complex.

Previous analyses, such as Fan and Zhang (1999) and Cai et al. (2000), have not included the

weather effect. However, it turns out that the weather has an important role to play.

The daily admissions shown in Fig. 2(a) suggest non-stationarity in the form of almost a

level shift taking place in early 1995 although none of the covariates seems to show a similar

level shift. Now, a trend was also observed by Smith et al. (1999) in their study of the effect of

particulates on human health. They conjectured that the trend was due to the epidemic effect.

In our case, we understand from our data provider that additional hospital beds were released

to accommodate circulatory and respiratory patients in the course of his joint project. As a
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Fig. 2. (a) Total number of daily hospital admissions of circulatory and respiratory patients ( , time
trend) and average levels of (b) sulphur dioxide, (c) nitrogen dioxide, (d) respirable suspended particulates,
(e) ozone, (f) temperature and (g) humidity

result, we estimate the time dependence by a simple kernel method and the result is shown in

Fig. 2(a). Another factor is the day of the week effect, presumably due to the hospital booking

system. The day of the week effect can be estimated by a simple regression method using dummy

variables. To assess the effect of pollutants better, we remove these two factors first. By an abuse

of notation, we shall continue to use yt to denote the ‘filtered’ data, now shown in Fig. 3.

As the pollutant-based and weather-based covariates may affect the circulatory and res-

piratory system with a time delay, we consider the six covariates in the last 7 days (1 week).

Altogether, we have 42 covariates:

Xt = .x1;t−1; x1;t−2; : : : ; x1;t−7; x2;t−1; x2;t−2; : : : ; x2;t−7; : : : ; x6;t−1; x6;t−2; : : : ; x6;t−7/T:

Now, using the RMAVE method and with a cross-validation bandwidth, we have the results in

Table 3. The cross-validation choice of the dimension is 3. The corresponding direction estimates

are listed in Table 4.
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Fig. 3. ‘Filtered’ number of daily hospital admissions of circulatory and respiratory patients by removing the
time trend and the day of the week effect

Figs 4(a)–4(c) show yt plotted against the respective EDR directions. These plots and Table 4

suggest the following features.

(a) Rapid temperature changes play an important role. (Note the dominant coefficients for

temperature in the two recent past days in β̂
T

I X.)

(b) Of the pollutants, the most influential seems to be the particulates (note the large

coefficient for particulates at lag 5 in β̂T
IIX) and the least influential seems to be sulphur

dioxide.

(c) The weather covariates are influential. (Note the many large coefficients for the weather

covariates in all the three β̂s.)

Comparing the levels of the individual pollutants in Hong Kong against the national ambient

quality standard of the USA lends further support to feature (b).

Bearing these features in mind, we may explore further by focusing on the suspended partic-

ulates (x3/, the ozone level (x4), the temperature .x5/ and its variation, and the relative humidity

(x6). First, we define the variation of temperature as

vt = std.x5;t−k; k = 1; 2; 3; 4; 5/:

Further simplification is obtained by selecting only one lag for each covariate. For this, we use

the method of Yao and Tong (1994). The lagged covariates selected are x3;t−2; x4;t−6; x5;t−4 and

x6;t−2. Let Zt = .x3;t−2; x4;t−6; vt; x5;t−4; x6;t−2/T: We then consider a model of the form

yt = g.Zt/ + "t :

Table 3. Results of the CV method

Dimension Bandwidth CV(d) value

1 0.10 0.33
2 0.13 0.28
3 0.16 0.27
4 0.20 0.29
5 0.21 0.29
6 0.24 0.31
7 0.24 0.34
8 0.29 0.31
9 0.31 0.34

10 0.31 0.37
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Table 4. Estimated EDR directions β̂I; β̂II and β̂III†

Parameter Estimates for the following lags:

1 2 3 4 5 6 7

x1 0.0586 −0:0854 0.0472 −0:0152 0:1083 −0:0942 0.0734
x2 0.0876 0.0313 --0.1964 0.0893 −0:0867 0.0951 −0:1068
x3 --0.2038 0.1103 0.0153 0.0740 −0.0756 0.1283 −0.0520
x4 0.0155 0.0692 0.1622 --0.2624 0.1312 0.1342 0.0976
x5 0.5065 --0.4079 0.0743 0.0859 --0.3024 −0.1734 −0.0302
x6 −0.0294 −0.0610 0.0129 −0.0392 −0.0075 0.2850 0.0513
x1 --0.1525 0.0962 --0.1112 0.1170 −0.0388 −0.0605 −0.0326
x2 −0.0029 0.1614 −0.0955 --0.1160 --0.2185 0.0826 0.1696
x3 −0.0096 --0.1874 0.2422 −0.0047 0.3272 --0.2646 −0.0041
x4 −0.0013 --0.1162 0.0673 0.2113 --0.2193 0.1235 --0.1282
x5 0.1410 0.1193 --0.1425 0.1819 --0.2793 −0.0880 −0.0325
x6 −0.0345 --0.1479 −0.0400 0.4033 0.0474 0.0899 0.1336
x1 0.0701 0.0065 −0.0535 --0.1570 −0.0553 −0.0091 −0.0363
x2 −0.0529 0.1360 0.0723 0.1045 −0.0045 −0.0200 0.0221
x3 −0.0121 --0.1189 0.0715 −0.0814 0.0112 0.0155 0.1214
x4 0.2215 0.0103 --0.3304 0.1028 0.0160 --0.1805 0.1341
x5 0.2909 --0.2372 0.0621 −0.0211 0.0950 −0.0954 0.2507
x6 0.2797 --0.1094 --0.3038 0.0452 0.1754 --0.3937 0.2597

†Entries in bold have relatively large absolute values.

The above proposed procedure yields the results in Table 5.

On the basis of Table 5 the dimension of EDR space is chosen to be 3 with the following

estimated basis vectors for the space:

β̂1 = .−0:1317 −0:0772 0:5256 −0:8366 −0:0235/T;

β̂2 = .0:4809 0:3154 −0:6414 −0:5078 0:0018/T;

β̂3 = .0:0101 0:3815 0:1345 0:0734 −0:9115/T:

Figs 4(d)–4(f) show yt plotted against the three directions. The ‘price’ of using the reduced

set with five covariates instead of the original set with 42 covariates is, loosely speaking, an

increase in the percentage of unexplained variation from about 27% to about 34%. (As we use

standardized observations, we may interpret the CV(d) value as a percentage of unexplained

variation.) In return, we can gain further insight.

(a) The first EDR direction is −0:1317x3;t−2 − 0:0772x4;t−6 + 0:5256vt − 0:8366x5;t−4 −
0:0235x6;t−2, with temperature and temperature variation being the two dominant

Table 5. Results of the cross-validation
method

Dimension Bandwidth CV(d) value

1 0.325 0.3593
2 0.325 0.3516
3 0.325 0.3435
4 0.325 0.3523
5 0.475 0.3450
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(a) (b) (c)

(d) (e) (f)

Fig. 4. yt plotted against (a) β̂
T

I Xt, (b) β̂
T

IIXt, (c) β̂
T

IIIXt, (d) β̂
T

1Zt, (e) β̂
T

2Zt and (f) β̂
T

3Zt: , polynomial
regression to make trends more visualizable

components. Fig. 4(d) suggests that this direction sees practically only the mean level of

the hospital admissions.

(b) The second EDR direction is 0:4809x3;t−2 + 0:3154x4;t−6 − 0:6414vt − 0:5078x5;t−4 +
0:0018x6;t−2, which, together with Fig. 4(e), suggests that high levels of suspended

particulates and/or high levels of ozone during cold spells tend to cause high admiss-

ions.

(c) The third EDR direction is 0:0101x3;t−2 + 0:3815x4;t−6 + 0:1345vt + 0:0734x5;t−4 −
0:9115x6;t−2, which, together with Fig. 4(f), suggests that high ozone levels on extremely

dry days tend to cause high admissions.

This analysis suggests that pollutants have reached such a level in Hong Kong that it only

takes the weather to enter the right regime to exacerbate the circulatory and respiratory problems

there.

5.2. Hitters’ salary data

The hitters’ salary data set has attracted much attention among statisticians. The data consist

of times at bat (x1), hits (x2), home runs (x3), runs (x4), runs batted in (x5) and walks (x6) in

1986, years in major leagues (x7), times at bat (x8), hits (x9), home runs (x10), runs (x11), runs

batted in (x12) and walks (x13) during their entire career up to 1986, annual salary (y) in 1987,

put-outs (x14), assistances (x15) and errors (x16). For ease of exposition, we abuse the notation

and set y as the logarithm of annual salary in 1987, xj the standardized xj .j = 1; : : : ; 16/ and
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(a) (b)

Fig. 5. y plotted against (a) β̂T
1 X and (b) β̂T

2 X for the hitters’ salary data: *, outlier

X the vector .x1; : : : ; x16/T. The main interest is ‘why they make what they make’, which was

the main topic of a conference organized for the data by the American Statistical Association

in 1988. More recent studies on this data include Chaudhuri et al. (1994) and Li et al. (2000).

The latter suggested the existence of an ‘aging effect’ on salary.

Now, applying the RMAVE method to the data set and using model (1.1), we estimate the

dimension of the EDR space as 2. We plot y against the two EDR directions as shown in Fig. 5.

It suggests that there are seven outliers, in general agreement with an observation made by Li

et al. (2000). Next, applying the RMAVE method to the data with the outliers removed, we have

the following results. Table 6 shows that the dimension estimate remains at 2 and Fig. 6 shows the

plots of y against the estimated EDR directions. The similarity between the results before and af-

ter the removal of outliers suggests a high degree of robustness enjoyed by the RMAVE method.

The EDR directions are given in the first pair of columns of Table 7. Note that, in the second

direction, the negative coefficient .−0:23/ of x7 lends some support to the aging effect on salary

suggested by Li et al. (2000).

We may combine the MAVE methodology with ideas such as thresholds (e.g. Tong (1990))

and regression trees to fit different regression models to different parts of the data set. For

regression trees, we may mention the classification and regression trees method of Breiman

et al. (1984), the SUPPORT algorithm of Chaudhuri et al. (1994) and the PHDRT algorithm

of Li et al. (2000) and others. As an illustration, the left-hand ‘regime’ in Fig. 6(a) can be fitted

Table 6. Results of the cross-validation
method (with the outliers removed)

Dimension Bandwidth CV(d) value

1 0.148 0.265
2 0.395 0.118
3 0.473 0.134
4 0.609 0.158
5 0.544 0.139
6 0.596 0.135
7 0.662 0.146
8 0.572 0.133
9 0.655 0.132

10 0.927 0.178
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Table 7. Estimated EDR directions in model (1.1) and (5.2)†

β̂1 β̂2 β̂1 β̂2 β̂ θ̂

--0.25 (x1) 0.08 (x1) −0.05 (x1) 0.14 (x1) −0.01 (x1) --0.27 (x1)
0.24 (x2) 0.04 (x2) 0.04 (x2) --0.20 (x2) 0.15 (x2) 0.17 (x2)
0.09 (x3) −0.01 (x3) −0.03 (x3) −0.09 (x3) 0.02 (x3) 0.09 (x3)
0.00 (x4) 0.07 (x4) 0.03 (x4) 0.40 (x4) 0.01 (x4) −0.04 (x4)

−0.01 (x5) −0.04 (x5) −0.03 (x5) −0.03 (x5) −0.06 (x5) 0.01 (x5)
0.05 (x6) 0.04 (x6) −0.09 (x6) --0.29 (x6) 0.06 (x6) 0.04 (x6)
0.52 (x7) --0.23 (x7) 0.18 (x7) 0.02 (x7) 0.01 (x7) 0.51 (x7)
0.55 (x8) --0.49 (x8) 0.51 (x8) --0.57 (x8) 0.03 (x8) 0.74 (x8)
0.37 (x9) 0.75 (x9) --0.81 (x9) --0.26 (x9) 0.90 (x9) −0.11 (x9)
0.10 (x10) 0.15 (x10) 0.00 (x10) −0.08 (x10) 0.24 (x10) 0.03 (x10)
0.23 (x11) 0.12 (x11) 0.08 (x11) 0.27 (x11) 0.14 (x11) 0.16 (x11)
0.08 (x12) 0.17 (x12) −0.10 (x12) 0.08 (x12) 0.04 (x12) −0.13 (x12)
0.30 (x13) 0.22 (x13) 0.07 (x13) 0.43 (x13) 0.27 (x13) 0.08 (x13)

−0.01 (x14) 0.09 (x14) −0.06 (x14) 0.09 (x14) 0.08 (x14) −0.04 (x14)
0.04 (x15) −0.03 (x15) 0.03 (x15) 0.12 (x15) −0.03 (x15) 0.06 (x15)
0.00 (x16) 0.04 (x16) −0.05 (x16) −0.08 (x16) 0.05 (x16) −0.02 (x16)

†Entries in bold have relatively large absolute values.

by a simple straight line, say

y = 7:24 + 0:09x3 + 0:38x7 + 1:49x9 + 0:83x13:

.0:07/ .0:02/ .0:07/ .0:15/ .0:15/

The standard deviation of the fitted residuals, σ̂, is 0.26 and R2 = 0:865. The threshold is set

at −0:47. The right-hand regime is much more volatile and we may return to the RMAVE

method. The estimated dimension is still 2 and the estimated directions are given in the second

pair of columns in Table 7. Let z1 = β̂
T

1 X and z2 = β̂
T

2 X. We may fit to the right-hand regime a

polynomial regression such as

y = 6:61 − 1:86z1 + 0:21z2 − 1:19z2
2:

.0:03/ .0:11/ .0:09/ .0:19/

For this model, σ̂ = 0:28 and R2 = 0:714. The overall σ̂ is 0.27. A simple calculation shows

(a) (b)

Fig. 6. y plotted against (a) β̂T
1 X and (b) β̂T

2 X for the hitters’ salary data with the outliers removed
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Fig. 7. (a) Estimated regression surface of model (5.2) (•, observations) and (b) estimated regression func-
tion of g ( ) and estimate of the density function along the direction ( : : : : : : : ) (•, residuals after removing
the linear part in model (5.2))

that the coefficient of x7 in the model for the right-hand regime is again negative, with the

implication mentioned previously. As a comparison with the regression tree results obtained

by Li et al. (2000), we quote σ̂ = 0:422 for the classification and regression trees method with

five bases, 0.33 for the multivariate adaptive regression splines method with 13 bases, 0.44 for

the SUPPORT algorithm with two bases and 0.35 for the PHDRT algorithm. For our simple-

minded hybrid, the overall σ̂ = 0:27 with two bases.

Finally, we may consider the model

y = aβTX + g.θTX/ + "; (5.2)

where β ⊥ θ with ‖θ‖ = ‖β‖ = 1. This is a special case of model (1.3). See Xia et al. (1999) for

details. Using the method described in Section 3, we obtain estimates of β and θ as listed in the

third pair of columns in Table 7, â = 0:75, σ̂ = 0:26 and the estimate of the function g as shown

in Fig. 7(b). (Because the density of θ̂TX is not so uniform, a variable bandwidth is used. See Fan

and Gijbels (1996), page 152.) The dominant covariates in z1 = β̂TX are x2, x9, x10, x11 and x13,

all with positive coefficients. Four out of these five covariates measure past performance and so

we may interpret z1 as principally a measure of past performance. Fig. 7(a) shows that, along

the z1-axis, players with better past performance are paid better. Note also that the number

of years in the major league (x7) only features in z2, i.e. θ̂TX, and quite prominently so. The

estimated g.z2/ lends support to the existence of an aging effect, now with the salary peaking

at around z2 = − 0:5.

6. Conclusions

Our theoretical analysis, simulations and real applications have led us to believe that the MAVE

methodology has many attractive attributes. Different from most existing methods for the esti-

mation of the directions, the MAVE estimators of the directions have a faster rate of consistency

than the corresponding estimators of the link function. On the basis of the faster rate of con-

sistency, a consistent method for the determination of the number of EDR directions has been

proposed. The MAVE method can easily be extended to more complicated models. It does not
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require strong assumptions on the design of X and the regression functions and can be applied

to both independent data and dependent data.

As a by-product, we have extended the ADE method of Härdle and Stoker (1989) to the

case of more than one EDR direction, resulting in the OPG method. This method has wider

applicability with respect to designs for X and regression functions. Our basic idea has also led to

the IMAVE method, which is closely related to the SIR method and the most predictable problem

of Hotelling (1935), but in our simulations IMAVE seems to enjoy a better performance than

SIR. The refined kernel based on the determination of the number of the directions can further

improve the accuracy of estimation of the directions. Our simulations show that substantial

improvements can be achieved.

Theoretical improvements on the MAVE method and the OPG method can be made by using

higher order local polynomial smoothing. For example, we may replace expressions (2.7) and

(3.1) by

min
B:BTB=I

aj;bj;cj

[

n
∑

j=1

n
∑

i=1

{yi − aj − bjBT.Xi − Xj/

−
∑

1<k�r

∑

i1+:::+ip=k

.cj; i1; i2; : : : ; ip{Xi − Xj}
i1
1 {Xi − Xj}

i2
2 : : : {Xi − Xj}

ip
p /}2wij

]

;

where cj = {cj; i1; i2; : : : ; ip ; i1 + : : : + ip = k; 1 < k � r}, and

min
aj;bj;cj

[

n
∑

i=1

{yi − aj − bT
j .Xi − Xj/

−
∑

1<k�r

∑

i1+:::+ip=k

.cj; i1; i2; : : : ; ip{Xi − Xj}
i1
1 {Xi − Xj}

i2
2 : : : {Xi − Xj}

ip
p /}2Kh.Xi − Xj/

]

respectively. Higher rates of consistency can then be obtained.

Unlike the SIR method, the MAVE method is well adapted to time series; our experience

suggests that the MAVE method is also robust against outliers. Furthermore, all our simulations

show that the MAVE method has a much better performance than the SIR method (and OPG

method). Although theorem 2 furnishes a partial explanation, we are still intrigued because

SIR uses the one-dimensional kernel (for the kernel version) whereas the MAVE method uses a

multidimensional kernel. However, because the SIR method uses y to produce the kernel weight,

its efficiency will suffer from fluctuations in the link function. The gain by using the y-based

one-dimensional kernel does not seem to be sufficient to compensate for the loss in efficiency

caused by these fluctuations, but further research is needed here.
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Appendix A

A.1. Assumptions and remarks
The observations of X should be standardized before the analysis. Define the generalized conditional
density

pξ|ζ.u|v/ = lim
du→0;dv→0

{P.ξ ∈ [u; u + du/; ζ ∈ [v; v + dv//

duP.ζ ∈ [v; v + dv//

}

;

and we define 0=0 = 0. In our proofs, we need the following conditions. (In all our theorems, weaker
conditions can be adopted at the expense of much lengthier proofs.)

Condition 1: {.Xi; yi/} is a stationary (with the same distribution as .X; y/) and absolutely regular
sequence, i.e.

β.k/ = sup
i�1

[

E
{

sup
A∈F

∞
i+k

|P.A|F i
1/ − P.A/|

}]

→ 0 as k → ∞;

where F k
i denotes the σ-field generated by {.Xl; yl/ : i � l � k}. Further, β.k/ decreases at a geometric

rate.

Condition 2:

(a) E|y|k < ∞ for all k > 0;
(b) E‖X‖k < ∞ for all k > 0.

Condition 3:

(a) the density function f of X has bounded fourth derivative and is bounded away from 0 in a
neighbourhood D around 0;

(b) the density function fy of y has bounded derivative and is bounded away from 0 on a compact
support.

Condition 4: the generalized conditional densities pX|y.x|y/ of X given y and p.X0; Xl/|.y0; yl/ of .X0; Xl/
given .y0; yl/ are bounded for all l � 1.

Condition 5:

(a) g has bounded, continuous third derivatives;
(b) E.X|y/ and E.XXT|y/ have bounded, continuous third derivatives.

Condition 6: K.·/ is a spherical symmetric density function with a bounded derivative. All the moments
of K.·/ exist.

Condition 1 is made only for the purpose of simplicity of proof. It can be weakened to β.k/ = O.k−ι/
for some ι > 0. Many time series models, including the autoregressive single-index model (Xia and
An, 1999), satisfy assumption 1. Condition 2(a) is also made for simplicity of proof. See, for example,
Härdle et al. (1993). The existence of finite moments is sufficient. Condition 3(a) is needed for the uniform
rate of consistency of the kernel smoothing methods. Condition 4 is needed for kernel estimation of
dependent data. Condition 5(a) is made to meet the continuous requirement for kernel smoothing. The
kernel assumption 6 is satisfied by most of the commonly used kernel functions. For ease of exposition,
we further assume that

∫

UUTK.U/dU = I:
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A.2. The efficiency of the algorithm
To explain the mechanism of the MAVE method, we here consider only the single-index model, i.e.

y = g.βT
0 X/ + ":

We estimate β0 by minimizing

n
∑

j=1

n
∑

i=1

{yi − aj − bjβ
T.Xi − Xj/}

2wij (A.1)

iteratively with respect to .aj; bj/ and β. Let

sn;0.x/ = n−1
n

∑

i=1

Kh;i.x/;

sn;1.x/ = n−1
n

∑

i=1

Kh;i.x/..Xi − x/=h/;

sn;2.x/ = n−1
n

∑

i=1

Kh;i.x/..Xi − x/=h/..Xi − x/=h/T:

Then wij = n−1Kh;i.Xj/=sn;0.Xj/. According to our estimation procedure, if we begin with any unit norm
vector β, we have by minimizing expression (A.1)

âj =
n−1

n
∑

i=1

{βTsn;2βKh;i.Xj/ − βTsn;1β
T Kh;i.Xj/..Xi − Xj/=h/}yi

βT.sn;0.Xj/sn;2.Xj/ − sn;1.Xj/s
T
n;1.Xj//β

;

b̂jh =
n−1

n
∑

i=1

{sn;0.Xj/β
T Kh;i.Xj/..Xi − x/=h/ − βTsn;1 Kh; i.Xj/}yi

βT.sn;0.Xj/sn;2.Xj/ − sn;1.Xj/sT
n;1.Xj//β

:

After one step of iteration, we obtain the estimate of β0 as

β̃ =
{

n
∑

j=1

h2b̂2
j

n
∑

i=1

Kh;i.Xj/..Xi − Xj/=h/..Xi − Xj/=h/T

sn;0.Xj/

}−1

×
n

∑

j=1

hb̂j

n
∑

i=1

Kh;i.Xj/..Xi − Xj/=h/.yi − âj/

sn;0.Xj/
:

If β is not perpendicular to β0, we have

β̃ = {1 + .1 − βTβ0/ + oP .1/}β0 + OP [.h2 + δn/{h + m.β; β0/} + h−1δ2
n]β⊥

0 ; (A.2)

where β⊥
0 is a vector perpendicular to β0. Equation (A.2) means that the effect of the initial value is quite

small. Note that δn ∼ h2 log.n/1=2 if we use the optimal bandwidth of the estimation of the regression
function, i.e. h ∼ n−1=.p+4/. Suppose that we start with an initial estimator of β0 which has a consistency
rate of OP{h2 log.n/}. Then m.β; β0/ = OP{h2 log.n/} and we have

β̃ = {1 + .1 − βTβ0/ + oP .1/}β0 + OP .h3 + hδn + h−1δ2
n/β⊥

0 :

Therefore,

m.β̃; β0/ = OP .h3 + hδn + h−1δ2
n/:

This estimation procedure is very efficient in that, in theory, after two steps the estimate from our procedure
can achieve the final consistency rate.

A similar result was discovered in a different context by Hannan (1969). Specifically, he developed
an estimation procedure for the parameters of autoregressive moving average processes. Starting with
arbitrary consistent estimators of the parameters, a modification by one step of the Newton–Raphson-
type iteration can make the estimators asymptotically efficient. In the MAVE method, the first step is to
find a consistent ‘initial’ estimator. The second step is to modify the ‘initial’ estimator, which can also
make the estimate asymptotically efficient. In spite of the asymptotic efficiency, the iterative application
of the procedure beyond the two steps was suggested by Hannan (1969) as a way of further improving the
estimator. For the MAVE method, our simulation also suggests that further iterations are beneficial.
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Discussion on the paper by Xia, Tong, Li and Zhu

J. T. Kent .University of Leeds/
The paper is an ambitious attempt to tackle high dimensional regression problems. There are connections to
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several areas of statistics, including multivariate analysis, nonparametric regression and linear regression.
I would like to direct some comments to each area in turn.

Multivariate analysis
A standard model in multivariate analysis of variance involves k groups of p-dimensional observations X
with different means. The group membership can be represented in terms of a random variable y taking
integer values j = 1; : : : ; k, with probabilities πj . Conditional on y = j, the distribution of X is modelled
by Np.µj; Σ/; j = 1; : : : ; k. Let µ̄ denote the average of these mean values. Canonical variate analysis is
a tool for improving the interpretability in this setting via dimension reduction. It is assumed that these
means lie on a lower dimensional plane of dimension D, say, where D < min.k − 1; p/, i.e. we assume
that the {µj − µ̄} span a subspace of dimension D. Let B .p × D/ be a matrix whose columns span this
subspace and let C .p × .p − D// be a complementary matrix so that .B; C/ is non-singular. Reversing the
conditioning yields the logistic-type regression model

P.y = j|X/ ∝ πj exp{.µj − µ̄/T
Σ

−1.X − µ̄/ − 1
2
.µj − µ̄/T

Σ
−1.µj − µ̄/}

in which the exponent is a linear function of X with different coefficients for each j.
It can be checked that this conditional probability in fact depends only on BTX, not on all of X, and so

yields the conditional independence statement

.y ⊥ CTX/|BTX:

Thus this model can be regarded as a discrete and parametric version of the authors’ model (1.1). In
passing, note that similar conditional independence statements form the building-blocks of graphical
models, except that in our setting B is unknown.

In the k-groups model, the marginal distribution of X is a mixture of p-variate normals. However, when
attention is focused on the conditional distribution of y|X in the logistic-type regression model, it is usual
to allow more general possibilities for the marginal distribution of X. The k-groups model can be viewed
as a motivating example for the sliced inverse regression approach to nonparametric multiple regression,
whereas the logistic-type regression model better matches the tone of the current paper.

Nonparametric regression
A generalized additive model takes the form y = Σ

D
j=1gj.β

T
j X/+". The ridge terms gj.β

T
j X/ can be viewed

as ‘main effects’ in the directions βj . In contrast, the more general model (1.1), y = g.BT
0 X/ + ", which

forms the foundation of the paper, also allows ‘interaction terms’. However, I am concerned that there is a
tendency in practice to interpret the columns of B0 as main effects and to ignore possible interactions. For
example, consider the plots of y versus β̂T

1 X and y versus β̂T
2 X in Fig. 5. There are two related problems with

these plots. First any possible interactions are ignored; it might be better to represent the whole response
surface. The second problem is that these two directions β̂1 and β̂2 have no preferred status. It is possible
to take any other basis of their column space without affecting the validity of the model.

Linear regression
Reduced rank models are also of interest in linear regression analysis. Of course the ordinary least squares
regression model is a special case of model (1.1) with D = 1 and g linear. However, when p is large, it
is well known that the least squares estimator can be unstable, so attempts are often made to reduce the
dimensionality of X. One class of methods involves variable selection. However, a class of methods that is
more in keeping with the current paper involves the construction of new linear composite variables from X.
One of the simplest such methods is principal components regression in which X is replaced by its first few
dominant principal components. Unfortunately, this method is rather unsatisfactory since the dominant
principal components depend just on the X-variability and not on the relationship to y. A hybrid approach
between ordinary least squares and principal components regression is partial least squares; see Stone and
Brooks (1990) for a unified treatment. Of course these methods of dimension reduction (including variable
selection methods as well) depend heavily on the covariance structure of X.

Are there any lessons from this methodology for this paper? In particular, what happens when there
is very high correlation between the X-variables or, more generally, when the X-variables become nearly
collinear? My concern is that the estimate of the column space of B will become unstable and that problem
(2.7) might have multiple solutions.

I have found the paper tremendously stimulating, and it gives me great pleasure to propose the vote of
thanks.
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Adrian Bowman .University of Glasgow/

It is a great pleasure to add my thanks for this paper. I enjoyed both its reading and its presentation.
Over the past few years there has been a considerable amount of work in the dimension reduction area.
Regression used to be a topic which we thought we understood. Now we are not so sure. It is one of the
merits of this paper that it brings together a variety of approaches in this area and synthesizes them into a
simple but potentially powerful idea. Direct and simultaneous estimation of both the nonparametric and
the directional components of the model brings some significant benefits. These include an avoidance of
some of the usual difficulties with bias incurred by smoothing, a weakening of assumptions, the ability to
handle the special but important case of time series, some impressively strong supporting asymptotics and
evidence of good behaviour in numerical work. However, it is difficult to believe that these properties are
not bought at some price and I would like to explore one or two aspects of where the costs may lie.

The first relevant feature is that, although the central idea is attractively simple, the implementation
is necessarily more sophisticated. It involves a variety of steps. The first is smoothing in, possibly high
dimensional, covariate space. Most people feel comfortable when applying smoothing in one, two or
occasionally three dimensions. The authors have been courageous in going rather beyond that. In the
hospital admissions data courage gives way to heroism by smoothing in 42 dimensions. Of course, the
refinements introduced by the authors quickly reduce attention to the much smaller dimensional space
defined by the current effective dimension reduction (EDR) directions where smoothing can be applied
without difficulty. At the same time, there is a high dimensional minimization in operation to identify the
EDR directions. Beyond this lies a cross-validation step to compare the EDR dimensions. Finally, there
is some mention in the paper of the possibility of using a data-dependent bandwidth choice, although the
authors wisely do not routinely incorporate this. The end result is a set of EDR directions which have been
produced by a set of complex operations on the data. However, there is no difficulty in principle with that.
Complex data may require complex methods of analysis and if the end result brings insight then it has
been worthwhile.

On the question of insight, I would like to use the hospital admissions data as a means of raising some
practical issues. The first concerns the robustness and sensitivity of the procedure. A scatterplot matrix
reveals a variety of features in the covariates. One is the presence of substantial skewness. The sulphur
dioxide variable is a good example of this and it includes in particular two very large observations. Since
the sulphur dioxide, nitrogen dioxide and particulates covariates are all concentrations, it would be natural
to take a log-transformation of each. Ozone, although also skewed, contains observations at or close to
zero and so it may be best left unaltered, along with temperature. Humidity is a percentage, with many
observations at high values and so the logistic transformation would be natural here. The question is
whether the broad qualitative conclusions of the analysis will remain unchanged when repeated using the
variables on these, arguably more natural, scales. The assumptions of the model are weak but one can only
feel that there will be greater stability if the variables exhibit approximately normal variation. A second
issue arises from the scatterplot of log(nitrogen dioxide) and log(particulates) which shows a strong linear
relationship between these two variables. This is exactly the situation assumed by the model. However, it
then seems surprising that particulates feature strongly in the conclusions whereas nitrogen dioxide does
not. This raises the question of whether the decisions being made by the procedure on the weights to assign
to variables are ones which we shall always feel comfortable with.

An issue of the appropriateness of the model is raised by the scatterplot of nitrogen dioxide against
temperature. This shows a clear non-linear pattern which will be obscured by the linear combinations
around which the model is built. Of course, a second dimension will, in this case, allow the full relationship
between the covariates to be expressed. However, it would seem more appropriate to incorporate specific
non-linear relationships into the model in a more direct way, where these are appropriate.

Finally, some important issues arise under the heading of interpretation. The first derives from the fact
that EDR delivers a subspace, not a co-ordinate system. The same subspace can be represented by EDR
directions which are rotated in different ways. This makes the interpretation of specific elements of the
EDR direction vectors rather difficult. The nonparametric surface g has an unspecified shape, built from
all EDR directions simultaneously. The marginal space may change radically as the EDR co-ordinate
system is rotated. An interpretation can therefore only be made from the entire collection of EDRs and
this is not an easy task. In addition, if we simulate data where y is unrelated to x we are still likely to
identify EDR directions of apparent meaning. This highlights the need for some statistical methods of
model comparison, beyond CV(d), to ensure that the results of EDR can safely be attributed to meaningful
structure rather than to noise.

When the authors have come so far, it may seem churlish to ask them to go yet further. However, I raise
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these issues in the hope that the authors will be able to devote their considerable powers to addressing
them. To return to the original remarks, this is clearly a simple but potentially powerful idea which deserves
to be considered carefully. I have great pleasure again in congratulating the authors on their paper and in
warmly seconding the vote of thanks.

The vote of thanks was passed by acclamation.

Santiago Velilla .Universidad Carlos III de Madrid, Getafe/

In developing minimum average variance estimation (MAVE) the authors seem to have in mind a first-
order regression problem in which all the information that X carries on the response y is captured by the
conditional expectation E.y|X/. In this sense, the populational objective function (2.1) and its sample
version (2.7) seem to be appropriate when the error " in model (1.1) not only satisfies the condition
E."|X/ = 0 but also var."|X/ = σ2. If the conditional variance is not constant, expressions (2.1) and (2.7)
should perhaps be modified accordingly.

In comparing the four new methods proposed in this interesting paper, I find that both the outer product
of gradients method, in Section 3.1, and inverse MAVE, in Section 3.2, have a natural nested character.
Once a decision has been taken on the value of the dimension of the effective dimension reduction space,
directions are determined sequentially. In contrast, both MAVE and refined MAVE seem to require specific
computation in each step d = 1; 2; : : : . Moreover, as indicated in the algorithm of Section 2.3, computation
is required for all 1 � d � p. In view of the pattern of Tables 3, 5 and 6 in the examples in Sections 5.1
and 5.2, where the change in the CV(d) value is ‘small’ when spurious directions are considered, for ‘large’
values of d the algorithm could be initialized using the results for d − 1 making it ‘nested’, i.e. looking
only for β̂d , once β̂1; β̂2; : : : ; β̂d−1 have been determined. Of course, this is just a suggestion based on the
pattern of the tables in the examples, but this simplified scheme for spurious values of d might save some
computational time.

Finally, in connection with condition (1.2), in Velilla (1998), section 4.1, I proposed a method for
generating regressors X satisfying condition (1.2) that are not necessarily elliptical. This method has been
applied, for example, in Bura and Cook (2001a,b) for assessing by simulation the performance of some
methods for testing for dimension.

Wenyang Zhang .University of Kent at Canterbury/

I have two comments to make on this interesting paper.

Shannon’s entropy
A measure of uncertainty, Shannon’s entropy, was introduced by Shannon (1948), which is extremely
useful in communication theory. It also can be used to reduce dimension in regression to avoid the ‘curse
of dimensionality’.

Let ξ and η be two random variables with joint density function f.x; y/: p.x/ is the density of ξ, the
entropy of ξ is defined as

H.ξ/ = −
∫

p.x/ log {p.x/} dx

and the conditional entropy of ξ given η is

Hη.ξ/ = −
∫ ∫

f.x; y/[log {f.x; y/} − log {q.y/}] dx dy

where q.y/ is the density of η. The information contained in η about ξ is

I.ξ; η/ = H.ξ/ − Hη.ξ/:

Let Y be the response, X be the covariate with high dimension p and .Xi; Yi/; i = 1; : : : ; n, be a
sample from .X; Y/. For any fixed β, the estimate Î.Y; βτ X/ of I.Y; βτ X/ can be obtained by standard
density estimation; see Fan and Gijbels (1996). An alternative dimension reduction procedure is maximize
Î.Y; βτ X/ subject to ||β|| = 1, to find the maximizer β1 and maximum I1, then maximize Î.Y; βτ X/, subject
to βτβ1 = 0 and ||β|| = 1, to find the maximizer β2 and maximum I2, and continue this exercise until Iq

is less than a selected critical value c which may be obtained by cross-validation. .β1; : : : ; βq/ forms the
efficient directions to reduce the dimension. It would be very interesting to compare this approach with
that in the paper.
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Curse of dimensionality
In Section 2.1.1, the initial B is obtained based on

wi0 = Kh.Xi − X0/

/

n
∑

l=1

Kh.Xl − X0/:

If the dimension p of X is very large, it would be impossible to obtain an initial B with small bias owing
to the ‘curse of dimensionality’. My question is does this bias matter in your procedure? If not, why could
we not take the whole range of Xi as the initial bandwidth?

Frank Critchley .The Open University, Milton Keynes/
In welcoming the faster rate of consistency and time series extensions afforded by the paper, I would like
to make the following points in which Yx := .Y |X = x/ and "x := ."|X = x/.

(a) I was somewhat surprised not to find fuller reference to the important body of work by Cook and
co-workers, surveyed to that date in Cook (1998). Among other attractive features, such as its
graphical emphasis, this approach examines how the whole distribution of Yx—not just, as here, its
mean g.x/—varies with x. Again, it exploits a conditional independence formulation throughout,
that is both logically cogent and statistically intuitive. I would also like to draw attention to two
forthcoming papers, available on the Annals of Statistics Web site and directly relevant to this paper:
Cook and Li (2002), which addresses dimension reduction for g.x/, and Chiaromonte et al. (2002),
which overlaps with Section 3.4.

(b) There are two apparent significant errors of omission.

(i) In the sentence two after equation (1.1), a simple counter-example is

X ∼ N2.0; I/;

Y = g.X1/ + "

and
"x ∼ N.0; σ2x2

2/:

The omission appears to be that model (1.1) should be augmented by the location regression
requirement Y⊥⊥X|E.Y |X/ (Cook (1998), page 111); a similar remark applies to model (1.3).

(ii) In the sentence including expression (2.1), additional conditions—such as constancy of var."x/
over x—apparently are required.

(c) The benefits of this paper—including relaxation of condition (1.2) on X—come at the price of other
non-trivial restrictions to its applicability: in particular, to additive error models that are special
cases of location regression and in which certain additional conditions hold.

(d) In unpublished preliminary discussions with Cook, it was noted that the conditional independence
approach seems natural in a variety of time series contexts, autoregressive processes being obvious
examples. This would seem a promising line of enquiry.

(e) In view of the quadratic nature of the criterion minimized, I was somewhat surprised by the ro-
bustness to outliers claim (Section 6) and would value further details.

(f) Concerning Section 2.1.2, under what conditions is convergence (to a unique solution) guaranteed?

Anthony Atkinson .London School of Economics and Political Science/

I congratulate the authors on an interesting paper which stimulated an excellent discussion. I have five
points.

(a) John Kent placed the authors’ proposal in the context of other dimension reduction methods,
including partial least squares. This method is often used with p close to n. Is this likely to cause
any problems? Partial least squares is also often used with p ≫ n, e.g. in the spectroscopic data
set analysed again by Brown et al. (2001). Can the authors’ method be extended to this important
class of problems?

(b) The interpretation of results like those of Table 4 seems beset with difficulties, since the directions
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can be rotated in the D-dimensional subspace. Basilevsky (1994), section 6.10, discussed the similar
problem of rotation and interpretation in factor analysis.

(c) On pages 378–379 the data have the effects of two factors removed, so that the yt are indeed
notationally abused, being residuals. The method of added variables (e.g. Atkinson and Riani
(2000), section 2.2) indicates that the same regression should be performed on the explanatory
variables as on the response, so that the analysis becomes one of residuals on residuals. Incidentally,
this use of only one set of residuals is a frequent occurrence in time series analysis, where a series
is ‘pre-whitened’, but the regressors left untouched.

(d) Some dicussants have mentioned robustness. It has been the experience of Marco Riani and myself
that use of the forward search (Atkinson and Riani, 2000) reveals masked outliers and their effects
in a way that is impossible by looking at a fit to all the data. The data are fitted to subsets of
increasing size and parameter estimates, residuals and other quantities monitored. The starting-
point for the searches is a robustly chosen subset of p, or a few more, observations. Could relatively
small subsets of the data be used here to start such a process?

(e) Many statistical methods, including, I suspect, that described here, tend to work better if the data
are approximately normal. In applications of inverse regression for dimension reduction, the data
are sometimes transformed to approximate multivariate normality by using a multivariate Box–
Cox transformation. An example is the analysis of data on New Zealand mussels in chapters 10
and 11 of Cook and Weisberg (1994). A robust version of this transformation using the forward
search is illustrated in Riani and Atkinson (2001). What is the effect here of such transformations
both on computation time and on the conclusions drawn from Tables 4 and 7?

Qiwei Yao .London School of Economics and Political Science/

The authors should be congratulated for making a further contribution along their impressive list of
publications on nonparametric multivariate regression—a very important and immensely difficult topic.

Theorem 1 may be presented in a slightly stronger form by defining the weights wij in terms of {BTXi}
instead of {Xi}. This effectively changes a p-dimensional smoothing problem into a d-dimensional one.
The gain in convergence rate would now be hopt log.n/ = O{n−1=.d+4/ log.n/} at the price of the added
computational complication in the minimization of problem (2.7).

As B0 is only defined up to any orthogonal transforms, will the alternating iteration between refined
kernel weights and estimating βj in step 1(b) lead to stable β̂j? The use of refined kernel weights only makes
sense if such a stable solution is guaranteed.

An alternative version for the distance measure would be

m.B̂; B0/ = ||.I − B0B
T
0 /B̂|| + ||.I − B̂B̂

T
/B0||:

Then m.B̂; B0/ → 0 in probability if and only if B̂ estimates B0 ‘correctly’.
Finally the method proposed is most useful when D is small such as 2 or 3, as we still need to estimate

the link function even if we have the right effective dimension reduction. If model (1.1) does not hold, will
the procedure lead to a ‘good’ approximation for the conditional expectation of y given X?

A. H. Welsh .University of Southampton/

Comparisons of minimum average variance estimation (MAVE) with sliced average variance estimation
(SAVE) proposed by Cook and Weisberg (1991) (see Cook and Yin (2001) for recent references) in addition
to sliced inverse regression may be interesting and more insightful. Robustness issues in sliced inverse
regression and SAVE were raised at the 2000 Australian conference in a presentation by Ursula Gather
and the discussion to Cook and Yin (2001). The issues are subtle so the claim that MAVE has good
robustness properties needs a proper investigation.

In the single-index model, the asymptotic distribution of β̃ is essentially determined by

n
∑

i=1

n
∑

j=1

b̂j wij.Xi − Xj/{"i + g.XT
i β0/ − âj};

the ‘numerator’ in β̃. The approach in which we estimate g and g′ by smoothing (as in the present paper)
but estimate β0 by standard maximum likelihood (Brillinger, 1992; Weisberg and Welsh, 1994) seems rather
different. However, it is important to centre Xi about an estimate of E.X|XTβ0 = XT

i β0/ and, under the
simplifying conditions of the present paper and using local linear smoothing (Ruckstuhl and Welsh, 1999),
the equivalent expression for this estimator is
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n
∑

i=1

n
∑

j=1

b̂iw̃ji.Xi − Xj/{"i + g.XT
i β0/ − âi}:

Whereas we usually use undersmoothing, higher order kernels or higher order polynomials in local poly-
nomial smoothing to increase the rate of convergence of âi −g.XT

i β0/ so that it is asymptotically negligible,
MAVE estimates integrals of g rather than g so we can use optimal bandwidths for g while estimating β0.
If the above expressions are correct, MAVE should have the same asymptotic distribution (possibly up to
centring of the covariates) as the maximum likelihood estimator but this needs to be checked carefully.
Finally, MAVE should also be extended to other distributions, presumably by maximizing the average
local log-likelihood.

Hengjian Cui .Beijing Normal University/ and Guoying Li .Academy of Mathematics and System Sciences,
Beijing/

This paper is very interesting and very provocative! The authors give us new ideas to search the effective
dimension reduction (EDR) space in nonparametric regression settings.

The minimum average variance estimation (MAVE) is effective provided that model (1.1) is correct. It
is different from projection pursuit (PP) (Huber, 1985; Li and Cheng, 1993), which assumes that the link
function is a sum of several ridge functions; we call it the PP regression (PPR) model here. If model (1.1)
is true, the first PP approximation is E.y|βT

1 X/. However, β1 is not necessarily in the space spanned by B0

although E.y|βT
1 X/ is the first-order optimal PP approximation of g.BT

0 X/. If the PPR model is true and
the number of ridge functions is less than p, model (1.1) holds obviously. However, MAVE concentrates
on finding the EDR directions whereas the PP approach provides estimators for both the directions and
the link function. Another point is that MAVE uses a high dimensional kernel whereas PP needs only a
one-dimensional kernel. To simplify computation in MAVE, we may use the following iterative algorithm
to search the EDR directions one by one:

min
βd ⊥β̂1 ;:::; β̂d−1

||βd ||=1

{

n
∑

j=1

σ̂2
B̂d−1; βd

.β̂T
1 Xj; : : : ; β̂T

d−1Xj; βT
d Xj/

}

where B̂d−1 = .β̂1; : : : ; β̂d−1/: Then, the associated p-dimensional kernel can be taken as a product of p
one-dimensional kernels. This intuitively makes sense by theorem 1 and lemma 1. Also, we may refine
the kernel weights and determine the number D by the procedures described in Sections 2.1.2 and 2.2
respectively.

The example in Section 5.2 shows that the (refined) MAVE method is robust. It seems to us that it is
robust against outliers in X-space because the local smoother puts lower weights on further Xjs. If the
outliers occur in Y -space the story may be different.

There are at least two obvious questions. One is the inference of the EDR directions, which involves
the asymptotic normality of the B̂. This is true for single-index models (Härdle et al., 1993; Xia and Li,
1999). We believe that the B̂ obtained by (refined) MAVE has

√
n-consistency and asymptotic normality

under some regular conditions. The expression of the asymptotic covariance matrix of B̂ could be compli-
cated, and its consistent estimator is needed. This may be given by, say, a bootstrap method. Moreover, the
estimation of the link function is also important. In particular, we may first ask whether the link function
is additive (Cui et al., 2001). Also, it is expected that the MAVE method may be extended to the case that
X includes continuous as well as categorical (or, generally, discrete) or functionally related covariates, as
mentioned in Section 3.4. Further work is definitely needed in this area.

Vladimir Spokoiny .Weierstrass Institute and Humboldt University, Berlin/

The authors discuss an excellent idea for solving the dimension reduction problem by minimizing the sum

n
∑

j=1

n
∑

i=1

[yi − {aj + bT
j BT.Xi − Xj/}]2wij

over all p×D matrices B fulfilling BTB = 1. Here wij are non-negative weights. The approach has genuine
benefits compared with the existing methods like sliced inverse regression or average derivative estimation.
The choice of the weights wij plays the central role in this method. The authors discuss two possibilities.
The first is to apply the usual multidimensional kernel weights

wij = Kh.Xi − Xj/
/

∑

l

Kh.Xl − Xj/:
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This approach, similarly to the average derivative estimation or outer product of gradients methods,
suffers from the curse of dimensionality problem. Indeed, even for the optimal choice of the bandwidth h,
the accuracy of estimation of the effective dimension reduction space is very low if the dimensionality p is
large. The refined weights

w̃ij = Kh{B̂T.Xi − Xj/}
/

∑

l

Kh{B̂T.Xl − Xj/}

are based on the knowledge of the structure of the model and they allow us to obtain better accuracy of
estimation corresponding to the problem of the reduced dimension. However, the refined weights proposal
utilizes the estimator B̂ which comes from the first-step estimation with the multidimensional weights. If this
first-step estimator is not sufficiently precise then the advantage of using the refined weights disappears and
the whole procedure may fail in estimating the true effective dimension reduction. Hristache, Juditski and
Spokoiny (2001) and Hristache, Juditski, Polzehl and Spokoiny (2001) proposed another way of selecting
the refined weights wij based on the idea of structural adaptation. The idea is to pass progressively from
multidimensional weights wij to the low dimensional weights of type w̃ij . In this context, an interesting
question is the possibility of joining the proposal of this paper (to estimate the index space by minimizing
the mean average squared error) with the structural adaptation method.

The following contributions were received in writing after the meeting.

K. S. Chan .University of Iowa, Iowa City/ and Ming-Chung Li .EMMES Corporation, Rockville/

We congratulate the authors for their masterly piece of work that will certainly stimulate much research
on semiparametric modelling and non-linear time series.

The authors considered the case of univariate responses. Interestingly, we have independently done
some related work with multivariate responses. Li and Chan (2001) (and also Li (2000)) proposed the
semiparametric reduced rank regression model

Yt = Cf.BXt/ + "t;

where Yt and Xt are m- and n-dimensional componentwise standardized random vectors, "t is of zero
mean and identical variance given the current X and past Xs and Ys, C and B are m × r1 and r2 × n
coefficient matrices and r1 and r2 are the ranks of the model. The unknown (link) function f maps
from Rr2 to Rr1 . The model is unaltered on replacing C, f.·/ and B by CP , P−1 f.Q−1·/ and QB for
any two invertible matrices P and Q. So, identification requires constraining, for example, the leading
subsquare matrices of C and B as identity matrices, after suitable permutations of the variables. We
may interpret the r1 components of f.BXt/ = .f1.U1;t; : : : ; Ur2;t/; : : : ; fr1

.U1;t; : : : ; Ur2;t//
T as non-linear

principal components which depend on the indices BXt = .U1;t; : : : ; Ur2;t/
T. Li and Chan (2001) proposed

an estimation procedure that resembles the minimum average variance estimation method for m = 1.
We now use the respiratory problem data to illustrate the semiparametric reduced rank regression model

with some preliminary analysis of the dynamic structure of air pollution in Honk Kong. Let Y consist
of (log-transformed) sulphur dioxide (S), nitrogen dioxide (N), (log-transformed) respirable suspended
particulates (P) and (square-root-transformed) ozone (O); X consists of lags 1, 2 and 7 of the Y -variable
and lags 0 and 1 of temperature (T ) and humidity (H). From cross-validation, r1 = r2 = 2: B is estimated
to equal (standard errors are given in parentheses; NA denotes ‘not applicable’)









St−1 Nt−1 Pt−1 Ot−1 St−2 Nt−2 Pt−2 Ot−2

−0:617 1 −0:011 0:523 0:038 −0:033 0:046 −0:146
.0:085/ .NA/ .0:104/ .0:122/ .0:087/ .0:117/ .0:099/ .0:083/
0:510 0 0:159 −0:121 −0:110 −0:057 0:036 0:034

.0:064/ .NA/ .0:076/ .0:079/ .0:070/ .0:087/ .0:074/ .0:061/

St−7 Nt−7 Pt−7 Ot−7 Tt Tt−1 Ht Ht−1

−0:136 0:036 0:104 0:084 0 0:210 −1:145 0:071
.0:064/ .0:085/ .0:087/ .0:060/ .NA/ .0:075/ .0:177/ .0:112/
0:120 0:018 −0:038 −0:047 1 −1:167 0:349 −0:179

.0:049/ .0:067/ .0:060/ .0:048/ .NA/ .0:056/ .0:093/ .0:074/









:
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Here, the subsquare matrix corresponding to Nt−1 and Tt is normalized as the identity matrix. Fig. 8 displays
the smoothed graphs of the non-linear principal components f̂ i versus the indices u1 and u2. Whereas f̂ 1

seems linear, f̂ 2 appears to be piecewise linear. Below is the estimate of C and that after transformation
that renders the two non-linear principal components uncorrelated and of unit variance:

Ĉ =





















0:000 1:000
.NA/ .NA/
1:000 0:000
.NA/ .NA/
1:065 −0:189

.0:038/ .0:063/
0:977 −0:890

.0:050/ .0:097/





















; Ĉrotated =





















0:124 0:526
.NA/ .NA/
0:729 0:124
.NA/ .NA/
0:753 0:033

.0:029/ .0:034/
0:601 −0:347

.0:036/ .0:050/





















The Euclidean distance between any two rows of the rotated C measures the dissimilarity in the dynamics
of the corresponding variables. The rotated Ĉ suggests that the sulphur dioxide variable enjoyed different
dynamics from other variables whereas the suspended particulates and nitrogen dioxide variables shared
similar dynamics, over the study period; see also Fig. 8.

Fig. 8. (a) Smoothed graph of f̂1, (b) smoothed graph of f̂2, (c) time series plots of the two non-linear principal
components and (d) dendrogram from a cluster analysis of the dynamics of the four pollution variables, based
on Ĉrotated
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Pavel Čížek and Wolfgang Härdle .Humboldt University, Berlin/ and Lijian Yang .Michigan State
University, East Lansing/

This paper addresses the challenging problem of dimension reduction and we congratulate the authors for
this new insight into modelling high dimensional data. They provide the new minimum average variance
estimation (MAVE) approach that creates a variety of semiparametric modelling strategies. The technical
treatment is excellent and the algorithms derived are directly implementable. From a practitioner’s point
of view, there are probably questions about the performance of the method in non-standard situations.

For an assumed number of directions, the MAVE method is based on the local linear approximation
of a regression function. The main idea is to use this approximation (conditionally on yet unknown
indices) directly in the local linear smoothing procedure by using a multidimensional kernel. This is just
a simultaneous minimization with respect to function and direction estimates, which is broader than
the usual methods that estimate only function values or only directions. According to theorem 1, this
makes undersmoothing of the bandwidth selection unnecessary. Additionally, MAVE together with a
cross-validation procedure can be used to estimate the effective dimension reduction (EDR) dimension.

On the basis of MAVE, the authors design generalizations of several existing methods (e.g. the outer
product of gradients (OPG) method is a generalization of additive derivatives estimation by Härdle and
Stoker (1989)). Additionally, these extensions even outperform the original methods. However, we must
keep in mind that these generalizations are valid only under assumptions on the smoothness of all the
variables and cannot therefore replace the corresponding single- and multi-index methods that can also
handle discrete variables (e.g. semiparametric least squares by Ichimura (1993)).

Finally, the MAVE method is claimed to be robust against outliers, supposedly in the space of explana-
tory variables. We examined the robustness of the choice of the EDR dimension and the OPG and MAVE
methods to outliers and random noise in more detail. In the first case, our simulations regarding the cross-
validation procedure in the presence of a single outlier show two main effects: the outlier results generally
in an upwardly biased estimate of the EDR dimension, and additionally, in most cases, model estimates
under contamination do not reduce the variance of the dependent variable conditionally on the regression
function. In the second case, we studied the behaviour of MAVE and OPG under contamination. The
most interesting result is that OPG, which for clean data is always worse than MAVE, can keep up with
or even outperform MAVE when applied to contaminated data. We achieved similar results also under no
contamination and a high variance of the error term.

R. D. Cook .University of Minnesota, St Paul/
The authors refer to span(B0) from model (1.1) as the effective dimension reduction (EDR) subspace,
but I find this characterization to be incorrect. Li (1991) defined the EDR subspace as the span(B) in
the representation y = g.BTX; δ/, where the error δ⊥⊥X and B = .b1; : : : ; bk/: Because " may depend
on X, equation (1.1) permits a model with " = σ.CT

0 X/δ, where σ.CT
0 X/ � 0. For this version of model

(1.1), the EDR subspace is span.B0/ + span.C0/, not span.B0/ as the paper implies. This confusion is
unfortunate but perhaps understandable because published descriptions of the EDR subspace are not
explicitly constructive.

A mean subspace is any subspace span.B/ of R
p such that y⊥⊥E.y|X/|BTX. If the intersection of all

mean subspaces is itself a mean subspace it is called the central mean subspace (CMS) and may be taken
as the subject of a regression inquiry. Recently introduced by Cook and Li (2002), the CMS seems to be
the subspace pursued in this paper.

A dimension reduction subspace (DRS) is any subspace span(B) such that y⊥⊥X|BTX. When the inter-
section of all DRSs is itself a DRS it is called the central subspace (CS; Cook (1996a,b, 1998)), which is a
metaparameter for dimension reduction. The CS may not exist when the EDR subspace does exist. And
the CS may exist straightforwardly when the construction of the EDR subspace is problematic (e.g. binary
responses). I find the CS to be much easier to handle in theory and widely applicable in practice. The CMS
is contained in the CS. The CS is invariant under strictly monotonic transformations of Y , whereas the
CMS and span(B0) are not. Compactness of the support of X is not required for the CMS or the CS (see
the discussion following lemma 1).

I do not regard sliced inverse regression (SIR) and refined minimum average variance estimation
(RMAVE) to be direct competitors. SIR estimates directions in the CS, whereas RMAVE apparently
estimates the CMS. The authors demonstrate that RMAVE does better than SIR in some situations that
RMAVE was designed to handle. I wonder how RMAVE would perform across the many situations where
SIR, sliced average variance estimation and related methods have apparently uncovered key regression
structures.
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The fact that SIR will not perform well in models like model (4.3) is known (Cook and Weisberg, 1991).
Does the performance of RMAVE degrade when there are strong non-linear relationships among the
predictors, the kind that would render SIR ineffective?

I found this paper interesting because of the suggestion that local methods might mitigate the need for
restrictions on the predictors.

Jianqing Fan .University of North Carolina at Chapel Hill/

Model parameters and identifiability
The basic assumption of the paper is that model (1.1) holds. In practice, it is at best an approximation. In
general, following Fan et al. (2001), the parameters B0 and the function g can be defined as the minimizer
of

min
gB:BTB=ID

[E{Y − g.BTX/}2] = min
B:BTB=ID

[E{Y − E.Y |XTB/}2]:

This is the same as expression (2.1). Hence, the model assumption (2.1) is not needed as far as the procedure
for estimating B0 and g is concerned. Under what conditions does the optimization problem (2.1) have
a unique solution, namely when is the parameter B0 identifiable? (Indeed, only the space spanned by the
columns of B0 is possibly identifiable.)

The identifiability condition is necessary for asymptotic results to hold. To elaborate the identifiability
issue, consider the model studied by Fan et al. (2001):

Y =
p

∑

j=0

gi.B
TX/Xj + "

with X0 = 1. Consider the specific case where D = 1 and write B = β. When gj.x/ = αjx with α0 = 0,
this model becomes

Y = .αTX/.βTX/ + ";

where α = .α1; : : : ; αp/T. When they are not parallel, the parameters α and β are not identifiable for
D = 1. This is the only case where the parameters are not identifiable for D = 1, following theorem 1
of Fan et al. (2001). This case does not appear in model (1.1), since the authors implicitly assume that
g.BT

0 X/ = E.Y |BT
0 X/.

Minimum average variance estimation and profile likelihood
The profile likelihood is commonly used to estimate parameters and nonparametric functions in semipara-
metric models. The basic idea, in the current context, is to estimate the function g for a given B by using a
nonparametric approach, resulting in an estimator ĝB.·/. Now, find the parameter B to minimize

n
∑

i=1

{Yi − ĝB.BTXi/}
2:

The fully iterated procedure in Carroll et al. (1997) used this idea. Minimum average variance estimation is
a nice variation of the profile likelihood method. It is motivated from estimating the conditional variance
by a kernel estimator rather than minimizing directly the mean-square errors. As a result, it has the
nice expression (2.7) which facilitates theoretical studies but involves an extra loop of summation in
computation. The merits of both approaches are worth exploring further. However, it is worthwhile to
mention that the profile likelihood method generally gives semiparametric efficient estimators (see, for
example, Carroll et al. (1997) and Murphy and van der Vaart (2000)). Whether minimum average variance
estimation has this kind of optimality remains to be seen. Two procedures share at least one merit in
common: no undersmoothing is needed for estimating parametric components (Carroll et al. (1997) and
theorem 1 of the present paper). In fact, the criteria that the two procedures optimize are approximately
the same.

Expression (2.7) is somewhat informal, since its minimization with respect to B is not unique though its
effective dimension reduction is. Could the authors therefore explain how problem (2.7) is minimized and
clarify the convergence criterion in Section 2.3?
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L. Ferré .University of Toulouse le Mirail/
The paper is interesting since it substitutes local linear smoothing for inverse regression for estimating the
effective dimension space. The main advantage of the method over inverse regression is that condition
(1.2) is relaxed, allowing applications to time series. Even if my own experience of the application of sliced
inverse regression in times series is quite positive, time reversibility is indeed an awkward condition derived
from equation (1.2). However, an argument in favour of inverse regression is simplicity: estimates of the
effective dimension reduction space are deduced from a simple eigenvalue decomposition of a matrix
independently from g. This feature allows in particular extensions to functional data (see for example
Dauxois et al. (2001)). This necessary reduction of the dimension (recall the goal: overcome the ‘curse
of dimensionality’) comes before (and independently of) the nonparametric estimation of g. For deriving
this dimension, tests have been proposed, relying, in the original papers, on distributional assumptions.
These assumptions can be removed since recent unpublished work has shown that the existence of the
first four moments is sufficient. An alternative is to use a model selection approach based on the distance
between S.B0/ and S.B̂d/ by letting d vary (Ferré, 1998). The main idea is that a working dimension that
is lower than the ‘true’ dimension D can be preferable and the distance between S.B̂d/ and a d-subspace
of the unknown S.B0/ is finally used. Simple estimates of this criterion have been proposed for elliptically
distributed explanatory variates but also for the general case by using the bootstrap or jackknife (see Ferré
(1997, 1998)). Local linear smoothing intends to estimate at the same time the regression function and
the effective dimension reduction space. The price to pay is that more local linear smoothing is needed
than covariates are included in the model. For the dimensionality a global model selection approach is
considered, but cross-validation, in addition to the high computational cost, does not avoid the curse of
dimensionality. Indeed, âd0;j is the Nadaraya–Watson estimator which may perform poorly for large values
of d and my feeling is that overparameterization is to be feared.

Ker-chau Li .University of California at Los Angeles/
The dramatic improvement of the methods proposed over sliced inverse regression (SIR) and the principal
Hessian directions method for the three examples deserves some non-asymptotic explanations. For n = 200
and p = 10, it is difficult to tell why the nice asymptotic theorems are relevant. For the first two examples,
a simple explanation goes like this. First, least squares regression is known to be consistent in finding an
effective dimension reduction direction (Brillinger, 1983; Li and Duan, 1989) under condition (1.2). It is
straightforward to extend this result to weighted least squares regression provided that the weight function
depends on .y; x/ only through .y; BT

0 X/. Now because equation (2.6) is basically a weighted least squares
regression, one can prove that, for the population version of equation (2.6), bTBT should be in the effective
dimension reduction space. If condition (1.2) does not hold, then the result may be biased and an upper
bound of bias can be evaluated (Duan and Li, 1991; Li, 1997). Problem (2.7) amounts to averaging over
a number of weight functions. Averaging may help the cancellation of bias in the time series context.

For fairness, I would like to point out that weighted versions of SIR and similar procedures have been
proposed before to temper the bias problem; see the discussion and rejoinder in Li (1991). It is worth
pointing out the difference between condition (1.2) and elliptical symmetry (Hall and Li, 1993). Also SIR
and principal Hessian directions can be applied to residuals after deterministic components have been
taken out. Iteration does improve the results. However, the issue of non-linear confounding (Li, 1997) sets
a limitation that is difficult to bypass by any procedure. It is not clear to me whether the new approach
can do anything about it.

For brevity, I shall not go over the long list of clever ideas that I found interesting in this path breaking
work by the authors. Let me close by noting that they did not compare their procedure with projection
pursuit regression. A dozen years ago when I submitted my SIR paper to the Journal of the American
Statistical Association, the Associate Editor recommended rejection because he or she thought that SIR
was not as good as projection pursuit regression. Luckily my paper was salvaged by the Editor, who
allowed me to explain the difference between the two approaches. Apparently the authors have done more
than enough to convince the reviewers just as they have convinced me!

Lexin Li .University of Minnesota, St Paul/
Adopting the notation in model (1.1) and following the definitions of the central mean subspace (CMS)
(Cook and Li, 2002), the minimum average variance estimation (MAVE) methods seem to pursue the
CMS only. To confirm this, simulations were done on models of the form y = g.BT

1 X/ + h.BT
2 X/", where

g and h are both unknown functions, " is independent of X and E."/ = 0: My results indicate that MAVE
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methods can successfully estimate B1 in the mean structure E.y|X/, whereas they always miss B2 in the
error structure.

Refined MAVE (RMAVE) does not require sliced inverse regression’s (Li, 1991) linearity condition.
Simulations were done to examine the performance of RMAVE when there are strong non-linear rela-
tionships among the predictors X. I considered one-dimensional models only, where B ∈ ℜp. The results
show that RMAVE has good performance for one-dimensional models when the non-linearity in X is
strong.

Under the assumption D = 1, however, there is still room for improvement, compared with RMAVE,
to estimate the underlying true direction without the requirement of the linearity condition. Cook and
Nachtsheim (1994) suggested a co-ordinatewise reweighting approach to remove the non-linearity in X
and to make X elliptically contoured. I have been investigating the possibility of extending the idea of
removing the non-linearity in X by clustering on X-space as the first step. An ordinary least squares
(OLS) estimate is obtained from each cluster, and all those estimates are combined to estimate the true
direction. Intuitively, the clusterwise OLS method works because non-linearity in X is broken and within
each cluster the linearity condition should hold approximately. Then the Li–Duan proposition (Li and
Duan (1989), theorem 2.1, and Cook (1998), proposition 8.1) is applicable within each cluster. I also
consider an iterative version of the algorithm, which obtains the estimate by iteratively clustering on B̂T

i X,
where B̂i is the estimate from the ith iteration. Simulations show that the OLS estimate with clustering
achieves a better performance than RMAVE. As an example, consider the model x1 ∼ uniform(0,1) and
x2 = log.x1/ + e; where e ∼ uniform(−0:3; 0:3), and y = log.x1/ + "; where " ∼ N.0; 0:01/. The actual
direction is B = .1; 0/T. With 100 observations, RMAVE gives an estimate of B̂ = .0:991; 0:133/T with
the angle to B equal to 7.626◦, whereas OLS with five clusters produces B̂ = .0:999; 0:038/T with the angle
to B equal to 2:196◦. Here the number of clusters, 5, is chosen before we see the computational results, to
make the comparison fair. Details of this work will be reported elsewhere.

Oliver Linton .London School of Economics and Political Science/

This is a comprehensive paper. I shall just focus on the new implementation of Ichimura’s semiparametric
least squares method for estimating index models. In expression (A.1) the authors sequentially minimize

n
∑

j=1

n
∑

i=1

{

yi − aj − bjβ
T.Xi − Xj/

}2
wij

with respect to .a; b; β/ holding wij constant and starting from some initial consistent estimator β̃0. The
Ichimura (1993) procedure involves sequential minimization with the difference that he uses only local
constant but also includes the dependence of wij on β; this leads to a nasty non-linear optimization
problem, whereas the authors’ procedure is just bilinear least squares, and so is conditionally linear. They
apparently prove that after two iterations their β̃ behaves as if .a; b/ were known in expression (A.1). I
think that this is an important idea that will make estimation of these models much easier. The authors
develop many useful tools and apply them impressively. I have some comments and questions.

The initial consistent estimator that lurks in Appendix A.2 is either the average derivative estimator
(in which case the criticisms in (a) and (b) of the second page apply) or some non-linear least squares
estimator, which itself will be heavily computational.

I suppose that the authors’ estimator achieves the semiparametric efficiency bound in for example the
special case of Appendix A.2 with independent and identically distributed ", but it is not so clear to me.

In time series, we come across special sorts of indices like Σ
∞
k=0 βkXt−k; where β is unknown; this would

generalize the linear model yt = βyt−1 + γXt + "t that is widely used. Have the authors thought about this
case?

I do not think that the optimal amount of smoothing for the function will always be the same as
the optimal amount of smoothing for the parameter. Generally speaking it seems that in ‘adaptive’
cases the optimal bandwidth for the parameter and the function have the same magnitude, although not
the same constant. See for example Carroll and Härdle (1989). In non-adaptive cases this is not usually
so. In the partially linear model y = βx + g.z/ + e; Linton (1995) showed that the Robinson (1998)
estimator β̂ for β has expansion β̂ − β = Op.n−1=2/ + Op.h4/ + Op.n−1h−1=2/ under twice continuous
differentiability of g, which suggests an optimal bandwidth rate of h ∝ n−1=9, i.e. it is optimal to under-
smooth. Although maybe the authors can find an estimator of β that has the optimal bandwidth rate of
h ∝ n−1=5.
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Liqiang Ni .University of Minnesota, St Paul/
I applaud the authors for the promising refined minimum average variance estimation (RMAVE) algorithm
and the intriguing idea of determining the dimension in a cross-validation approach. Many methods have
been proposed to estimate directions in the effective dimension reduction space (Li, 1991), or the central
subspace (Cook, 1996). Sliced inverse regression (SIR) can discover directions of linear terms in mean
functions but fails in symmetric situations like y = .βTX/2 + " with X normal, E.X/ = 0 and " ⊥⊥ X,
where the direction can be detected by sliced average variance estimation (Cook and Weisberg, 1991). In
my experience, RMAVE can estimate both linear and quadratic terms well.

Suppose that we have a continuous predictor X ∈ Rp and a categorical predictor C ∈ R representing
different subpopulations. If the mean function of Y does have a form as

g
{

βT
(

X
C

)}

;

which may indicate shifts between subpopulations, RMAVE can be practically useful under the circum-
stances described by the authors. However, when y = GC.βT

CX/ + ", so each subpopulation may have its
own unique directions and functions, mixing continuous and categorical predictors may be inappropriate.
Partial SIR (Chiaromonte et al., 2002) directly addresses this issue. In the same spirit, we may consider
‘partial RMAVE’. One way to do this may be simply to let the weight wij in expression (3.8) multiply
an indicator function I.Ci = Cj/ and modify the cross-validation (CV) function as well. Details of this
approach, which seems to work quite well, will be reported elsewhere.

The selection of the bandwidth seems tricky. The estimation of dimension is much more stable when CV
adopts the Nadaraya–Watson estimator than when using a local linear estimator. Neverthless, it is still
sensitive to the bandwidth. I applied RMAVE to the AIS data (Chiaromonte et al., 2002) which consist of a
mixture of two linear regressions determined by the only categorical predictor—gender. Considering only
continuous predictors, the Nadaraya–Watson CV values suggested two dimensions with larger bandwidth
and only one dimension with smaller bandwidth. The partial RMAVE method described as above, however,
suggested one dimension consistently, which confirmed that both linear regressions associate with the same
direction, y = GC.βTX/ + ".

I have a question about inverse MAVE. The essence of SIR is that, under the linearity condition (1.2),
the space spanned by E.Z|Y/ where E.Z/ = 0 and cov.X/ = I is a subset of the EDR space. To estimate
this space, Li (1991) proposed slicing on Y; and Zhu and Fang (1996) proposed kernel methods. I am not
sure whether inverse MAVE is intended to estimate span{E.Z|Y/} also.

Megu Ohtaki and Yasunori Fujikoshi .Hiroshima University/

We praise the authors of this paper, which has a highly original and fascinating content. The paper is sure
to be one of the monumental works in the field of multivariate analysis.

In the paper it is clearly shown that the minimum average variance estimation (MAVE) method and
its algorithm have many advantages over existing methods for searching an effective dimension reduction
(EDR) space. Just like the sliced inverse regression method, however, no description for the reduction
in the number of the original covariables was given. It is also important to consider selection of the
original variables as well as the covariables βT

1 X; : : : ; βT
p X: In practical situations of data analysis, a model

with a small number of original covariables is preferable while the bias is negligible. This problem may be
formulated mathematically as below.

Suppose, for example, in model (1.1)

y = g.BT
0 X/ + ";

where B0 and X are decomposed as

B0 =
(

B01

B02

)

p×D

; X =
(

X1

X2

)

p×1
;

and hence BT
0 X = BT

01X1 + BT
02X2: If B02 = O, then it is expected by analogy (Akaike, 1973; Mallows,

1973) for cases of linear regression that we shall be able to have a more efficient EDR.
For not only such a mathematical background but also economical reasons, those covariables which have

no effect on the response should not be used in regression analysis. Therefore, we propose the regression
model

y = g.BTX/ + ";
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where Q ⊂ {1; : : : ; p} and DQ = diag.q1; : : : ; qp/p×p, with qi = 1 if i ∈ Q and qi = 0 otherwise, for
selecting the optimal model, and to choose a model attaining mind;Q{CV.d; Q/} that will be constructed
by modifying the cross-validation criterion, CV.d/, which is given in the paper. Thus the MAVE method
may be extended easily to reduce the number of the original covariables as well as the dimension of an
EDR space simultaneously. Furthermore, the MAVE method has the advantage that it may be generalized
to multivariate regression.

In linear statistical inference, it has been reported that the model selection method using Akaike’s
information criteria AIC is not consistent for estimating the true model (see, for example, Shibata (1976)
and Fujikoshi (1985)). Stone (1974) showed that the cross-validation criterion and AIC are asymptotically
equivalent for model selection. Given these results, we wonder whether theorem 2 is consistent with the
classical results.

James R. Schott .University of Central Florida, Orlando/

Over the past decade, there has been a considerable amount of work on dimensionality reduction techniques
in the regression setting. This paper represents a substantial contribution to that area. I have just a couple
of minor comments relating to the sliced inverse regression (SIR) procedure of Li (1991) and subsequent
similar types of procedure such as the sliced average variance estimate of Cook and Weisberg (1991).

The linear condition given in equation (1.2) is a fundamental requirement for most of these procedures.
Additional assumptions may be needed; for instance, sliced average variance estimation requires a con-
stant variance assumption, and inferential methods, associated with these procedures, for determining the
correct dimension often require stronger conditions. These additional assumptions are certainly restric-
tive, but it is important to note that equation (1.2) is a fairly mild condition. It is weaker than elliptical
symmetry because it only has to hold for the directions B0. Thus, we may not have elliptical symmetry but
be sufficiently lucky still to have condition (1.2) hold. In fact, Hall and Li (1993) have shown that, loosely
speaking, if the dimension of X is high, then it is likely that condition (1.2) holds at least approximately.

A further point to note is that procedures like SIR estimate a space that may be a proper subspace of the
space spanned by the columns of B0. Have we missed any important directions? If so, how do we recover
them? These are questions that may need to be answered when using SIR. However, they are not relevant
questions for the adaptive procedures proposed here since they directly estimate the space spanned by the
columns of B0.

C. M. Setodji .University of Minnesota, St Paul/
We have been presented with a constructive and useful paper and the authors are to be congratulated.
Minimum average variance estimation (MAVE) seems to be an interesting and intriguing method for
dimension reduction estimation. Equation (1.1) is applicable to any regression problem since, for any Y
and X, we can always define " = Y −E.Y |X/ which depends on X and satisfies the conditions in the paper.
I have applied MAVE to three well-known sets of data that have been studied in the dimension reduction
literature, and the optimal bandwidth was used throughout. Background on the examples was given by
Cook and Critchley (2000). In all three examples, MAVE fails to produce the directions obtained by other
methods.

First the methods proposed were applied to the bank-note data. With a binary response (the bank-note’s
authenticity) and six predictors, all the information in the regression is contained in the mean function.
The refined MAVE method gave d̂ = 21, which is the same as the result produced by sliced average variance
estimation (SAVE) (Cook and Critchley, 2000; Chiaromonte et al., 2002) and projection pursuit analysis
(Posse, 1995). Whereas the first MAVE and SAVE directions are essentially the same, the second directions
are quite different. The second SAVE direction shows two kinds of forged notes, but the role of the second
MAVE direction is unclear. It misses the clustering in the counterfeit notes.

We also applied MAVE to the Hawkins data, designed to challenge traditional and robust regression
methods with outliers. Although the data with four covariates and a continuous response have two direc-
tions in the mean function, refined MAVE and inverse MAVE suggest independence whereas the outer
products of gradients method suggests only one direction. SAVE correctly identifies the regression struc-
ture. Lastly, the method was applied to the AIS data, a data set with mixtures. MAVE gave d̂ = 1,
suggesting one direction, whereas sliced inverse regression infers d̂ = 2. MAVE evidently missed the
‘joining information’ for males and females.

Many regression problems are filled with ‘mixtures’ which is the one thing that all these data sets have in
common. Mixtures increase the dimension of the mean function. My experience suggests that the MAVE
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methods fail to detect mixture regressions. Is it possible to enhance the proposed method to face such an
issue?

Finally, for me, one of the weaknesses of the method proposed is the fact that it is not invariant under
linear transformations. Using .x1; x2/ or .x1 +x2; x2/ as predictors may yield different first directions when
d = 1. More developments need to be pursued for these methods.

Nils Chr. Stenseth and Ole Chr. Lingjærde .University of Oslo/

Lynx populations undergo regular density cycles all across the boreal forest of Canada (see, for example,
Stenseth et al. (1998)). In a previous analysis of the lynx dynamics (Stenseth et al., 1999) two competing
hypotheses were put forward regarding the spatial structure of the dynamics. One predicts that the dynami-
cal structure clusters into groups defined according to ecological-based features, whereas the other predicts
that it clusters into groups according to climatic-based features. On the basis of an analysis of 21 time series
from 1821 onwards, Stenseth et al. (1999) found evidence in support of the latter hypothesis, assuming a
piecewise linear autoregressive model for each population. However, their model did not explicitly include
any climatic effects.

Here, we propose to use the authors’ minimum average variance estimation (MAVE) methodology to
study the spatial structure of the Canadian lynx populations, on the basis of a more general nonparametric
model of the dynamics that includes as a covariate the potentially important climatic variable known as the
North Atlantic oscillation winter index. Specifically, let Ls

t denote the natural logarithm of the abundance
of lynx in region s in year t, and let NAOt denote the North Atlantic oscillation winter index in year t. For
each s and t define the response ys

t = Ls
t and the vector of covariates

Xs
t = .Ls

t−1; Ls
t−2; Ls

t−3; Ls
t−4; NAOt; NAOt−1; NAOt−2/

T:

For each region s we assume the model

ys
t = gs.B

T
s;0Xs

t / + "s:t = gs.β
T
s;1Xs

t ; : : : ; βT
s;dXs

t / + "s:t

where gs is an unknown smooth link function, Bs;0 = .βs;1; βs;2; : : : ; βs;d/ ∈ R
7;d.s/ is an orthogonal matrix

and E."s;t |Xt
s/ = 0 almost surely. Using refined MAVE and cross-validation, we estimated d.s/ and Bs;0 for

each s. To compare the dynamics in two regions s and s′ we considered the largest principal angle ϕ.s; s′/
between the subspaces spanned by the columns of Bs;0 and Bs′;0 respectively. This angle can be determined
from the relationships 0 � ϕ.s; s′/ � π=2 and sin{ϕ.s; s′/} = ||Bs;0BT

s;0 − Bs′;0BT
s′;0||2: See Fig. 9 for results

when d.s/ is estimated by cross-validation. Note that rows and columns are permuted to obtain coherent
blocks of similar dynamics.

Fig. 9. Comparison of dynamic structures across Canada, using cross-validation estimates for the orders
d.s/(the comparison is based on the largest principal angles between the estimated reduction subspaces for
each region): (a) average linkage hierarchical clustering of the 21 time series; (b) pseudocolour checker-board
plot of distances (the plotted values are non-linearly scaled as exp{ϕ.s; s0/} to accentuate the regions of
similar dynamics; order of regions (from left to right) with two major clusters emphasized, L18, L19, L16, L8,
L14, L3, L22, L17, L15, L2, L7, L12, L20, L6, L9, L11, L5, L10, L21, L13, L4)
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(a) (b)

Fig. 10. (a) Parametric estimation and (b) nonparametric estimation (}, results with uncorrelated design;

, results for designs with functional relationships)

The results are strikingly similar to what we proposed as the ecological region structuring, and there is
no strong support for the climatic region structuring, the latter of which was concluded to be the most
appropriate region by Stenseth et al. (1999). To understand the underlying reasons for these differences
certainly requires further work, both on the ecological and on the statistical side—work that we would like
to pursue.

The authors replied later, in writing, as follows.

The extraordinarily kind words from so many distinguished discussants have overwhelmed us. We thank
all the discussants for their constructive remarks and stimulating questions. Limitations of time and space
prevent us from answering every question raised. Moreover, some of the suggestions will keep us busy for
a while!

We thank Professor Kent for pointing out possible connections with other areas. His point regarding
reduced rank models is clearly related to Chan and M. Li’s important contribution. Turning to partial least
squares, one of us has studied a nonparametric partial least squares regression after transformation. For
data .y; X/, a spline transformation G.·/ of the response y is carried out so that the partial least squares
regression can be modelled without knowing the exact form of G.·/. Readers can refer to Zhu (2002) for
more details. The basic idea is to ‘linearize’ a smooth function G.·/ of the response y by π.·/Tθ, where π.·/
is a vector of B-spline basis functions of y and θ is an unknown projection parameter.

Concerning the issue of possible confounding between the covariates sulphur dioxide, nitrogen dioxide
and the particulates (Bowman), the contribution by Professor Chan and Dr M. Li is relevant.

Concerning the challenging non-linear confounding problem mentioned by Professor K. C. Li, let us
study the model used in Li (1997). Let u1 ∼ uniform(0, 1), u2 = log.u1/ + e with e ∼ uniform(−0:5; 0:5);
u3; u4; u5 ∼IID N.0; 1/ and x1 = u1+u3; x2 = u2+u4+u5; x3 = u3−u4; x4 = u4 and x5 = u5. A relationship
of y with X = .x1; : : : ; x5/

T via u1 is

y = log.u1/ + 0:1"; .1/

where " ∼IID N.0; 1/. The sample size n = 100. We estimate the directions by refined minimum average
variance estimation (RMAVE) with h = 0:05. From 200 independent replications, the mean and the
standard deviation of the estimated directions (we constrain the first component to be positive) are

.0:5662 0:0311 −0:5660 −0:5972 −0:0316/T:
.0:0046/ .0:0107/ .0:0043/ .0:0067/ .0:0119/

Because u1 = .1; 0; −1; −1; 0/TX, the true direction is .0:5774; 0; −0:5774; −0:5774; 0/T. Our estimation
results are quite encouraging especially since the structure of model (1) can hardly be detected by any of
the other procedures. See for example Li (1997).

We agree with Professor Kent and Professor Bowman that the issue of collinearity is important. With
a large set of near collinear covariates, some prescreening is recommended using such devices as principal
components and others. Our limited simulations suggest that the MAVE method can still give some useful
information when there is strong collinearity of functional relationships between covariates. Here we report
the simulations for the model
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Table 8. Means (and standard deviations) of the estimated EDR directions for model (5) with a sample size
200 and 100 replications†

β1 (0.4538 0.4387 0.4467 0.4443 −0:0041 0.0013 0.0242 0.0067 0.0193 0.0128)T

Standard deviation (0.0985 0.0988 0.1089 0.0969 0.0765 0.1025 0.1973 0.1900 0.1815 0.1961)T

β2 (0.0106 −0:0033 0.0223 0.0127 0.0016 0.0071 0.3983 0.3833 0.3765 0.3428)T

Standard deviation (0.2290 0.2300 0.2435 0.2520 0.1339 0.1511 0.2063 0.1963 0.1869 0.2223)T

†h = 0:6 was used.

y = .βT
1 X/2.a + βT

2 X/ + "; .2/

where a = 1; β1 = .− 2
3
; 1

3
; 2

3
; 0/T; β2 = .1; 0; 1; 0/T=

√
2 and X = .x1; x2; x3; x4/T. Two cases are consid-

ered:

(a) an uncorrelated design, x1; x2; x3; x4; " ∼IID N.0; 1/, and
(b) a design with functional relationships, x3 = .2x1 + 2x2 + "1/=3; x4 = {sgn.x1/|x1|2 + "2}=2 and

x1; x2; "1; "2; " ∼IID N.0; 1/.

We estimate model (2) under respectively the nonparametric setting and the non-linear parametric setting.
With different sample sizes and bandwidths 0.6, 0.5, 0.45, 0.4, 0.35, 0.3, 0.28 and 0.25, results for the
parametric estimators (obtained with the SAS software) and RMAVE estimators are shown in Fig. 10,
where the error is defined as m2.β̂1; B0/+m2.β̂2; B0/ with B0 = .β1; β2/. It is clear that both methods suffer
from functional relationships between covariates. The relative degradation of efficiency for RMAVE due
to collinearity and functional relationships between covariates is similar to that for the parametric case.

Our remark on the apparent robustness, based on our experience with MAVE, has somewhat to our
surprise aroused substantial interest among the discussants (Critchley, Atkinson, Cui, G. Li, Yao, Čížek,
Härdle, Yang and Welsh). The issue is important but we have as yet no theoretical results to offer.

We take Professor Cook’s point about effective dimension reduction (EDR), a name which we adopted
only after a suggestion from a referee. We also thank Professor Cook (and Professor Critchley) for clarifying
the differences between the central subspace and the central mean subspace and their roles in the sliced
inverse regression and the RMAVE methods. Professor Cook, Professor Critchley, Dr L. Li, Dr Schott
and Dr Velilla raise concerns about heteroscedastic variance and wonder whether RMAVE can detect
directions in the variance specification. If the conditional mean and the (not necessarily homogeneous)
noise are additive, a two-step procedure may be adopted as follows. MAVE is first used to search the
directions in the conditional mean and then applied to the squares of the residuals to look for the other
directions. An alternative approach is as follows. Suppose that

y = g.BT
0 X; "/: .3/

Some of the EDR directions will be ignored if only the usual conditional mean is investigated. For any
values δ and ∆, the data .Xj + δ; |yj − ∆|/ are from the following model which has the same EDR space:

|y − ∆| = E[|gδ;∆
{

BT
0 .X + δ/; "

}

||BT
0 X] + ηδ;∆ .4/

with gδ;∆ denoting some measurable function, where

ηδ;∆ = |gδ;∆{BT
0 .X + δ/; "}| − E[|gδ;∆

{

BT
0 .X + δ/; "

}

||BT
0 X]

with E.ηδ;∆|X/ = 0. By choosing ∆ appropriately, the conditional mean of model (4) can detect the
other EDR directions. To avoid the difficulty of choosing ∆, we may use several of them together. For
the following model, we consider three different pairs of .δ; ∆/ and then we have four samples {.Xi; yi/},
{.Xi + δk; |yi − ∆k|/}; k = 1; 2; 3. We re-denote them as {.Xki; yki/}; k = 1; 2; 3; 4: Using MAVE, for each
sample we have from problem (2.7) a double summation to look for B:

Sk.B/ =
n

∑

j=1

n
∑

i=1

{

yki − bT
kjB

T.Xki − Xkj/
}2

wk;ij;

k = 1; 2; 3; 4. The common thing in these double summations is the direction matrix B. To find B, we can
minimize S1.B/ + S2.B/ + S3.B/ + S4.B/. We illustrate this approach with the model
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Table 9. Means of estimation error m2{.β1; β2/; β̂1}; m2{.β1; β2/; β̂2} for model (6) based on
different algorithms†

Method Means of estimation errors for various bandwidths or spans

PPR (S-PLUS) [0.4] (0.3459, 0.2876) [0.5] (0.2997, 0.2613) [0.6] (0.3707, 0.2776)
RMAVE (additive) [0.2] (0.0415, 0.0355) [0.3] (0.0088, 0.0170) [0.4] (0.0214, 0.0212)
RMAVE (non-additive) [0.3] (0.0305, 0.0516) [0.4] (0.0481, 0.0731) [0.5] (0.1104, 0.0586)

†Bandwidths or spans are given in square brackets.

y = exp
{

−2.βT
1 X/2

}

+ 0:5.βT
2 X/"; .5/

where X = .x1; : : : ; x10/
T with "; xj; j = 1; : : : ; 10 ∼IID N.0; 1/; β1 = .0:5; 0:5; 0:5; 0:5; 0; : : : ; 0/T and

β2 = .0; : : : ; 0; 0:5; 0:5; 0:5; 0:5/T. The simulation results are reported in Table 8. And Fig. 11 shows that
by using the conditional expectation E.|y − ∆k||X/ we can capture all the EDR directions.

To answer questions concerning the minimization of problem (2.7) raised by the following discussants
in this paragraph, we state some additional properties of RMAVE here. First, the estimation error for
RMAVE is

m.B̂;B0/ = Op

{

h3
d +

log.n/

nhd+1
d

+ n−1=2

}

;

provided that d � D. The estimation error depends only on d (and not on p). When d is small, root n
consistency can be achieved (similar results were obtained by Hristache et al. (2002) from an approach that
is analogous to the outer product of gradients method using refined weights). This answers the question
of Professor K. C. Li and Professor Yao and gives an intuitive reason why our simulation works well.
Secondly, the MAVE method can be applied easily to semiparametric models such as the model given in
Professor Fan’s comments. For all the single-index type of models that we have investigated (e.g. the single-
index model and the generalized partially linear single-index model; see Xia et al. (2002)), the estimators
are efficient in the semiparametric sense (Bickel et al., 1993), and undersmoothing is unnecessary. This
addresses Professor Linton’s question.

We welcome the mention of projection pursuit regression (PPR) by Dr Cui, Dr G. Li, Professor K. C.
Li and Dr Zhang, who have reiterated the differences between MAVE and PPR. Consider the PPR model

y = g1.β
T
1 X/ + : : : + gD.βT

DX/ + "; .6/

where E."|X/ = 0 and .βT
1 ; : : : ; βT

D/ spans an EDR space. In the absence of extra conditions, we can-
not ensure that the directions searched by PPR are in the EDR space. We compare the RMAVE algo-

Fig. 11. 1000 observations from model (3) (�) and conditional expectations ( ), based on kernel re-
gression from 1 million observations
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Table 10. Results of the CV methods

Data Method† Results for the following dimensions:

0 1 2 3 4 5 6

Bank-note Bandwidth — 0.1 0.3 0.5 0.6 0.7 0.7
LL–CV value 0.2525 0.0016 0.0029 0.0045 0.0061 0.0093 0.0153
NW–CV value 0.2525 0.0036 0.0049 0.0047 0.0079 0.0078 0.0085

AIS Bandwidth — 0.6 0.7 0.9
LL–CV value 150.5675 13.7718 12.4450 12.9045
NW–CV value 150.5675 20.2026 19.8053 27.1200

Hawkins Bandwidth — 0.28 0.26 0.28 1
LL–CV value 9.2133 7.8666 8.8623 10.4843 18.5332
NW–CV value 9.2133 7.6566 9.0900 11.1208 11.6386

†LL, local linear; NW, Nadaraya–Watson.

rithm with the PPR program in S-PLUS by reference to the distances from the EDR space based on the
estimated directions. In our simulations, we take D = 2; g1.v/ = exp.−2v2/; g2.v/ = − cos.2v/; X =
.x1; x2; : : : ; x15/

T, β1 = .1; 2; 3; 4; 5; 6; 7; 8; 7; 6; 5; 4; 3; 2; 1/T=
√

344; β2 = .−7; − 6; − 5; − 4; − 3; − 2;
−1; 0; 1; 2; 3; 4; 5; 6; 7/T=

√
280 and x1; : : : ; x15; 2" ∼IID N.0; 1/. With a sample size of 200 and 200 indepen-

dent replications, the estimated errors are listed in Table 9. The PPR algorithm in S-PLUS performs much
worse than the MAVE algorithm; even without the benefit of the additive noise structure, the RMAVE
method still outperforms the PPR algorithm in S-PLUS.

We refer Professor Ohtaki and Professor Fujikoshi to Cheng and Tong (1992), which establishes
consistency of the cross-validation (CV) estimate, and to Professor Ferré’s contribution.

We now consider Professor Setodji’s examples. Because of the estimation of the remainder term, we
have fewer problems to face than undersmoothing. It allows us to use the optimal bandwidth chosen
by data-driven methods. For example, the CV method for the local linear smoothing of yi on XT

i B̂ can
be applied to step 1(b) of our algorithm to choose the bandwidth that is used for the next iteration of
estimation. Using this kind of bandwidth, we have re-examined the data sets cited by Professor Setodji.
As usual we standardize each covariate before applying the RMAVE method. Table 10 shows our results
with the smallest CV values highlighted in bold.

For the bank-note data, the dimension is estimated by CV to be 1 (instead of Setodji’s 2). The cor-
responding direction is estimated as β1 = .−0:0521; 0:1438; −0:2036; 0:8103; 0:2242; −0:4779/T. On
the basis of this direction, we further have the following fit, which turns out to be practically deter-
ministic:

yi = f.βT
1 Xi/; where f.v/ = 1 if v � −0:2 or f.v/ = 0 otherwise:

See also Fig. 12(a). With this simple deterministic single-index relationship, it seems difficult to believe that
the efficient dimension is 2 as suggested by the sliced average variance estimation (SAVE) method in Cook
and Critchley (2000). One possible explanation for suggesting a second dimension is that, if we classify
{βT

1 Xi; i = 1; : : : ; n} into two groups then one of the notes might be in the wrong group on the basis
of the SIR (or SAVE) direction as shown in Fig. 12(c). However, on the basis of the RMAVE direction
above there is no such ‘outlier’. See Fig. 12(b). For the AIS data, the CV estimated dimension is 2, which
is the same as that suggested by SAVE. The results are shown in Figs 12(d) and 12(e). It seems to us that
RMAVE has not missed any information. For the Hawkins data, the dimension is estimated to be 1. The
model seems to give a reasonable fit to the data although the estimated dimension is lower than 2; see
Fig. 12(f). Since the data set was generated from two regression models, we have also explored RMAVE
with dimension 2 (and bandwidth 0.2). The directions are estimated as β1 = .0:0326; 0:7432; −0:2440,
0:6221/T and β2 = .0:7139; −0:1634; 0:5653; 0:3796/T. The difference between these directions and the
directions β01 and β02 that are estimated on the basis of the two regressions above is very small. See also
Figs 12(g)–12(j). Fig. 12(g) can distinguish the observations by their models. The rotation in Figs 12(g)
and 12(h) is useful for interpretation purposes and is related to questions about the effect of rotation raised
by Professor Bowman, Professor Atkinson, Professor Chan and Dr M. Li, and Professor Yao.
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(b)

(c)

(j)

(e)

(a)

(d) (f)

(h) (i)
(g)

Fig. 12. Calculations for (a), (b), (c) the bank-note data (
, y = ‘1’; �, y D ‘0’), (d), (e) the AIS data (
,
females; �, males) and (f), (g), (h), (i), (j) the Hawkins data (
, primary regression; �, second regression)

Professor Stenseth and Dr Lingjærde’s application of the RMAVE method to the Canadian lynx pop-
ulations is clearly very interesting. We also look forward to using the partial RMAVE method suggested
by Professor Ni.

Concerning Professor Spokoiny’s question, a further improvement on MAVE can be made. For example,
we can improve the stability of the algorithm along the lines suggested by him.
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