
 Open access Journal Article DOI:10.1109/JCN.2005.6387991

An adaptive FEC code control algorithm for mobile wireless sensor networks
— Source link

Jong-Suk Ahn, Seung-Wook Hong, John Heidemann

Institutions: Dongguk University, Information Sciences Institute

Published on: 01 Dec 2005 - Journal of Communications and Networks (IEEE)

Topics: Error detection and correction, Forward error correction, Wireless network, Wireless sensor network and
Bit error rate

Related papers:

 Datalink streaming in wireless sensor networks

 PPR: partial packet recovery for wireless networks

 Protocols and Architectures for Wireless Sensor Networks

 Energy efficiency based packet size optimization in wireless sensor networks

 Packet combining in sensor networks

Share this paper:

View more about this paper here: https://typeset.io/papers/an-adaptive-fec-code-control-algorithm-for-mobile-wireless-
bgmt9ekanl

https://typeset.io/
https://www.doi.org/10.1109/JCN.2005.6387991
https://typeset.io/papers/an-adaptive-fec-code-control-algorithm-for-mobile-wireless-bgmt9ekanl
https://typeset.io/authors/jong-suk-ahn-52tniz3xxr
https://typeset.io/authors/seung-wook-hong-43lr7y1hdb
https://typeset.io/authors/john-heidemann-4lsjbfuo8b
https://typeset.io/institutions/dongguk-university-1roldywb
https://typeset.io/institutions/information-sciences-institute-3uy3e7r4
https://typeset.io/journals/journal-of-communications-and-networks-rcnp2lh7
https://typeset.io/topics/error-detection-and-correction-gbvyc495
https://typeset.io/topics/forward-error-correction-2a2an0iu
https://typeset.io/topics/wireless-network-36z1b9ct
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/topics/bit-error-rate-s3cqoref
https://typeset.io/papers/datalink-streaming-in-wireless-sensor-networks-2ge4ocfhnl
https://typeset.io/papers/ppr-partial-packet-recovery-for-wireless-networks-3rhuy7qfb6
https://typeset.io/papers/protocols-and-architectures-for-wireless-sensor-networks-218hcvx33c
https://typeset.io/papers/energy-efficiency-based-packet-size-optimization-in-wireless-2qxaj5lc88
https://typeset.io/papers/packet-combining-in-sensor-networks-3vhtl1j39x
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-adaptive-fec-code-control-algorithm-for-mobile-wireless-bgmt9ekanl
https://twitter.com/intent/tweet?text=An%20adaptive%20FEC%20code%20control%20algorithm%20for%20mobile%20wireless%20sensor%20networks&url=https://typeset.io/papers/an-adaptive-fec-code-control-algorithm-for-mobile-wireless-bgmt9ekanl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-adaptive-fec-code-control-algorithm-for-mobile-wireless-bgmt9ekanl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-adaptive-fec-code-control-algorithm-for-mobile-wireless-bgmt9ekanl
https://typeset.io/papers/an-adaptive-fec-code-control-algorithm-for-mobile-wireless-bgmt9ekanl

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 4, DECEMBER 2005 1

An Adaptive FEC Code Control Algorithm for Mobile

Wireless Sensor Networks

Jong-Suk Ahn, Seung-Wook Hong, and John Heidemann

Abstract: For better performance over a noisy channel, mobile

wireless networks transmit packets with forward error correction

(FEC) code to recover corrupt bits without retransmission. The

static determination of the FEC code size, however, degrades their

performance since the evaluation of the underlying channel state is

hardly accurate and even widely varied. Our measurements over

a wireless sensor network, for example, show that the average bit

error rate (BER) per second or per minute continuously changes

from 0 up to 10−3. Under this environment, wireless networks

waste their bandwidth since they can’t deterministically select the

appropriate size of FEC code matching to the fluctuating channel

BER.

This paper proposes an adaptive FEC technique called adap-

tive FEC code control (AFECCC), which dynamically tunes the

amount of FEC code per packet based on the arrival of acknowl-

edgement packets without any specific information such as signal

to noise ratio (SNR) or BER from receivers. Our simulation exper-

iments indicate that AFECCC performs better than any static FEC

algorithm and some conventional dynamic hybrid FEC/ARQ algo-

rithms when wireless channels are modeled with two-state Markov

chain, chaotic map, and traces collected from real sensor networks.

Finally, AFECCC implemented in sensor motes achieves better

performance than any static FEC algorithm.

Index Terms: Adaptive forward error correction (FEC) algorithm,

wireless mobile sensor networks.

I. INTRODUCTION

Recently, wireless networks have become widely popular due

to the convenience of their inherent mobility and the improve-

ment of their transmission speed. Their transmission efficiency,

however, is far lower than that of wired networks due to their

frequent propagation errors, namely high bit error rate (BER).

Their average BER is known to be in the range from 10−6 to

10−3, implying that most packets would be corrupted and thus

dropped over wireless channels without some appropriate error

prevention or recovery mechanisms. In our sensor networks un-

der some external interference [1], for example, around 90%
of all transmitted packets are observed to be thrown due to the

propagation error for a long period. Their BER is also estimated

to be widely fluctuated by the slight movement of a transmitter,

its receiver, and obstacles.

Manuscript received February 1, 2005; approved for publication by Fotini-
Niovi Pavlidou, Division II Editor, July 19, 2005.

This work is in part supported by a grant (INK0402702) from the basic re-
search program of Korea Science and Engineering Foundation (KOSEF).

J.-S. Ahn and S.-W. Hong are with the Computer Engineering Department,
DongGuk University, Jung-Gu Pil-Dong 3-Ga 26 Seoul, Korea, phone: (+82)-
02-2260-3811, email: {jahn, swhong}@dgu.edu.

J. Heidemann is with the USC Information Sciences Institute, 4676 Admi-
ralty Way #1001 Marina del Rey, CA90292, phone: (+01)-310-448-8708, email:
johnh@isi.edu.

To resist against this high and widely fluctuated error rate,

wireless networks redundantly employ both prevention and cor-

rection techniques in their physical and data link layers. For

prevention, for instance, the physical layer chooses an error-

resistant but low-speed modulation method while for recovery

the link layer equips an forward error correction (FEC) tech-

nique on top of automatic request (ARQ) to reduce the number

of retransmissions.

For improving the performance, especially most wireless net-

works tend to include an FEC algorithm to avoid retransmissions

since consecutive packets are likely to be infected with bursty

errors. The deterministic selection of the appropriate FEC code

size, however, degrades the performance by mismatching the

FEC strength to the underlying channel BER. When the channel

BER widely varies, wireless networks should dynamically adapt

the amount of FEC codes for further performance improvement.

The measurements over our sensor network show that aver-

age BER per second (ABERPS) or average BER per minute

(ABERPM) continues to fluctuate from 0 up to 10−3 even

though ABERRPS changes more abruptly than ABERRPM. In

this sensor network, a transmitter keeps sending three 100-byte

packets per second to its receiver. The traffic analysis also in-

dicates that the ABERPM at a given time differs from the next

ABERPM only by 30% in maximum. These two observations

imply that once a dynamic FEC algorithm dynamically chooses

the appropriate FEC code size matching to the slowly varying

channel status, it can significantly improve the performance over

these smoothly undulating wireless channels.

We propose adaptive FEC code control (AFECCC) algorithm

that adjusts the FEC code size based on the channel status im-

plicitly indicated by acknowledgment packets’ arrival. It as-

cends to the higher FEC level at a packet loss while otherwise

descending to the lower FEC level in an multiplicative increase

additive decrease (MIAD) way. According to the channel state,

it selects one among some discrete number of FEC levels each

of which is pre-assigned a FEC code size to employ. The stay

time on each level before dropping to the lower one is dynam-

ically decided in proportion to its previous success rate. The

more frequently AFECCC adopts a level, the longer it stays at

this level.

Our simulation experiments confirm that AFECCC performs

better than any static FEC algorithms and two previous dy-

namic hybrid ARQ/FEC algorithms called link adaptation incre-

mental redundancy (LA-IR) II and retrace recursive LA-IR [2]

when wireless channels are modeled by two-state Markov chain,

chaotic map (CM) model, and packet traces collected from real

sensor networks. The experiments over real sensor networks fi-

nally show that AFECCC outperforms static FEC algorithms.

This paper is organized as follows. Section II lists some re-

1229-2370/05/$10.00 c© 2005 KICS

2 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 4, DECEMBER 2005

lated work and Section III examines the adaptive algorithm’s ap-

plicability over wireless sensor networks. Section IV describes

AFECCC algorithm and Section V examines the performance

of four transition schemes applicable for AFECCC. Section VI

elaborates various channel models to simulate bit-level details

in packet simulators for evaluating FEC algorithms’ throughput.

Section VII reveals AFECCC behaviors under wireless channel

models and in real sensor networks, respectively. Finally, Sec-

tion VIII summarizes experiment results and presents our future

research list.

II. RELATED WORK

FEC algorithms are frequently adopted in application or data

link layer for recovering damaged or lost packets. The for-

mer restores packets dropped during congestion while the lat-

ter corrects packets contaminated by propagation errors. Even

if both have the same goal of restoration, the latter’s efficiency

is more difficult to achieve due to the restriction of packet size

and rapid BER fluctuation in wireless networks. The packet cor-

ruption probability increases in proportion to the packet size and

the wireless channel BER tends to vary more quickly by a few

order-of-magnitudes than the Internet congestion.

FEC techniques are classified into hybrid Type-I and Type-II

FEC/ARQ according to what is retransmitted in case of packet

loss. Type-I retransmits the same data with stronger FEC

code while Type-II resends only stronger FEC code or some

incremental FEC code when the sender adopts convolutional

codes [3].

The convolutional code has a property of generating a com-

plete stronger code by reassembling more incremental FEC

codes. Note that AFECCC works with either Type-I or Type-

II since it aims at determining the strength of FEC code or the

amount of FEC code to send at the next time.

Type-I performs poorer since it wastes the bandwidth by re-

peatedly resending the same data while Type-II becomes ineffi-

cient when either the data packet or some of previous incremen-

tal FEC packets can’t reach the receiver. Note that the convo-

lutional code adds all previously transmitted incremental FEC

codes to generate a complete stronger FEC code. Due to this

characteristic, it is hard to apply Type-II scheme to some heav-

ily noisy wireless networks like our sensor networks where re-

ceivers can’t even recognize packet arrivals due to their pream-

ble corruption. When they seldom receive tainted packets so

that they don’t feed back any acknowledgment, the sender can’t

decide whether to retransmit the previous packet or send a new

packet containing a new incremental FEC code.

Type-II is also hardly applied to datagram networks like ad-

hoc networks since it requires receivers to store a corrupted

packet and its next consecutive incremental FEC codes for each

sender until the damaged packet is recovered. In datagram net-

works, receivers are not guaranteed to receive packets in se-

quence from the same sender due to the routing path change

and intervened packets from other senders. Nodes in datagram

networks, however, are not supposed to maintain any state for

outstanding connections.

Some techniques [2], [4] for dynamically adjusting the

amount of Type-II FEC incremental codes based on previous

channel state have been proposed. Their basic algorithms con-

sists of two parts, one for the predictor determining the starting

FEC code level for each new packet to adopt and another for

additively increasing the strength of FEC code by transmitting

more incremental codes until the damaged packet is recovered.

They vary in the way of using the previous packet arrival history

to evaluate the current wireless channel state for deciding the

starting FEC level. For example, LA-IR II sets the starting FEC

level Fs as Fl − 1 where Fl is the level with which the previous

packet is successfully transmitted. Retrace recursive LA-IR sets

Fs as Fl − 1 where Fl is the most successful level among some

number of previous successful levels. We will compare these

two algorithms’ performance with that of AFECCC in below.

AFECCC differs from them in two aspects. One is the way to

set the starting FEC level. In AFECCC, each FEC level mem-

orizes how long it would be adopted as a starting FEC level if

there is no packet loss while the LA-IR algorithms use the his-

tory of previous FEC levels with which packets were success-

fully forwarded. The number of previous levels to look back

is called window. LA-IR II and retrace recursive LA-IR, for

example, statically set this window size to 1 and some number

greater than 1, respectively regardless of whether the channel

state changes rapidly or smoothly. The static window size, how-

ever, is inappropriate to trace down the channel state behavior.

The large window size hardly adapts to the fast-changing BER

while the small one can’t detect the smoothly changing channel

behavior.

In contrast, AFECCC immediately sets the current starting

level to the last successful FEC one if the packet fails to recover

with the previous starting level. While it continues to success-

fully transmit packets with a given FEC level, it tends to adopt

this FEC level for a period called stay time. For determining

this stay time on a FEC level, it computes two metrics of each

level; the success rate and the elapsed time after the last time

when each level was adopted. The success rate of a level means

how many packets are successfully restored with that level for a

given period without retransmission.

Another is that AFECCC investigates several various ways

for increasing the amount of incremental FEC codes when the

recovery fails while the previous schemes [2], [4] only assume

addictive increase. To efficiently operate in wireless networks

where BER changes widely, AFECCC increases the FEC code

level multiplicatively rather than additively while decreasing ad-

ditively to test whether the channel becomes noiseless.

In addition to increasing FEC code strength appropriately to

measured channel state, many researchers [5]–[7] actively have

proposed various algorithms adjusting different transmission-

related parameters. Some algorithms accommodate maximum

transmission unit (MTU) size, modulation schemes, and trans-

mission speed depending on the average packet loss rate or sig-

nal to noise ratio (SNR). Holland [7], for instance, proposed

a dynamic algorithm which chose a slow but robust modula-

tion scheme at low SNR and switches to a fast but weak one

at high SNR. Differently than these techniques, AFECCC tunes

the FEC code size without any explicit information such as SNR

and the average packet loss rate.

AHN et al.: AN ADAPTIVE FEC CODE CONTROL ALGORITHM FOR MOBILE... 3

Fig. 1. NCBPP distribution as a function of TR distance.

III. WIRELESS SENSOR CHANNEL ERROR

CHARACTERISTICS

This section examines the characteristics of bit errors in sen-

sor networks to determine whether their BER varies smoothly

enough to be traced down by an adaptive algorithm. When

wireless channel is modeled as a state machine and a state is

specified as BER, AFECCC adaptability is determined by the

average duration of a state and the BER difference between two

adjacent states. If BER varies more rapidly than the adaptation

delay taken for detecting BER variation and calculating the suit-

able FEC level, it hardly accomplishes any improvement. If the

channel BER is constant, furthermore, it may be useless.

Fig. 1 shows the number of corrupted bytes per packet

(NCBPP) standard deviation distribution of 10 traces at each

TR distance (standing for the distance between the transmitter

and receiver) by incrementing 1 m from 6 m to 13 m. Each

trace represents 4-hour traffic from a sensor network where a

Mica Mote sender continues to transmit 100-byte packets to its

receiver at the maximum speed of 3.2 kbps by frequency shift

keying (FSK) modulation with 915 MHz carrier signal and 90
mW transmission power.

Fig. 1 indicates that the average NCBPP gradually increases

from 2-byte within close distances less than 11 m to 11-byte as

TR distance approaches 13 m, the threshold distance for distin-

guishing signal. The standard deviation range also widens from

2-byte up to 10-byte as TR distance gets larger. The growth of

the average NCBPP as a function of TR distance is explained

by large scale fading (LSF) effect that the signal power fades in

proportion to TR distance. The expansion of the standard devi-

ation span is due to that small scale fading (SSF) effect mainly

caused by multi-path interferences gets stronger as the signal

power becomes weaker.

Based on Fig. 1, we can say that AFECCC is indispensable to

accommodate the wide BER distribution when receivers move

around or even when they are statically located apart further than

10 m from their sender. When a receiver roams around within

13 m radius from its sender, for instance, the sender needs to

add 36-byte Reed-Solomon (RS) [8] code to correct the worst

18 damaged bytes at 13 m TR distance. Note that RS code re-

Fig. 2. Allan deviation of NCBPP.

quires 2-byte correction code for 1-byte error. This static FEC

algorithm, however, leads to 24-byte waste at TR distance less

than 11 m where the maximum number of erroneous bytes is

less than 6.

Fig. 2 shows how fast the channel BER changes by plotting

Allan deviation [9]. For Allan deviation, we divide a packet

trace into time slots, compute NCBPP average of each time slot,

and finally calculate Allan deviation, namely the variance of

two neighbor time slots’ NCBPP. Allan deviation represents the

smoothness of BER changes.

Fig. 2 displays five Allan deviation graphs for five different

TR distances as the time slot width for averaging NCBPP ex-

pands. In Fig. 2, the Allan deviation of 13 m trace is 4-byte

at 1 s (second) time span while it rapidly decreases down to 1-

byte at 60 s interval. This Allan deviation plots again verify that

NCBPP slowly changes at close TR distances while it abruptly

varies at distant ones. This observation also illustrates the ap-

propriate FEC code size difference between two adjacent FEC

levels depends on the time scale to track down. When AFECCC

aims at tracing 1 s BER variations, for example, its levels should

be apart further than 4-byte at least. On the other hand, when it

tries to follow long-term variations, the difference between two

neighbor levels should be more than 4-byte.

Figs. 3(a) and 3(b) show some visual evidence of AFECCC

adaptability over sensor channels by depicting two average

NCBPP variations of an 11 m trace when the average time span

sets to 1 s and 10 s, respectively. These two figures percep-

tibly prove the existence of some low-frequency variations for

AFECCC to faithfully trace down, especially like a wide deep

valley between 700 s and 1200 s even though numerous spikes

are dispersed over entire observation interval.

Fig. 4 computes the ratio of theoretical waste time to the to-

tal observation interval when four static FEC algorithms are ap-

plied to the collected packet traces. Note that a static FEC algo-

rithm wastes the bandwidth by transmission of its excessive FEC

codes and packet losses due to its deficient FEC code strength.

Four static FEC algorithms, FEC1, FEC2, FEC3, and FEC4 in

Fig. 4 are assumed to add 6, 10, 20, and 40-byte RS code, re-

spectively to recover 3, 5, 10, and 20 erroneous bytes. The code

4 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 4, DECEMBER 2005

(a)

(b)

Fig. 3. NCBPP variation over two different time scales: (a) Average
NCBPP per second variations, (b) average NCBPP per 10 second
variations.

size of each FEC algorithm is decided based on the measured

error distributions where damaged bytes of 90% corrupt packets

range from 2 to 20-byte.

In Fig. 4, at first IEEE 802.11 without any FEC algorithm

spends more than 70% of transmission time due to heavy packet

losses. FEC4 and FEC1 consume almost 37% and 4% of the

total time for unnecessary extra FEC code transmission while

wasting 0.2% and 8% for packet loss at 6 m TR distance. On

the other hand, at 13 m these two algorithms spend 25% and 2%
for FEC code overhead while 10% and 78% for packet drops.

To minimize the bandwidth waste depicted in Fig. 4, wireless

networks need to dynamically select FEC2 in [6 m, 10 m], FEC3

in [10 m, 12 m], and finally FEC4 around 13 m.

IV. AFECCC ALGORITHM

This section introduces AFECCC algorithm that gradually ap-

proximates a suitable FEC level among some available FEC lev-

els matching to the underlying wireless channel BER only by

the assistance of acknowledgment packet arrivals. It descends

to the lower FEC level some time called drop timeout after con-

secutive acknowledgements successfully arrive while immedi-

ately ascending to the higher one at a packet loss. It continues

Fig. 4. Bandwidth waste ratio of four static FEC algorithms.

to adopt the previous starting FEC level until the drop timeout

expires differently than the traditional hybrid Type-II dynamic

algorithms [2], [4].

AFECCC incrementally infers the appropriate FEC level or

the number of FEC code bytes for the next packet to use since

receivers seldom estimate the exact number of corrupted bytes

once the number of error bytes is beyond the correction capabil-

ity of the attached FEC code. Senders also hardly deduce this

number from SNR that are often measurable and fed back by

their receivers.

AFECCC joins at the higher FEC level at the detection of a

packet loss. Since the overhead of transmitting additional extra

FEC code is much smaller than that of an entire packet retrans-

mission, adding more FEC codes is much better for improving

the performance than taking a risk of dropping another packet.

The accumulation of unnecessary FEC code transmissions dur-

ing a long error-free period, however, unacceptably deteriorates

the throughput.

To determine the appropriate drop time to the lower level,

AFECCC maintains a drop timer (DT) for each level whose

timeout is adjusted by a binary exponential back-off algorithm.

Whenever it joins a new FEC level, it exponentially increases

DT of this newly adopted level up to Tmax by multiplying with

a multiplication factor α (> 1). The more frequently it visits

a FEC level, the larger its drop timeout grows to be stable at

this level. Notice that α and Tmax decide the polling frequency

to check the channel status improvement, leading to the polling

overhead of AFECCC. The smaller α, for example, the more

frequently AFECCC evaluates the channel behavior by weaken-

ing the FEC code.

AFECCC, furthermore, retains a global polling timer to de-

cay DT s of the other levels except the currently adopted level.

Whenever this global timer is expired every Tp, it shrinks the

DT timeout value of the other levels up to Tmin by multiplying

with a decay factor, β (< 1). This decay operation has an effect

of incrementally forgetting the old channel status as time goes

by. In summary, Fig. 5 illustrates these transitions among some

predetermined levels of AFECCC.

The AFECCC four tunable variables, α, Tmax, Tmin, and β

AHN et al.: AN ADAPTIVE FEC CODE CONTROL ALGORITHM FOR MOBILE... 5

1 1 -1 -1

1 1

 , , ,

 , ,

k k

k k n n

DT DT DT DT

DT DT DT DT

k k
DT DT1 1k k

DT DT

(K-1)-th level K-th level (K+1)-th level

DT
k

timeout DT
k+1

timeout

Packet drop Packet drop

T
P

timeout

k k
DT DT 1 1k k

DT DT

Fig. 5. State transition diagram of AFECCC.

determine the frequency of channel examinations. The smaller

these four variables, the more aggressively AFECCC reduces

the FEC code size at the expense of retransmission. Heuristi-

cally, we approximately set Tp, Tmin, Tmax to round trip time

(RTT), hRTT , hTmin, respectively when the code size gap

between two neighbor levels is 1/h of the packet size. Pre-

cisely, AFECCC adjusts DT of other levels except the cur-

rent on whenever one RTT for successfully sending a packet

elapses. It also sets the earliest drop timeout Tmin, to h × RTT
taken for h packets to be sent. Note that h×RTT is the duration

for the total accumulated overhead of extra FEC code transmis-

sions 1/h(h × RTT) to be equal to the waste time due to a

packet loss. With this value, AFECCC can test the channel be-

fore the FEC overhead becomes greater than the retransmission

overhead.

V. AFECCC ALGORITHM ANALYSIS

This section tries to determine an appropriate transition com-

bination by theoretically analyzing the performance of four pos-

sible level change schemes, additively increase (AI), multiplica-

tively increase (MI), additively decrease (AD), and multiplica-

tively decrease (MD) ways.

A. Two Upward Transition Method

Fig. 6 pictorially depicts the behavior of two upward transi-

tion techniques when the channel BER jumps up to what n-th

FEC level deals with as the dotted line depicts in Fig. 6.

Equation (1) shows the AI upward overhead, namely the time

taken to ascend to n-th FEC level by repeating n-time retrans-

missions. Note that the worst k-th average retransmission time

is the sum of backoff delay 2k−1Ts and RTT where Ts is the

minimum delay for avoiding collision and Ts is set to 50 ms

in our sensor network. RTT is the time to finish transmissions

of RTS, CTS, DATA, and ACK packets when IEEE 802.11 net-

works employ the virtual channel sensing. Otherwise, RTT is

the time to finish transmissions of DATA and ACK packets.

Uoverhead = RTT × n +

n∑

k=1

2k−1Ts. (1)

In contrast to AI technique, MI needs 2log2 n retransmissions

to reach above n-th level shown in Fig. 6 (b). The first and sec-

ond terms in (2) represent the overhead of these retransmissions.

Note that the ceiling-bar of log2 n is an operator rounding up a

float number. When n is not the exponent of 2, the third term

RTT+backoff

RTT+backoff

RTT+backoff

RTT

Time

FEC level

n

(a)

RTT+backoff

RTT

Time

n

c

n2log
2

22

12

c c..

DT

FEC level

(b)

Fig. 6. Two upward transition schemes: (a) Additive-increase, (b)
multiplicative-increase.

denotes the wasted time for sending extra FEC codes before de-

scending to n-th level in AD way. Note that the k-th (> n)
level attaches C(k − n) excessive bytes at each packet during

DT duration under the assumption that each FEC level is evenly

spaced by C-byte FEC code and the underlying wireless chan-

nel’s bandwidth is BW . The total overhead of extra FEC code is

the multiplication of C(k − n)/BW , the transmission time of a

packet’s extra code at the k-th level and DT/RTT , the number

of packets sent before DT expires.

Uoverhead = RTT log2 n +

log2 n∑

k=1

2k−1Ts +

n∑

k=2log2 n

(C(k − n)/BW)
DT

RTT
. (2)

B. Two Downward Transition Method

Fig. 7 graphically depicts the behavior of two downward

transition techniques when the current BER jumps down from

(m + n)-th level to m-th one where m is an arbitrary number.

Equation (3) computes the AD overhead, in which the first

term indicates the transmission time for additional FEC codes

6 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 4, DECEMBER 2005

Time

RTT

n
c

FEC level

c

c

c c…...

.

DT

DT

(a)

Time

RTT+backoff
RTT

FEC level

12

n2log
2

c c

c

…

c

DT

…

DT

n

(b)

Fig. 7. Two downward transition schemes: (a) Additive-decrease, (b)
multiplicative-decrease.

before going down to (m − 1)-th level and the second term

amounts to a packet retransmission time caused for going up

from (m − 1)-th level to m-th one under the assumption that

AFECCC transits in AI way.

Doverhead =

n∑

k=0

(C(n − k)/BW)
DT

RTT
+ RTT. (3)

Equation (4) calculates the MD overhead, in which the first

term explains the overhead of additive FEC codes before expo-

nentially descending to (m + (n − 2log2 n))-th level when n is

not the exponent of 2. The second and third terms indicates the

upward overhead of AI going up from (m + (n− 2log2 n))-th to

m-th under the assumption that AFECCC goes up in AI way.

Doverhead =

log2 n−1∑

k=0

(C × (n − 2k)/BW) ×
DT

RTT
+

(2log2 n
− n)RTT +

2log2 n
−n∑

k=0

2kTs. (4)

As calculated in the above four equations, the performance

of these four transition techniques depends on several parame-

ters such as channel propagation error characteristics, FEC code

size, RTT , DT timeout, etc. Even though we hardly quanti-

tatively compare the four equations due to various parameters,

we can roughly say that the packet loss overhead term in AI and

MD is more dominant than in MI and AD, respectively. So like

in 802.11 networks where a packet retransmission takes more

time than the transmission of FEC code, generally AFECCC is

safe to employ a pair of AI and MD to dynamically adjust the

amount of FEC code.

VI. THEORETICAL MODELS FOR WIRELESS

CHANNEL

This section introduces two approaches to model bit-level

propagation errors in packet-level network simulators [10], [11].

First, analytical channel models specify physical wireless sig-

nal propagation phenomena known as large-scale fading (LSF)

and small-scale fading (SSF) effects. ns-2 [11], for example,

includes three LSF models (free space model, two-ray ground

reflection model, and shadowing model) and one SSF model

(Ricean distribution) [12]. These physical models allow ns-2

to compute the average signal power of every packet arrived at

a receiver and based on the comparison of the perceived signal

power to the receiving threshold, determine packet drops.

Since this approach assumes the same signal power sustained

all the way during a packet’s transmission duration, however,

it can’t accurately predict that the error probability grows in

proportion to the packet size. To overcome this problem, Hol-

land [7] calculates a packet’s signal power several times when-

ever the theoretical SSF duration expires if the packet transmis-

sion lasts longer than the SSF interval. Still this approach can’t

provide fine granularity for the number of corrupt bits and their

locations needed for evaluating FEC algorithms.

Differently from imitating physical phenomena, the sec-

ond one statistically defines observed wireless behaviors with

some mathematical equations. This category, for example, con-

tains Gilbert Elliot (GE) [13] model also known as two-state

Markov chain and chaotic map (CM) [14] which many re-

searchers [5], [15] have adopted in studying link-level ARQ and

FEC performance. They are popularly employed in packet sim-

ulators since they faithfully represent the typical wireless bit-

error burstiness by assuming two states each of which represents

short-term heavy BER and long-term light BER, respectively.

Especially, CM model strictly expresses burstier error char-

acteristics of 802.11 LAN than what GE model represents. It

transits between the good state with no error and the bad state

with error by (5) which computes Xt+1 at each bit transmission.

When the Xt+1 is greater than 1, it assumes no error. Otherwise

it generates one error bit. Three variables z, u, and e in (5) de-

termine transition frequency between two states, the probability

of staying in the current status, and the maximum number of bit

strings in a given state, respectively.

Xt+1 = Xt + µXz
t + ǫ, t ∈ N. (5)

When error bit distributions can’t be accurately summarized

as some mathematical equations, the second approach uses

table-driven or trace-driven methods [16] storing every details

of real traffic. The table-driven one builds a histogram which

records the probability values for each error bit strings from col-

lected traces. The trace-driven way exactly replays error byte

counts collected from real traces or channel simulators [17],

[18]. Even though the last one limits the number of packets

AHN et al.: AN ADAPTIVE FEC CODE CONTROL ALGORITHM FOR MOBILE... 7

Fig. 8. Performance of four transition algorithms.

to simulate by trace size, it has an advantage to precisely model

a specific channel.

This paper adopts three channel models, GE, CM, and real

sensor traces for evaluating AFECCC performance.

VII. EVALUATION

This section evaluates the performance of four adaptation

methods (AIAD, AIMD, MIAD, MIMD), compares AFECCC

throughput with that of static and conventional dynamic FEC

algorithms, and finally measures AFECCC performance over

real sensor networks. Note that the performance only counts the

number of packets that are received successfully or recovered

with their FEC code. The successful recovery is determined by

the attached error detection code such as cyclic redundancy code

(CRC).

A. The Performance Analysis of Four Transition Schemes

Fig. 8 shows the ratio of four transition methods’ performance

measured over noisy channels to the best performance over an

error-free channel when a sender constantly transmit 100-byte

packets over 512 kbps channel of an IEEE 802.11 network. Its

three axes z, y, x represent the performance ratio, the duration

of a given BER state as an unit of second, and BER when the

noisy channel is modeled by two-state Markov chains. Namely

the good state and bad state are defined as (x, y) and (0, y). Five

parameters of AFECCC, α, β, Tmax, Tmin, Tp are set to 2, 0.8,

1000 ms, 60 ms, 6 ms where 6 ms is one RTT of this 802.11b

network. Finally, we assume that AFECCC maintains 11 FEC

levels each of which corrects 2, 5, 8, 12, 16, 21, 26, 33, 40, and

45 contaminated bytes.

Fig. 8 indicates that the performance of the four algorithms

is strongly affected with the channel BER duration as BER in-

creases. In detail, they achieve almost the same throughput

with low BER from 0 up to 0.02 regardless of BER duration

while as BER becomes larger and the channel state changes

rapidly, MIAD performs better nearly by 50% than the other

three schemes. It is due to that it minimizes the packet loss by

adapting quickly to the bad state but slowly to the good state.

IEEE 802.11 MAC

RS(106,100)

RS(112,100)

RS(118,100)

RS(126,100)

LA/IR Type2

Recursive LA/IR

AFECCC

Fig. 9. AFECCC performance in Markov chain.

B. The Performance Comparison of AFECCC to Static and Two

Previous Dynamic FEC Algorithms

Fig. 9 compares the performance of AFECCC to that of four

FEC algorithms, RS(106, 100), RS(112, 100), RS(118, 100),
RS(126, 100) [8] and two dynamic ones named LA-IR II and

retrace recursive LA-IR [2] when two states of Markov chain

are set to (0, 20 ms) and (x, 20 ms) in the same network as the

one for Fig. 8. Note that RS(u,w) means w data symbols and

(u−w) correction RS symbols where (u−w) correction sym-

bols restore (u − w)/2 corrupt symbols.

For Fig. 9, we set a symbol to one byte and config-

ure AFECCC to dynamically choose one among these four

static codes RS(106, 100), RS(112, 100), RS(118, 100), and

RS(126, 100). For computing the starting level in retrace re-

cursive LA-IR, we pick the most successful level among ten

previous successful levels. Each graph of Fig. 9 plots the ra-

tio of one algorithm’s performance to the maximum achievable

throughput over the error-free channel and each dot on a graph

averages five simulation results.

Fig. 9 shows that ARQ performance quickly falls off to zero

as the bad state’s BER approximates to 10−3, where every 100-

byte packet is likely to be inflicted with one-bit error. The four

static FEC codes maintain constant throughput with 20% max-

imum difference among them before x becomes 10−2 where

each performance sharply drops. Especially the performance

of RS(126, 100) is less by 20% than any static codes but runs

constant all the way before 10−1 where the others’ performance

reaches almost zero.

Fig. 9 illustrates that AFECCC orderly traces the behav-

ior of 802.11, RS(106, 100), RS(112, 100), RS(118, 100),
and RS(126, 100) during [0, 0.03], [0.03, 0.06], [0.06, 0.09],
[0.09, 0.13], and [0.13, 0.15] interval of x-axis. AFECCC, how-

ever, performs less by 5% than the best static algorithm in each

interval due to its adaptation overhead. It adapts to the BER

changes similarly as the two dynamic LA-IR algorithms even

though it performs 10% better after BER grows greater than

10−4. Note that the two performance graphs of two LA-IR

schemes are almost indistinctly overlapped. Furthermore, the

two algorithms’ performance rapidly drops to almost 10% while

8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 4, DECEMBER 2005

IEEE 802.11 MAC

RS(106,100)

RS(112,100)

RS(118,100)

RS(126,100)

LA/IR Type2

Recursive LA/IR

AFECCC

Fig. 10. AFECCC performance in chaotic map.

AFECCC maintains 50% performance ratio as BER approaches

10−1. The reason of AFECCC’s superiority in this heavy BER

range is mainly due to the multiplicative increase rate which can

rapidly adapt to wide BER fluctuations.

Fig. 10 also evidences the performance of the eight algorithms

under the same environment as Fig. 9 except that CM model

is adopted for wireless channels. As like Figs. 9 and 10 pre-

dicts that each static code maintains constant throughput before

its threshold BER at which almost every packet is damaged too

heavily to be corrected.

In contrast to Fig. 9, however, their performance smoothly

degrades at its BER threshold since CM model is burstier than

two-state Markov chain. Namely under the same average BER,

CM model produces the same amount of error bits for the shorter

duration than two-state Markov chain. Due to the high degree

of burstiness, they successfully transport more packets under the

same BER than in Fig. 9.

AFECCC achieves better in CM model by 3% than in two-

state Markov chain and even accomplishes better by 5% than

any other static algorithms at around 2 × 10−2 BER. It is due

to that in CM model the good state sustains longer so that

AFECCC suffers less packet loss than in two-state Markov chain

whenever it switches to the lower FEC level. It also achieves

better performance than two LA-IR algorithms as BER becomes

greater than around 2 × 10−3 due to the reason explained in

Fig. 9.

Fig. 11 evaluates the performance of eight FEC algorithms

over real traces collected from a real sensor network where a

sender transmits 100-byte packets to its receiver while increas-

ing TR distance from 1 m to 13 m. For emulating the receiver’s

movement, we appropriately mix 10-minute packet traffic from

different traces measured at different locations for a given aver-

age BER depicted at x-axis.

In contrast to Fig. 10, Fig. 11 indicates that the performance

of the eight algorithms falls earlier before their predicted thresh-

old since propagation errors in these artificially interleaved

traces are more randomly and uniformly distributed. Fig. 11 also

shows that the performance of AFECCC is located in the middle

of RS(118, 100) and RS(126, 100) in [10−3, 1.3 × 10−2] BER

IEEE 802.11 MAC

RS(104,100)

RS(108,100)

RS(120,100)

RS(140,100)

LA/IR Type2

Recursive LA/IR

AFECCC

Fig. 11. AFECCC performance in real trace.

Table 1. The number of retransmitted bytes and FEC bytes per packet

at each BER.

0.001 0.012 0.052 0.079 0.097

802.11 MAC 21.5 290.8 526.6 980.2 4852.8

RS(104,100) 7.1 81.1 228.7 478.7 1255.0

RS(108,100) 11.2 15.5 77.9 192.0 339.4

RS(120,100) 25.2 25.2 60.8 101.5 134.7

RS(140,100) 52.2 52.2 70.0 86.0 96.3

LA-IR Type II 19.7 104.9 152.3 187.7 218.9

Retrace recursive

LA-IR
19.8 126.1 225.0 294.0 340.2

AFECCC 16.9 29.2 62.7 87.6 102.6

range and follows that of RS(126, 100) as x approaches 10−1.

At 4.6×10−2 BER, AFECCC’s performance drops sharply even

though it is still better than RS(118, 100) by 5%. The rea-

son of AFECCC’s deep fall at this BER comparing to the next

5.2×10−2 BER would be that more packets in this trace file are

tainted than in 5.2 × 10−2 trace by 8% even though 5.2 × 10−2

trace file’s BER is higher than 4.6 × 10−2 BER. The packet

BER of 4.6× 10−2 trace file is also somewhat randomly fluctu-

ated between what RS(118, 100) and RS(126, 100) can recover

so that AFECCC is hard to be stable at RS(126, 100). Finally,

AFECCC performs better than the two LA-IR algorithms over

the entire BER interval. It is also due to that the LA-IRs fail to

predict the right starting FEC level and swiftly adapt to the wide

BER change by additively increasing the FEC level rather than

multiplicatively.

C. AFECCC Implementation and Performance Analysis

Table 1 shows the average number of retransmitted bytes plus

FEC bytes sent by the eight algorithms to successfully forward

a packet at five BERs used in the experiment for Fig. 11. The

top row and the leftmost column of Table 1 list five BERs at

which each algorithm’s overhead is evaluated and the type of

FEC algorithms, respectively. Table 1 indicates that the over-

head of AFECCC approximates to the second least among those

AHN et al.: AN ADAPTIVE FEC CODE CONTROL ALGORITHM FOR MOBILE... 9

FECData
FEC

strength

Sequence

control
BSSID

Src

addr

Dest

addr
Duration

Frame

Control

FEC
Src

addr

Dest

addr
Duration

Frame

control

FEC
Dest

addr
Duration

Frame

control
FEC

Dest

addr
Duration

Frame

control

Octets: 2 2 6 6 6 2 1 variable variable

Octets: 2 2 6 6 4

Octets: 2 2 6 4 Octets: 2 2 6 4

Data packet frame

RTS frame

CTS frame ACK frame

Fig. 13. Four extended packet formats for AFECCC.

MAC

layer

Physical

layer

SMAC.C

Carrier sense control

back-off and retry

RTS/CTS/ACK

Tx_pkt

Tx_pkt_done

Rx_pkt

Free_processing_buffer

PHY_RADIO.C

Reset timer

Decrease

FEC

Increase

FEC

MIAD FEC control

Drop timer

Phy_Tx_failPhy_FEC_timer_fire

CRC check

FEC encoding/decoding

Byte spooling/buffering

RADIO_CONTROL.C CODEC_MANCHESTER.C

Encoding/decoding
Radio control

carrier sense

Decrease

drop

timer

Phy_drop_timer_fire

Successful ACK arrival
Packet

drop timer

Polling

timer

Fig. 12. AFECCC implementation at SMAC.

of the static FEC algorithms in each low BER column and at

least takes a few tens of bytes fewer than the other static and the

two dynamic LA-IR algorithms. Based on the total transmission

overhead over the entire BER range, we believe that AFECCC

is energy-efficient more than the static FEC and LA-IR algo-

rithms even though it executes around some tens of instructions

per packet. Note that the transmission of one byte tends to con-

sume more energy than the execution of a few instructions as

T-R distance gets larger.

Fig. 12 illustrates AFECCC implementation [19] in sensor-

MAC (SMAC) [20] that is quite similar to 802.11 except that

for power saving receivers sleep whenever they have no data to

receive. As shown in Fig. 12, AFECCC integrates four event

handlers for processing DT timeout, PT timeout, packet drop

detection timeout, and successful acknowledgement arrival at

SMAC layer while it puts RS FEC encode and decode functions

at its physical layer.

Fig. 13 also lists four extended headers of RTS, CTS, ACK,

and Data frames to carry FEC code for AFECCC. Since the three

control packets RTS, CTS, and ACK are relatively short, we

assume that their FEC code is of fixed size while data frames

Fig. 14. Performance ratio of four static FEC codes to AFECCC.

reserve two fields to store FEC code size in their header and the

corresponding FEC code at their trail.

Fig. 14 draws the ratio of four static FEC codes performance

to that of AFECCC when a Mica Mote transmits 80-byte packets

for 2-hour by varying TR distance from 1 m to 11 m. For the fair

comparison of the five algorithms, we compute each static FEC

performance when the four static FEC algorithms are assumed

to work over the same packet traffic experienced by AFECCC.

Namely, we calculate the waste time of packet losses and extra

code transmission when the same degree of corruption occurs to

the four static algorithms. It is due to that since the sensor chan-

nel widely varies, we hardly produce the same live networks for

fair comparison.

Each point of four graphs in Fig. 14 represents the average

over three AFECCC traces. Fig. 14 shows that the performance

graph of weak RS(84, 80) crosses those of three strong codes,

RS(88, 80), RS(92, 80), and RS(100, 80) as TR distance in-

creases as predicted in the above simulation experiments. It also

proves that AFECCC performs better in all TR distances even

though RS(88, 80) and RS(92, 80) achieve almost the same per-

formance as AFECCC as TR distance approaches 11 m.

10 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 4, DECEMBER 2005

VIII. CONCLUSION

This paper provides some evidences that low-power sensor

channels’ BER tends to smoothly vary to dynamically adjust the

FEC code size for improving the sensor network performance.

It also proposes an adaptive FEC code control algorithm called

AFECCC and evaluates its performance under various chan-

nel models and over real sensor networks. AFECCC dynami-

cally matches the FEC code size to the low-frequency wireless

channel BER, which is evaluated by acknowledgement packet

arrivals. According to the simulations with various theoreti-

cal channel models and live experiments over sensor networks,

AFECCC performs better than any static FEC algorithms and

some conventional dynamic FEC algorithms.

We will try to devise a technique to automatically determine

the tunable variables of AFECCC based on its applied network

environments. Finally, we also plan to accurately quantify the

energy saved by AFECCC under simulations and real mobile

sensor networks.

REFERENCES

[1] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan, “Building efficient wireless sensor networks with low-level
naming,” in Proc. SOSP 2001, vol. 35, no 5, Oct. 2001, pp 146–159.

[2] A. Levisianou, C. Assimakopoulos, F.-N. Pavlidou, and A. Polydoros, “A
recursive IR protocol for multicarrier communications,” in Proc. 6-th In-
ternational OFDM-Workshop, Hamburg, Czech Republic, Sept. 2001, pp.
22-1–22-4.

[3] J. Hagenauer, “Rate compatible punctured convolutional codes (RCPC
codes) and their applications,” IEEE Trans. Commun., vol. 36, no 4, pp.
389–400, Apr. 1988.

[4] L. Zhao, J. W. Mark, and Y. C. Yoon, “A combined link adaptation and
incremental redundancy protocol for enhanced data transmission,” in Proc.
GLOBECOM 2001, San Antonio, Texas, Nov. 2001, pp. 25–29.

[5] P. Lettieri and M. B. Srivastava, “Adaptive frame length control for im-
proving wireless link throughput, range, and energy efficiency,” in Proc.
INFOCOM’98, Apr. 1998, pp. 564–571.

[6] G. Wu, C.-W. Chu, K. Wine, J. Evans, and R. Frenkiel, “WINMAC: A
novel transmission protocol for infostations,” in Proc. VTC’99, May 1999,
pp.1340–1344.

[7] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive MAC protocol for
multi-hop wireless networks,” in Proc. ACM SigMobile, July 2001, pp.
236–250.

[8] W. Peterson and E. Weldon Jr., Error-Correcting Codes, 2nd ed., The
Massachusetts Institute of Technology.

[9] D. W. Allan, “Time and frequency (time domain) characterization, esti-
mation, and prediction of precision clocks and oscillators,” IEEE Trans.
Ultrason., Ferroelect., Freq. Contr., vol. 34, no. 6, Nov. 1987.

[10] M. Takai, R. Bagrodia, A. Lee, and M. Gerla, “Impact of channel models
on simulation of large scale wireless networks,” in Proc. MSWiM’99, Aug.
1999, pp. 7–14.

[11] Network Simulator NS-2, available at http://www.isi.edu/nsnam/ns.
[12] R. J. Punnoose, P. V. Nikitin, and D. D. Stancil, “Efficient simulation of

Ricean fading,” in Proc. VTC 2000, Sept. 2000, pp.764–767.
[13] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J., vol.

39, pp 1253–1266, Sept. 1960.
[14] A. Kpke, A. Willig, and H. Karl, “Chaotic maps as parsimonious bit error

models of wireless channels,” in Proc. INFOCOM 2003, vol. 22, no. 1,
Mar. 2003, pp. 513–523.

[15] M. Zorzi, “Performance of FEC and ARQ error control in bursty channels
under delay constraints,” in Proc. VTC’98, May 1998, pp. 1390–1394.

[16] A. Kumar and R. Gupta, “Capacity evaluation of frequency hopping based
ad-hoc systems,” in Proc. SigMetrics 2001, June 2001, pp. 133–142.

[17] C. M. Keller, Generic Channel Simulator, MIT Lincoln Laboratory Project
Report AST-46, Aug. 1997.

[18] T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, “Statistical channel
impulse response models for factory and open plan building radio com-
munication system design,” IEEE Trans. Commun., vol. COM-39 no. 5,
pp. 794–806, May 1991.

[19] Available at http://network.dongguk.ac.kr/publication/AFECCC/AFECCC
.html.

[20] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” in Proc. IEEE INFOCOM 2002. June, 2002,
pp. 1567–1576.

Jong-Suk Ahn received the Ph.D. degree and the
M.S. degree in electrical engineering from the Uni-
versity of Southern California in 1995 and from the
Korean Advanced Institute of Science and Technol-
ogy in 1985, respectively and the B.S. degree from
Seoul National Univerisity in 1983. He was a visit-
ing researcher in ISI/USC for one year from 2000. He
was awarded Gaheon Prize for the best paper in 2003
from the Korean Information Science Society. He is
currently an associate professor at the Dongguk Uni-
versity in Korea. His major interests are in sensor net-

works, dynamic error control and flow control algorithms over wireless Internet,
fast IP routing techniques, and network simulation techniques.

Seung-Wook Hong was born in Hwaseong, Korea,
on April 23, 1977. He received the B.S. degree in
Information and Communication Engineering and the
M.S. degree in Computer Engineering from the Dong-
guk University of Seoul, Korea, in 2003 and 2005, re-
spectively. He is currently a computer engineer at the
SAMSUNG Electronics Corp. in Korea. His major
interests are in embedded systems, sensor networks,
802.11 MAC protocol, and device driver program-
ming.

John Heidemann is a senior project leader at
USC/ISI and a research associate professor at USC in
the CS Department. At ISI he leads I-LENSE, the ISI
Laboratory for Embedded Networked Sensor Experi-
mentation, and investigates networking protocols and
traffic analysis as part of the ANT (Analysis of Net-
work Traffic) group. He received his B.S. from Uni-
versity of Nebraska-Lincoln and his M.S. and Ph.D.
from UCLA, and is a member of ACM and Usenix,
and a senior member of IEEE.

