
Citation: Zhao, L.; Dai, H.-Y.; Lang,

L.; Zhang, M. An Adaptive Filtering

Method for Cooperative Localization

in Leader–Follower AUVs. Sensors

2022, 22, 5016. https://doi.org/

10.3390/s22135016

Academic Editor: Sameh Nassar

Received: 23 May 2022

Accepted: 23 June 2022

Published: 2 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Adaptive Filtering Method for Cooperative Localization in
Leader–Follower AUVs
Lin Zhao 1 , Hong-Yi Dai 2, Lin Lang 1 and Ming Zhang 1,*

1 College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; zhaolin689@163.com (L.Z.); langlin_8502@nudt.edu.cn (L.L.)

2 College of Science, National University of Defense Technology, Changsha 410073, China; daihongyi1@163.com
* Correspondence: zhangming@nudt.edu.cn

Abstract: In the complex and variable marine environment, the navigation and localization of
autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional
Kalman filter (KF) is applied to the cooperative localization of leader–follower AUVs, the outliers
in the sensor observations will have a substantial adverse effect on the localization accuracy of the
AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors.
In this paper, we proposed an improved Sage–Husa adaptive extended Kalman filter (improved
SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were
evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold
was determined according to the confidence level of the Chi-square test, and the Chi-square test
statistics exceeding the threshold were regarded as measurement abnormalities. When measurement
anomalies occurred, the Sage–Husa adaptive extended Kalman filter algorithm was improved by
suboptimal maximum a posterior estimation using weighted exponential fading memory, and the
measurement noise covariance matrix was adjusted online. The numerical simulation of leader–
follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF
and demonstrated that the average root mean square and the average standard deviation of the
localization errors based on the improved SHAEKF were significantly reduced in the case of the
presence of measurement abnormalities.

Keywords: multi-AUV cooperative localization; measurement anomaly; adaptive filter; extended
Kalman filter

1. Introduction

The Global Navigation Satellite System (GNSS) is often unavailable in deep water en-
vironments, and inertial/dead reckoning (DR) navigation technology is usually considered.
The Doppler velocity log (DVL) can measure the velocity of autonomous underwater vehi-
cle (AUVs) and it can carry out autonomous navigation and localization without installing
additional sensors and external reference information when the DVL is combined with the
Inertial Navigation System (INS). In a multi-AUV formation, there will be localization error
growth over time for the AUVs, which are only equipped with inertial/DR equipment.
We can improve the localization accuracy of the whole system by improving the localiza-
tion accuracy of each AUV, but there is a great sacrifice in cost. Therefore, researchers
have proposed leader–follower multi-AUV cooperative localization methods [1–3]. AUVs
transmit information through sensors, such as underwater acoustic communication equip-
ment. When conducting cooperative localization, various state estimation technologies
need to be introduced to estimate the position of the AUV. A Kalman filter (KF) is the best
Bayesian estimator for linear systems with Gaussian uncertainty [4]. However, the model of
a leader–follower multi-AUV cooperative localization system is often nonlinear. Therefore,
an extended Kalman filter (EKF) or unscented Kalman filter (UKF) is usually used for state
estimation. In the framework of Kalman filters, these methods require that the statistical
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characteristics of process noise and measurement noise are known and fixed during cooper-
ative localization. However, in practical applications, due to the low precision of low-cost
inertial/DR equipment carried on an AUV, these methods are easily affected by many
uncertain factors such as external environment interference, carrier maneuver changes,
internal instrument failure, and so on. At present, in order to overcome the uncertainty
of the filter in AUV navigation and localization, many researchers have applied adaptive
interactive multi-models, fuzzy logic, and other methods [5–10]. In Refs. [5,6], the adap-
tive filtering algorithm was applied to an AUV. When the system noise matrix remained
positive or semi positive, the latest measurement data were used to adaptively estimate
the changing process noise or measurement noise covariance matrix. Refs. [7,8] introduced
interactive multi-model methods in order to solve the problem of state estimation when
the statistical characteristics of measurement noise were unknown or easy to change under
the complex working environment of an AUV, and the model probability obtained in the
process of state estimation was used for decision-making, so as to obtain the expected
model closer to the real mode of the system for state estimation. In refs. [9,10], researchers
used fuzzy logic technology to adapt to sensor noise changes or communication data
loss, enhanced the fault detection and signal recovery algorithm of the navigation system
reliability, adjusted the initial noise statistical assumption of the EKF, and maintained the
stability and performance of the filter. In the aforementioned research, the improved filter
algorithm was mostly used for navigation and localization of a single AUV. This study
was concentrated on the improved filter algorithm for the navigation and localization of
leader–follower AUVs. In this paper, an improved Sage–Husa adaptive extended Kalman
filter (improved SHAEKF) was proposed to improve the adaptability of the filter and the
accuracy of cooperative localization.

2. Multi-AUV Cooperative Localization Method Based on an EKF
2.1. State Model

The navigation motion of AUV formation in a GNSS-denied environment is a com-
plex three-dimensional process. If the formation adopts the leader–follower multi-AUV
structure, the system includes multiple leader AUVs and follower AUVs; a leader AUV
and a follower AUV exchange and share information through underwater acoustic com-
munication equipment [11]. After the follower AUV obtains the cooperative localization
information, the cooperative localization filtering algorithm is used to correct position
information. In order to facilitate the study of cooperative localization algorithms with
measurement anomalies, the state variables of a leader AUV (the lth leader AUV) and a
follower AUV (the jth follower AUV) are analyzed by a simplified level equation under rea-
sonable assumptions, and the non-rotating east, north, and up (ENU) geographic reference
system Og

′ − Xg
′Yg
′Zg
′ is used to analyze the state variables, as shown in Figure 1a.

Assuming that the depth of an AUV can be measured directly and accurately by depth
gauge, the discrete-time nonlinear kinematics equations of an AUV are as follows:

xk+1 = xk + ∆TVk sin ψk
yk+1 = yk + ∆TVk cos ψk

ψk+1 =
_
ψk+1

Vk+1 =
_

Vk+1

(1)

where x, y respectively represent the coordinates of the longitude and latitude position of
the AUV converted into the geographical coordinate system, and ψ, V, ∆T respectively
represent the heading angle, forward synthetic motion velocity, and sampling period.
Moreover, in this paper, the quantity with superscript “_” represents the observed value
of the correlation quantity, and the quantity with superscript “̂” represents the predicted
value of the correlation quantity.
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Figure 1. Schematic diagram of a multi-AUV cooperative localization system. (a) Description of the
projection of the leader AUV in the Og − XgYgZg coordinate system with respect to the Og

′ − Xg
′Yg
′

horizontal plane in the Og
′ − Xg

′Yg
′Zg
′ coordinate system; (b) description of the relative position of

the leader AUV and the follower AUV in the Og
′ − Xg

′Yg
′ horizontal plane.

The state vector X and the control input vector u of the jth follower AUV at time k are
defined as follows:  Xj

k = [ xj
k yj

k ψ
j
k V j

k
]
T

uj
k = [ ψ

j
k V j

k
]
T (2)

where the right superscript “T ” represents the transpose mode of the vector matrix.
The observed values of the control input are as follows:

_
ψ

j
k = ψ

j
k + wj

k,ψ
_

V
j
k = V j

k + wj
k,V

(3)

where wj
k,ψ , wj

k,V represent the observation errors of the heading angle and the forward

synthetic motion velocity, respectively. It is assuming that wj
k,ψ and wj

k,V are Gaussian-white-

noise independent of each other and the variances are (σ
j
k,ψ)

2 and (σ
j
k,V)

2, respectively.

When wj
k = [ wj

k,ψ wj
k,V ]T is defined as process noise, E(wj

k(w
j
k)

T) = Qj
k · δpq,

where δpq represents the Dirac delta function, δpq =

{
1 i f p = q
0 otherwise

. The process noise

covariance matrix is Qj
k and the state model equation of the jth follower AUV can be

expressed as follows:
Xj

k+1 = f (Xj
k, uj

k, wj
k) (4)

where f (·) is a nonlinear function.

2.2. Measurement Model

In this study, the cooperative localization information mainly included the relative
distance and relative direction angle between AUVs and the position coordinates of the
leader AUV. The follower AUV established the measurement equation by obtaining the
cooperative localization information shared by the leader AUV. Figure 1b depicts the
geometric relationship between the relative distance rl j and the relative direction angle αl j

of the lth leader AUV and the jth follower AUV. It was assumed that the forward movement
direction of the follower AUV was consistent with the positive direction of the Yb

′-axis of its
own carrier coordinate system. From the positive direction line of the Yb

′-axis, the relative
direction angle was positive when moving clockwise to the relative direction angle line,
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otherwise, it was negative. Assuming that the position coordinates of the lth leader AUV
at time k is [ xLl

k yLl
k ]T , the geometric relation equations at time k are as follows:

rl j
k =

√
(rl j

k,x)
2
+ (rl j

k,y)
2

α
l j
k = π

2 − ψ
j
k − tan−1(

rl j
k,y

rl j
k,x

)
(5)

where rl j
k,x = xLl

k − xj
k, rl j

k,y = yLl
k − yj

k respectively represent the decomposition of the

true relative distance rl j of the AUV in the direction of the Xg
′-axis and the Yg

′-axis of the
geographical coordinate system. The observed values of the relative distance and relative
direction angle between the jth follower AUV and the lth leader AUV are as follows:

_r
l j
k = rl j

k + vl j
k,r

_
α

l j
k = α

l j
k + vl j

k,α

(6)

where vl j
k,r and vl j

k,α respectively represent the observation errors of the relative distance
and relative direction angle between the jth follower AUV and the lth leader AUV. It is
assumed that vl j

k,r and vl j
k,α are Gaussian-white-noise independent of each other, and the

variances are (σ
l j
k,r)

2 and (σ
l j
k,α)

2, respectively.

The observed value _r
l j
k of the relative distance is decomposed along the X j

b
′
-axis

and the X j
b
′
-axis of the carrier coordinate system of the jth follower AUV to obtain the

following [12]: 
_r

l j
k,xb =

_r
l j
k sin _

α
l j
k

_r
l j
k,yb =

_r
l j
k cos _

α
l j
k

(7)

If (6) is substituted into (7) and we make cos vl j
k,α = 1, sin vl j

k,α = vl j
k,α, vl j

k,r · v
l j
k,α = 0, the

following formulas are obtained by simplification:
_r

l j
k,xb = rl j

k,xb + vl j
k,r sin(αl j

k ) + rl j
k vl j

k,α cos(αl j
k ) = rl j

k,xb + vl j
k,xb

_r
l j
k,yb = rl j

k,yb + vl j
k,r cos(αl j

k )− rl j
k vl j

k,α sin(αl j
k ) = rl j

k,yb + vl j
k,yb

(8)

_
Z

l j

k+1 =
[

_r
l j
k+1,xb

_r
l j
k+1,yb

]T
is defined as the observation value of the measurement

model based on the observation of relative distance and relative direction angle, and it

is assumed that Zl j
k+1 ≈

_

Z
l j

k+1. vl j
k = [ vl j

k,xb vl j
k,yb ]T is the observation noise of the

measurement model based on the observation of relative distance and relative direction
angle, the covariance matrix is Rl j

k,Zl j = E(vj
k(v

j
k)

T). The nonlinear measurement model
equation of the jth follower AUV is established as follows:

Zl j
k+1 = h(Xj

k+1) + vl j
k+1 =

[
rl j

k+1,xb

rl j
k+1,yb

]
+ vj

k+1 (9)

where h(·) is a nonlinear function.
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2.3. Cooperative Localization Algorithm Based on an EKF

From (4) and (9), we obtain the discrete-time nonlinear state equation and measure-
ment equation of the jth follower AUV as follows:{

Xj
k+1 = f (Xj

k, uj
k, wj

k)

Zl j
k+1 = h(Xj

k+1) + vl j
k+1

(10)

The EKF algorithm is used for state estimation. The steps in a single filtering cycle are
as follows.

Step 1 (state prior estimation):

X̂
j
k+1|k = f (X̂

j
k, ûj

k, 0) (11)

Step 2 (the innovation sequence update):

sl j
k+1 = Zl j

k+1 − h(X̂
j
k+1|k) (12)

Step 3 (error covariance updating of state a priori estimation):

Pj
k+1|k = Φ

j
kPj

k(Φ
j
k)

T + Γ
j
kQj

k(Γ
j
k)

T (13)

where Φ
j
k is the Jacobian matrix of f with respect to Xj

k, Γ
j
k is the Jacobian matrix of f with

respect to uj
k.

Step 4 (filter gain update):

Kj
k+1 = Pj

k+1|k(H
j
k+1)

T(Hj
k+1Pj

k+1|k(H
j
k+1)

T + Rl j
k+1)

−1 (14)

where Hj
k+1 is the Jacobian matrix of h with respect to X̂

j
k+1|k.

Step 5 (state a posteriori estimation update):

Xj
k+1 = X̂

j
k+1|k + Kj

k+1sl j
k+1 (15)

Step 6 (error covariance of state a posteriori estimation):

Pj
k+1 = (I−Kj

k+1Hj
k+1)P

j
k+1|k (16)

where I is the identity matrix.

3. Adaptive Cooperative Localization Algorithm

Ref. [13] analyzes the position error covariance of a group of agents equipped with an
inertial measurement unit (IMU) and relative distance and azimuth sensors. Researchers
regard all the agents in the group as a unified system. Agents exchange their information,
including measured and estimated location data. Therefore, the exchange of each external
perceptual measurement results in an improvement in the overall position error estimation.
The analysis showed that the system position error covariance increased with the cube
of time. Accordingly, as the number of agents increased, the growth rate of covariance
decreased. However, due to the different construction methods of the system state equation
and the measurement equation, the conclusions obtained from the analysis were also
different. For example, in the agent equipped with an IMU, the covariance growth of
position error did not depend on the path. However, the position error covariance of an
agent equipped with an encoder depended on the path and changed with the path direction.

Refs. [12,14] studied the transfer equation of the overall localization uncertainty with
respect to the relative position measurement error. By solving the algebraic Riccati equation
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of the evolution of the system localization errors with time, the analytical expression of
the upper bound of the expected positioning uncertainty was determined. The analysis of
ref. [12] shows that the upper bound of the variance of the localization errors in the steady
state depended on the measurement accuracy of the AUV’s speed, heading angle, and
relative position, and was independent of the initial filter variance of the system.

All the above studies were under the steady state of the system. We know that the
noise error of an AUV sensor is related to the process noise error and measurement noise
error in the cooperative localization algorithm based on an EKF, but there are differences
between process noise error and measurement noise error. Through error uncertainty
propagation analysis [12–14], it was found that the covariance matrix of system process
noise and measurement noise were time-varying.The process noise covariance matrix Qj

k
is related to the observation value of heading angle, which is mainly determined by the
internal mechanism of a system and is relatively stable. The measurement noise covariance
matrix Rl j

k+1 is not only related to the error covariance matrix Rl j
k,Zl j of the measurement

model, but also to the observation value of heading angle and the noise of the external
information, which is easy to change, and there is a certain unpredictability. In the model
of the leader–follower multi-AUV cooperative localization system studied in this paper, we
introduced and improved the SHAEKF to help solve the adverse impact of the follower
AUV measurement anomalies on localization. A measurement anomaly might occur in the
prior characteristics of measurement noise based on relative distance and relative heading
angle, or when the leader AUV transmits position data to the follower AUV. This problem
has received less attention in previous research on cooperative localization algorithms.

3.1. Sage–Husa Adaptive Kalman Filter Algorithm

The Sage–Husa adaptive filtering algorithm is an improvement based on the classical
Kalman filtering algorithm. The Sage–Husa filter adaptively estimates system process noise
and measurement noise online, including the mean vector q̂k, the covariance matrix Q̂k of
the process noise, the mean vector r̂k, and the covariance matrix R̂k of the measurement
noise. The estimators of the Sage–Husa adaptive filtering algorithm can be expressed as
follows [6,15]:

q̂k+1 = (1− 1
k+1 )q̂k +

1
k+1 (Xk+1 − X̂k+1|k)

Γk+1Q̂k+1(Γk+1)
T = (1− 1

k+1 )ΓkQ̂k(Γk)
T + 1

k+1 (Kk+1sk+1(sk+1)
T(Kk+1)

T

+Pk+1|k −Φk+1Pk+1|k(Φk+1)
T)

r̂k+1 = (1− 1
k+1 )̂rk +

1
k+1 (Zk+1 − h(Xk+1))

R̂k+1 = (1− 1
k+1 )R̂k +

1
k+1 (sk+1(sk+1)

T −Hk+1Pk+1|k(Hk+1)
T)

(17)

Since the innovation vector affects the calculation of Q̂k and R̂k at the same time, this
easily led to filter divergence. Therefore, the noise estimator could not estimate the statistical
properties of the process noise and measurement noise at the same time. Moreover, there
was a negative sign in the above formula and the positive definite of Q̂k and R̂k could not
be fully guaranteed.

We focused on finding a method to detect an anomaly and re-estimate the statistical
characteristics of the measurement noise when the measurement noise was abnormal,
which is discussed next in this paper.

3.2. Measurement Anomaly Detection

This innovation can reflect the relationship between the observed value and the
estimated value of a measurement model, so it is often used to measure the filtering per-
formance of a Kalman filter [16,17]. According to Kalman filter theory, if the discrete-time
nonlinear state space model of process and measurement noise is established under the
assumption of Gaussian distribution and the measurement is not subject to abnormal inter-
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ference, the innovation sequence obeys the standard Gaussian distribution. The expectation
and covariance of the innovation have the following characteristics:

E[sl j
k+1] = 0

E[sl j
k+1(s

l j
i+1)

T
] =

 Hj
k+1Pj

k+1|k(H
j
k+1)

T
+ Rl j

k+1 = P
sl j

k+1
k = i

0 k 6= i

(18)

The probability density function of the innovation can be written in the following form:

fsl j(s
l j
k+1) =

1√
(2π)m

∣∣∣∣Psl j
k+1

∣∣∣∣
exp(−1

2
(sl j

i+1)
T(P

sl j
k+1

)−1sl j
k+1) (19)

where m is the degree of freedom, and
∣∣∣∣Psl j

k+1

∣∣∣∣ is the determinant of P
sl j

k+1
.

If there are some observed outliers in the measurement model, or the measurement
noise is affected by other noises and no longer conforms to the Gaussian distribution, (18)
and (19) will no longer be tenable. It can be considered that there are some violations of
assumptions or some modeling errors. Specifically, hypothesis testing can be performed to
detect measurement anomalies. The purpose of hypothesis testing is to check whether the
actual measurement is compatible with the hypothetical model or, in other words, the zero
hypothesis. According to the orthogonality principle of the innovation in Kalman filtering,
the square of Mahalanobis distance based on innovation obeys the Chi-square distribution.
We can took (19) as the relevant zero distribution that did hold under the hypothetical
model, and then constructed the test statistics based on the following innovation:

ξk+1 = (sl j
k+1)

T(P
sl j

k+1
)−1sl j

k+1 (20)

ξk+1 follows the Chi-square distribution with degree of freedom m if the assump-
tion holds. The significance level is set as γ, which indicates the probability threshold
that the null hypothesis below this threshold will be rejected. The critical value of the
corresponding Chi-square test is χ2

γ(m). When the innovation sequence is calculated

with the actual observation value, the actual judgment index
_

ξ k+1 is obtained. When
_

ξ k+1 > χ2
γ(m) rejects the original hypothesis, it is considered that the measurement is

abnormal. For example, from the Chi-square distribution table, we obtained that the proba-
bility of {χ2

γ(m = 3) > 11.345} was only 1%, i.e., γ = 0.01. The problem of measurement
anomaly detection is expressed as:

H0 :
_

ξ k+1 ≤ χ2
γ(m) (21)

3.3. Adjustment of Measurement Noise Covariance Matrix

It is generally believed that we should pay attention to the position of recent measure-
ments in the current filtering in order to prevent filtering divergence; hence, we need to
pay special attention to the innovation sequence [18–21].

In the filtering process of the improved SHAEKF, we used (21) to judge the filtering
state. If (21) was not tenable, this indicated that there was measurement abnormality and
it was necessary to re-estimate the measurement noise parameters. If (21) held, there was
no need to re estimate the measured noise parameters. In the conventional Sage–Husa
adaptive filtering algorithm, the measurement noise parameters were adaptively estimated
by the equal-weighted time average:

R̂
l j
k+1 = (1− 1

k + 1
)R̂

l j
k +

1
k + 1

(sl j
k+1(s

l j
k+1)

T −Hj
k+1Pj

k+1|k(H
j
k+1)

T) (22)
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There is a negative sign in the above formula. In order to prevent the measurement
noise estimation from losing its positive definiteness, the measurement noise covariance
matrix Rl j

k+1 is estimated based on the maximum a posteriori (MAP) estimation criterion:

R̂
l j
k+1 =

1
k + 1

k+1

∑
i=1

(Zl j
i −Hj

iX̂
j
i|k+1)(Z

l j
i −Hj

iX̂
j
i|k+1)

T
. (23)

Replace X̂
j
i|k+1 with X̂

j
i|i to obtain the following approximation:

Zl j
i −Hj

iX̂
j
i|k+1 ≈ Zl j

i −Hj
iX̂

j
i|i

= Zl j
i −Hj

i(X̂
j
i|i−1 + Kj

is
l j
i )

= (I−Hj
iK

j
i)s

l j
i .

(24)

If (24) is substituted into (23), we get the following equation:

R̂
l j
k+1 =

1
k + 1

k+1

∑
i=1

(I−Hj
iK

j
i)s

l j
i (s

l j
i )

T
(I−Hj

iK
j
i)

T
(25)

It is easy to verify that the mean value of R̂
l j
k+1 is as follows:

E(R̂
l j
k+1) = Rl j

k+1 −
1

k + 1

k+1

∑
i=1

Hj
iP

j
i|i(H

j
i)

T
(26)

The suboptimal MAP estimates of the measurement noise covariance matrix are
obtained from (25) and (26):

R̂
l j
k+1 =

1
k + 1

k+1

∑
i=1

((I−Hj
iK

j
i)s

l j
i (s

l j
i )

T
(I−Hj

iK
j
i)

T + Hj
iP

j
i|i(H

j
i)

T) (27)

Considering that Kj
k+1 and Pj

k+1 must be obtained after Rl j
k+1 and become stable

during the filtering process, Kj
k and Pj

k+1|k can be used here to approximate Kj
k+1 and Pj

k+1
respectively.

From (27), the estimation of R̂
l j
k+1 could be improved by using the exponential fading

memory weighted average recurrence method in the following equation:

R̂
l j
k+1 = (1− βk+1)R̂

l j
k + βk+1((I−Hj

k+1Kj
k)s

l j
k+1

× (sl j
k+1)

T
(I−Hj

k+1Kj
k)

T + Hj
k+1Pj

k+1|k(H
j
k+1)

T)
(28)

βk+1 =

{
1 k = 0
βk

βk+b k > 1
(29)

where, b is the fading memory factor, 0.95 < b < 0.99. It could be seen that when b was

larger, R̂
l j
k accounted for a larger proportion of the estimated value of R̂

l j
k+1. After the

improvement, if the estimated value of the last filter gain was less than 1, the estimated

value of R̂
l j
k+1 could be guaranteed to be positive and definite, which suppressed the

possibility of filter divergence.
In addition, considering that the state posterior estimation Pj

k+1 = (I−Kj
k+1Hj

k+1)P
j
k+1|k,

in general the EKF algorithm could only be established when the optimal filter gain was
used. When the filter was not always stable or when a non-optimal filter gain was used,
an un-simplified state posterior estimation error covariance equation was required:
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Pj
k+1 = (I−Kj

k+1Hj
k+1)P

j
k+1|k(I−Kj

k+1Hj
k+1)

T + Kj
k+1R̂

l j
k+1(K

j
k+1)

T (30)

Figure 2 describes the flow chart of the improved SHAEKF, and evaluates the mea-
surement anomaly using the calculated the Chi-square test statistic based on innovation.
The detection threshold was determined according to the confidence of the Chi-square
test, and the Chi-square test statistics exceeding the threshold were regarded as measure-
ment anomalies. When an observation anomaly occurred, the suboptimal MAP estimation
weighted by the exponential decay memory was used to adjust the observation noise
covariance matrix online. When no observation anomaly occurred, the measurement noise
covariance at the previous time was maintained. It could then adjust the measurement
noise covariance adaptively and ensure the stability of the filter.

Figure 2. Flow diagram of the improved SHAEKF algorithm.
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4. Simulation and Result Analysis
4.1. Monte Carlo Simulation

In order to verify the feasibility of the improved SHAEKF algorithm, a leader AUV
and a follower AUV were simulated in this study. Monte Carlo method was used in the
simulation, and the simulation parameters were set as shown in Table 1. The initial error
covariance was set to Qj

0 = diag( 0.0252 0.52 ), Rj
0 = diag( 102 102 ), Pj

0 = 100 · I4,
where diag (·) represents a diagonal matrix, and I4 is the identity matrix of order 4.

Table 1. Simulation parameter setting.

Simulation Parameters Parameter Values

Simulation time , s 1200
Sampling frequency, Hz 1

Monte Carlo simulation times 1000

Leader AUV

Start point coordinates, m (0, 200)
Forward motion velocity, (m · s−1) 3× (1852/3600)

Start point heading angle, rad 0× (π/180)
Random error of forward motion velocity, (m · s−1) ±0.005

Random error of heading angle, (rad · s−1) ±0.1
Gyro bias, (rad · h−1) 0.03× (π/180)

Follower AUV

Start point coordinates, m (50, 0)
Forward motion velocity, (m · s−1) 3×(1852/3600)

Start point heading angle, rad 25× (π/180)
Random error of forward motion velocity, (m · s−1) ±0.025

Random error of heading angle, (rad · s−1) ±0.5
Gyro bias, (rad · h−1) 0.3× (π/180)

We designed the AUVs to move along a straight line or a curve at a uniform constant
speed, the actual trajectory and the DR calculation results of each AUV in a simulation test
of the whole simulation are shown in Figure 3. As shown in Figure 4, we study the filtering
effects of the EKF and the improved SHAEKF with or without measurement anomaly
sequence under the above conditions. As shown in Figure 5a,b, in the steady state, we
assumed that the observed values of the measurement model were continuously disturbed
by a normally distributed random sequence with mean value of 0 and standard deviation of
10. Under the above simulation conditions, we studied the filtering effects of the EKF and
the improved SHAEKF with and without a measurement anomaly sequence. As shown in
Figure 5c,d, the normally distributed random anomaly sequence with a mean value of 0
and standard deviation of 150 was added to the observation values of the measurement
models in the time period of 200–1200 s. Then, the EKF and the improved SHAEKF
algorithms were used for the simulation by calculating the Chi-square test statistics based
on innovation as the judgment index. Considering that the measurement model in this
study involved relative distance, relative direction angle, and heading angle, the degree
of freedom was taken to be m = 3 and the confidence level was set at γ = 0.01. The
results of evaluating the measurement anomalies are shown in Figure 6. As shown in
Figures 7 and 8, the localization results of DR, EKF, and improved SHAEKF could be
obtained respectively, including the root mean square and the standard deviation of the
localization errors. The DR results of the follower AUV were omitted in Figures 7b,d,f,h
and 8b,d,f,h in order to more intuitively compare the localization errors of the EKF and the
improved SHAEKF.
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Figure 3. Trajectory diagram of Leaderl and Followerj in a test. (a) AUVs moved along a straight line
at a uniform constant speed; (b) AUVs moved along a curve at a uniform constant speed.

4.2. Comparison and Analysis of Simulation

Figure 3 shows that the localization errors of the follower AUV became larger and
larger with the passage of time only based on DR, and the localization errors of the follower
AUV were much larger than that of the leader AUV.

As can be seen from Figure 4, after obtaining the relative distance, relative direc-
tion angle, and high-precision DR localization data of the leader AUV, the follower AUV
could improve its localization accuracy by using the EKF or the improved SHAEKF co-
operative localization algorithm. It can be seen from Figure 4b,d, that when there were
measurement anomalies, the filtering stability of the EKF was not as stable as that of the
improved SHAEKF.

Figure 4. Trajectory diagram of Followerj in a test. (a,c) The localization results of each algorithm
without measurement anomaly are described; (b,d) the localization results of each algorithm in the
presence of measurement anomalies are described.
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Figure 5. Measurement anomaly sequence and the components of the measurement model. (a,c) De-
scription of the results of AUVs that moved along a straight line at a uniform constant speed;
(b,d) description of the results of AUVs that moved along a curve at a uniform constant speed.

It can be seen from Figures 5 and 6 that after adding the measurement anomaly
sequence, the measurement model vector components of the follower AUV were disturbed
and the measurement anomaly could be evaluated by calculating the Chi-square test
statistics based on innovation.

Figure 6. Detection of abnormal measurement. (a,c) Description of the results of AUVs that moved
along a straight line at a uniform constant speed; (b,d) description of the results of AUVs that moved
along a curve at a uniform constant speed.

In order to evaluate the performance of the improved algorithm more effectively,
we introduced the average root mean square of localization error (ARMSE) and the aver-
age standard deviation of localization error (ASDE). ARMSE and ASDE can be defined
as follows:
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ARMSE =
1

nT

nT

∑
k=1

(

√√√√√ nMC
∑

i=1
((xk − x̂k)2 + (yk − ŷk)2)i

nMC
) (31)

ASDE =
1

nT

nT

∑
k=1

(

√√√√√√ 1
nMC − 1

·
nMC

∑
i=1

(
√
((xk − x̂k)2 + (yk − ŷk)2)i −

nMC
∑

i=1

√
((xk − x̂k)2 + (yk − ŷk)2)i

nMC
)2) (32)

where nT and nMC represent the sampling times and the Monte Carlo simulation times,
respectively. ARMSE and ASDE respectively reflect the localization accuracy and the
discreteness of the localization error dataset (i.e., the stability of the localization algorithm).

Figure 7. Comparison diagram of localization errors under a steady-state system. (a–d) Description of
the results of AUVs that moved along a straight line at a uniform constant speed; (e–h) description of
the results of AUVs that moved along a curve at a uniform constant speed; (a,b,e,f) description of the
change in the root mean square of localization errors with time for each algorithm; (c,d,g,h) description
of the variation of the standard deviation of localization errors with time for each algorithm.
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Figure 8. Comparison diagram of localization errors in case of measurement abnormality. (a–d)
Description of the results of AUVs that moved along a straight line at a uniform constant speed; (e–h)
description of the results of AUVs that moved along a curve at a uniform constant speed; (a,b,e,f)
description of the change in the root mean square of localization errors with time for each algorithm;
(c,d,g,h) description of the variation of the standard deviation of localization errors with time for
each algorithm.

As can be seen from Figure 7, both the conventional EKF and improved SHAEKF work
well if no measurement abnormality occurred. In this case, compared with the conventional
EKF, the performance of the improved SHAEKF was not reduced, which meant that the
contribution of these good measurements to the cooperative localization effect was not
reduced, indicating the feasibility of the improved SHAEKF. It can be seen from Figure 8,
when there were outliers in the measurement, the root mean square value and standard
deviation of the localization errors obtained by EKF increased, and the root mean square
value and standard deviation of the localization errors obtained by the improved SHAEKF
were reduced to a certain extent. The improved SHAEKF could effectively resist the
influence of outliers and had better performance than the EKF in localization accuracy,
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which indicated that the improved SHAEKF was more stable than the EKF. The above
results could also be obtained by analyzing the data in Tables 2 and 3.

Table 2. Comparison of ARMSE of each algorithm.

Simulation Condi-
tions in the Time
Period 200–1200 s

ARMSE (m) of Followerj When
AUVs Moved Along a Straight
Line

ARMSE (m) of Followerj when
AUVs Moved Along a Curve

DR EKF Improved
SHAEKF DR EKF Improved

SHAEKF

Steady state 176.3030 17.4726 16.3846 118.1430 16.2329 14.3517

Abnormal measurement 176.3030 20.9517 13.0884 118.1430 27.1199 11.9600

Percentage change (%) 0 19.9 −20.1 0 67.1 −16.7

Table 3. Comparison of ASDE of each algorithm.

Simulation Condi-
tions in the Time
Period 200–1200 s

ASDE (m) of Followerj when
AUVs Moved Along a Straight
Line

ASDE (m) of Followerj When
AUVs Moved Along a Curve

DR EKF Improved
SHAEKF DR EKF Improved

SHAEKF

Steady state 64.5837 9.2438 8.7528 34.3510 7.7098 6.9763

Abnormal measurement 64.5837 10.6673 7.5491 34.3510 13.7229 5.7479

Percentage change (%) 0 15.4 −13.8 0 78.0 −17.6

5. Conclusions

The conventional EKF was only the best estimator when some preconditions were true,
for example, when the Gaussian distribution measurement noise had a completely known
mean and covariance. However, in the practical application of multi-AUV cooperative local-
ization, the actual observation might be vulnerable to outliers. Therefore, a leader–follower
multi-AUV adaptive cooperative localization filtering method based on innovation was
proposed in this paper. Simulations showed that the improved SHAEKF could effectively
resist the influence of measurement anomalies. Although the improved SHAEKF could
ensure the filtering fault tolerance and localization accuracy of a leader AUV and a follower
AUV in the case of abnormal measurement, we did not further study the influence of
abnormal process noise on cooperative localization. In the future, we will further study the
cooperative navigation and localization of multiple leader AUVs and multiple follower
AUVs and expand from a two-dimensional plane to a three-dimensional space. All AUVs
in the group were regarded as a unified system to improve the navigation and localization
system model. AUVs exchanged their information, including measured and estimated posi-
tion data, we then proposed an interactive multi-model fusion estimation method for future
work to correctly estimate some parameters that could not be accurately obtained in the
AUV dynamic model, including multi-observation information and multi-motion model
information, so as to increase the robustness of collaborative navigation and localization.
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Abbreviations
The following abbreviations were used in this manuscript:

AUV autonomous underwater vehicle;
KF Kalman filter;
EKF extended Kalman filter;
UKF unscented Kalman filter;
SHAEKF Sage–Husa adaptive extended Kalman filter;
ENU east, north, and up;
DR dead reckoning;
GNSS Global Navigation Satellite System;
DVL Doppler velocity log;
INS inertial navigation system;
IMU inertial measurement unit;
MAP maximum a posteriori;
ARMSE the average root mean square of localization errors;
ASDE the average standard deviation of localization errors.
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