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ABSTRACT

The point source traveltime field has an upwind singularity at the source point.
Consequently, all formally high-order finite-difference eikonal solvers exhibit first-
order convergence and relatively large errors. Adaptive upwind finite-difference meth-
ods based on high-order Weighted Essentially NonOscillatory (WENO) Runge-Kutta
difference schemes for the paraxial eikonal equation overcome this difficulty. The
method controls error by automatic grid refinement and coarsening based on an a
posteriori error estimation. It achieves prescribed accuracy at far lower cost than
does the fixed-grid method. Moreover, the achieved high accuracy of traveltimes
yields reliable estimates of auxiliary quantities such as takeoff angles and geometrical

spreading factors.



INTRODUCTION

Many finite-difference methods have been introduced to compute the traveltime
for isotropic media directly on regular grids (Reshef and Kosloff, 1986; Vidale, 1988;
van Trier and Symes, 1991; Podvin and Lecomte, 1991; Schneider et al., 1992; Qin
et al., 1992; Schneider, 1995; El-Mageed et al., 1997; Popovici and Sethian, 1997;
Kim and Cook, 1999). The traveltime field is mostly smooth, suggesting that high-
order finite-difference methods should be effective. The use of upwind differencing
in all of the cited methods confines the errors due to singularities which develop
away from the source point. The source point itself is, however, also an upwind
singularity. The truncation error of a pth order method is dominated by the product
of (p+ 1)st derivatives of the traveltime field and the (p + 1)st power of the step(s).
The (p + 1)st derivatives of the traveltime field, however, behave like the (—p + 1)th
power of the distance to the source, since in the constant velocity case the traveltime
is equal to the distance divided by the velocity. Therefore, near the source — when
the distance is on the order of the step — the truncation error is quadratic in the step,
i.e., first order. This inaccuracy spreads throughout the computation and renders all
higher-order methods first-order convergent. Moreover, the resultant inaccuracy in
traveltime prevents reliable computation of auxiliary quantities such as takeoff angles
and amplitudes.

This inaccuracy afflicts all point source traveltime computations using gridded
eikonal solvers. In the few published convergence tests, implementers have resorted
to imposing a grid-independent region of constant velocity near the source, in which
the traveltimes are initialized analytically. This is the approach taken for instance
by Sethian (1999) in demonstrating second-order convergence for a version of his fast
marching method. This approach has two obvious drawbacks: (1) the velocity may
not be homogeneous near the source; and (2) the size of the region of analytic compu-

tation must be set by the user and bears no obvious relation to the grid parameters.



In principle, highly accurate ray-tracing methods could be used to alleviate the first
difficulty, but the second remains: it introduces an arbitrary parameter into the use
of eikonal solvers. Kim and Cook (1999) take a different approach, similar to the
one we advocate: they refine the grid several times near the source so that the re-
duced grid spacing compensates for the increased truncation error. However, their
grid refinement strategy appears to be ad-hoc, and it once again involves an arbitrary
parameter, namely, the number of grid refinements near the source, without a clearcut
selection criterion.

In this paper, we show how to use adaptive-gridding concepts commonplace in
the numerical solution of ordinary differential equations (Gear, 1971) to resolve the
difficulty caused by this inaccuracy. Adaptive gridding has already been used in
numerical solutions of PDEs (Berger and Oliger, 1984; Berger and LeVeque, 1997).
Generally, the grid refinement must be localized in several dimensions, leading to
complex data structures. Fortunately, the nature of the traveltime field permits a
relatively straightforward adaptive-gridding strategy (Belfi and Symes, 1998). The
present work improves that of Belfi and Symes through the use of the more accurate
Weighted Essentially NonOscillating (WENO) difference schemes and extends it to
solutions of advection equations for various geometrical acoustics quantities. The
efficiencies achieved by the adaptive gridding are considerable — usually more than an
order of magnitude reduction in computation time for problems of typical exploration
size, compared to fixed-grid methods giving the same level of accuracy. We also obtain
dramatic improvements in the accuracy of computed geometrical acoustics quantities,
such as takeoff angles and geometrical amplitudes.

The essential principle of the adaptive gridding is simple. It is based on a hierarchy
of difference schemes of various orders. Presumably a higher-order step is more accu-
rate than a lower-order step, so that the higher-order step can serve as a substitute
for the exact solution in evaluating the local error in the lower-order step. Therefore,

one can combine the step computations of two different orders to obtain a so-called a



posterior: estimate of the truncation error for the lower-order step. Since the lower-
and higher- order truncation errors stand in a known asymptotic relation, this per-
mits an estimate of the higher-order truncation error as well. The asymptotic form of
the truncation error then permits prediction of a step that will result in a lower-order
truncation error less than a user-specified tolerance. So long as the steps are selected
to maintain this local error, standard theory predicts that the higher-order global er-
ror, i.e., the actual error in the solution computed using the higher-order scheme, will
be proportional to the user-specified tolerance. This straightforward idea is embed-
ded in most modern software packages for solutions of ordinary differential equations
(Gear, 1971). Its use for partial differential equations is a little more complicated
because it is usually necessary to adjust the grid of the non-evolution variables along
with the evolution step. As first established by Belfi and Symes (1998), the solution
of the (paraxial) eikonal equation changes in a sufficiently predictable way to make
grid adjustment practical.

The paper begins with a description of paraxial eikonal equations for traveltimes.
Then we formulate the advection equation for takeoff angles and present the amplitude
formulae for a two-dimensional line source and point source, respectively. We briefly
describe numerical schemes needed in the adaptive-gridding approach, presenting the
details in Appendix A. With these ingredients in place, we introduce the adaptive-
gridding principle for the eikonal equation with a point source and present a simple
implementation. Numerical experiments demonstrate that the new approach gives us
not only accurate traveltime fields, but accurate amplitude fields as well. We conclude

with some discussion on adaptive gridding in the three-dimensional case.

PARAXIAL EIKONAL EQUATIONS

The traveltime field in an isotropic solid satisfies an eikonal equation. Denote by

(zs, zs) the coordinates of a source point, and by (z, z) the coordinates of a general



point in the subsurface. The first-arrival traveltime field 7(z, z; 5, ;) is the viscosity

solution of the eikonal equation (Lions, 1982),
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where v is the velocity, and s = — is the slowness.
v

In some seismic applications, the traveltime field is needed only in regions where

or
— > 5€08Bpax > 0,
0z

i.e., along downgoing, first-arriving rays making an angle < f,.x < 5 with the vertical.
To enforce this condition, we modify the eikonal equation as an evolution equation

in depth (Gray and May, 1994),
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where a > 0 (Qian et al., 1999).

Equation (2) defines a stable nonlinear evolution in z, suitable for explicit finite-
difference discretization. The smoothed max function makes the numerical Hamilto-
nian smooth enough to carry out standard truncation error analysis for schemes of
up to third-order accuracy. The solution 7 is identical to the solution of the eikonal
equation provided that the ray makes an angle < ., < 5 with the vertical; if the
ray makes an angle > 6., with the vertical, the corresponding wavefront is replaced

by an artificial plane wave.



ADVECTION EQUATIONS FOR TAKEOFF ANGLES

Based on the traveltime computed by solving the eikonal equation, we can approx-
imate the amplitude field by solving a transport equation. The amplitude satisfies

the following transport equation (Cerveny et al., 1977),
L o2
VT'VA+§AVT=O. (3)

The equation (3) is a first-order advection equation for the amplitude A. The Lapla-
cian of the traveltime field is involved in this advection equation, which implies that
we need a third-order accurate traveltime field to get a first-order accurate amplitude
field (Symes, 1995; El-Mageed et al., 1997).

For convenience in the following presentation, we introduce the ray coordinates.
The ray coordinates are defined by (7,¢) = (7(z, z; zs, 25), ¢(z, 2; 5, 25)), where T
and ¢ are the traveltime and take-off angle of a ray from source point (zs, zs) to
a general point (z,z) in the subsurface, respectively. In two-dimensional isotropic
media with line sources, the amplitude also satisfies the formula (Cerveny et al.,

1977; Friedlander, 1958),

v
A= PEoAL VT x V|, (4)

where V¢ and V7 are the gradients of the takeoff angle and the traveltime, respec-
tively.
Since the take-off angle ¢ is constant along any ray,

om0 0r06 _

VT'V¢:8x6x+£8z B

0. (5)

That is, the wavefront normal V7 is tangential to the ray; the gradient V¢ is tan-
gential to the wavefront. Equation (5) is slightly easier to solve numerically than
equation (3) because no second-order traveltime derivatives are explicitly involved

in equation (5). Having solved equation (5) for ¢, one produces the amplitude A

through (4).



Since the typical seismic source is a point source, we need to compensate for the
out-of-plane radiation in the two-dimensional (2-D) line-source amplitude formula.

The 2-D amplitude with a point source (2.5-D amplitude) can be computed by

v
A= E\/TMAVT x V|, (6)

where the out-of-plane curvature 7, satisfies another advection equation (Symes et

al., 1994),

01 01y | OT OTyy

2 _
Ox Ox 0z 0z T Ty = 0- (7)

Supposing that the amplitude is required to be first-order accurate, the two gra-
dients V7 and V¢ involved in the amplitude formulae should have at least first-
order accuracy. However, because after discretization of equation (5) V¢ depends on
second-order derivatives of traveltime 7, it implies that to get a first-order accurate
V¢, the traveltime 7 itself should have at least third-order accuracy. The final con-
clusion is that a third-order traveltime solver is required to get first-order accurate
amplitudes, as noted before.

Zhang (1993) used equation (6) in polar coordinates to compute the geometrical
spreading factor, but his computation of the takeoff angle was based on the first-order
traveltime field. Consequently, the gradient of take-off angle computed by his scheme

was inaccurate. Vidale etc. (1990) encountered a similar difficulty.

FINITE-DIFFERENCE SCHEMES

The literature suggests a large number of competing finite-difference and related
schemes for the solution of the eikonal equation. We have chosen to use the essentially
nonoscillatory (ENO) schemes (Osher and Sethian, 1988; Osher and Shu, 1991) and
the related weighed ENO (WENO) schemes (Liu et al., 1994; Shu, 1998; Jiang and

Peng, 2000) for the following reasons: (1) stable schemes of arbitrarily high-order



accuracy exist, permitting accurate solutions on coarse grids (a factor which is critical
to the mesh refinement or coarsening); (2) versions exist in any dimension so that
we can straightforwardly extend our methodology to the three-dimensional case (El-
Mageed et al., 1997; Kim and Cook, 1999).

All of these schemes take the form of recursive depth stepping rules,

T T+ 0,7, (8)

z 4+ z+ Az (9)

Here 47 is a nonlinear update operator expressing the WENO-Runge-Kutta rule of
order n, defining a difference scheme of formal nth-order accuracy and depending on
Az, Az, and the slowness field s. Since we want to emphasize the strategy of the
adaptive-gridding approach, we put the detailed form of 6} (n = 2,3) in Appendix
A.

Similarly, we solve the advection equation for the takeoff angle ¢ and the out-of-

plane curvature 7,, by using WENO schemes.

ADAPTIVE GRIDDING IMPLEMENTATION

To initialize our algorithm, the user supplies a local error tolerance ¢; oy and o,
are two user-defined positive functions of € which are used to control the coarsening
and refinement. For example, we can take o; = 0.1e and o2 = €. We use the 2nd and
3rd order eikonal solvers (equations (A-1) and (A-2)) and estimate the truncation
error of the 2nd-order scheme as e; = max |037 — §37| over the current depth. So long
as 01(€) < ey < 03(€) at every point of the current depth level, we simply proceed to
the next step. It is well known (Gear, 1971) that for ordinary differential equations
an efficient adaptive stepping requires rather loose control of the local error, hence
the factor of 10 difference between o; and o, is reasonable and works pretty well in

practice. When ey < 01(€), we increase the step by a factor of two, i.e., Az < 2Az,



and we recompute the 7 update and e;. Similarly, when e > 03(€), we decrease the
step by a factor of two. As soon as the local error is once again within the tolerance
interval, we continue depth-stepping. A very important point is that we retain the
3rd-order (a more accurate one) computation of 7 at the end of each depth step as
the actual update, discarding the 2nd-order computation, which is used only in step
control.

The usual step adjustment in ODE solvers would change Az by a factor com-
puted from the asymptotic form of the truncation error (Stoer and Bulirsch, 1992,
449). This is impractical for a PDE application because it would require an arbitrary
adjustment of the spatial grid (i.e., the z-grid in the difference scheme) and, there-
fore, expensive interpolation. Scaling Az by a factor of two, however, implies that
the stability may be maintained by scaling Az by the same factor. For coarsening,
this means simply throwing out every other grid point, i.e., no interpolation at all,
which dramatically reduces the floating point operations required. Since the typical
behaviour of the traveltime field is to become smoother as one moves away from the
source, the truncation errors tend in general to decrease. Therefore, most of the grid
adjustments are coarsenings and very little or no interpolation is required. Since
the slowness field comes to us in gridded form, an interpolation is always required
to supply estimates of slowness at the points appearing in the WENO-Runge-Kutta
formula. We use a local quadratic interpolation in # and z because the third-order
accuracy of which is compatible with that of the difference scheme. For traveltimes,
we will use a similar quadratic interpolation.

Since the traveltime field is nonsmooth at the source point, the truncation error
analysis on which the adaptive step selection criterion is based is not valid there.
Therefore, it is necessary to produce a smooth initial traveltime field. We do this
by estimating the largest zj,;; > 0 at which the constant velocity traveltime is in
error by less than o3(€). Details of the zj; calculation are given in Appendix B.

Having initialized 7 at zin, the algorithm invokes adaptive gridding. Since zj; is

9



quite small, 7 changes rapidly, resulting in a large number of grid refinements at the
outset. However, no interpolation is performed, as 7 is given analytically on z = 2.
This initially very fine grid is rapidly coarsened as the depth stepping proceeds.

In our current implementation, we maintain a data structure for the computational
grid that is independent of the output grid; the desired quantities are calculated on
the computational grid and interpolated back to the output grid. As a safeguard
against pathological program behaviors, we specify a maximum number of permitted
grid refinements, MAXREF.

A simplified algorithm framework is as follows:
e Input €, z,, 2,5, Opax, Az, MAXREF.

e Initialize Az, 7, 2 = zy, REF = 0.

e Do while z < target depth,

— compute es = max |03 — 637| over the current depth level 2 ;
— if e5 < 01(€) and REF > 0,

x Az +— 2Az,

x Azr + 2Az,

« REF « REF — 1,

% upsample 7 (throw out every other point).
— else if e5 > 05(€) and REF < MAXREF,

x Az« Az/2,
x Az + Az/2,
 REF « REF +1,

*x downsample 7 (interpolate)

— else

10



x 2+ 2+ Az,

* T<—T+5§T.

— end if
e end do

This description leaves out the output step of the algorithm: a full implementation
monitors the depth level of the next set of output points and quadratically interpolates
the traveltime field onto them as soon as z passes this depth, using the current and
last two depth levels of 7. Local quadratic interpolation preserves the third-order
accuracy of the computed 7.

To avoid unnecessary computations, we update 7 only within the triangle
{(z,2) : |z — x5 < |z — 25| tan Opayx }-

All rays with takeoff angles less than 6, must lie inside this triangle, and it is
only along such rays that the paraxial eikonal equation produces correct first-arrival
times. Qutput points outside the triangle are assigned a very large number so that
constructed ray paths will never reach those places. Because traveltimes at output
points which are inside the triangle but not lying on rays with takeoff angles less than
Bmax also receive erroneous time values, they must be washed out of any subsequent
computations. For high frequency asymptotics computations, this masking is most

easily accomplished by zeroing the geometrical amplitude at such points.

NUMERICAL EXPERIMENTS

To illustrate how the adaptive-gridding approach works, we test our method on a
constant velocity model, v = 1km/s, with two-dimensional geometry {(z, z) : —0.5km
<z <0.5km, 0 < z < 1.0 km }, in which case the behaviors of traveltime fields and

amplitude fields are well understood.
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In the constant velocity case, all the desired quantities have obvious analytical so-
lutions to compare against the computed solutions. We compare the results obtained
by fixed- and adaptive- grid algorithms. Both algorithms use a third-order WENO
scheme (Appendix A) to compute 7; the adaptive-grid scheme uses a second-order
ENO scheme for local truncation error estimation. The ouput grid is 51 x 51 with
Az = Az = 0.02 km. For adaptive-grid algorithms, MAXREF is set to be 5 with the
coarsest grid 17 x 17, 0y = 0.1€ and 03 = €.

Frist, we will compare the computation cost of the two methods. Tables 1 and 2
show the traveltime error and computation cost by the fixed-grid and adaptive-grid
method, respectively, where Flops denote the number of floating point operations.
The error is the maximum absolute error at the bottom row of the gridpoints (z =
1km). The computed portion of this depth level ( —0.5km< z < 0.5km ) lies entirely
within the computation aperture (fn.x = 78 degrees) and so consists of accurately
computed 7 values. From the two tables, we can see that to reach the same level
of accuracy, the adaptive-gridding approach requires an order of magnitude lower
computational cost than does the fixed-gridding approach.

Second, we will illustrate the difference of accuracy of the two algorithms. For
the fixed-gridding algorithm, the computational grid is 200 x 200 with dz = 0.005
km. For the adaptive-gridding algorithm, the local error-tolerance € is 0.00001. The
traveltime contours (not shown here) produced by the two approaches have no obvious
difference because the fixed-gridding algorithm still has first-order accuracy. Figure 1
shows contours of 7, computed by two approaches. We can see that 7, by the fixed grid
is oscillating, but 7, by the adaptive grid traveltime solver is convergent. Because
the fixed-gridding approach gives us only first-order accurate traveltime field, the
resultant traveltime derivatives have only zero-order accuracy and exhibit oscillations
which do not decrease in magnitude as the grid is refined, as shown in Figure la.
However, the adaptive-gridding approach yields far more accurate traveltime fields,

thus the traveltime derivatives are still accurate, as shown in Figure 1b. Similar
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phenomena are observed for 7,.

Now we discuss the takeoff angle and its derivatives. Because the coefficients
in the advection equation for takeoff angles depend on the traveltime gradient, the
accuracy of ¢ will be decided by the traveltime solver we are using. Since the first-
order traveltime field from the fixed-gridding approach results in inaccurate V7, the
resultant takeoff angle is not accurate to be differentiated. However, the takeoff angle
based on the traveltime field from the adaptive-gridding approach is accurate enough
to be differentiated. Figure 2 shows ¢, by the two approaches. Because the takeoff
angle based on the traveltime field from the fixed-gridding approach is inaccurate,
the resultant derivatives ¢, are divergent, as shown in Figure 2a. However, the
adaptive-gridding approach produces accurate traveltime gradients, which leads to
the convergent ¢, as shown in Figure 2b. Similar observations hold for ¢,.

To further illustrate the differences of the accuracy between two approaches, Fig-
ure 3 shows the distribution of relative errors along the depth direction for ¢,. The
error along the depth direction is defined as

e(z) = max—0.5<z<0.5 |fc0mp(x’ Z) — fana(x’ Z)‘
max_g.5<z<0.5 | f2(2, 2)|

(10)

where f¢™P is the computed solution, and f2"® the analytic solution. For instance,
substituting f with ¢, in Equation (10), we get the error distribution for ¢, along the
depth direction. From Figure 3, we can conclude that the adaptive-gridding approach
produces much more accurate V¢ than does the fixed-gridding approach. The resul-
tant amplitudes with a line source based on V7 and V¢ by the two approaches are
shown in Figure 4; one is divergent by the fixed-gridding approach, the other accurate
by the adaptive-gridding approach. Note the episodic nature of the convergence for
the adaptive-gridding algorithms. Because we have allowed the local error estimate
to vary by an order of magnitude before adjusting the grid and then permitted only
step changes by factors of 2, the error exhibits “sticky,” discontinuous behaviour.

Finally, Figure 5 shows the computational results for the out-of-plane curvature

13



Tyy and the amplitude field with the point source by adaptive-gridding approach. The
computed 7, is accurate and the resultant amplitude is convergent.

We have embedded the adaptive-grid traveltime and amplitude solver in two-
dimensional Kirchhoff prestack migration and inversion code (Symes et al., 1994).
Figure 6 shows the impulse response of the inversion for a WENO third-order eikonal
solver, where the Beylkin determinant required by the inversion is computed by using
the information from traveltimes and takeoff angles. We will report the complete test
result of the new adaptive traveltime and amplitide solver embeddedin migration and

inversion in the near future.

CONCLUSIONS

In this paper first we stated a paraxial eikonal equation with depth as evolution
direction and an advection equation for takeoff angles, then we presented high-order
WENO difference schemes to solve the eikonal equation for the traveltime and the
advection equation for the takeoff angle. To deal with the singularity of a point source,
we proposed a new adaptive-grid eikonal solver and detailed the implementation.
Numerical experiments showed that the new method yields an efficiency gain of more
than an order of magnitude in computational time. Adaptive gridding does not
altogether eliminate the arbitrary parameter feature, for which we criticized other
approaches in the introductory section of this paper; however, our arbitrary parameter
is the local-error tolerance €. In principle, the local-error tolerance € is proportional
to the (global) error in the computed solution, but the relation is complex (as the
numerical example shows) and not a by-product of the algorithm. Nonetheless we
maintain that the simplicity and homogeneity of the algorithm, and the direct if
not apparent relation between e and the global solution error, make the adaptive-
grid scheme easier to use than its alternatives. Also, the considerable success of the

variable-step selection methods for ODEs, which have the same indirect error control
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feature, supports this contention.

The extension to 3-D isotropic media is straightforward. Because all the difference
schemes presented here can easily be extended to the three-dimensional case, there is
no difficulty in implementing a 3-D version of the adaptive traveltime and amplitude
solver. Moreover, we are expecting that the efficiency gain in computational cost
will be even more dramatic in 3-D. Furthermore, we already extended the adaptive-
gridding algorithm to computing traveltimes and amplitudes in anisotropic media
(Qian, 2000). A fully adaptive eikonal solver based upon a posteriori error estimates
for general numerical methods for Hamilton-Jacobi equations (Albert et al., 2000)

will be the subject of a subsequent paper.
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APPENDIX A-WENO SCHEMES FOR EIKONAL EQUATIONS

Our adaptive scheme is based on the second- and third- order WENO difference
schemes introduced by Jiang and Peng (Jiang and Peng, 2000). These are in turn
extensions of second- and third-order ENO difference schemes, which we present first.

For a function f of the space variable (z, z) in the computational domain, we write

fik - f(x’u Zk)a

(i, 2k) = (Zmin + (2 — 1) Az, 2imin + (K — 1)Az).
Let

Tik = T(mia 2y Ls, Zs)

and define the forward D' and backward D~ finite-difference operators

Dk — i[ﬂ"il - Tik]
x 1 A:L,

The second- and third-order ENO refinements of DfT are
1
D31, = DE2r, — 6(Agc)2 m(DEDED*r;, DI DD, 7;,, Dy D, D_T;),

where
m(z,y) = min (max (2, 0), max (y, 0)) + max (min (z, 0), min (y, 0)).

Similar refinements exist of any order.

or
The upwind ENO approximations for — are

oz

527- = modmax(max(D, "7,0), min(D} "7, 0)),

where the modmax function returns the larger value in modulus.

The second-order and third-order ENO Runge-Kutta steps are
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8t = AzH(D?7),
1
621 = 3 (557 + AzH(D3 (7 + 557))) , (A-1)
and
87 = AzH(D37),
1
5= (037 + AzH(D3 (7 + 857))) ,

1
S3r = 3 (26§T +2AzH (D3 (r + (5%7'))) . (A-2)

The depth step Az must satisfy the stability condition

Az
Az<Azgg= ——.
F S A T an (Bman)
We have typically chosen Az = 0.9Az.4.
The nth-order scheme is then
T = 7k 4 gk (A-3)

for k=0,1,2,---.

We have observed that the gradient of the take-off angle based on the third-order
ENO traveltime is too noisy to lead to an accurate amplitude field. To alleviate
this phenomenon, instead of ENO third-order refinements, we use WENO third-order
refinement (Jiang and Peng, 2000) to compute DI in the third-order Runge-Kutta
step, which yields an accurate amplitude field.

The WENO third-order schemes for DE7; are

1
Dz, = 12 (_D;Ti—z + 7D 71 + 7D i — D;Ti“)

+ Az®Y (D, Df 7isa, D; Dy 7is1, Dy D}, Dy Dy i) ,
where
W 1 1 1
" (a,b,c,d) = gwo(a —2b+c)+ g(wz — 5)(1) —2c+d)
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with weights defined as

Qo (%)

Wy=—"—"—""",Wy = ——,
Qo + a1 + Qo Qg + 01 +
1 1 1
0= ——5,00 = 75—, 00 = Y,
T HB)2T T (BT (04 Ba)

Bo = 13(a — b)* + 3(a — 3b)?,
B =13(b—c)®>+3(b+c)?,

Ba = 13(c — d)* + 3(3¢c — d)>.

In the denominators above, we added a small positive number § to avoid dividing
by zero. In the computation, d is chosen to be 107¢. In practice, the solution is not
senstive to the choice of 4.

Next we have to compute the take-off angle ¢ and out-of-plane curvature 7,,. To
match with the evolution form of the eikonal equation in depth, we formulate the

advection equation for take-off angles as an evolution equation in depth as well, i.e.,

8¢ [(or\ ' ordg
9 <a_) 950 (A-4)

To fully take advantage of the accuracy of traveltimes produced by the WENO
Runge-Kutta third-order scheme for the eikonal equation and simplify the imple-
mentation, we embed the third-order scheme for equation (A-4) into the third-order
scheme for the eikonal equation. Because the coefficient of the discretized advec-
tion equation has only second-order accuracy, which is computed from the eikonal
equation by the third-order scheme, we use a second-order upwind WENO scheme to

approximate the derivatives 8_2 The advection equation for 7, is treated similarly.

See Qian (2000) for details.
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APPENDIX B-ESTIMATE THE INITIAL STEP

To initialize the traveltime for finite-difference schemes, we assumed that the ve-
locity near the source is constant and equal to the velocity at the source. Now we
desire to analyse the traveltime error due to this assumption and furthermore compute
an a priori estimate of the initial step.

Assuming that the source is at the origin, we consider the two-dimensional ray-

tracing equation. By the method of characteristics for the eikonal equation, we have

& = v’p, (B-1)
z = v’q, (B-2)
10v
- -7 B-3
10v
- -2 B-4
q v 827 ( )
: e : or
where the dot - denotes the differentiation with respect to time ¢ along the ray; p = E
or
dg=—.
and ¢ = o~
Denoting the group angle as 6, we have
& = vsinb, (B-5)
z=wvcosé. (B-6)
Furthermore, equations (B-1) and (B-2) yield
sin 6
= — B-7
P= ) (B-7)
cosf
= . B-8
1= 0 2) (B-8)

Differentiating equation (B-7) with respect to time ¢ and simplifying the resultant

equation, we have

: ov . Ov
§ = — cos 98_33 + sin 95. (B-9)

Now we introduce polar coordinates, i.e.
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z =rsiny, (B-10)

Z =T Ccos . (B-11)

Differentiating equations (B-10) and (B-11) with respect to time ¢ and solving for 7

and 1[}, we have

7 =wvcos(f — 1), (B-12)

% = ~sin(6 - ). (B-13)

Next we want to estimate (6 — ). First of all, we have |6 — 9| < 7, since for the

downward wave propagation both 6 and ¢ lie in the interval (—7, 7). Defining

a(t) = 6, (B-14)
b(t) = %W, (B-15)
by (B-9) and (B-13) we have an ordinary differential equation for (8 — 1),
b =at)- "oy (B-16)
Its solution is
9y = /Ot dra(r) exp (— /Tt da@). (B-17)

Because b(t) > 0 and the function a is bounded by amax, which is equal to the
supremum of the length of gradient of the velocity, i.e., |a| < amax, equation (B-17)

yields an estimate for 8 — 9,
10— 9| < Guant. (B-18)

Now we are ready to get an approximate relative error estimate for the traveltime.
Denote t, as the approximation to the exact traveltime ¢ when we are using the

constant velocity vg at the source as the approximation to the exact velocity v. Since

r =2 cos (60— ), (B-19)

to = —
Vo Vo
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we have

t})—iz(Ui—1)cos(0—1ﬁ)+cos(0—1ﬁ)—1; (B-20)
0
furthermore,
|t})—i|§‘vg—l‘+|cos(0—¢)—1|. (B-21)
0

Noticing that if |t, — #| < &, then [t, — t| < et. So let’s specify that

(B-22)

and

|cos(0— o) — 1| < (B-23)

Expanding v at the origin (the source) by Taylor theorem with remainder, we

have

@, 7) = 0+ oo (G m)z + oo(Co ), (B-24)

0
where ((1,7m1) and ({2, 72) lie in
D ={(¢,n) : min(z,0) < ¢ < max(z,0),0 <n < z}. (B-25)
As a consequence,

[v(z, 2) — vl < V2rsup{|Vo(¢,n)] : 1] < |e],0 < n < 2} (B-26)

by Cauchy inequality.

Because we are only bounding the error inside the aperture,

|z| < ztan Opax, 7 < (B-27)

COS Omax

it follows that

25



— 2
VU0l o VO (V) €] S 2 tan e, 0 < 1 5 2}
Vo Vo
V22B
—, B-28
~ vy COS Oax ( )
where zyay is the maximum depth and
B = sup{|Vv(¢,n)] : €] < Zmax tan Oiax, 0 < 7 < Zmax}- (B-29)
For (B-22) to hold, by (B-28) we should choose z such that
Vo€ COS Omax
z S = —". (B—30)

2v/2B

Finally we choose z so that (B-23) holds, and we need a lemma to do so.

Lemma 1 Along a ray segment {(z(7),2(7)) : 0 < 7 < t}, the following inequality

holds:
r
< B-31
" Umin ( )
where r = 1/x2(t) + 22(t); Vmi 1 the minimum velocity along the ray segment.

Proof Denote the true ray path as s and its length |s|, and the straight ray path
as [ and its length |I| which is equal to r. In addition, we are using [ to approximate

the true ray path s. Then by Fermat’s principle, we have

1 1 1
t:/%—g/@—g/w T (B-32)
s v 1 v l in

VUmin Um

Using (B-18) and Lemma 1, we have

(B-33)

|cos(f — ) — 1| = |—2sin2 (6 lb)‘ < B

2 2. 7

min

)
where we have used the relation ap,x < B inside the aperture. Hence to make (B-23)

hold implies that

min emax
2 < z9 = g% (B-34)
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So for error tolerance &, zj,i; should be chosen such that
Zinit = min (21, 22). (B-35)

Although both z; and 2, depend on B (the bound of gradient of velocity model),
there are at least two ways to estimate B. One way is simply setting B to be a
big number which is larger than the actual value; the other way is computing the
gradient of velocity model from the given discretized model. Both ways will produce

a reasonable initial step.
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TABLE 1. Fixed-grid eikonal solver: a constant velocity model

TABLES

dx Abs.Err(7, dx)(s) Flops
0.01 0.001232 261,590
0.00125 0.000219 16,632,765
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TABLE 2. Adaptive-grid eikonal solver: a constant velocity model

€ Abs.Err(7, dx)(s) Flops
0.000025 0.001041 39,815
0.00000169 0.000160 928,770
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FIGURES

FIG. 1. 7, for a constant velocity model. (a) 7, by fixed grid is oscillating. (b) 7, by

adaptive grid is convergent.

FIG. 2. ¢, at z = 1 for a constant velocity model. (a) Fixed grid; solid line (-):
true solution; star (*): computed solution. (b) Adaptive grid; solid line (-): true

solution; star (*): computed solution.

FIG. 3. Relative errors in ¢,. (a) Fixed grid: maximum relative error is almost

45 percent. (b) Adaptive grid: maximum relative error is less than 1.5 percent.

FIG. 4. 2-D amplitude with a line source for a constant velocity model. (a) The
amplitude by fixed grid is divergent. (b) The amplitude by adaptive grid is conver-

gent.

FIG. 5. (a) 7, at z =1 for a constant velocity model by adaptive grid; solid line (-):
true solution; star (*): computed solution. (b) 2-D amplitude with a point source for

a constant velocity model by adaptive grid.

FIG. 6. The impulse response by inversion with adaptive-gridding WENO traveltime-
amplitude solver. The Beylkin determinant needed in the inversion is computed by
using the information from traveltimes and takeoff angles, and the response is smooth

as expected.
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FIG. 1. 7, for a constant velocity model. (a) 7, by fixed grid is oscillating. (b) 7, by

adaptive grid is convergent.
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FIG. 2. ¢, at z = 1 for a constant velocity model. (a) Fixed grid; solid line (-): true
solution; star (*): computed solution. (b) Adaptive grid; solid line (-): true solution; star

(*): computed solution.
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FIG. 3. Relative errors in ¢,. (a) Fixed grid: maximum relative error is almost 45
percent. (b) Adaptive grid: maximum relative error is less than 1.5 percent.
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FIG. 4. 2-D amplitude with a line source for a constant velocity model. (a) The ampli-

tude by fixed grid is divergent. (b) The amplitude by adaptive grid is convergent.
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FIG. 5. (a) 7yy at z = 1 for a constant velocity model by adaptive grid; solid line (-):
true solution; star (*): computed solution. (b) 2-D amplitude with a point source for a

constant velocity model by adaptive grid.
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FIG. 6. The impulse response by inversion with adaptive-gridding WENO travel-

time-amplitude solver. The Beylkin determinant needed in the inversion is computed by

using the information from traveltimes and takeoff angles, and the response is smooth as
expected.
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