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"An .Adaptive Finite Difference Solver for Nonlinear Two Point Boundary 

Problems with Mild Boundary Layers," M. Lentini and V. Pereyra 

ABSTRACT. A variable order variable step finite difference algorithm 

for approximately solving m-dimensional systems of the form 

y' == f(t,y), t E [a,b] 

subject to the nonlinear boundary conditions 

g(y(a),y(b)) == 0 

is presented. 

A program, PASVAR, implementing these ideas have been written 

and the results on several test runs are presented together with 

comparisons with other methods. The main feautres of the new pro-

cedure are: a) Its ability to produce very precise global error 

estimates, which in turn allow a very fine control between desired 

tolerance and actual output precision. 

b) Non-uniform meshes allow an economical and accurate 

treatment of boundary layers and other sharp changes in the solutions. 

c) The combination of automatic variable order (via 

deferred corrections) and automatic (adaptive) mesh selection 

produces, as in the case of initial value problem solvers, a versatile, 

robust, and efficient algori tbm. 
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AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR NONLINEAR TWO POINT 

BOUNDARY PROBLEMS WITH MILD BOUNDARY IAYERS 

* M. Lentini and 
+ v. Pereyra 

1. Introduction 

We are interested in developing usable software for two-

point boundary problems for m-dimensional systems of the form 

y' = f(t,y) tE [a,b] 

( 1. 1 ) 

g(y(a),y(b)) 0 

In [8, 9] we have already presented a finite difference 

algorithm (SYSSOL), based on deferred corrections, which has variable 

order capabilities. SYSSOL uses only uniform meshes, which can be 

refined automatically in order to reduce the maximum norm of the (esti-

mated) global error on the. current mesh below a requested tolerance. 

SYSSOL behaves quite adeguately for many problems (see 

[ 8, 9]), but becomes inefficient or does not work at all as soon as the 

(*). . 
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sol"iltion to the problem or some of its derivatives have sharp 

gradients. U~fortunately, this type of phenomenon is frequently 

fou.i1d in the applications. 

In [ 9 ] we described the deferred correction algorithm 

for general nonuniform meshes, even allowing for multipoint boundary 

conditions and data with jump discontinuities . 

. In this paper we describe an implementation of an algorithm 

(PASVAR) for approximately solving ( 1 .1) which is based on the results 

of [ 9 ]. The main new features in PASVAR consist of an automatic 

procedure for choosing nonuniform meshes, and various modifications 

in the general strategy of the method. Since in [ 9 ] and other earlier 

work we have described the necessary theoretical results and implemen-

tation details, we shall concentrate· in this paper on the new features 

mentioned above, giving only the minimum general information necessary 

to make it readable. This basic groundwork will be found in Section 2, 

while Section 3 will be devoted to the mesh placement problem. Some 

theory justifying our mesh placement procedure has been published 

elsewhere [ 13 ]. In Section 4 we discuss the practical aspects of the 

mesh placement algorithm, which is based on the idea of equidistributing 

the norm of the local truncation error. 

Section 5 is devoted to an operation count and storage 

requirements. In Section 6 we present numerical results on various 

problems with the type of difficulties mentioned earlier, i.e. boundary f ,, 

layers, steep spikes, and so on. We compare PASVAR with various.other 

programs available : (a) SYSSOL, our uniform step deferred correction 

solver; (b) RICHAR, a Richardson extrapolation procedure developed by 

Hilda Lopez and Luis Ruiz [ 10 ], using some of the basic components of 
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SYSSOL; (c) 
' .. 

a multiple shooting algorithm due to Bulirsch, Stoer, 

and Deuflhard [2]; (d) IDCBVP and PREV5,. two deferred correction 

codes for scalar second order equations [12,25]; and (e) SUPORT, 

a linear systems solver based on superposition and orthogonalization 

[26] • 

The .thickness of the boundary layers that can be resolved with 

PASVAR depends, as can be expected, on the maximum number of grid 

points that can be used. Thus the "mild" in the title st;:~.nds for the. 

fact that we have limited, for storage reasons, that maximum number of 

grid points in our program to 650/m, where m is the dimensionality 

of the system being solved. 

We see that PASVAR performs efficiently and reliably in all . 

the problems considered, within the limitations imposed by the maximum 

number of grid points allowed. That limitation is computer dependent. 

We emphasize that all the finite difference codes presented 

here have provisions for estimating the global error of the computed 

solution, and that in all the problems run this estimate has given either 

the true error with at least one significant figure, or have been off 

for less than an order of magnitude. This is in sharp contrast with the 

techniques based on initial value problem solvers, since even the state 

of the art codes have no previsions to control the global error of the 

entire approximate trajectory. Of course, this additional, and we think, 

extremely valuable information, costs something in terms of computer time, 

but this cost is amply justified by the added reliability in the numerical 

results and the excellent correspondence between r~quested tolerance (TOL) 

and actual global error in the computer solution. 

3 
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2. Basic results and notation 

Given them-vector functions y(t , f(t,y), g(a,B), we 

consider the problem of solving approximately 

y'(t) = f(t,y(t)) tE[a,b] 
(2. 1 ) 

g(y(a),y(b)) = 0 

We assume that problem (2.1) has an isolated solution 

y *( t ) ( see [ 4 J ) • We assume also that f is smooth, so that all 

involved derivatives _of Y*(t) exist. Piecewise smooth data and 

multipoint boundary conditions can also be treated with slightly more 

work (see [ 4, 9 ]). 

interval 

(2.2) 

Let TT { t
1 

, ••• , tN+
1 

} be a general partition of the 

a,b ] satisfying: 

a = t 1 < t 2 < • • . < tN+ 1 = b 

h. ;:: t.+,-t. 
l. l. . l. 

h =max h. 
i l. 

hI h < K 

" 
h = min h. 

i l.. 

with K a given positive constant. Condition {2.2) implies: 

(2.3) b-a < h < K(b-a) 
N N 

and we can use h and 1 /N interchangeably as equivalent asymptotic 

scales. 

The basic finite difference approximation considered is the 

trapezoidal rule: 

-1 
~TT{u)i =hi {ui+1 

(2.4) 

u. ) - t ( f ( t . +
1 

, u. 
1 

) + f ( t . , u. ) ] = 0, i ;::1 , ... , N 
l. l. l.+ l. l. 

g{ u1 ' ~+1) = 0 

4. 

•• j 

... 
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Keller studies also the centered Euler scheme: 

which has properties similar to (2.4) and it· is easier to use 

in the case of piecewise continuous data. However, it is considerably 

more difficult to perform deferred corrections with it,_ because of the 

presence of a discretization inside a nonlinear function, which forces 

partial derivatives of f with respect to u in the expansion for 

the local truncation error. That is the reason for our choice of the 

scheme (2 .4). 

As usual, the local truncation error is. defined as -what is 

left when one applies (2.4) to the discretization of the exact solution 

to the problem. By Taylor's expansion we get: 

(2.6) 

where 

1 
T(y;*) \' -v 

TT 1 = L -2=-v--......,,---
.\):;:::1 2 (2v+1) 

2\) 

= d f( t 'y* ( t) ) 
dt2v t=t.+h./2 

. 1 1 

We shorten (2.6) for further reference to 
1 

(2.6') 

first k 

* T (y.) 
TT 1 

= \ T (t.) h~v + O(h21+2
) L v 1 1 

v=1 

Let TTT k be the mesh function obtained by adding 

' 
terms in the asymptotic expansion (2.6), and let 

an O(h2k+2
) 

(k ... 1y) . 
u : 1s an 

approximation to T k . 
TT, 

It is -well kno-wn [ 9] 

O(h
2

k) discrete approximation to y*(t) 'on 

has an asymptotic expansion in even po-wers of 

up the 

s(k)(y*) 
TT 

that if 

rr , and if 

h, then (u(k-1 )-Y*) 

8(k)()k-1 )) 
TT 

approximation to The opera:tors 

r\ o· o .. .. 

be 



(k) s can be readily constructed via numerical differentiation, as 
TT 

explained in 9 ], and they are the basis for the deferred correc-

tion algorithm. They are also used in the dynamical monitoring of the 

global error e(k) = (u(k) - y*). Notice also the modification intro-

duced in [23] which eliminates some earlier theoretical difficulties. 

We hope it will be clear from the context that we are 

speaking of vector mesh functions on rr , i.e. that an express ion sue h 

as the one above means: 

e~k)(t.) = u~k)(t.)- yt(tJ.) , t.ETT , i=1, ••. ,m. 
~ J ~ . J • J 

Another important fact we shall need later is that the 

method is stable in the infinite norm 11 • II , i.e. 

( 2. 7) II e( k) II ~ c II ,. ( k) II ' 
TT 

where the constant c is independent of the mesh TT • The mesh func-

tion 
(k) 

represents the local truncation error after the kth 

correction has been performed. 

We recall now the deferred correction algorithm. Letting 

S( o) (u( -l)) = 0 , solve -successively for k=O, 1 ,2, •.. 
TT . 

(2.8) 

g( u, ' ~+1 ) = 0 • 

We call u(k) to the solution of (2.8) (closest to y*(t)). 

The main features of the deferred correction procedure are: 

(a) Solutions of increased accuracy are obtained on the same mesh 

(compare with the Richardson extrapolation procedure); 

(b) The same system of equations is solved all the time (with different 

right hand sides). 

··:-
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Under certain conditions, the successively corrected solutions 

will satisfY on the mesh : 

II e ( k) II = II u ( k) - y* II = 0 ( h2k+2 ) ) • 

An asymptotic estimate for 
. (k) 
e . can be found by solving for 

!J. the variational (linear) equation 

(2.9) q;'(u(k)) 
6 

= 8 (k) (u(k-1) ) _ 8 (k+1) (u(k)) , 
TT TT TT 

where q;' (u(k)) is the Jacobian matrix of q; evaluated at 
TT TT 

(k) 
u • 

If 6 (k) is the solution of this linear problem then: 

Observe that if (2.8) is being solved by Newton's method, then ~' (u(k)) 
TT 

will be available, and since 
(k) (k+1) . 

S , S are also ava~lable, the cost 
TT TT . 

of the estimate ( 2.10) is just that of one Newton step, i.e. ··the solution 

of i sparse system of linear equations. 

For the automatic mesh placement algorithm, we will be inter­

ested in having an O(h
2

k+
4 ) estimate of the leading term in T (k) 

TT 

For this purpose, it is necessary to use in S(k) formulas with a higher 
TT 

order interpolation error than is necessary for the rest of the process. 

In fact, we will insist that 

(2.11) 

i.e., the numerical differentiation formula will be two orders more 

precise than before. 

Assuming that at the (k-l)th correction we have an expansion 

for the global error of the form: 

7 
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(2.12) u~ k-1 ) - y*( t. ) 
l l 

= ek(ti) h2k,.. ek+l(ti) h2k+2 + O(h2k+4), 

with ek(ti) smooth and independent of n , we conclude that 

(2.13) 

-rn,k+1 (ytl. ) - -r (yt) - S(k)(e (t.) )h2k + O(h2k+4) 
n,k l n k l 

Observing that is itself O(h
2

), we see that we have in 

display the leading term of T (k)(y*) 
n 

Lemma 2.1 is an O(h2k+4 ) 

approximation to the leading term of T (k) (y*) • 
n 

Proof: Because of (2.11) and (2.12)(with (k..:1) replaced by k) we have 

and 

= -r k(yt) + sn(k)(ek(t.))h2k + O(h2k+4) 
n, 1 1 

In this last computation we have made use of two terms of the expansion 

(2.12) in order to obtain the O(h
2

k+
4

) te~. 

Subtracting these two expressions and comparing with (2.13) 

the result follows. II 

8 
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3. The mesh placement algorithm 

We have seen that at the kth step of the deferred correction 

algorithm, the local truncation error has the form: 

( 3. 1 ) 

A 

where the function Tk+
1
(t) does not depend uponthe net n • Further-

more the leading term of (3.1) can be estimated to order h
2 

by 

We are interested in choosing a mesh so that the first term of the 

local truncation error is nearly c<;mstant in norm on this mesh. Since 

we have a limitation on the ratio of the largest to the smallest mesh 

size (see (2.2)), we have to take into account the possibility that 

Tk+
1
(t) be accidentally very small at some grid point. For this purpose, 

,.. ,.. 

. and assuming that ~up ]II Tk+ 1 ( t ) II = M we define the function 
. tELa,o 

,.. 

G( t ) = max (II Tk+ 
1 

( t ) II , X ) 

where X= M/ K
1/cr (K defined in (2.2)), cr = 1/(2k+2). 

We shall call a mesh n (asymptotically) equidistributing iff 

(3.2) 
2k+2 

- hi sup II G(t) 11 = E.(1+0(h)) 

tE[ti,ti+l) 

where E is a positive constant called the level of equidistribution • 

The' norm II • ll. is the CX) -vector norm.· In [ 13] the properties of 

equ.idistributing meshes are studied in detail and more general 

are also considered. 

9 
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For an equidistributing mesh ~e then have the relationship 

N 

(3.3) dt ~ I 
a 

h. II G( t) II ~ N • EP 
l (i) 

i==1 

Thus the level E corresponding to an equidistributing net with N 

points is approximately equal to 

(3.4) E.~ N-
1

1a II G lla 

Observe that II G llcr = ( J b G( t )a dt) 
1 

Ia is not a norm since a < 1 , 

a 

and also that (3.4) is mesh independent. 

· We see then that for an equidistributing mesh, the level E 

itself is an asymptotic bound for the infinity norm of the local truncation 

error: 

(3.5) max 11 ./"k) (y.) II == E(1 +O(h)). 
1T l (X) 

i==1, ••• ,N 

By using (3. 4) we can predict approximately how many points 

will be necessary to achieve a prescribed tolerance Er In fact . 

N > ( II .G !Ia 1 "[f · 

Lennna 3· 1 If the mesh n is such that 

r::t)" dt : ~ (1 + O(h)) 

b l 

(i.e.~. G(t)a dt is asymptotically equidistributed) then n is a.e. 

with E == E'1 I a == I I G II lifk+
2

, and hence 
a 

(3.7) II 'T'~k)(y) II :S N-(2k+2) II G llcr(l+O(h)) • 

Proof: The proof is entirely similar to that of Lemma 3. 1 of [ 13] . f I 

10 
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Since II · 11
0 

is not a norm it is convenient to have an 

estimate. in 11 • 11 • To obtain that estimate we need the following 
co . 

Lemma. 

Lemma 3.2 Let p ?. 1 ' let ~ (x) be a scalar L function, and 
.p 

let 0 < cr < p • Let M
1 

= ( x: I ~ ( x) I > L } with L > 0 chosen 

so that 

b 

dx = ~ J I ~( x) I cr dx • 

a 

Then p-cr 

(3.8) . II ~ llcr ~ 21 /cr [ fl.(~) ] 
crp 

II ~lip 

where fJ.(~) is the meas-ure of the set ML • 

Proof: See [ 1 3] . II 

For p = oo, (3.8) simply becomes 

II ~~~cr ~ [ 2f1(~) J1/cr II ~ lloo. 

If we combine (2.7) with (3.5) and (3.8'), we obtain 

the following 

Theorem 3. 3 Let the mesh TT have N+1 points and be· equidistributing 

for the k th step of the deferred correction algorithm. Then the 

global truncation error satisfies 

(3.9) 

with ~ defined as in Lemma 3.2 for the function 

~( t) = II G( t ) !I . 
co 

0 0 



Proof: From (2.7) and (3.5) we obtain 

11 e(k)·ll -:;_ c N-( 2k+2 ) II G lla, (1 + O(h)) , 

and applying (3.8 1 ) we get (3.9) . II 

Observe that IJ.(M
1

) will be small if G(t) has sharp 

peaks. We give now a simple example to see how this bound compares 

with the standard one for uniform meshes in a boundary layer model 

problem. The essential difference between the two bounds is the 

.appearance of the quantity [ 2 1-L ( ~) ]
2k+2 

when the mesh is equi-

distributing. 

Example. 

Consider the first order scalar equation 

6 y 1 = -y , y( 0) = 1 ' t E [ 0' l ] , 

where 5 is a small positive constant. This problem has been analyzed 

in detail in [ 5 ] Its solution is simply y( t) = e -t / 6, and there 

is a boundary layer of width 5 at t=O • The successive derivatives of 

y(t) are 

ds y( t) 

dts 

= e 
-t/5 

It is easy to see that if one applies method (2•4) to this problem, 

then the stability constant c is 0(1) for 5 .~ 0. Also 

A - d2k+2 y(t) 
Tk+1 ( t) - ck 2k+2 

. .. dt 

Thus 
I -·(2k+2) 

II G llco = c 6 , and from a uniform mesh estimate we deduce 

that N = 
-1 

0 points will be necessary to get an 0(1) accuracy. A 

simple calculation shows that in this case 1-L (~) = c10 , with c
1 

a small constant, and we see from (3.9) that for an equidistributing 

mesh an O(N-(
2

k+
2

)) error bound holds for any N, and the effect of 



the boundary laJ~er is completely neutralized by the equidistribution 

of the ro- norm of the local truncation error. Observe also that 

equidistributing any other smaller derivative of the solution (as 

in Pearson [ 11 ] ) will not have this effect. 

y(t) 

L 

6 r t 

For k=O, and a local truncation error level of 0.01, the 

mesh...,step function must satisf'y 

2( ) -2 -t/ 6 h t 0 e = 0.01 

or 

h(t) . = 0.1 5 et/26 • 

The total number of points is approximately given by 

N 

N. = L = dt !!!! 20 ' 

i=1 

and the number of points in [ 0, 5] will be 

dt ~ 13 • 

·s s C,·' 
13 

ft f:? t1~ 0 .. -l;; . I 0 0 



We see then that for any o more than half of the 

grid points will be concentrated on the boundary layer, as one expects. 

Of course, N = 20 is the optimal number of points for that level of 

error, but we have also to enforce the condition h/ h < K , with a 

moderate K which may mean increasing somewhat the density of the 

mesh outside the boundary layer. Still this will require far less points 

than the (106) - 1 points required by a uniform mesh algorithm to give the 

same order of accuracy. 

More general results of the type described in this Section, 

detailed proofs, and references to related work can be found in [ 1 3 ] . 

14 
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4. Practical meflh placement algorithm 

In introducing the concept of asymptotically equidistributing 

meshes we have taken a step towards the practical implementation of the 

ideas in Section 3· 
. . . 

As a matter of fact, we won't strive to make our computed 

meshes even approximately equidistributing_, but rather we shall use a 

somewhat more lax criterion. The first ground rule in our iterative 

procedure to obtain a grid TI is that we will only add points, and 

once a point is in the mesh it will never be touched again. 

In other algorithms proposed [ 11, 17, 21 ], either a-fixed 

number of points is moved around, or points are added and removed in 

order to satisfy some equidistribution condition. In our experience 

those procedures have a tendency to be more unstable and to produce 

rougher meshes than can be tolerated. There are, of course, ways of 

improving that situation, like smoothing, but that only complicates the 

algorithm unduly. On the other hand, the closer the mesh is to an equi-

distributing one, the fewer number of points it will have for a given toler-

ance; so that fact and the cost of producing such a mesh must be carefully 

balanced. Also, from our example above, it is seen that, for a given level 

of truncation error, there is an order of the method which minimizes the 

number of points required for a·given problem. Of course, one should 

take into consideration the amount of work for each order when drawing 

:true optimality results. For the time being, these considerations are 

far too complicated to be taken strictly into account in our algorithm, 

but they provide guidelines for useful heuristics. 

Our procedure starts with a given mesh TI(O) with N
0

+1 points. 

If no ~ priori information is available about the problem difficulties 

then will usually be a uniform mesh with 
f:.se' nr.,;,t.,,O, 

. ~ ,.,v ·r~~ t t,(< rr."' .f;"" 'o<~ 

1 5 



Obviously, because of computer storage restrictions, one will also have 

a maximum number of mesh points that can be considered in any given 

mesh, say NMAX . In our program we have chosen · NMAX = 650/m • 

we obtain an approximate 

by solving··.~ (o)(u) = 0 , 
'TT . 

g(u1 '~ +1) 
0 

= 0 

O(h
2

) solution 
( 0) 

u n(o) 

(see (2.8)) • 

Then we.compute s (1 ) ( u ( 
0

) ) , which is an estimate for the leading 
(o) (o) 

'TT 'TT 

term in the local truncation error 
(o) 

,. ( 0) 
n' 

The infinity norm is used 

throughout. If we want II ,. ~ k) ( y) 11 a::/"::1 'E , then from Lemma 3. 1 and ( 3. 4) 

we obtain that 

( 4. 1 ) E 

The initial tolerance requested, 'E(o) , is up to a certain 

extent arbitrary, but nevertheless it should be chosen judiciously. As 

E(o) becomes smaller, more points will be added to the mesh at the 

beginning, which may be unwise. Let TEM = 11 u (o)ll 

(4.2) 'E(o) =max (BMA * TEM , TOL) , 

where BMA is a parameter used to control the size of 

We put 

-(o) 
E . The 

maximum norm of the approximate solution, TEM, is what connects the 

level ~(o) with the particular problem being solved. Essentially 

what we are saying is that we would like to have an equidistributing 

mesh with sufficiently many points as to achieve, at the start, a rela-

tive precision BMA with the 2 
O(h ) method. BMA should not be too 

small, since at the early stages of the game the information available 

(u(o)) will tend to be more unreliable, especially for problems with 

difficulties. · 

• 
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. We caD. (see Section .3 for the definition of 1.. ) : 

and 
N 

UUN 2: EJ( I) 
I=1 

a 

The equidistributing procedure adds points, according to the 

following rule. "Irl the present interval (xi' xi+l) add IQJ(l) -

unifoimly distributed points, where 

(4 . .3) IQJ(I) ~ L .EJ(I) I E J ' 

and L · J stands for "integer part of , " . 

Thus the total number of points added in each sweep is 

N· 

IQ = L 
J=1 

IQJ(I) , where (N+l) is the number of points in the mesh 

being modified. 

These new points are actually added into the mesh if the 

following conditions are satisfied 

(4.4) 0.04 N < :tQ ~ min (NMA.X-N, 70) • 

If · IQ < .o4N , and the mesh !J:~~-_lJ-~en modified during the present process 

then the equidistribution terminates. 

The condition on the right of (4.4) prevents too many points 

being added in any given sweep. 

We observe that with the notation above . 

-. ' . ~ 

UUN I E -~ N + IQ .;. 1 

If IQ violates one of conditions (4.4) and this is not terminal, 

we can attempt to find the "right level" E* which will bring in a 

0 9 



preset number of points IQIE" , by putting 

(4 .5) = EX N + IQ + 1 
N + IQIE" + 1 ' 

and going again through the mesh in order to obtain a vector IQ,J(I) 

for this new level. We use in our program 

N + IQ* + 1 = min (ALG*N, NMAX) 

with ALG = 1 .1(0.1) 1.4 • If the case IQ < .o4N is not terminal, 

then we redefine the level as in (4.5) with ALG = 1.4 . If that level 

still does not bring enough new points into the mesh, then we decrease 

the correction index k by , until either the mesh is modified or 

k = 0 • In this latter case a complete bisection of the mesh is requested 

(if possible). If the right hand condition (4.4) is violated then we 

define a hew level, also with ALG = 1 .4 , but now we allow ALG to 

decrease down to 1.1 in steps of. 0.1 . This process is of course 

stopped whenever an allowable number of new points is produced. 

This series of tests and modifications are intermixed in a 

somewhat complex logical structure which is better understood by looking 

at a flowchart or the actual computer program. Here we have only tried 

to list some of the main features of the algorithm. 

In particular, indefinite cycling is precluded by various 

controls so that the mesh refinement process always terminates, though 

not necessarily with an equidistributed mesh. 

We have insisted in not removing points from the mesh since 

this provides an easy way of insuring that the condition ,h/ £ ~ K ·is 

f'u.l.filled with a reasonable K , and also produces smoother meshes. 

18 
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As we shall see in the rumerical examples, in problems with 

transition regions as thin as 10-3 (on an interV-al of size 0.2), the 

algorithm has produced solutions accurate to 10...:
8 

with a mesh in 

which K :S 50 • 

I 9 
19 
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5. Operation count and storage requirements 

In this Section we shall make an operation count for algorithm 

PASVAR. There are essentially three large modules in PASVAR, and two main 

loops: the deferred correction iteration and the Newton solver. 

(a) The linear equation solver (SYSLIN). 

SYSLIN is an implementation of the algorithm of Section 3 of 

[ 9 ]. SYSLIN is called at each Newton step, and at the end of each 

correction, in order to estimate the global error. 

The relevant parameters for SYSLIN are: m the number of 

differential equations in the system, and N the number of mesh points. 

The systems solved by SYSLIN are then of size m (N+l) x m (N+l) . 

They are also sparse and highly structured. In fact the coefficient 

matrices involved have the form 

0 

0 

0 

I_ 0 

m ([A 1 B l 

mN{ -C -!- D -J 
'-.,-/~ 

m mN 

That is, they are block bidiagonal, with the exception of the first block 

row. The blocks are of size m x m • The system of equations have the 

form 

20 
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We solve the superblock· 2 'x 2 system by Gaussian elimination, 

and that impltes solving subsystems with the lower block bidiagonal mat-

""" "' 
rix D . Putting c = [ Ci b ] V = [ V I w ] we have 

( 5.2a) xo = (A - BVf
1 

(bo 

-1 "' 
(5.2b) X = D (b - exo 

-1 -1 "' 
where v D c w = D b are obtained by solving the system 

(5.3) Ii v c 

This is done by means of the recursion 

(5.4) 
-·· 
v. 

J 

-1 
== R. 

J 

-
s. v. 1) 
J J-

j 1 , ••• , N 

Forming the expression in each parenthesis of (5.4) takes 

m3P + m
2s operati'ons , where P stands for multiplications or divisions, 

and S stands for additions or subtractions·. Solving one matrix system 

(5.4) takes 4 m3 (P + S) operations, and thus we have a total of 

3 

N (-7_m3P + (~m 3 + m
2

) S) operations for the recursion (5.4). 

3 3 

The calculation of (5.2.a) and (5.2.b) takes ( ~ m3 + Nm
2

) P + 

3 

( ~ m3 + Nm
2 

+ Nm) S , and the total number of operations for SYSLIN is 

'3 

(most significant terms only) 

(5.5) Nm3 (7P + 4 S) 

3 

( c f. [ 7 ] also) . 

G 9 
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This is about twice ·the number of operations obtained by 

Varah [ 16 ] for the case of uncoupled boundary conditions. In that 

case, by arranging the equations properly one obtains a band matrix, or 

a block tridiagonal one, depending how he looks at it. 

(b) Calculation of the correction vectors 

This calculation is performed in Subroutine U2DCGS The 

relevant parameters here are : k the correction' number, and m, N 

as before. 

For each grid point we have to generate weights for a differen­

tiation formula approximating '~"n,k(yt) to order h
2

k+
4 

• Since the 

abscissas are not uniformly distributed, and since '1" 
rr,k 

is 

then (2k+2) ordinates are necessary to produce the required approximation. 

The weights are obtained in Subroutine COEGEN; for each grid 

point the weight generation takes k
2 

(4P + 6s ) operations (see [1 ]), 

and thus, forming costs 

( 5. 6) Nk ( ( 4k + 2m) P + (6k + 2m) s ) 

(c) The mesh selection procedure is a process taking a small multiple 

of mN operations. Under certain circumstances it may also require a call 

to U2DCGS • 

The Newton loop. For each correction, a sparse system of mN non-linear 

equations must be solved. We use a descent Newton iteration with step 

and angle control to solve those equations. In cases where there are 

convergence difficulties, an optional automatic continuation procedure 

is also available (see [9,22]). 

22 
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Each Newton iteration takes one evaluation of the right hand 

side f(t,u) (vector mesh function), and one evaluation of its Jacobian 

matrix. Then, a computation of the residual ~TT( u) is required (see 

(2.4)); this is a (4mN) operations process. Finally we have a call to 

SYSLIN. 

If the process is going to converge at all, it usually takes 

no more than three iterations to achieve 11 t ( u) II < EPS . The tolerance TT , 

EPS varies with the correction order, and with the actual estimated 

global error, in such a way that the equations are solved to a level 

compatible with the truncation error. After the first system is solved, 

and some accuracy has been obtained, the following systems take usually 

fewer iterations since better initial values are used. 

Thus we can reasonably assess the work for a complete Newton 

process, including one extra iteration for the error estimate, as: 

' -- ' ---· 

(5.7) 3 (7P + 4S) + 16m (P+s)J 

' 

where FE, JE stand for evaluation of f and its Jacobian over the 

whole mesh. 

If the problem is linear, and the system of linear equations 

is not too ill conditioned, this work estimate shoul.d be halved. If the 

system is ill conditioned, and after passing through SYSLIN the residual 

has not been diminishe~ sufficiently (it should be zero!), then more 

"Newton iterations"will be performed. This process is actually equiva-

lent to iterative refinement, a procedure to improve the precision of 

numerical solutions to linear systems, and it is automatically built 

into the program. 

23 
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The total work for the kth correction is essentially 

( 5. 8) N f (~ 3 
+ 4k

2 
+ (2k + 16)m)P+ (~ 3 +6k 2 

+(2k+16)m)S} + 4(FE+JE) 

There are indications that more sophisticated equation solvers (both 

linear and nonlinear) can be valuable in difficult problems (4,24], 

and we are presently working in this direction. 

In order to.analize the cost of any given actual run, we have 

to consider the following quantities. the different 

m.'!ffiber of grid point13 used; c
0 

, c
1 

, ••. , cr the number of corrections 

performed with each fixed mesh. Since the amount of work in a correction 

depends upon its order, we also have to consider as parameters the 

starting orders k
0

, k
1

, ••• , kr Clearly k
0 

= 0 . From (5.8), and 

after some simplifications, we obtain the following estimate 

(5. 9) 

~ N c t28
m3 +16m+ 4(k. + cj)

2 
+ 2(k. + c.)m) P 

L jj 3 J J J 

j=O 

+(
1

3
6

m3+ 16m+ 6(k. + c.)
2 

+ 2(k. + c.)m) S} 
J J J J 

+ 4c.(FE + JE) • 
J 

Except for small systems (m ~ 5), this estimate can be further 

simplified to 

r 

(5-9') .L 
j=O 

• 

For a given problem it is impossible to predict the program path, o 

i.e. to determine a priori the parameters 

strong and unrealistic hypotheses are made. 

NJ., c. , k. , unless some very 
J J 

It is plausible that with the information we have provided here, 

a more elaborate complexity analysis could be performed. Also, comparisons 
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of the! type carrii~d out by Keller f 18] can be performed by making 

appropriate hypotheses. For instance, assuming that instead of SYSLIN 

the same linear equations solver as in [18] is used, that the same 

number of Newton iterations is required, and that the basic mesh need 

not be changed, then iterateddeferred corrections r~quire always less 

operations and function evaluations (for a given order) than successive 

Richardson Extrapolations. We feel, however, that these work estimates 

give only pointers and general indications. A computer test on several 

a.ctual implementations and on a large, representative set of problems is 

what is required in.order to make more final assessments. One step in 

this direction is furnished by the results of the following Section. See 

also [ 10] . 

Storage requirements. The storage requirements (most significant 

terms )for our implementation, depending upon the two problem parameters .. 

m,N, are given below. In the case that no dynamical array space allocation is 

available, those par~eters should be replaced by maximal values. We have 

considered a maximum of 20 deferred corrections, which should be more than 

sufficient for most problems, but in any case that is not a storage consuming 

part of the algorithm. The expressions below correspond to number of real 

words required. The actual storage in bytes will depend upon the kind of 

computer and precision being used. 

PASVAR Data 2 m
2 

+ '(m+1 ) N 

Working area 4 m N + 2 N + 170 

SYSLIN 

Working area : 

Thus the total storage required is 

(5.10) ~orage = m
2 

(N+10) + (5m+3) N + 170 

real numbers. 
25 
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6. Numerical ~estilts and comparisons 

In this Section we give results for program PASVAR, and compare 

them with results obtained with other FORTRAN programs: 

SYSSOL: the uniform mesh version of PASVAR [9] ; 

RICHAR: a Richardson extrapolation, finite differences code [ 10] 

MULSHO: a multiple shooting code [ 2 ] ; 

IDCBVP: A deferred correction code for scalar second order equations 

with no y' present [12); 

PREV5 : an improved version of IDCBVP by Daniel and Martin [25]; 

SUPORT: A linear ,systems solver based on the Godunov method [26]. 

In [8] we have anticipated similar results, but the ones here corres-

pond to different versions of the various programs (with the exception of 

SYSSOL ). For instance, RICHAR can now perform extrapolations with any 

sequence of steps h 0 /k. , i = 0,1, .•.. 
l 

We call RICHAR1 to the one using 

the sequence k. = 2i' 
l 

and RICHAR2 to the one using k. = 1 ,2,3,4,6,8, 12,16 ... 
l 

The results for MULSHO were obtained by MM. Deuflhard, Rentrop 

and Pesch, under the direction of R. Bulirsch, and we are very grateful 

to them for their cooperation. Appropriately chosen parameters and 

shooting points now produce convergence from zero initial values in all 

cases tested. Also, much improved results in terms of total number of 

function evaluations ~e obtained with MULSH02 , in which the integration 

routine has been replaced by VOAS , an initial value code provided by 

T. Hull. 

The results for SUPORT were obtained by M. Scott and H. Watts, 

using a Runge-Kutta-Fehlberg integrator for achieving the absolute 
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error tolerance of 10-3 and a variable order Adams integrator for 

-8 
absolute tolerances of 10 and below. Since SUPORT, as opposite to 

all our codes, has no way of requesting (and obtaining) a desired accuracy 

in the computed solution (see [26], Section 12), the results given 

in Tables l and 2 were obtained by running each problem with a large 

spectrum of input tolerances and selecting those results which satisfied 

the output tolerances more closely . (and with the least work, of course). 

The test problems are all small systems, but they show in one 

way or another troublesome behavior. One exceptio~ is Problem 6, 

which is used as an indicator of how the programs behave when confronted 

with a smooth problem. All problems and programs were started with 

17 points, uniform meshes, and initial values for Y identically zero 

with the exception of the shooting programs for which we indicate the 

shooting points in each instance, and of SUPORT which does not 

require a starting mesh. We have collected all the numerical 

results in Table 1. In the case of convergence to the desired 

tolerance we record: EFE = equivalent function evaluations = F + wJ, 

where F is the number of times the right-hand side f(t,y) has 

been evaluated for one value of t, and J is the number of Jacobian 

evaluations~ The weight w varies from problem to problem and it 

is indicated in Table l; in all cases w ~ 1, and it reflects the 
-.. 

relative cost of evaluating the Jacobian matrix as compared with 

that of evaluating the vector function f. Otherwise we print 

the precision reached (if it is close to the one requested), or: 
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NC no convergence; 

~ results not available. 

In our programs we request that the estimated maximum absolute 

error on the whole grid, and for all components of the solution vector, 

be less than TOL for successful termination. MULSHO has a relative 

tolerance parameter available to the user (EPS), andwe give its value 

in the various cases run. 

We give computer times (when available) as a matter of reference. 

The times for SUPORT were obtained at a different installation (same 

computer but a different compiler). The computer times (in seconds) 

can be found in Table 2. The high order scalar equations have been 

treated as first order systems in the standard way. The exact solutions 

(when available) are given in [8). 

Problem 1 [ 15] 

y" 400 (y + cos
2 

'11t.) + 2rf cos 2'11t. 

y(O) ~ y(l) ~ 0 • 

This is a problem which is troublesome for methodsbased on standard 

initial value problems techniques. It can also be interpreted as a 

problem with boundary layers of thickness 1/20 at t ~ O, 1. MULSHO 

used here three equally spaced shooting points, and MULSH02 used five. 
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Problem 2 Falkner-Skan equation [3]. 

y" I + yy" + f3 [ 1 - (y I ) 2] = 0 

y(O) = y 1 (o) = o, y 1 (oo) = l . 

As f3 approaches the value 2, the solutions of the initial value 

problem associated with this equation become very sensitive with 

respect to the value of the missing initial condi~_ion y" (o). This 

problem has required continuation in order to provide adequate starting 

values for the Newton iteration in all the programs with the exception 

of PASVAR. We have used f3 in SYSSOL and RICHAR as a natural con-

tinuation parameter, performing just one Newton iteration for each of 

the values f3 = 0 (0.2) 1.8, and then completing the process for f3 2. 

This is done only once, at the very beginning, on the coarsest mesh 

and with the basic second order method. Afterwards, the initial values 

provided are sufficiently accurate to produce convergence without 

difficulties. All this process is performed automatically, using a con-

tinuation option. The results reported below correspond to the full 

computation for f3 = 2 and oo ~ 10. 

MULSHO and MULSH02 used the four shooting points X. 
J 

0,1,3, 

and 6. 

Problem 3 An artificial boundary layer problem [12] 

/I 

II 
y 

-3EY 

y(-0.1) 
-0.1 

y(O.l) = -y(-O.l) • 
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For E--? O, y(t) ~sign t. The problem has a turning point at t = 0 

of thickness El/
2

. The values of E are indicated in parentheses on 

the heading of the respective columns. In this problem, all programs 

with the exception of SUPORT used the final values for an E to start 

the computation for the following smaller E. 

MULSHO used 5 equally spaced shooting points (including the 

origin), and it was successful up to E = lo-
9, using 26139 F.E. for 

that case. 

Problem 4 [ 14] 

y" + (3 cotan t + tan t)y• + 0. 7y = 0 

This problem has a sharp spike at approximately t = 30.65°, where 

y(30.65°) """285, and the high order derivatives are even larger. 

The MULSHO codes used the four shooting points 

31°' 3 5°' 60 °. 

0 
X. = 30 , 

J 

Problem 5 [11] Another artificial boundary layer problem. 

-1 
y" + E. y' = 0 

y(-1) = 1, y(l) 2, E > 0 • 

This problem has a boundary layer of thickness E at t = -1, where 

the solution passes from the value one to the value two. The results 

reported correspond to E = .01. 
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MULSHO shooting points were x. = -1, -0.8, -0.5, 1; while 
J 

MULSH02 used the sequence x. = -1, -0.8, -0.5, o, 0.5, L 
. J 

This problem was also solved successfully with PASVAR for 

E = 0. 001, 0. 0001, TOL = l0-3 , and for E = O. 001, TOL = l0-8 , 5 X 10-lO. 

In this last case PASVAR required 2753 equivalent.function evaluations 

and used 3.75 seconds of computer time on a CDC 6600/6400 machine. 

The meshes and solutions for large E were used to start the computation 

for smaller E. 

Problem 6 [ 12] An easy problem• 

y" =?-sin t·(l + sin
2 

t) 

y(O) = y(7r) = 0 

MULSHO and MULSH02 used the three shooting points 
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w 
N 

~ co 
!weight for 

Jacobians 

TOL = 10-3 

SYSSOL 

RICHARl 

RICHAR2 

PASVAR 

MULSHO 

MULSH02 

IDCBVP 

PREV5 

SUPORT 

TOL = l0-8 

SYSSOL 

RICHARl 

RICHAR2 

PASVAR 

IDCBVP 

PREV5 

SUPORT 

1 2 3(lo-3 ) 3(lo-6 ) 3(lo-7 ) 4 5 6 

0.1 0.75 0.75 0.75 . o. 75 0.75 0.75 0.5 

419 82.9 -- NC NC NC NC 229 

531 815 671 NC NC NC 1378 227 

-- 743 451 NC NC NC 1248 --

327 543 1088 7891 9997 1892 1140 195 

2061 7657 1232 13076 5892 15815 16363 1866 

1224 1188 912 2631 35o8 2700 3960 559 

115 
I 

75 -- 398 NC NC -- -- I 

75 -- 306 NC NC -- -- ]]') I 
312 -- 334 1246 1880 403 802 --

,. 

1203 3063 '2990 NC NC NC NC 331 

1733 NC 1378 NC NC NC NC 1052 

1008 3135 1248 NC NC NC NC 732 

806 1425 2325 12982 14621 7264 2753 297 

385 -- 2424 NC NC -- -- 148 

354 -- 1460 NC NC -- -- 148 

572 -- 628 2580 3460 688 3832 --
--·--· - f I 

Table I. Equivalent Function Evaluations: F + w*J 

Weights for IDCBVP, PREV5 were w = O, 1, 0.1 in Problems l, 3, 6 respectively . 
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i • () ~ 

-

00 ~ 1 2 3(lo-3 ) 3(lo-6 ) 3 (10 -7 ) 4 5 6 e 

Limitin~f 

... t) ;Erecision 
2472 4418 616 

'f)] 
SYSSOL 10-13 2.4X 10-12 -- -- NC NC NC 10-13 

,,~~ 

\.>1 
\.>1 

0 
PASVAR 

2096 34384 3559 9827 3212 74714 
1.6Xl0-12 lo-1 7.8X 10-ll .-- -- 1.6X 10-ll 8.2XlO-ll 10-

'li IDCBVP 
2006 2866 573 
lo-13 -- io-13 NC NC -- -- lo-13 

"~~ 

"' 
·:;:) PREV5 

1222 1838 371 
lo-13 -- 10-13 NC NC -- -- lq-13 

,· 

0 
2262 1234 .. 3248 3832 . 862 7392 

SUPORT 3.2Xlo-lo 3. 6X lo-12 1. 7x lo-9 4.2 x lo-8 ·lo-8 4.8X 10 ----
- - --- ---- ·- ·- ---- - - ... ---- --- ---- --- - - ------- ---- - --- --- ----

0 

Table I Cont. Equivalent Function Evaluations: F + w*J 

Weights for IDCVBP, PREV5 were w = O, 1, 0.1 in Problems l, 3, 6 respectively. 



~ 3 (10 -3 ) 1 2 
e 

3(lo-6) 3(lo-7 ) 4 5 6 

rroL == 10 -j 

PASVAR 0.57 0.87 1.16 9.90 ll.33 2.11 1.13 0.1) 

IIDCBVP 0.02 -- 0.03 -- -- -- -- o.o1 

PREV5 0.02 -- o.o4 -- -- -- -- 0.02 

isUPORT* o.o8 -- 0.07 0.23 0-35 0.12 0.15 -

~OL == 10-
8 

PASVAR 1.77 2.67 3.01 19.60 20.42 12. 77· j. 78 0.34 

IDCBVP 0.15 -- 0.12 -- -- -- -- 0.0" 

PREV5 0.15 -- 0.09 -- -- -- -- 0.0" 

~UPORT* 0.42 -- 0.50 2.06 2.81 0.74 2.51 --
Limiting 
~recision 

IPASVAR 7.34 8.34 . 5.23 -- -- 19.19 4.62 L2E 

IIDCBVP 0.83 -- 0.43 -- -- -- -- 0.12 

tffiEV5 0.72 -- 0.41 -- -- -- -- 0.12 

SUPORT* 1.65 -- 0.95 2.70 3.17 0.90 5.29 --

Table 2. 

CPU times in seconds on CDC 66oo/64oo at LBL, University of California 
Berkeley; RUN76 compiler. 

* On CDC 6600 at Sandia Labs., Albuquerque; FUN compiler. 
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Conclusions 

From this limited set of tests we can draw some preliminary 

conclusions. 

Overall,PASVAR is far superior to RICHARl and SYSSOL for all 

accuracies, and this is more marked for higheraccuracy. RICHAR2 

is competitive for low accuracies in the problems in which it works 

(c. f. [10] for comparisons on smooth problems). In all fairness, 

we should use a Richardson extrapolation program with nonuniform 

mesh capabilities, but this code is still to be developed. It is 

clear, that whenever applicable, the scalar equations codes are by 

·far the fastest and most efficient. 

The multiple shooting code MULSH02 compares well with PASVAR 

in terms of total number of function evaluations and reliability for 

most of the problems tested. The main exception is the turning point 

Problem 3 where MULSH02 obtains the solution with considerably fewer 

function evaluations than PASVAR • Furthermore, MULSH02 obtains 

good results for E = 1 o-8
, 10-9, while PASVAR cannot resolve the 

boundary layer with the allotted maximum number of grid points. 

However, it is worth mentioning that in Problem 4 MULSH02 takes 

4q% more computer time than MULSHO , despite the fact that this last 

program requires almost 6 times more fUnction evaluations to achieve 

convergence. We should point out also that the multiple shooting codes 

do not choose the shooting points and various other parameters automati-

cally, and only give final results on the shooting points. Thus, PASVAR 

requires much less user interaction and foreknowledge, and outputs a much 

more detailed mesh solution. This detail is automatically more dense in 
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the regions -of rapid variation of any component of the solution 

vector. It would be also useful to compare the performance of 

MULSH02 for higher accuracy. Professor Bulirsch has indicated 

that a more user oriented version of his program, correcting some 

of these drawbacks, will be available in the future. 

The comparisons with SUPORT show that PASVAR work too hard in 

solving the turning point problem 3 for all tolerances and the spike 

problem 4 for TOL = 10-3, lo-
8. This indicates that our net selection 

procedure is too slow for handling this type of quasi-singularities. 

The performance of SUPORT is consistently good for low and 

moderate accuracies, though we have to keep in mind that the user has 

no way of assuring that he will get that accuracy by specifying an input 

parameter. We should also keep in mind that, so far, SUPORT only solves 

linear problems, and that it can take advantage of certain special 

situations, like homogeneous equations (probs. 3, 4, 5) and zero initial 

values (Probs. 1, 4). The somewhat disappointing results for high or 

limiting tolerance seem to stem from the inability of the initial value 

codes to produce such accuracies. Apparently the boundary value· 

techniques can reach tolerances close to full machine accuracy without 

excessive degradation. 

We are presently working on a new version of PASVAR which among 

other features has a new system of equations solver (both linear and 

nonlinear). Preliminary results indicate that this new code will solve 

problems for which PASVAR fails, and also that it will cut the number 

of function evaluations and time by half in most cases. 



. .. , 
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In Table 3 we report some information about the mesh place-

ment and deferred correction procedures on the various problems. 

We give N
1

, the number of times that a mesh refinement was requested. 

Each one of these refinements requires several mesh modifications. The 

quantity N
2 

is the average number of these modifications. The row 

~ gives the higher correction reached, and K is the total number of 

corrections performed. 

We see from these results that the mesh,placement routine 

"does not wander" since the average number of inner sweeps is never 

large than 3, which is reached in only one case (Frob. 5, 

Tol = lo-13 }. ·On the other hand we see that high order methods really 

came into play, and although we do not claim that a correctiQn of 

index k = 10 will produce an O(h
22

) accurate solution, it is quite 

remarkable that such high order corrections do actually produce visible 

improvements in the computed solution • 
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Problem 1 2 3 ( -3) 3(-6) 3 ( -7) 4 5 6 

To 1 = 10-3 

N1 1 1 2 4 2 3 1 0 

N2 1 1 1.5 1.25 2 2 2 0 

A 

k 3 3 2 5 4 3 2 1 

K 4 6 5 ll 8 8 3 2 

1 = l0-8 ' --To 

N1 2 2 3 3 2 6 2 0 

N2 1 2 1.33 1.33 - 0.5 1.83 1.5 0 

k 6 5 4 8 10 7 6 3 

K 9 10 9 13 13 17 8 4 

To1 = 10-13 

N1 2 4 - - - - 3 1 

N2 1 1.75 - - - - 3 1 

A 

k 10 8 - 7 6 - - -

K 13 '17 - - - - 11 8 
~1 

TABLE 3 
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---------LEGAL NOTICE------------. 

This report was prepared as an account of work sponsored by the 

United States Government. Neither the United States nor the United 

States Energy Research and Development Administration, nor any of 

their employees, nor any of their contractors, subcontractors, or 

their employees, makes any warranty, express or implied, or assumes 

any legal liability or responsibility for the accuracy, completeness 

or usefulness of any information, apparatus, product or process 

disclosed, or represents that its use would not infringe privately 

owned rights. 
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