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"An Adaptive Finite Difference Solver for Nonlinear Two Point Boundary

Problems with Mild Boundary Layers,” M. Lentini and V. Pereyra

ABSTRACT. . A variable order variable step finite difference algorithm

for approximately solving m-dimenéional systems of the form

7/

v' = £ty), t € [a,b]
_ subject to the nonlinear boundary conditions
g(y'(_a):y(b)) =0

is;presented.‘

A program, PASVAR, implementing these ideés have been written
and the resuits on several test runs are presented together with
coﬁparisons'with other methods. The main feautres of the new pro-
cedure arefl a)- Its ability to produce very precise global error

‘estimates, which in turn allow a very fine control between desired
tolerance and actual output precisioﬁ.
b) Non-unifoim meshes allow an economical ‘and accurate
treatment. of bqundary layers and other sharp changes in the solutions;
| é) The combination of automatic Vafiable ofder (via
deferred corréctions) and automatic (adaptive) mééh‘Seléction
produceé, as_ih the éase of initial value prbblémvSleers, a versatile,

~.robust, and efficient algorithm.
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AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR NONLINEAR TWO POINT

BOUNDARY PROBLEMS WITH MILD BOUNDARY LAYERS

*
M. Lentini and . V. Pereyra *

1. Introduction

We are interested in developing usabléISOftware for two-

point boundary problems for m-dimensional systems of the form

: y' = f(t,y) ,  te [a,b]
(1.1) | |
gy(a),y(p)) = 0 .

In [8, 9] we have already presented a finite difference

' algorithm‘(SYSSOL), based on deferred correctioﬁs, which has variable
order c&pabilities. SYSSéL .uses only uniform meshes, which can be
fefined autqﬁatically in order to reduce the maximum norm ofvthe (esti-
mated) global error onvthe,current mesh below a requested tolerance.

o SYSSOL behaves quite adequately for ﬁany ptoblems (see

[8, 91), but becomes inefficient .or does not work at all as soon as the

(*}Depéftmeht of Applied Mathematics, Caltech, Pésadena, California.

v<+)Department’offMathematics, University of Southern California, Los Angeles.
The work of M. Lentini was partly supported by Conicit, and that of
V. Pereyra by the U.S. Energy Research and Development Administration
while visiting Stanford University and Lawrence: Berkeley Laboratory, and
the National Science Foundation at USC. Both authors are on leave of
absence from Universidad Central de Venezuela, Caracas.
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solhtién to the problem or some of its derivat;vés'have sharp
gradients. Unfortunately, this type of phenoménon is frequently
fouhd in the applicatibns.
iﬁ [ 9 ] we described the deferred correction algorithm

for general nonuniform meshes, even allowing for multipoint bouhdary
conditions and data with Jjump discontinuities.

- In this paper we describe an implemeﬁtation of an algorithm
(PASVAR) for appréxim'a.tely solving (1.1) which‘ is based on the results
of [ 9 ]. The main new features in PASVAR COHSist of an automatic
procedure for choosing nonuniform meshes, and various modifications
in the genérai strategy of the method. Since iﬁ [ 9] and dthef'earlier
work we have described the necessary theoretiéal resuits and iﬁplemen-
tation Aetaiis, we shall concentrate in this paper on the néw features
| men%ioned abové, giving only the minimum generél inforﬁation hecessary
to make if readable; This basic grqun&work wiil«be found iﬂ Section 2,
while Section 3 Will be devoted to the mesh placement problem. Some
theory justifying our mesh placement procedure has been published
elsewhere [ 13 ]. In Section.h we discuss the pfactical aspects of the
mesh placeﬁent algorithm, which is based on the idea Qf equidistributing
the norm of the local truncation error. -

‘Section‘B is devoted to an operationvcéunt and storage
requirements;r In Section 6 we presént numericai résu;tsﬁon various
' préblems with the type of difficulties mentioned eaflier, i.e. boundary
layers, steep spikes, and so on. We compare PASVAR with various.other
programs available : (a)vSYSSOL, our uniform stép'déferred correction
solver; (b) RICHAR, a Richardson exﬁrapolation procedure developed by

Hilda ILopez and ILuis Ruiz [ 10 1], using some of the basic components of



SYSSOL; (¢) a mul%iple shooting algorithm'due to Bﬁlirsch, Stoer,
and Deuflhard [2]; (@) IDCBVP and- PREVS, two deferred correction
codes for scalar second order equations [12,25]; and (e) SUPORT,

a linear systems solver based on superposition and orthogonalization

[26].

The.thickﬁess of the.boundary layers fhaﬁ can be resolved with
~ PASVAR depénds, ds can be expected, on the maximﬁﬁ number of grid
iaoints tﬁat can bé used. Thus the "mild" in the title stands for the
fact that.wé have limitéd, for storage reasons, that maximum number of
grid poiﬁts‘in our program to 650/m, where m is the dimensionality.
of the system being_solved.v

‘We see that PASVAR pérforms efficieptiy and reliably in all
the préblems.considered, within the limitations imposéd by the maximum

number of grid points allowed. That limitation isbcomputer dependent.

We emphasize that all the finite difference codes presented

here have proVisions for estimating the global error of the computed
~solution, and that in all the problems run this estimaté has given either
the true_errof with at least one significant figure, or have been off

for less thén‘ap order of magnitude. This is in sharp contrastvwith the
vtechniqueé ﬁésed on initial value problem solveré, since even the state.
of the art CQdes havé no pre&isions to>control the global error of the-
eﬁtife approximate trajectory. Of course, this additional, and wé tﬁink,
.extremely valuéble information, costs”sométhing in termé'of computer time,
‘but this cpst.is amply justified by the added reliability in'the numérical
fesults and the.excellent correspbnﬁenée betweenrféquested toleraﬁce (ToL)

and actual global error in the computer solution.



2. Basic resuls and notation

Given the m-vector functions y(t), £(t,y), g(a,B), we °

consider the problem of solving approximately

'Y'(t) = f(t)Y(t)) 3 t€[ayb] ’
(2.1) -

g(y(a),y(®)) = 0 .

.Weeassume that problem (2.1) has an isolated.solution
y¥t) (seé [ﬁ] ). We assume also that f is smooﬁh, so that all
‘involved derivatives of y*(t) exist. Piecewise smooth data and
multipoint boundary conditions can also be treated with slightly more
work (see [ 4, 9 ]).

Iet ™ = { t1,...,t } be a general partition of the

N+l

interval [ a,b ] satiéfying:
a = t1 < t2 < oo < tN+1 =b

(2..2) .hi =ttt 3 b= maiuc h; ;' h = m%n’ h; 3

with K .a given positive constant. Condition (2.2) implies:

(2.3) b-a < h < K(b-a) ,,
i N N
and we can use h and 1/N interchangeably as equivalent asymptotic
scales. '
The basic finite difference approkimation,considered is the

_ trapezoidal‘rule:

ti
jay

(u.

¢ (u); =hy (v,

(2.4) S
gl > uN+1) = 0
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~an. O(h

Keller studies also the centered Euler scheme:

-1 _ o
(2'5) hi (ui+1-ui)= f(tl + -—21-hi 2 %(ui“']-’-ul‘)) b

which has properties similar to (2.4) and it is

easier

to use

in the case of piecewise continuous data. HoWever, it is considerably

more difficult to perform deferred corrections with it, because of the

presence of a discretization inside a nonlinear function, which forces

partial derivatives of f with respect to _uifih the expansion for

the local truncation error. That is the reasbn*for our choice of the

scheme (2.&).

‘As usual, the local truncatlon error 1s deflned as what is

to the problem. By Taylor's expansion we get:

' L - : oy -
(2:6) 7 (v}) =y £(2y) By
2 1
V=1 2Bv- 1(2 +1) 2v):
where
, ov
(2v) d .
.50 = £({t,y*(t)) .
2 PV - t=t,+h, /2
. . : 1 l.‘
We shorten (2.6) for further reference to _
. ’ L .
, *y _ Z 2v 242,
(2.6") Tn(yi) Tv(ti) g+ O(n ) -

+ 0(h

2L+2

- left when one applles (2.4) to the dlscretlzatlon of the exact solution

),l],ooo)N,

Let T_ k be the mesh function obtained by adding up the

2k+2
) approximation to 7 .
sk

(1)

It is well known [9]

is an O(h ) discrete approximation to y*(t)

- first k terms in the asymptotic expansion (2. 6) and let S( >(y*) be

that if

m , and if

k-
(u ( 1) y*) has an asymptotic expansion in even powers of h, then

Sék)(u(k 1)) is an O(h k+2) approximation tov T:

PESePor 0t

T!':klﬂ.

The operators



S(k) can be readily constructed via numerical'differentiation; as
™

exblainéd in [ 9 ], and they are the basis for the deferred cérrec-
tion algorithm. They are also used in the dynamical monitoring of the .
global efror e(k) = (uﬁk) - y*). Notice alsqithe modification intro- <
duced inv[25] which eliminates some earlier thébretical difficulties.

We hope it will be clear from the coqtéxt that we are
speaking of'vector mesh functions on m , i.e; thatuan expression suych -

as the one above means:

. | e§-k_)(tj) =.u§k)_(tj) - ‘y"i‘(tj) s _tjei-r:,v' i._='l,...',m...

Another important fact we shall need later is that the

method is stable in the infinite norm || . || , i.e.

(),

Nl <ell =
ks

(2.7) | ¥

’
where tﬁe'éonstant c 1is indepéndent of the mesh n . The mesh func-
tion T&(k) represents the local truncation errér after the kth
correction has been performed.

We recall now the deferred correction algorithm. Letting

ST(TO)(

u(-])) = Q , solve successively for k=0,1,2,...

b

s (w) = stF) (k1))
(2.8) | m

e

_g(u1 s Ugyq) = 0

We call u(k) to the solution of (2.8) (closest to v*(t)).

 ®

The main features of the deferred correction procedure are:

(a) Solutions of increased accuracy are obtained on the same mesh
(compare with the Richardson extrapolation procedure) ;
(b) The same system of equations is solved all the time (with different

right hand sides).

[ % PR - - 5 g . N
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.Under certain conditions, the successively corrected solutions

will satisfy on the mesh :

- y* || = 0(h
(k)

L) 2k+2)).;

=l

An asymptotic estimate for e can be found by solving for

A the variational (linear) equation

o) 52l 4= s (B gl ()

(x)

wheré §é (u(k)) is the Jacobian matrix of 3 evaluated at u
1t o) is the solution of this linear problem then:

.10y 209 = (B 4 g2ty

Observe that if (2.8) is being solved by Newton's method, then 5;(u(k))

+ ' ' :
Sék) 5 Sﬁk 1) are also available, the cost

Wiil be available, and since
of the esﬁimate (2410) is just that of one New£on step, i.e;mﬁhé solution
of é'sparsé system of'linear equations. S

For the automatic mesh placement algorithm, we will be inter-

’ ' 2k+h> (k)

estimate of the leading term in ¢

ested in having an O(h A

For this purpose, it is necessary to use in 'Sék) formulas with a higher
order interpolation error than is necessary for:thé rest of the process.
In fact, we will insist that |
) s = )+ 0w
i.e., the numerical:differentiétion formula will be two orders more
='precise‘than before.

' Assuming that at the -(k-1)th correction we have an expansion

-for the global error of the form:

g e e i nopb 0000



ok | D
- = *
y*(t;) e (t;) ek+l(ti) h

(2.12) ﬁ§k‘1)

k+2 2k+u)
2

i

+

+ o(n

t.) smooth and independent of 1 , we conclude that

with ek( i

- S(k) (ugk_1)).

(2.13) 1y =e 1) -5 (uf
- - : | (k) ok 2k+L
-.v_ Tﬂ,k'*'" (Y')-{ ) - T'ﬂ',k(y-){) - STT (ek(ti))h + O(h )
R T I CO TR S SRR
S R A ST A
A c o (k) s 2 | .
Observing that S_ (ek) is itself O0(h"), we see that we have in
display the leading term of Tﬂ(k)(y*) .

: - o - DK+
Lemma 2.1 T = 8 (k+1)(u(k)) - s(k)(u(k-1)) is an o(h2 LL)
=8 = K+1 n R J 8an
approximation to the leading term of Tﬂ(k)(y*),.

Proof:  Because of (2.11) and (2.12)(with (k-1) replaced by .k ) we have

s (6+1) (o (K)y _ S£k+1)(y§) N S£k+1) (e 0r (80) 1752 4 ofn

2k+h)
m i

(vo) + o™

) Tﬂ,k+1
sig)(ug}-1) ) = Sﬁk)(yi) + Sik)(ek(ti))h?k + o(n2Ethy
= Tn,k<y§) + Sﬁk)(ek(ti))ﬁgk + o2

In this last computation we have made use of two terms of the expansion
. + . . .

(2.12) in order to obtain the O(h2k h) term

Subtracting these two expressions and comparing with (2.13)

the result follows. “




3. The mesh placemént algorithm

We ha#e seen that at the kth step of the deferred correction

algorithm, the local truncation error has the form:

(3.1) ‘Tﬁk) (y¥) = h§k+2 %k+1(ti) + o(n2FH

)

where thé function T (t) does not depend uponlthe net 1 . Further-

k+1

more the leading term of (3.1) can be estimated to order e by

(1) (o)) |

S (0 g

ki
We are‘inte?ested in choosing a mesh so that tﬁe<first term of the

local truncation error is nearly cgnétant in norm Qn this‘mesh. Since
we have a limitatiqn on the ratio of the largest to the smallést mesh

size (see (2.2)), we have to take into account the possibility that

Tk+1(t) be accidentally very small at some grid point. For this purpose,
and assuming that = su 5 (t) - M we define the function
. g‘ tgfa,‘g]” K+ I y :

6(t) = max (T, ()], A)

where ) = M/ K1/ (K defined in (2.2)), o =1/(2k+2) .

We shall call a mesh m (asymptotically) gguidistributing iff

2k+2

K2 ) a(t) ) (1) = B  sup I &(e) ) = E—(I-1+0(h)> ;

i

(3.2) h

1
te[ti’ti+T

vhere E 1is a positive constant called the level of equidistribution .

The norm | . || - is the oo -vector norm.- In [ 13] the properties of
eqﬁidistributing meshes are studied in detail and.more’general _Lp norﬁs

are also considered.



+

For an equidistributing mesh We then have the relationship

v N
(3.3) fe(t)" at ~ ). bl 6(t) ly =" £
. i=1 * _

a
- Thus the.level E corresponding to an equidistributing net with N

points is approximately equal to

(3.4) BN jop .

g

b ' '
(‘f G(t)° d‘c)1/U is not a norm since o < 1,
J . .
and also that (3.4) is mesh independent.

Observe that || G—Ho

' We see then that for an equidistributing mesh, the level E
itself is én asymptotic bound for the infinity norm of the local truncation

error:;

G mee i = s o)

i=1,...,N
By using (3.4) we can predict approximately how many points
will be nécessary to achieve a prescribed tolerance € . In fact .
6) N> G T)Y .
(3.6) > (el /&)

Lemma 3.1 If the mesh m is such that

- Fin A
I a(¢)° at = E (1 + 0(n))

b \ . , ,
(i.e.ig G(t)° at is asymptotically_equidistributed) then m is a.e.

with E = ﬁTAJ = || G.Hc/N2k+2, and hence

1) P g v oy (vom)

Proof: The proof is entirely similar to that of Lemma 3.1 of [13] ."

10



Since || - “o is not a norm it is convenient to have an
estimaté,in'l[ ',Eo . To obtain that estimate we need the following

Lemma;

Lemma 3.2 lLet p>1, let @ (x) be a'scalar. Lp function, and

let 0<o<p. Let M ={x:| @ (x)]>L} with L>0 chosen

so that
. | | L   . -
fM|cp<x>|° dx=%f|cp<x)|°a;;,.,
L a o
Then _ | ) po ,
e 1/o op
(3.8) el <2 [ pM) ] (R
where (M) is the measure of the set :ML .

Proof: See [131 . |}

For p =co, (3.8) simply becomes
(3.8 ol < [2u00) 17 oy

If we combine (2.7) with (3.5) and (3.8’), we obtain

the following

Théorem 3.3 Let the mesh - m have N+1 points and be-equidistributing

for the k th step of the deferred correction algorithm. Then the

global truncation error satisfies

(3.9) ey - c@_;ﬁh?k*? 1

with ML' defined as in Lemma 3.2 for the function

,Gkﬁ”m (1 + 0(n))

o(t) = |l a(t) [l -

1

LSS T OPRPFOODO



Proof: TFrom (2.7) and (3.5) we obtain
e < e w ) oy (e om)

and applying (3.8') we get (3.9) al

Observe that (M) will be small if G(t) has sharp
peaks. We give now a simple example to see how this bound compares
with the éténdard one for uniform meshes in a boundary layer model

problem. The essential difference between the two bounds is the
2k+2

appearance of the quantity [ 2y (ML) ] when ‘the mesh is equi-

distributing.

Example. .

Consider'thé first order scalar equation

sV =-y, Y(O)_=1:‘t€[0:1‘]:.‘i
where j§ is‘a small positive constant. This problem has been analyzed
in detail in [ 5 ] . TIts solution is simply y(t) = e‘t/5, and there

is 5 boundary layer of width s at t=0 . The successive derivatives of

y(t) - are .
s s -t/s
4 y(&) = (1) e
S S
at 5

Tt is easy to see that if one applies method (2.4) to this problem,

then the stability constant ¢ is 0(1) for §-+ 0 . Also

2k+2
A d t
o (8) = o L y(®)
k+1 AE dt2k+2 | |
: : -(2k+ _ :
Thus || G| = c’ s (2k+2) > and from a uniform mesh estimate we deduce

that N = 5_1 points will be necessary to get an 0(1) accuracy. A

simple caléulation shows that in this case (ML) =c,8 , with ‘c,
a small constant, and we see from (3.9) that for an equidistributing

-(2k+2))

mesh an O(N error bound holds for any ' N,- and the effect of

v 12



the boundary layer is completely neutralized by the equidistribution
of the co.-norm of the local truncation error. Observe élsq that
equidistributing any other smaller derivative of the solution (as

in Pearson [ 11 ]) will not have this effect.

g

y(8)]

1

"Fof k=0, and a local truncation error level of 0.01l, the

mesh-step function must'satisfy

hg(t)s -2 e"t/6 = 0.01 ,
or

' : n(t) = 0.1p /28,

The total number of points is approximately given by

: N N . o,

: i=1" i=1 0 o

and the number of points in [ 0, §] will be

&
,N[..O,el""éf n(g) 4~ 13-




We see then that for any 6 more than half of the
grid points will be concentrated on the Boundary layer, as one expects.
Of course, N =20 is the optimal number of points for that level of

error, but we have also to enforce the condition 'h/ h <K, with a

moderate‘.K; which may mean increasing somewhaﬁ the density of the
mesh oﬁtside the boundary layer. Still this Wiil-require far less points
than the (108)~1 points required by a uniform mesh algorithm to give bhe
same order of accuracy.

More general results of the type described in this Section,

detailed proofs, and references to related work can be found in [ 13 1.

14



4. Practical mesh placement algorithm

: In_inﬁroducing'the concept of asymptqticaiLy equidistributing
meshes we héve taken é'step towards the practical implementation of the
ideas in Section 3.

As a matter of fact, we won't strive tp make 6ur‘computed N
meshes even apprOXimatély equidistribﬁting, but rather-we shall use a
somewhat mére.lax criterion. The firét ground fuie'in our iterative
'procedure tozobtain a grid -m is that we will only add poinfs, and
once a point is in the mesh it will never be touchea again.

in other algorithms proposed [ 11, 175.211],'éither a fixed
number of points is moved around, or points are?added and removed in
" order to satisfy some equidistribution condition. - In our experience
thosé‘proéedures have a tendency to be more unstgbie and to produce
fougher meshes than can be tolerated. There aré, of:course, ways of
- improving that situation, like smoothing, but th;t only cbmplicates the
algofithm unduly. On the other hand, the closer thé ﬁesh is to an‘equi—
diétributing one, the fewer number of points it will have for a given toler-
ance; so that fact and the cost of préducing such‘a‘ﬁeSh must be carefully
balanced. Also, from our example above,»it ié,séén that, for a given lével
of‘truncation error, there is aﬁ order of thevme£h§d which minimizeé'the
number of points required for a 'given prdblém. Of:cdurée, one should
'_také inté consideration the émount bf wérk for eéch order when drawing
ftrﬁe optimality results. For the time being,.these.considerdtions are
.fér too complicated to be taken.strictly‘into.acéoght in our algorithm,
but thgy provide guidelinés for useful heuriétics,.

Our_ﬁrbcedure starts with a giveh mesh 'n(Q) with Nb+1 points.
If no a giibrivinformétion is available aboﬁt the.probiém difficulties

. 0
then - n(o) w1ll usually be a unlform mesh with step size h( ).

é%@ﬁﬁﬁ’?%f”c”f‘ﬂ_
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Obviously, because of éomputer storage restrictions, one will also have
a maximum number of mesh points that can be considered in any given

" mesh, say INMAX . In our program we have chosen NMAX = 650/m .
| (o)

0) we obtain an approximate O(hz) solution u (o)
, . .

.On W(

by solving & (oy(w) =0, &(w suy ) = 0 (see (2.8)) .

Then we.compute })) (u(o) )) , which is an estimate for the leading

g ’ o , :

term in the local truncation error T(?g) . The infinity norm is used
.

throughout. . If we wanf H—rﬁk)(ydlfafu € , then frém Lerma 3.1 and (3.k4)
we obtain that

() E = &,

The initial tolerance reqﬁested, E(o) , is up to a ceptain

extent arbitrary, but nevertheless it should be chosen judiciously. As

E(O) becomes smaller, more points will be added to the mesh at the

(o)

beginning, which may be unwise. Let TEM = || u I We put
.2y 29 - pax (BMA * TEM , TOL)
Where BMA is a parameter used to control the size of G(o) The

maximum norm of the approximate solutipn, TEM, is“what connects. the
level é(o) ﬁith the particular problem being SOived. Essentially
what we are saying is that we would like to have an equidistributing
mesh with sufflclently many points as to achieve, at the staft, a rela-
" tive precision BMA with the O(h ) method. BMA should not be too
small, SInce-at the early stages of the game the information available
(u(o)) will tend to be more unreliable, especially for problems with

difficulties. -

16



We call (see Section 3 for the definition of A ):

e -

BII) = by max () T, (t;) 1, N)°

- _ -
hi max (|| Tk+1(ti)|| ’ l)A)‘
UUN = Z EJ(I) f a(t)Cat .
: . I=1 . :
a

The_équidistributing procedure adds points, according to the

" following rule. "In the present interval (xI, XI+1) add IQJ(I) - 1

uniformly d_"istﬁbﬁted points, where
(b.3)  Tr(1) & [ EI(D) /E],

and L"'J' stands for "integer part of . ".

Thus the total number of points added in each sﬁeép is’

g
IqQ = >,  IQJ(I) , where (N+1) is the number of points in the mesh
CoJ=t ' ' < :
being modified.

These new points are actually added intb<£he mesh if the

~following conditions are satisfied

(b.k) 0.0k N < IQ< min (NMAX-N, 70) .

If " IQ < .O4N , and the mesh has been modified during the present process

then the equidistribution terminates.

The condition on the right of (4.4) prevents too many points

being added in any given sweep.

We observe that with the notation above .
UUN /E~ N+ IQ+ 1
If"IQ violates one of conditions (4.4) and this is not terminal,

we can attempt to find the "right level" E¥* which will bring in a

09 ¢y 0o pr o 00



préset number of points IQ¥ , by putting‘

(4.5) | E¥ = ExXN+IQ+1 ,
N + 1Q* + 1

and going agein through the mesh in order to obtain a vector IQJ(I)

for this new. level. We use in our program
N + IQ¥ + 1 = min (ALG*N, NMAX)

with AIG = 1.i(o.1) 1.4 . If the case IQ< .O4N 1s not terminal,

then we redefine the level as in (4.5) with AIG = 1.4 . If that level
still does not bring enough new points into theumesh, then we decrease

the correction index k by 1 , until either ﬁhé ﬁesh is modified or

k =0 . In this latter case a complete bisection of the mésh is requested
(if possible). If the right hand condition (h.ﬁ) .is violated then e
define a new ievel,'also with ALG = 1.4 , but now we allow AIG to
decrease down to - 1;1 in steps of 0.1 . This'process is of course

stopped whenever an allowable number of new points is produced.

This series'of tests and modifications are intermixed in a
somewhat complex logical structure which is better.understood by looking
at a flowchart or the actual computer prdgram. Here we have only tried
- to list some of the main features of the algorithm.

In particular, indefinite cycling is precluded by various
controls so that thé mesh refinement process alwayé terminates, though
not necessaril& with_an equidistributed mesh. |

We have insisted in not removing points from the mesh since
this provides dn easy way of insuring that the conditiéﬁ ,h/ f < K -is

fulfilled with a reasonable K , and also produces smoother meshes.

18
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As we shall see in the nmerical examples, in problems with
transition regions as thin as 1072 (on an intérﬁal'of size 0.2), the

8

algorithm has produced solutions accurate to 107~ with a mesh in

which K <50 .

| 19 L
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5. Operation count and storage requirements

In this Section we shall make an operation count for algorithm
PASVAR. There are essentially three large modulés in PASVAR, and two main
loops: the deferred correction iteration and the Newton solver.

(a) The linear equation solver‘(SYSLIN).

SYSLIN is an implementation of thé algofithm of Section 3 of
[ 9 ]. SYSLIN is called at each Newton step,'andvat the end of each
cqrrection; in order to estiméte the global err¢?;“.
| | The_relévaﬂt parameters for SYSLIN arg; m the number of
differential equatiéns_iﬁ the system, and N the number of mesh points.
The systémé solved by SYSLIN are theﬁ of sizé'lm'(N+1) xm (N+1)
They are alsd sparse and highly structured. In fact the coefficient

matrices involved have the form

r“' : Y
‘ G1 0 . v. GN+1 '
_ m A . BT
(5.1)A - L0 S R . ) = - ';" B "‘
| > mN( ¢
I R . 4 . - WWJ
i m mN

That is, they are block bidiagonal, with the exception of the first block
row. The blocks are of size m x m . The system of equations have the

form

20



We solve the superbiock" 2 x2 sYsﬁem~by Gaussian elimination,

and that implies Solving subsystems with the lower block bidiagonal mat-

B rix .D . Putting C= [ c| v 1, V=[V|w] wehave
, (s.za) Xy = (A - BV) (bO - Bw) ,
(5.2b) X . = ™ (b - xy ) s

where V =iD—1 C, w= D_1 b are obtained by solving the syStem

(5.3) DV = ¢ .

This is done by means of the recursion

e O, = - .
(5.4) Vi = Ry (cj - sjv5_1) P B P

Forming the expression in each parenthesis of (5.4) takes
m5P + mES’operations , where P stands for multiplications or divisions,
and S stands for additions or subtractions. Solving one matrix system

(5.4) takes L4 w (P + S) operations, and thus we have a total of

3
N ( 7 m3P + (b o + m2) S) operations for the recursion (5.h4).
3 3 : :
The calculation of (5.2.a) and (5.2.b) takes ( k4 m + Nme) P +
- ' 3
( g_m3 + N+ Mm) S , and the total number of operations for SYSLIN is
.,5 . : .
) (most significant terms only)
. (5.5) Mo (7P + 4 8)
3 /

(ecf. [ 7 ] also).



_ This is about twice .the number of opefations obtained by
Varsh [ 16 ] for the case of uncoupled boundary conditions. In that
case, by arranging the equations properly one obtains a band matrix, or

a block tridiagonal one, depending how he looks at it.

(b) Calculation of the correction vectors Sﬁk)"(ugk_1))

This calculation is performed in Subroutine U2DCGS . The
relevant parameters here are : k the correction number, and m, N

as before.

Fdr éach grid point we have to generate weights for a diffefen—
tiatiOn‘formula approximating Tn,k(y§) to order ‘h2k+l+ . Siyce the |
abscissas are not uniformly distributed, and sincgl +n,k is O(h2) ,

" then v(2k+2) ordinates are neéessary to produce the réquired approximation.

Theﬂweights are obtained in Subroutine COEGEN; for each grid
point the weight genération takes k- (4P + 68 ) dpérations (see [1 1),
L)

and thus, forming costs

(5.6) Wk ((sk + 2m) P+ (6k + 2m) S )

(c) The mesh selection procedure is a process taking a small multiple
of mN operations. Under certain circumstances it may also require a call

to U2DCGS .

The Newton.loép. For each correcﬁion, a sparse system of mN non-linear
equations ﬁuét be solved. We use a descent Newton iteration with step
and angle contrbl to solve those equations. In caées where there are
convergence difficulties, an optional automatic coﬁtinuaﬁion procedure

is also available (see [9,22]). |
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Each Newton iteration takes one evaluation of the right hand
side f(t,u) (vector mesh function), and one evaluation of its Jacobian

matrix. = Then, a computation of the residual §n(u) is required (see

(2.4)); this is a GmN) operations process. Finally we have a call to

SYSLiN;

- If the précess is going to‘converge at all, it usually takes
no more thaﬁ three iterations to achieve || Qﬁ(u) /Il < EPS . Thevtolérance
EPS varies ﬁith the correction order, and with the actual estimated
glébél errbr, in such a way that the equations afé‘solved to a level
compatible ﬁiﬁh the truncation error. After the first system is solved,
and some accuracy has been obpained, the following systéms take usually
fewer iterétions since better initial values are used.

Thﬁé we can reasonably assess the work for é complete Newton

process, including one extra iteration for the error estimate, as:

(5.7) N[l% n-éw(v7P-+ 4S) + 1ém (P+S)] + & (FE + JE) | ,

where FE, iEVStand fér evaiuation of f and its Jaéobian over the
whole mesh. . |

If the problem is linear, and the systéﬁ of linear_equétions
is not too ill conditioned, this ﬁork estimate sﬁould bé halved. If the
system is 111 conditioned, and éfter passing thréﬁgﬁHSYSLIN the residual
has not beenAdiminishéd sufficiently (it should be zero!), then more
"Newton itgrétions"will be performed. .This'proceés_is acfually equiva-
lent to ;ﬁerafive refinement, a procedure to(improve the precision ofb
numeéical solutions to linear systémé; and it is automaticaily.built

into the progfam.



The total work for the kth correction is essentially

16 3 -

(5.8) W {( + u® + (2K + 16)m) P+ (——m + 6k +(2k+16)m)S} + 4(FE+JE)

There are indications that more sophisticated equation solvers (both

linear and nonlinear) can be valuable in difficult problems [k4,2k],

and we are presently working in this direction.

In order to, analize the cost of any given actual run, we have
to chsider the following quantities. NO B N1,;f.., Nr ¢+ the different
ngmbe? of grid pqintg‘used; cO 3 Cp s eeey C .fhe number of corrections
pérfOrmed with each fixed mesh. Since the amount of work in a correction
depends upon its order, we also have.to consider'as parameters the

starting orders kO"k1"'°’ kr . Clearly ko =0 . From (5.8), and

after some simplifications, we obtain the following estimate

.r R .
Z- {28 3 ¢ 16m + h(kj + cj)g + e(k_j + cj)m') P
J=0 |

(5.9) +.<156 5+16m+6<k re)? w2k +em) 5 )

+ hcj(FE + JE)
-Except for small systems (m <5), thié-estimate can be further
simplified to o
r 3 v
(5.9") Z vacjm (9P + 58) + hcj(FE + JE)
i=0
For a:given problem it is impossiblé to.predict the program_péth,'
i.e. to detef?ine aipriori the parameters Nj’ cj, kj’ unless some very
strong and unréalistic hypothesés are made.

It is plausible that with the information we have provided here,

a more elaborate complexity analysis could be performed. Also, comparisons

o ;
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of theé type carriéd out by Keller {18] can be performed by.makiné
appropriate hypotheses. For .instance, assuming that instead of SYSLIN
the same linear equations sélver as in‘[18] is used, that the same
number of'Néwton iterations is reéuired, and that fhe bésictmesh need
not.be changed, then iterated'defefred correctiohs require always. less
operationé and function evaluations (for a given-order) than successivev
Richardson Exfrapolafions.. We feei, however, thaf'tﬁese work éstimates
give only pointers and general indications. A cémputer test on several
actual implémentations and dn a large, repfesentative set of problems is
what is required in,ordef to_maké more final.asseééments; - One step in
this di;eétion is furnished by the results of the fqlloﬁing Section. See

also [10]-;

Storage requirements. ~The storage réquiremént$ (most significant
'ter@s)fér our implementation, depending.upon the fﬁo prpblem parametersu

m,N, are givenibelow. In the case that no dynamiéai’arréy space allocation is
available, those pﬁrameters should be replaced by‘maximalAvalues. We have
considered a maximum of 20 deferred Corfections, ﬁhich should be. more than
sufficient_f@r most problems{ but in any case that~i§ not a sto;agé consuming
part of the algorithm. The expressions below cofréépond to number ofvreal
words required.: The acfual storage in Bytes will”dgpénd upoh the kind‘of

computer and precision being used.

PASVAR : . Data . omd o+ (m+1) N
Working area : L mN+ 20N+ 170 .

SYSLIN | o |
Working area : n° (N+8) .

Thus the total storage.required is

(5.10) Storage = e (N+10)  + (5m+3) N + 170

real numbers.
o 25



6. Numerical results and comparisons

In this Section We.give results for'proéram PASVAR, and compare
them with results obtained with other FORTRAN §rdgrams:
SYSSOL: +the uniform mesh version of PASVAR [9]';
RICHAR: a Richardson extrapolation, finite differences code [ 10] ;
MUISHO: a multiple shooting code [ 2 ]
IDCBVP: - A deferred correction code for scalaf-second order equations

with no y' present [lé];

PREVS : an'improved version of IDCBVP by Daniei_and Martin [25];

SUPORT: .A linear systems solver based on the Godunov method [26].

In [8]‘we have anticipated similar results, but the ones here corres-
pond to different: versions of the various programs (with the exception of
SYSSOL ). For instance, RICHAR can now perform extrapolations with any

seduence'éf steps ho/ki , 1 =0,7,.... We call RICHAR! to the one using

i

the sequence ki =27, and RICHAR2 to the one uéing ki =1,2,3,4,6,8,12,16...

The results for MULSHO were obta.ined by MM. Deuflhard, Rentrop
and Pesch, under the direction of R. Bulirsch; and we are very grateful
to them.for their cooperaﬁion. Appropriafeiy éhoéen parameters and
shooting.points now produce convergence from zero ihitial values in all
cases tested. Also, much improved results in>t¢rms ofvtotal number of
function evaluations are obtained with MUISHOQ s in which the integration
routine has béen replaced by VOAS , an initial valﬁe code provided by
T. Hull. |

The results for SUPORT were obtained by M..Scott and H. Watts,

using a RungerKutta-Fehlberg integrator for achieving the absolute
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error tolerahée of 10 ° and a variable order Adams integrator'for

absolute tolerances of lO-8 and below. ©Since SUPORT, as opposite to

all our codes, has no way of requesting (and obtainingj'a desired accuracy

in the computed solution (see [26], Section 12), ﬁhe results givéﬁ

in Tables ‘1 and 2 were obtained‘by running eachyproblem with a large

spectrum of.input tolerances and selecting‘those fesults‘which satisfied

the output‘tolerances more closely»(and with the least work, of course).
- Thg ﬁest problems are all sﬁall systens, but‘they.éhow in one

way or anéther troublesome behavior;. One excepﬁipﬁ is Problem 6,

which is used as an indicator of how the prograﬁs”behave when conffonted

with a smooth problem. All préblems and programs'wére stérted with

17 points, uniform meshes, and initial véiues fof1 Y- identically zéro

with the exception of the shooting progréms for ﬁhich we indicate the

shooting points'in each instance, and of SUPORT which does not

require a stafting mesh. We have collected all the numerical

results in Table 1. In the case of convefgence to the desired
tolerance we record: EFE = equivalent function evaluations =F + wd,
where F 1is the number of times the right-hand side f(t,y) has
been evaluated-for one value of t, and J 1is the_number of Jacobian
evaluationé; The weight w varies from problem_tp problem and'it

is indicated in Table 1l; in all cases wvg 1, and iﬁ reflects the
relative cost of evaluating the Jacobian maf;ix.és:compared with

that of evaluating the vector function f. Otherwise we print

the precisioh reached (if it is close to the one reQuested), or:

SS9 StopRb0O00



NC no convergences

n

-resultsvnot available.
In eﬁr'programs we request that the estimated maximum absolute
errqr on the.WhOle grid, andAfor all components of the solution vecter,
be less than TOL for successful termination. MﬁLSHO has a relative
tolerance parameter aveilable to the user (EPS)? and. we givevits.value
in the various cases;run; |

| We‘give computervtimes (when available) as e matter of reference.
The times for SUPORT were obtained at a differeht:installation (same
computer but a different compiler). The»computeriﬁimee (in seconde)
can be found_in Teble 2. - The high order scalar_eqﬁations have been
;treated asvfirst order s&stemé in the standard way. The exact soiutions
(when aveildﬁle) are given in [8].

Problem 1 [15]

y" = 4oo(y + cos® ) + 2W2 cos 2Tt

I

y(1) =o0.

y (0)

This is a problem which is troublesome for methods based on standard
initial value problems techniques. It can also be interpreted as a
problem with boundary layers of thickness 1/20 at t = 0, 1. MULSHO

_ﬁsed here three equally spaced shooting points, and MULSHO? used five.
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Problem 2 Falkner-Skan equation [3].

y"| + yyn " B[l _ (y,)Q] =0

y(0) = y*(0) =0, y' (=) =1.

As B approaches the value 2, the solutions of the initial value
problem associated with this equation become very sensitive with
respect to fhe value of the missing initial condipipn y"(0). This
problem has required continﬁation in order to pfayide adequate starting
values for thé Newton iteration in all the programs with thé-exception
of PASVAR.'FWe have used p in SYSSOL and RICHAR as a natural con-
tinuation parameter, performing just one Neﬁtonbiteration_for each of

the values B = 0 (0.2) 1.8, and then completing the process for g = 2.

" This is done only once, at the very beginning, on the coarsest mesh

‘and with the basic second order method. Afterwards, the initial values

provided are'sufficiently accurate to produce convergence without
difficultiesrl All this process is performed automatically, using a con-
tinuation optibn. The results reported below correspond to the full |
computation for B =2 .and o =~ 10,

MULSHO and MULSHO2 used the four shooting points Xj = 0,l1,3,

~-

and 6.

Problem 3 An artificial boundary layer problem [12]

N

yn =. -362 |
(e + x°)2
y(-0.1) = 01 y(0.1) = -y(-0.1) .

(e + O.Ol)l/2 ’



For € - 0, y(t) > sign t. The proﬁlem has a turning point at t =0
of thickness '61/2. The values of € are indiéatéd in parentheses on
the heading,df the respective columns. In this problem, all programs
with the'éxception of SUPORT used the final valuéé for an ¢ to start
the compﬁtation for the following smaller . |

MULSHO used 5 équally spaced shooting points (including the
origin), and it was successful up to € = 10-9,"using 26139 F.E. for

that case. -

Problem L flu]

y" + (3 cotan t + tan t)y' + 0.Ty = O

y(30°) =0, y(60°) =5.

This problem has a sharp spike at approximately t = 30.650, where
y(30.650) = 285, and the high order derivatives are even larger.
o

The MULSHO codes used the four shooting points Xj = 307,

31°, 35°, 60°.

Problem 5 [li]- Another artificial boundary layef problem.

y"v +. e'-ly' = Q0

y(-i)‘= 1, y(1) =2, e>o0.

This problem has a boundary layer of thickness € at t = -1, where
the solution passes'from the value one to the value two. The results

reported correspond to ¢ = .OL.
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MULSHO shooting points were xj = -1, -0.8, -0.5, 1; while
MUISHO? used the sequence x, = -1, -0.8, -o.s,:o, 0.5, 1.

This problem ﬁas aléo solved successfull&=with PASVAR for
e = 0.001, 0.0001, TOL = 107, and for ¢ = 0.001; TQL =108, 5 x 1071°.
In this las£ éase PASVAR réquired 2753 equivalent}fuhction evaluations
and used 3.75 seconds of computei time on a CDC 6600/6&00 macﬁihé.

- The meshes and solutions for large ¢ were used to start the computation

for smaller e.

Problem 6 [12] An easy problem.

y' o= y3-- sin t- (1 + sin® t)

y(©) =y =0

MULSHO and MULSHOR used the three shooting points x; =0,

/2, .
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code

1 2 3(107) 3(1070) 3(1077) " 5 6
welght for | o ) 0.75 0.75 0.75 0.75 075 0.75 0.5
Jacobians , : . » o
Jror = 107 - | - o o
SYSSOL 419 - 829 -- NC NC Ne NC 229
RICHARL | 531 815 671 NC e NC 1378 207
 |rICHARS - 3 451 NC NC NC 1248 --
{pASVAR 327 543 1088 7891 9997 18% 1140 195
MULSHO 2061 7657 1232 13076  58% 15815 16363 1866
MULSHOR 120k 1188 912 2631 3508 2700 3960 559
|roceve 75 -- 398 NC NC - o 115
PREVS 75 -- 306 NC NC - -- 115
SUPORT 312 -- 33 1246 1880 Lo3 802 --
TOL = 10'8 ) | .
SYSSOL 1203 3063 2990 NC NC NC NC 331
_ RICHARL 1733 NC 1378 NC NC NC NC 1052 -
ricHARe | 1008 3135 1248 NC NC NC _ NC T30
|pASVAR 806 1425 2325 12982 1621 726l 2753 297
IDCBVP 385 -- 2l2k NC NC -- -- 148
PREVS 354 -- 1460 NC NC -- - 148
SUPORT 572 -- 628 2580 3460 688 3832 --

Weights for IDCBVP, PREVS were w = O, 1, 0.1 in Problems 1, 3, 6 respectively.

Table I. Equivalent Function Evaluations: F + wxJ
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Weights for IDCVBP, PREV5 were w = O, 1, 0.1 ini Problems 1, 3, 6 respectively.

Problem . v _
Code 1 2 3(107) 5(10'6) 3107 b 5 6
Timiting
precision R 4418 616 .
SYSSOL 10-13 0. L X 10-12 -- - NC NC NC . 10_13

2096 . 3438 3559 o | 9827 212 | W
PASVAR 1y 6x10712 10°14 | 7.8X107M | o -- 1.6x 1071 8.2x 107t | 1074
2006 2866 573
IDCBVP 10._13 _ 10-13 NC ' NC - - 10-13
' 1200 1838 . 371
PREVS | 10-13 -- 10°13 e ‘NC . ‘ L 10713
PRI 2062 1234 - 3ou8 3832 862 739 -
SUPORT 13 5% 10-10 - | 3.6x10712 [1.7x 1079 |h.2X 10"8 10-8 4.8X 10 .
’ Table T Cont. Equivalent Function Evaluations: F + w*J



Problem - -3 —6. LT

ot 2 [3007)] 300 ) (0™") | & 5 6
PO = 1070 - o

PASVAR - 0.57 | 0.87 1.16 9.90 | 11.33 | 2.11]1.13] 0.19
TDCBVP 0.02 - 0.03 -- -- - -- | 0.0l
PREVS 0.02 | -- 0.0l - - - | - |00
SUPORT* 0.08 | - 0.07 0.23 0.35 | 0.12]0.15] -
fror = 1078 L
PASVAR 1.77 |.2.67 3,00 | 19.60 | 2o0.h2 |12.77}3.78] 0.3M
IDCBVP 0.15 | -- 0.12 - - —— | -- | 0.03
PREVS 0.15 | -- ~0.09 -- -- -~ | -- ] 0.03
S UPORT* 042 | -- 0.50 2.06 2.81 | 0.7 |2.51]| --
Limiting '
lprecision ‘ _
PASVAR 7.34 | 8.34 5,23 -- -- 19.19 k.62 1.2
TDCBVP 0.83 | -- 0.43 - - — | - |o.as
PREVS 0.72 | -- 0.41 - - | -- | 0.9
SUPORT* 1.65 | -- 0.95 | 2.70 3.17 | 0.90}5.29] --

Table 2.

CPU tlmes in seconds on CDC 6600/6h00 at IBL, Unlver51ty of Callfornla‘
Berkeley; RUNT6 compller

OnCMI&bOatSmﬁm.Mb&,AHmmmmwﬁ FUN compiler.
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'Conclﬁsions:
| From this limited sét of tests we can.draw some preliminary
conclusiqns. ‘
Overall,PASVAR is far superior to RICHARI and SYSSOL for all
accuracies,vand thié is more marked for higher aécuracy. RICHAR2
is cbmpetiti%e f§r low accuracies in the problemS in which it works
k(c;f. [lO]“for compaiiséns on smooth problems);‘ Iﬁ allAfairness;
‘we should use a Richaidson extrapolation progfamIWith nonuniform
mesh éapabilities, but this code isstill to be deféioped. It is
clear, thatgwhenevér applicable, the scalgr eqﬁations'cddes are by
-far the fastest and most efficient. |
The multiple shooting code MULSHO2 compares well with ~PASVAR
in terms of total number of functioﬁ evaiuations ahd reliability for
most of the problems:tested.' The main éxceptiOn is the turning point
:fProbiem 5'whéré MULSHO2 obtains the solution withigonsiderably fewer
vfunction evaluations than PASVAR . Furthermore,. MULSHO2 obtains
éood résulfé for ¢ = 10-8, 10-9, while PASVAR cannpf resolve the
boundafy layer with the allotted maximum number of giid points. o
. However, i# ié worth mentioning that in Problem k4 MULSHO2 takes
4ot more’ compﬁter time than MULSHO , despite the fact that this last
1-program'requifés_al@ost 6 times more functipn evaluatioﬁs to achieve
convergence, We should point out also that the multipie shooting codes
do not choose ﬁhe shooting points and various other‘para@eieré automati-
éally, and only give final fesults on the shooting point§. Thus, PASVAR
réquires much iess user interaction and foreknowledge, and outputs a muéﬁ

more detailed mesh solution. This detail is automatically more dense in
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the regionsiéfrfapid variation of any componenf'df the solution
vector. Tt would be also useful to compare the,pefformance of
MULSHO? for higher accuiacy. Professor Bulirséh has indicated
that a more user oriented version of his program, correcting some

of these‘drawbacks, will be available in the future.

The comparisons with SUPORT show that PASVAR work too hard in
solving the turning point problem 3 for all tolerances and the spike

3

problem 4 for TOL = 10 -, 10_8.‘ This indicates that our net selection
procedure is too slow for handling this type of qﬁasi-singularities.
The performance of SUPORT is consistenély good for low and
moderate accufacies, though we have to keep in mind that the user has
no way of assuring that he will get tﬁat accuracy by specifying an input
parameter. We should also keep in mind that, so far, SUPORT only solves
.linear problems, and that it can take advantage of éertain spegial
situations, like homogeneous equations (probs. 3, 4, 5) and zero initial
values (Probs. 1, L). The somewhat disappointing results for high or
limiting tolerance seem to stem from the inability of the initial value
codes to produce such accuracies. Apparently the boundary value’
technigues can reach tolerances close to full méchine’accuracy without
excessive degradation. |
We'ére presently working on a new‘versibn_of PASVAR which among
other features has a new system of equations solvér.(both linear and o
nonlinear). Prelimindry results indicate that this new code will solve
problems for\which PASVAR fails, and aiso that it will cut the number

of function evaluations and time by half in most cases.
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In Table 3 we report some information about the mesh place-

vment<and.defefred correction'procedures on the Various problems.
We gi&e Nl; the number of times that a mesh refihement was reéuested.
Each one 6f_these refinements requires several mesh modifications.A The
qﬁantity Né' is the average numbef.of these modifiéatiogs. .The.row
ﬁ gives thé ﬁigher correction reached, and K 1is the.total number of
corrections performed.

| Wevséé from these results that the meshxplécgment routine
ndoes not wanaer" since the average'number of inﬁéflsweeps is never
large than 3,.which is reached in only one case (Pféb. 5,
Tol =‘10-13).Y*On the other hand we see that high-ofder methbds_really
came into pléy, and although we do not ¢laim that a correction of
index k = 10 will produée an O(h22) accurate SOiution, it is quite
remarkable that such high order éorrections\do actually prqduce visible

improvements in the computed solution.



Problem 1 2 3(-5) 3(-6) 3(~7) 4 >

Tol = 107
oW, 1 1 2 4 2 3 1
Ny 1 1 1.5 1.25 2 o 2
k 3 3 | 2 5 4 3 2
K 1_+ 6 5 11 8 8 3

Tol = 10'8 -

N, | 2 2 3 3 2 6 | 2
N, 1 o 1.33 1.33 ° 0.5 1.835] 1.5
& 6 | s oy 8 10 7 6
K 9 10 9 13 13 17 8

Tol = 107
N1' 2 LL - - - - 3
N, 1 1.75 - - - - 3
k 10 8 - - - - 7
K 13 A7 - - - - 11

TABLE 3
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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