
 Open access Journal Article DOI:10.1137/0714006

An adaptive finite difference solver for nonlinear two point boundary problems with
mild boundary layers. — Source link

Marianela Lentini, Victor Pereyra

Published on: 01 Nov 1975 - SIAM Journal on Numerical Analysis (Society for Industrial and Applied Mathematics)

Topics: Boundary (topology), Boundary value problem, Solver, Finite difference and Finite difference method

Related papers:

 Collocation Software for Boundary-Value ODEs

 A collocation solver for mixed order systems of boundary value problems

 Adaptive Mesh Selection Strategies for Solving Boundary Value Problems

 Mesh selection for discrete solution of boundary problems in ordinary differential equations

 A variable order finite difference method for nonlinear multipoint boundary value problems

Share this paper:

View more about this paper here: https://typeset.io/papers/an-adaptive-finite-difference-solver-for-nonlinear-two-point-
3tgf45wwg7

https://typeset.io/
https://www.doi.org/10.1137/0714006
https://typeset.io/papers/an-adaptive-finite-difference-solver-for-nonlinear-two-point-3tgf45wwg7
https://typeset.io/authors/marianela-lentini-2ncqsqjwu8
https://typeset.io/authors/victor-pereyra-4bh9fop3vq
https://typeset.io/journals/siam-journal-on-numerical-analysis-g0w7fct8
https://typeset.io/topics/boundary-topology-2w4tu6ys
https://typeset.io/topics/boundary-value-problem-3tdxfygq
https://typeset.io/topics/solver-3rpiu7zh
https://typeset.io/topics/finite-difference-2c2ld8oy
https://typeset.io/topics/finite-difference-method-31cn0kj3
https://typeset.io/papers/collocation-software-for-boundary-value-odes-133l46ucvr
https://typeset.io/papers/a-collocation-solver-for-mixed-order-systems-of-boundary-3hl9m6e65c
https://typeset.io/papers/adaptive-mesh-selection-strategies-for-solving-boundary-1kg2g61j4n
https://typeset.io/papers/mesh-selection-for-discrete-solution-of-boundary-problems-in-100r5l0ioa
https://typeset.io/papers/a-variable-order-finite-difference-method-for-nonlinear-408xvrvbx1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-adaptive-finite-difference-solver-for-nonlinear-two-point-3tgf45wwg7
https://twitter.com/intent/tweet?text=An%20adaptive%20finite%20difference%20solver%20for%20nonlinear%20two%20point%20boundary%20problems%20with%20mild%20boundary%20layers.&url=https://typeset.io/papers/an-adaptive-finite-difference-solver-for-nonlinear-two-point-3tgf45wwg7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-adaptive-finite-difference-solver-for-nonlinear-two-point-3tgf45wwg7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-adaptive-finite-difference-solver-for-nonlinear-two-point-3tgf45wwg7
https://typeset.io/papers/an-adaptive-finite-difference-solver-for-nonlinear-two-point-3tgf45wwg7

Lawrence Berkeley National Laboratory
Recent Work

Title
AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR NONLINEAR TWO POINT BOUNDARY
PROBLEMS WITH MILD BOUNDARY LAYERS

Permalink
https://escholarship.org/uc/item/569825w9

Author
Lentini, M.

Publication Date
1975-11-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/569825w9
https://escholarship.org
http://www.cdlib.org/

Submitted to SIAM Journal of Numerical
Analysis

LBL-4226 t: '
(STAN- CS - 7 5 -53 0)
Pre print

AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR
NONLINEAR TWO POINT BOUNDARY PROBLEMS WITH

MILD BOUNDARY LAYERS

M. Lentini and V. Pereyra

November 1975

~-.: E :.: E I V E D
'0,WRENCE

tif:f:KfHY !.ACOiU1 TORY

AH? 6 19/G

L .. : ;, , :·~, /\ I:::Z V A N D

On•::UMENTS :5ECTION

Prepared for the U. S. Energy Research and
Development Administration under Contract W -7405-ENG-48

For Reference

Not to be taken from this room

DISCLAIMER

This document was prepared as an account of work sponsored by the United States

Government. While this document is believed to contain correct information, neither the

United States Government nor any agency thereof, nor the Regents of the University of

California, nor any of their employees, makes any warranty, express or implied, or

assumes any legal responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents that its use would not

infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by its trade name, trademark, manufacturer, or otherwise, does not

necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government or any agency thereof, or the Regents of the University of

Califomia. The views and opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof or the Regents of the

University of California.

•

'i'
..

"An .Adaptive Finite Difference Solver for Nonlinear Two Point Boundary

Problems with Mild Boundary Layers," M. Lentini and V. Pereyra

ABSTRACT. A variable order variable step finite difference algorithm

for approximately solving m-dimensional systems of the form

y' == f(t,y), t E [a,b]

subject to the nonlinear boundary conditions

g(y(a),y(b)) == 0

is presented.

A program, PASVAR, implementing these ideas have been written

and the results on several test runs are presented together with

comparisons with other methods. The main feautres of the new pro-

cedure are: a) Its ability to produce very precise global error

estimates, which in turn allow a very fine control between desired

tolerance and actual output precision.

b) Non-uniform meshes allow an economical and accurate

treatment of boundary layers and other sharp changes in the solutions.

c) The combination of automatic variable order (via

deferred corrections) and automatic (adaptive) mesh selection

produces, as in the case of initial value problem solvers, a versatile,

robust, and efficient algori tbm.

I 0 n o

' •

AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR NONLINEAR TWO POINT

BOUNDARY PROBLEMS WITH MILD BOUNDARY IAYERS

* M. Lentini and
+ v. Pereyra

1. Introduction

We are interested in developing usable software for two-

point boundary problems for m-dimensional systems of the form

y' = f(t,y) tE [a,b]

(1. 1)

g(y(a),y(b)) 0

In [8, 9] we have already presented a finite difference

algorithm (SYSSOL), based on deferred corrections, which has variable

order capabilities. SYSSOL uses only uniform meshes, which can be

refined automatically in order to reduce the maximum norm of the (esti-

mated) global error on the. current mesh below a requested tolerance.

SYSSOL behaves quite adeguately for many problems (see

[8, 9]), but becomes inefficient or does not work at all as soon as the

(*). .
_Department of Applied Mathematics, Caltech, Pasadena, California.

(+)Department of-Mathematics, University of Southern California, Los Angeles.
The work of M. Lentini was partly supported by Conicit, and that of
V. Pereyra by the u.s. Energy Research and Development Administration
while visiting Stanford University and Lawrence Berkeley Laboratory, and
the National Science Foundation at USC. Both authors are on leave of
absence from Universidad Central de Venezuela, Caracas.

Z ~ -~ I 0 ~ ~ 0 0 0

sol"iltion to the problem or some of its derivatives have sharp

gradients. U~fortunately, this type of phenomenon is frequently

fou.i1d in the applications.

In [9] we described the deferred correction algorithm

for general nonuniform meshes, even allowing for multipoint boundary

conditions and data with jump discontinuities .

. In this paper we describe an implementation of an algorithm

(PASVAR) for approximately solving (1 .1) which is based on the results

of [9]. The main new features in PASVAR consist of an automatic

procedure for choosing nonuniform meshes, and various modifications

in the general strategy of the method. Since in [9] and other earlier

work we have described the necessary theoretical results and implemen-

tation details, we shall concentrate· in this paper on the new features

mentioned above, giving only the minimum general information necessary

to make it readable. This basic groundwork will be found in Section 2,

while Section 3 will be devoted to the mesh placement problem. Some

theory justifying our mesh placement procedure has been published

elsewhere [13]. In Section 4 we discuss the practical aspects of the

mesh placement algorithm, which is based on the idea of equidistributing

the norm of the local truncation error.

Section 5 is devoted to an operation count and storage

requirements. In Section 6 we present numerical results on various

problems with the type of difficulties mentioned earlier, i.e. boundary f ,,

layers, steep spikes, and so on. We compare PASVAR with various.other

programs available : (a) SYSSOL, our uniform step deferred correction

solver; (b) RICHAR, a Richardson extrapolation procedure developed by

Hilda Lopez and Luis Ruiz [10], using some of the basic components of

2

0 ·r-j ·.,
~~r ~~~·~ _!"~ .. ~"" "'·~

, . .,
I • y ~..i

...

.•

SYSSOL; (c)
' ..

a multiple shooting algorithm due to Bulirsch, Stoer,

and Deuflhard [2]; (d) IDCBVP and PREV5,. two deferred correction

codes for scalar second order equations [12,25]; and (e) SUPORT,

a linear systems solver based on superposition and orthogonalization

[26] •

The .thickness of the boundary layers that can be resolved with

PASVAR depends, as can be expected, on the maximum number of grid

points that can be used. Thus the "mild" in the title st;:~.nds for the.

fact that we have limited, for storage reasons, that maximum number of

grid points in our program to 650/m, where m is the dimensionality

of the system being solved.

We see that PASVAR performs efficiently and reliably in all .

the problems considered, within the limitations imposed by the maximum

number of grid points allowed. That limitation is computer dependent.

We emphasize that all the finite difference codes presented

here have provisions for estimating the global error of the computed

solution, and that in all the problems run this estimate has given either

the true error with at least one significant figure, or have been off

for less than an order of magnitude. This is in sharp contrast with the

techniques based on initial value problem solvers, since even the state

of the art codes have no previsions to control the global error of the

entire approximate trajectory. Of course, this additional, and we think,

extremely valuable information, costs something in terms of computer time,

but this cost is amply justified by the added reliability in the numerical

results and the excellent correspondence between r~quested tolerance (TOL)

and actual global error in the computer solution.

3

(" e; c; 0 fl' t~ 0 f ~· 0 0
t~ ..,...._;

2. Basic results and notation

Given them-vector functions y(t , f(t,y), g(a,B), we

consider the problem of solving approximately

y'(t) = f(t,y(t)) tE[a,b]
(2. 1)

g(y(a),y(b)) = 0

We assume that problem (2.1) has an isolated solution

y *(t) (see [4 J) • We assume also that f is smooth, so that all

involved derivatives _of Y*(t) exist. Piecewise smooth data and

multipoint boundary conditions can also be treated with slightly more

work (see [4, 9]).

interval

(2.2)

Let TT { t
1

, ••• , tN+
1

} be a general partition of the

a,b] satisfying:

a = t 1 < t 2 < • • . < tN+ 1 = b

h. ;:: t.+,-t.
l. l. . l.

h =max h.
i l.

hI h < K

"
h = min h.

i l..

with K a given positive constant. Condition {2.2) implies:

(2.3) b-a < h < K(b-a)
N N

and we can use h and 1 /N interchangeably as equivalent asymptotic

scales.

The basic finite difference approximation considered is the

trapezoidal rule:

-1
~TT{u)i =hi {ui+1

(2.4)

u.) - t (f (t . +
1

, u.
1

) + f (t . , u.)] = 0, i ;::1 , ... , N
l. l. l.+ l. l.

g{ u1 ' ~+1) = 0

4.

•• j

...

.:

'· I

,,

Keller studies also the centered Euler scheme:

which has properties similar to (2.4) and it· is easier to use

in the case of piecewise continuous data. However, it is considerably

more difficult to perform deferred corrections with it,_ because of the

presence of a discretization inside a nonlinear function, which forces

partial derivatives of f with respect to u in the expansion for

the local truncation error. That is the reason for our choice of the

scheme (2 .4).

As usual, the local truncation error is. defined as -what is

left when one applies (2.4) to the discretization of the exact solution

to the problem. By Taylor's expansion we get:

(2.6)

where

1
T(y;*) \' -v

TT 1 = L -2=-v--......,,---
.\):;:::1 2 (2v+1)

2\)

= d f(t 'y* (t))
dt2v t=t.+h./2

. 1 1

We shorten (2.6) for further reference to
1

(2.6')

first k

* T (y.)
TT 1

= \ T (t.) h~v + O(h21+2
) L v 1 1

v=1

Let TTT k be the mesh function obtained by adding

'
terms in the asymptotic expansion (2.6), and let

an O(h2k+2
)

(k ... 1y) .
u : 1s an

approximation to T k .
TT,

It is -well kno-wn [9]

O(h
2

k) discrete approximation to y*(t) 'on

has an asymptotic expansion in even po-wers of

up the

s(k)(y*)
TT

that if

rr , and if

h, then (u(k-1)-Y*)

8(k)()k-1))
TT

approximation to The opera:tors

r\ o· o

be

(k) s can be readily constructed via numerical differentiation, as
TT

explained in 9], and they are the basis for the deferred correc-

tion algorithm. They are also used in the dynamical monitoring of the

global error e(k) = (u(k) - y*). Notice also the modification intro-

duced in [23] which eliminates some earlier theoretical difficulties.

We hope it will be clear from the context that we are

speaking of vector mesh functions on rr , i.e. that an express ion sue h

as the one above means:

e~k)(t.) = u~k)(t.)- yt(tJ.) , t.ETT , i=1, ••. ,m.
~ J ~ . J • J

Another important fact we shall need later is that the

method is stable in the infinite norm 11 • II , i.e.

(2. 7) II e(k) II ~ c II ,. (k) II '
TT

where the constant c is independent of the mesh TT • The mesh func-

tion
(k)

represents the local truncation error after the kth

correction has been performed.

We recall now the deferred correction algorithm. Letting

S(o) (u(-l)) = 0 , solve -successively for k=O, 1 ,2, •..
TT .

(2.8)

g(u, ' ~+1) = 0 •

We call u(k) to the solution of (2.8) (closest to y*(t)).

The main features of the deferred correction procedure are:

(a) Solutions of increased accuracy are obtained on the same mesh

(compare with the Richardson extrapolation procedure);

(b) The same system of equations is solved all the time (with different

right hand sides).

··:-

..

' . ..:,

Under certain conditions, the successively corrected solutions

will satisfY on the mesh :

II e (k) II = II u (k) - y* II = 0 (h2k+2)) •

An asymptotic estimate for
. (k)
e . can be found by solving for

!J. the variational (linear) equation

(2.9) q;'(u(k))
6

= 8 (k) (u(k-1)) _ 8 (k+1) (u(k)) ,
TT TT TT

where q;' (u(k)) is the Jacobian matrix of q; evaluated at
TT TT

(k)
u •

If 6 (k) is the solution of this linear problem then:

Observe that if (2.8) is being solved by Newton's method, then ~' (u(k))
TT

will be available, and since
(k) (k+1) .

S , S are also ava~lable, the cost
TT TT .

of the estimate (2.10) is just that of one Newton step, i.e. ··the solution

of i sparse system of linear equations.

For the automatic mesh placement algorithm, we will be inter­

ested in having an O(h
2

k+
4) estimate of the leading term in T (k)

TT

For this purpose, it is necessary to use in S(k) formulas with a higher
TT

order interpolation error than is necessary for the rest of the process.

In fact, we will insist that

(2.11)

i.e., the numerical differentiation formula will be two orders more

precise than before.

Assuming that at the (k-l)th correction we have an expansion

for the global error of the form:

7

0 0

I

(2.12) u~ k-1) - y*(t.)
l l

= ek(ti) h2k,.. ek+l(ti) h2k+2 + O(h2k+4),

with ek(ti) smooth and independent of n , we conclude that

(2.13)

-rn,k+1 (ytl.) - -r (yt) - S(k)(e (t.))h2k + O(h2k+4)
n,k l n k l

Observing that is itself O(h
2

), we see that we have in

display the leading term of T (k)(y*)
n

Lemma 2.1 is an O(h2k+4)

approximation to the leading term of T (k) (y*) •
n

Proof: Because of (2.11) and (2.12)(with (k..:1) replaced by k) we have

and

= -r k(yt) + sn(k)(ek(t.))h2k + O(h2k+4)
n, 1 1

In this last computation we have made use of two terms of the expansion

(2.12) in order to obtain the O(h
2

k+
4

) te~.

Subtracting these two expressions and comparing with (2.13)

the result follows. II

8

·~

3. The mesh placement algorithm

We have seen that at the kth step of the deferred correction

algorithm, the local truncation error has the form:

(3. 1)

A

where the function Tk+
1
(t) does not depend uponthe net n • Further-

more the leading term of (3.1) can be estimated to order h
2

by

We are interested in choosing a mesh so that the first term of the

local truncation error is nearly c<;mstant in norm on this mesh. Since

we have a limitation on the ratio of the largest to the smallest mesh

size (see (2.2)), we have to take into account the possibility that

Tk+
1
(t) be accidentally very small at some grid point. For this purpose,

,.. ,..

. and assuming that ~up]II Tk+ 1 (t) II = M we define the function
. tELa,o

,..

G(t) = max (II Tk+
1

(t) II , X)

where X= M/ K
1/cr (K defined in (2.2)), cr = 1/(2k+2).

We shall call a mesh n (asymptotically) equidistributing iff

(3.2)
2k+2

- hi sup II G(t) 11 = E.(1+0(h))

tE[ti,ti+l)

where E is a positive constant called the level of equidistribution •

The' norm II • ll. is the CX) -vector norm.· In [13] the properties of

equ.idistributing meshes are studied in detail and more general

are also considered.

9
0 0 9 c <:; ! n i7 f:t 0 r:: !

~·' ~·
.~ .!

L norms
p

For an equidistributing mesh ~e then have the relationship

N

(3.3) dt ~ I
a

h. II G(t) II ~ N • EP
l (i)

i==1

Thus the level E corresponding to an equidistributing net with N

points is approximately equal to

(3.4) E.~ N-
1

1a II G lla

Observe that II G llcr = (J b G(t)a dt)
1

Ia is not a norm since a < 1 ,

a

and also that (3.4) is mesh independent.

· We see then that for an equidistributing mesh, the level E

itself is an asymptotic bound for the infinity norm of the local truncation

error:

(3.5) max 11 ./"k) (y.) II == E(1 +O(h)).
1T l (X)

i==1, ••• ,N

By using (3. 4) we can predict approximately how many points

will be necessary to achieve a prescribed tolerance Er In fact .

N > (II .G !Ia 1 "[f ·

Lennna 3· 1 If the mesh n is such that

r::t)" dt : ~ (1 + O(h))

b l

(i.e.~. G(t)a dt is asymptotically equidistributed) then n is a.e.

with E == E'1 I a == I I G II lifk+
2

, and hence
a

(3.7) II 'T'~k)(y) II :S N-(2k+2) II G llcr(l+O(h)) •

Proof: The proof is entirely similar to that of Lemma 3. 1 of [13] . f I

10

'.

Since II · 11
0

is not a norm it is convenient to have an

estimate. in 11 • 11 • To obtain that estimate we need the following
co .

Lemma.

Lemma 3.2 Let p ?. 1 ' let ~ (x) be a scalar L function, and
.p

let 0 < cr < p • Let M
1

= (x: I ~ (x) I > L } with L > 0 chosen

so that

b

dx = ~ J I ~(x) I cr dx •

a

Then p-cr

(3.8) . II ~ llcr ~ 21 /cr [fl.(~)]
crp

II ~lip

where fJ.(~) is the meas-ure of the set ML •

Proof: See [1 3] . II

For p = oo, (3.8) simply becomes

II ~~~cr ~ [2f1(~) J1/cr II ~ lloo.

If we combine (2.7) with (3.5) and (3.8'), we obtain

the following

Theorem 3. 3 Let the mesh TT have N+1 points and be· equidistributing

for the k th step of the deferred correction algorithm. Then the

global truncation error satisfies

(3.9)

with ~ defined as in Lemma 3.2 for the function

~(t) = II G(t) !I .
co

0 0

Proof: From (2.7) and (3.5) we obtain

11 e(k)·ll -:;_ c N-(2k+2) II G lla, (1 + O(h)) ,

and applying (3.8 1) we get (3.9) . II

Observe that IJ.(M
1

) will be small if G(t) has sharp

peaks. We give now a simple example to see how this bound compares

with the standard one for uniform meshes in a boundary layer model

problem. The essential difference between the two bounds is the

.appearance of the quantity [2 1-L (~)]
2k+2

when the mesh is equi-

distributing.

Example.

Consider the first order scalar equation

6 y 1 = -y , y(0) = 1 ' t E [0' l] ,

where 5 is a small positive constant. This problem has been analyzed

in detail in [5] Its solution is simply y(t) = e -t / 6, and there

is a boundary layer of width 5 at t=O • The successive derivatives of

y(t) are

ds y(t)

dts

= e
-t/5

It is easy to see that if one applies method (2•4) to this problem,

then the stability constant c is 0(1) for 5 .~ 0. Also

A - d2k+2 y(t)
Tk+1 (t) - ck 2k+2

. .. dt

Thus
I -·(2k+2)

II G llco = c 6 , and from a uniform mesh estimate we deduce

that N =
-1

0 points will be necessary to get an 0(1) accuracy. A

simple calculation shows that in this case 1-L (~) = c10 , with c
1

a small constant, and we see from (3.9) that for an equidistributing

mesh an O(N-(
2

k+
2

)) error bound holds for any N, and the effect of

the boundary laJ~er is completely neutralized by the equidistribution

of the ro- norm of the local truncation error. Observe also that

equidistributing any other smaller derivative of the solution (as

in Pearson [11]) will not have this effect.

y(t)

L

6 r t

For k=O, and a local truncation error level of 0.01, the

mesh...,step function must satisf'y

2() -2 -t/ 6 h t 0 e = 0.01

or

h(t) . = 0.1 5 et/26 •

The total number of points is approximately given by

N

N. = L = dt !!!! 20 '

i=1

and the number of points in [0, 5] will be

dt ~ 13 •

·s s C,·'
13

ft f:? t1~ 0 .. -l;; . I 0 0

We see then that for any o more than half of the

grid points will be concentrated on the boundary layer, as one expects.

Of course, N = 20 is the optimal number of points for that level of

error, but we have also to enforce the condition h/ h < K , with a

moderate K which may mean increasing somewhat the density of the

mesh outside the boundary layer. Still this will require far less points

than the (106) - 1 points required by a uniform mesh algorithm to give the

same order of accuracy.

More general results of the type described in this Section,

detailed proofs, and references to related work can be found in [1 3] .

14

•

..

•

4. Practical meflh placement algorithm

In introducing the concept of asymptotically equidistributing

meshes we have taken a step towards the practical implementation of the

ideas in Section 3·
. . .

As a matter of fact, we won't strive to make our computed

meshes even approximately equidistributing_, but rather we shall use a

somewhat more lax criterion. The first ground rule in our iterative

procedure to obtain a grid TI is that we will only add points, and

once a point is in the mesh it will never be touched again.

In other algorithms proposed [11, 17, 21], either a-fixed

number of points is moved around, or points are added and removed in

order to satisfy some equidistribution condition. In our experience

those procedures have a tendency to be more unstable and to produce

rougher meshes than can be tolerated. There are, of course, ways of

improving that situation, like smoothing, but that only complicates the

algorithm unduly. On the other hand, the closer the mesh is to an equi-

distributing one, the fewer number of points it will have for a given toler-

ance; so that fact and the cost of producing such a mesh must be carefully

balanced. Also, from our example above, it is seen that, for a given level

of truncation error, there is an order of the method which minimizes the

number of points required for a·given problem. Of course, one should

take into consideration the amount of work for each order when drawing

:true optimality results. For the time being, these considerations are

far too complicated to be taken strictly into account in our algorithm,

but they provide guidelines for useful heuristics.

Our procedure starts with a given mesh TI(O) with N
0

+1 points.

If no ~ priori information is available about the problem difficulties

then will usually be a uniform mesh with
f:.se' nr.,;,t.,,O,

. ~ ,.,v ·r~~ t t,(< rr."' .f;"" 'o<~

1 5

Obviously, because of computer storage restrictions, one will also have

a maximum number of mesh points that can be considered in any given

mesh, say NMAX . In our program we have chosen · NMAX = 650/m •

we obtain an approximate

by solving··.~ (o)(u) = 0 ,
'TT .

g(u1 '~ +1)
0

= 0

O(h
2

) solution
(0)

u n(o)

(see (2.8)) •

Then we.compute s (1) (u (
0

)) , which is an estimate for the leading
(o) (o)

'TT 'TT

term in the local truncation error
(o)

,. (0)
n'

The infinity norm is used

throughout. If we want II ,. ~ k) (y) 11 a::/"::1 'E , then from Lemma 3. 1 and (3. 4)

we obtain that

(4. 1) E

The initial tolerance requested, 'E(o) , is up to a certain

extent arbitrary, but nevertheless it should be chosen judiciously. As

E(o) becomes smaller, more points will be added to the mesh at the

beginning, which may be unwise. Let TEM = 11 u (o)ll

(4.2) 'E(o) =max (BMA * TEM , TOL) ,

where BMA is a parameter used to control the size of

We put

-(o)
E . The

maximum norm of the approximate solution, TEM, is what connects the

level ~(o) with the particular problem being solved. Essentially

what we are saying is that we would like to have an equidistributing

mesh with sufficiently many points as to achieve, at the start, a rela-

tive precision BMA with the 2
O(h) method. BMA should not be too

small, since at the early stages of the game the information available

(u(o)) will tend to be more unreliable, especially for problems with

difficulties. ·

•

•

•

. We caD. (see Section .3 for the definition of 1..) :

and
N

UUN 2: EJ(I)
I=1

a

The equidistributing procedure adds points, according to the

following rule. "Irl the present interval (xi' xi+l) add IQJ(l) -

unifoimly distributed points, where

(4 . .3) IQJ(I) ~ L .EJ(I) I E J '

and L · J stands for "integer part of , " .

Thus the total number of points added in each sweep is

N·

IQ = L
J=1

IQJ(I) , where (N+l) is the number of points in the mesh

being modified.

These new points are actually added into the mesh if the

following conditions are satisfied

(4.4) 0.04 N < :tQ ~ min (NMA.X-N, 70) •

If · IQ < .o4N , and the mesh !J:~~-_lJ-~en modified during the present process

then the equidistribution terminates.

The condition on the right of (4.4) prevents too many points

being added in any given sweep.

We observe that with the notation above .

-. ' . ~

UUN I E -~ N + IQ .;. 1

If IQ violates one of conditions (4.4) and this is not terminal,

we can attempt to find the "right level" E* which will bring in a

0 9

preset number of points IQIE" , by putting

(4 .5) = EX N + IQ + 1
N + IQIE" + 1 '

and going again through the mesh in order to obtain a vector IQ,J(I)

for this new level. We use in our program

N + IQ* + 1 = min (ALG*N, NMAX)

with ALG = 1 .1(0.1) 1.4 • If the case IQ < .o4N is not terminal,

then we redefine the level as in (4.5) with ALG = 1.4 . If that level

still does not bring enough new points into the mesh, then we decrease

the correction index k by , until either the mesh is modified or

k = 0 • In this latter case a complete bisection of the mesh is requested

(if possible). If the right hand condition (4.4) is violated then we

define a hew level, also with ALG = 1 .4 , but now we allow ALG to

decrease down to 1.1 in steps of. 0.1 . This process is of course

stopped whenever an allowable number of new points is produced.

This series of tests and modifications are intermixed in a

somewhat complex logical structure which is better understood by looking

at a flowchart or the actual computer program. Here we have only tried

to list some of the main features of the algorithm.

In particular, indefinite cycling is precluded by various

controls so that the mesh refinement process always terminates, though

not necessarily with an equidistributed mesh.

We have insisted in not removing points from the mesh since

this provides an easy way of insuring that the condition ,h/ £ ~ K ·is

f'u.l.filled with a reasonable K , and also produces smoother meshes.

18

•

•

As we shall see in the rumerical examples, in problems with

transition regions as thin as 10-3 (on an interV-al of size 0.2), the

algorithm has produced solutions accurate to 10...:
8

with a mesh in

which K :S 50 •

I 9
19

5 f
...... __ ..

0 0

5. Operation count and storage requirements

In this Section we shall make an operation count for algorithm

PASVAR. There are essentially three large modules in PASVAR, and two main

loops: the deferred correction iteration and the Newton solver.

(a) The linear equation solver (SYSLIN).

SYSLIN is an implementation of the algorithm of Section 3 of

[9]. SYSLIN is called at each Newton step, and at the end of each

correction, in order to estimate the global error.

The relevant parameters for SYSLIN are: m the number of

differential equations in the system, and N the number of mesh points.

The systems solved by SYSLIN are then of size m (N+l) x m (N+l) .

They are also sparse and highly structured. In fact the coefficient

matrices involved have the form

0

0

0

I_ 0

m ([A 1 B l

mN{ -C -!- D -J
'-.,-/~

m mN

That is, they are block bidiagonal, with the exception of the first block

row. The blocks are of size m x m • The system of equations have the

form

20

•

•

•

We solve the superblock· 2 'x 2 system by Gaussian elimination,

and that impltes solving subsystems with the lower block bidiagonal mat-

""" "'
rix D . Putting c = [Ci b] V = [V I w] we have

(5.2a) xo = (A - BVf
1

(bo

-1 "'
(5.2b) X = D (b - exo

-1 -1 "'
where v D c w = D b are obtained by solving the system

(5.3) Ii v c

This is done by means of the recursion

(5.4)
-··
v.

J

-1
== R.

J

-
s. v. 1)
J J-

j 1 , ••• , N

Forming the expression in each parenthesis of (5.4) takes

m3P + m
2s operati'ons , where P stands for multiplications or divisions,

and S stands for additions or subtractions·. Solving one matrix system

(5.4) takes 4 m3 (P + S) operations, and thus we have a total of

3

N (-7_m3P + (~m 3 + m
2

) S) operations for the recursion (5.4).

3 3

The calculation of (5.2.a) and (5.2.b) takes (~ m3 + Nm
2

) P +

3

(~ m3 + Nm
2

+ Nm) S , and the total number of operations for SYSLIN is

'3

(most significant terms only)

(5.5) Nm3 (7P + 4 S)

3

(c f. [7] also) .

G 9

21

:-.. J· · :.:,.· r· ... ~.· .r.·.·.· i · ·o· · a ~ l f... • ' '§ ' J '

This is about twice ·the number of operations obtained by

Varah [16] for the case of uncoupled boundary conditions. In that

case, by arranging the equations properly one obtains a band matrix, or

a block tridiagonal one, depending how he looks at it.

(b) Calculation of the correction vectors

This calculation is performed in Subroutine U2DCGS The

relevant parameters here are : k the correction' number, and m, N

as before.

For each grid point we have to generate weights for a differen­

tiation formula approximating '~"n,k(yt) to order h
2

k+
4

• Since the

abscissas are not uniformly distributed, and since '1"
rr,k

is

then (2k+2) ordinates are necessary to produce the required approximation.

The weights are obtained in Subroutine COEGEN; for each grid

point the weight generation takes k
2

(4P + 6s) operations (see [1]),

and thus, forming costs

(5. 6) Nk ((4k + 2m) P + (6k + 2m) s)

(c) The mesh selection procedure is a process taking a small multiple

of mN operations. Under certain circumstances it may also require a call

to U2DCGS •

The Newton loop. For each correction, a sparse system of mN non-linear

equations must be solved. We use a descent Newton iteration with step

and angle control to solve those equations. In cases where there are

convergence difficulties, an optional automatic continuation procedure

is also available (see [9,22]).

22
,.It

..

•

•

Each Newton iteration takes one evaluation of the right hand

side f(t,u) (vector mesh function), and one evaluation of its Jacobian

matrix. Then, a computation of the residual ~TT(u) is required (see

(2.4)); this is a (4mN) operations process. Finally we have a call to

SYSLIN.

If the process is going to converge at all, it usually takes

no more than three iterations to achieve 11 t (u) II < EPS . The tolerance TT ,

EPS varies with the correction order, and with the actual estimated

global error, in such a way that the equations are solved to a level

compatible with the truncation error. After the first system is solved,

and some accuracy has been obtained, the following systems take usually

fewer iterations since better initial values are used.

Thus we can reasonably assess the work for a complete Newton

process, including one extra iteration for the error estimate, as:

' -- ' ---·

(5.7) 3 (7P + 4S) + 16m (P+s)J

'

where FE, JE stand for evaluation of f and its Jacobian over the

whole mesh.

If the problem is linear, and the system of linear equations

is not too ill conditioned, this work estimate shoul.d be halved. If the

system is ill conditioned, and after passing through SYSLIN the residual

has not been diminishe~ sufficiently (it should be zero!), then more

"Newton iterations"will be performed. This process is actually equiva-

lent to iterative refinement, a procedure to improve the precision of

numerical solutions to linear systems, and it is automatically built

into the program.

23
f 0 0 0 0

The total work for the kth correction is essentially

(5. 8) N f (~ 3
+ 4k

2
+ (2k + 16)m)P+ (~ 3 +6k 2

+(2k+16)m)S} + 4(FE+JE)

There are indications that more sophisticated equation solvers (both

linear and nonlinear) can be valuable in difficult problems (4,24],

and we are presently working in this direction.

In order to.analize the cost of any given actual run, we have

to consider the following quantities. the different

m.'!ffiber of grid point13 used; c
0

, c
1

, ••. , cr the number of corrections

performed with each fixed mesh. Since the amount of work in a correction

depends upon its order, we also have to consider as parameters the

starting orders k
0

, k
1

, ••• , kr Clearly k
0

= 0 . From (5.8), and

after some simplifications, we obtain the following estimate

(5. 9)

~ N c t28
m3 +16m+ 4(k. + cj)

2
+ 2(k. + c.)m) P

L jj 3 J J J

j=O

+(
1

3
6

m3+ 16m+ 6(k. + c.)
2

+ 2(k. + c.)m) S}
J J J J

+ 4c.(FE + JE) •
J

Except for small systems (m ~ 5), this estimate can be further

simplified to

r

(5-9') .L
j=O

•

For a given problem it is impossible to predict the program path, o

i.e. to determine a priori the parameters

strong and unrealistic hypotheses are made.

NJ., c. , k. , unless some very
J J

It is plausible that with the information we have provided here,

a more elaborate complexity analysis could be performed. Also, comparisons

24

'•

of the! type carrii~d out by Keller f 18] can be performed by making

appropriate hypotheses. For instance, assuming that instead of SYSLIN

the same linear equations solver as in [18] is used, that the same

number of Newton iterations is required, and that the basic mesh need

not be changed, then iterateddeferred corrections r~quire always less

operations and function evaluations (for a given order) than successive

Richardson Extrapolations. We feel, however, that these work estimates

give only pointers and general indications. A computer test on several

a.ctual implementations and on a large, representative set of problems is

what is required in.order to make more final assessments. One step in

this direction is furnished by the results of the following Section. See

also [10] .

Storage requirements. The storage requirements (most significant

terms)for our implementation, depending upon the two problem parameters ..

m,N, are given below. In the case that no dynamical array space allocation is

available, those par~eters should be replaced by maximal values. We have

considered a maximum of 20 deferred corrections, which should be more than

sufficient for most problems, but in any case that is not a storage consuming

part of the algorithm. The expressions below correspond to number of real

words required. The actual storage in bytes will depend upon the kind of

computer and precision being used.

PASVAR Data 2 m
2

+ '(m+1) N

Working area 4 m N + 2 N + 170

SYSLIN

Working area :

Thus the total storage required is

(5.10) ~orage = m
2

(N+10) + (5m+3) N + 170

real numbers.
25

9 c
• l 0 0

6. Numerical ~estilts and comparisons

In this Section we give results for program PASVAR, and compare

them with results obtained with other FORTRAN programs:

SYSSOL: the uniform mesh version of PASVAR [9] ;

RICHAR: a Richardson extrapolation, finite differences code [10]

MULSHO: a multiple shooting code [2] ;

IDCBVP: A deferred correction code for scalar second order equations

with no y' present [12);

PREV5 : an improved version of IDCBVP by Daniel and Martin [25];

SUPORT: A linear ,systems solver based on the Godunov method [26].

In [8] we have anticipated similar results, but the ones here corres-

pond to different versions of the various programs (with the exception of

SYSSOL). For instance, RICHAR can now perform extrapolations with any

sequence of steps h 0 /k. , i = 0,1, .•..
l

We call RICHAR1 to the one using

the sequence k. = 2i'
l

and RICHAR2 to the one using k. = 1 ,2,3,4,6,8, 12,16 ...
l

The results for MULSHO were obtained by MM. Deuflhard, Rentrop

and Pesch, under the direction of R. Bulirsch, and we are very grateful

to them for their cooperation. Appropriately chosen parameters and

shooting points now produce convergence from zero initial values in all

cases tested. Also, much improved results in terms of total number of

function evaluations ~e obtained with MULSH02 , in which the integration

routine has been replaced by VOAS , an initial value code provided by

T. Hull.

The results for SUPORT were obtained by M. Scott and H. Watts,

using a Runge-Kutta-Fehlberg integrator for achieving the absolute

26

i
I .,

I

. . i

•

error tolerance of 10-3 and a variable order Adams integrator for

-8
absolute tolerances of 10 and below. Since SUPORT, as opposite to

all our codes, has no way of requesting (and obtaining) a desired accuracy

in the computed solution (see [26], Section 12), the results given

in Tables l and 2 were obtained by running each problem with a large

spectrum of input tolerances and selecting those results which satisfied

the output tolerances more closely . (and with the least work, of course).

The test problems are all small systems, but they show in one

way or another troublesome behavior. One exceptio~ is Problem 6,

which is used as an indicator of how the programs behave when confronted

with a smooth problem. All problems and programs were started with

17 points, uniform meshes, and initial values for Y identically zero

with the exception of the shooting programs for which we indicate the

shooting points in each instance, and of SUPORT which does not

require a starting mesh. We have collected all the numerical

results in Table 1. In the case of convergence to the desired

tolerance we record: EFE = equivalent function evaluations = F + wJ,

where F is the number of times the right-hand side f(t,y) has

been evaluated for one value of t, and J is the number of Jacobian

evaluations~ The weight w varies from problem to problem and it

is indicated in Table l; in all cases w ~ 1, and it reflects the
-..

relative cost of evaluating the Jacobian matrix as compared with

that of evaluating the vector function f. Otherwise we print

the precision reached (if it is close to the one requested), or:

27

c
i:·-.;~ 9 s n ·r, t~ n

~~j 0 0

NC no convergence;

~ results not available.

In our programs we request that the estimated maximum absolute

error on the whole grid, and for all components of the solution vector,

be less than TOL for successful termination. MULSHO has a relative

tolerance parameter available to the user (EPS), andwe give its value

in the various cases run.

We give computer times (when available) as a matter of reference.

The times for SUPORT were obtained at a different installation (same

computer but a different compiler). The computer times (in seconds)

can be found in Table 2. The high order scalar equations have been

treated as first order systems in the standard way. The exact solutions

(when available) are given in [8).

Problem 1 [15]

y" 400 (y + cos
2

'11t.) + 2rf cos 2'11t.

y(O) ~ y(l) ~ 0 •

This is a problem which is troublesome for methodsbased on standard

initial value problems techniques. It can also be interpreted as a

problem with boundary layers of thickness 1/20 at t ~ O, 1. MULSHO

used here three equally spaced shooting points, and MULSH02 used five.

28

Problem 2 Falkner-Skan equation [3].

y" I + yy" + f3 [1 - (y I) 2] = 0

y(O) = y 1 (o) = o, y 1 (oo) = l .

As f3 approaches the value 2, the solutions of the initial value

problem associated with this equation become very sensitive with

respect to the value of the missing initial condi~_ion y" (o). This

problem has required continuation in order to provide adequate starting

values for the Newton iteration in all the programs with the exception

of PASVAR. We have used f3 in SYSSOL and RICHAR as a natural con-

tinuation parameter, performing just one Newton iteration for each of

the values f3 = 0 (0.2) 1.8, and then completing the process for f3 2.

This is done only once, at the very beginning, on the coarsest mesh

and with the basic second order method. Afterwards, the initial values

provided are sufficiently accurate to produce convergence without

difficulties. All this process is performed automatically, using a con-

tinuation option. The results reported below correspond to the full

computation for f3 = 2 and oo ~ 10.

MULSHO and MULSH02 used the four shooting points X.
J

0,1,3,

and 6.

Problem 3 An artificial boundary layer problem [12]

/I

II
y

-3EY

y(-0.1)
-0.1

y(O.l) = -y(-O.l) •

29

9 0 s i 0 " I "'
f'l ('l

,_f n ,J 0

For E--? O, y(t) ~sign t. The problem has a turning point at t = 0

of thickness El/
2

. The values of E are indicated in parentheses on

the heading of the respective columns. In this problem, all programs

with the exception of SUPORT used the final values for an E to start

the computation for the following smaller E.

MULSHO used 5 equally spaced shooting points (including the

origin), and it was successful up to E = lo-
9, using 26139 F.E. for

that case.

Problem 4 [14]

y" + (3 cotan t + tan t)y• + 0. 7y = 0

This problem has a sharp spike at approximately t = 30.65°, where

y(30.65°) """285, and the high order derivatives are even larger.

The MULSHO codes used the four shooting points

31°' 3 5°' 60 °.

0
X. = 30 ,

J

Problem 5 [11] Another artificial boundary layer problem.

-1
y" + E. y' = 0

y(-1) = 1, y(l) 2, E > 0 •

This problem has a boundary layer of thickness E at t = -1, where

the solution passes from the value one to the value two. The results

reported correspond to E = .01.

30

.
)

MULSHO shooting points were x. = -1, -0.8, -0.5, 1; while
J

MULSH02 used the sequence x. = -1, -0.8, -0.5, o, 0.5, L
. J

This problem was also solved successfully with PASVAR for

E = 0. 001, 0. 0001, TOL = l0-3 , and for E = O. 001, TOL = l0-8 , 5 X 10-lO.

In this last case PASVAR required 2753 equivalent.function evaluations

and used 3.75 seconds of computer time on a CDC 6600/6400 machine.

The meshes and solutions for large E were used to start the computation

for smaller E.

Problem 6 [12] An easy problem•

y" =?-sin t·(l + sin
2

t)

y(O) = y(7r) = 0

MULSHO and MULSH02 used the three shooting points

31

l 9 t: . '

X. = 0,
J

w
N

~ co
!weight for

Jacobians

TOL = 10-3

SYSSOL

RICHARl

RICHAR2

PASVAR

MULSHO

MULSH02

IDCBVP

PREV5

SUPORT

TOL = l0-8

SYSSOL

RICHARl

RICHAR2

PASVAR

IDCBVP

PREV5

SUPORT

1 2 3(lo-3) 3(lo-6) 3(lo-7) 4 5 6

0.1 0.75 0.75 0.75 . o. 75 0.75 0.75 0.5

419 82.9 -- NC NC NC NC 229

531 815 671 NC NC NC 1378 227

-- 743 451 NC NC NC 1248 --

327 543 1088 7891 9997 1892 1140 195

2061 7657 1232 13076 5892 15815 16363 1866

1224 1188 912 2631 35o8 2700 3960 559

115
I

75 -- 398 NC NC -- -- I

75 -- 306 NC NC -- --]]') I
312 -- 334 1246 1880 403 802 --

,.

1203 3063 '2990 NC NC NC NC 331

1733 NC 1378 NC NC NC NC 1052

1008 3135 1248 NC NC NC NC 732

806 1425 2325 12982 14621 7264 2753 297

385 -- 2424 NC NC -- -- 148

354 -- 1460 NC NC -- -- 148

572 -- 628 2580 3460 688 3832 --
--·--· - f I

Table I. Equivalent Function Evaluations: F + w*J

Weights for IDCBVP, PREV5 were w = O, 1, 0.1 in Problems l, 3, 6 respectively .

'-../ ' ~ ., ...

i • () ~

-

00 ~ 1 2 3(lo-3) 3(lo-6) 3 (10 -7) 4 5 6 e

Limitin~f

... t) ;Erecision
2472 4418 616

'f)]
SYSSOL 10-13 2.4X 10-12 -- -- NC NC NC 10-13

,,~~

\.>1
\.>1

0
PASVAR

2096 34384 3559 9827 3212 74714
1.6Xl0-12 lo-1 7.8X 10-ll .-- -- 1.6X 10-ll 8.2XlO-ll 10-

'li IDCBVP
2006 2866 573
lo-13 -- io-13 NC NC -- -- lo-13

"~~

"'
·:;:) PREV5

1222 1838 371
lo-13 -- 10-13 NC NC -- -- lq-13

,·

0
2262 1234 .. 3248 3832 . 862 7392

SUPORT 3.2Xlo-lo 3. 6X lo-12 1. 7x lo-9 4.2 x lo-8 ·lo-8 4.8X 10 ----
- - --- ---- ·- ·- ---- - - ... ---- --- ---- --- - - ------- ---- - --- --- ----

0

Table I Cont. Equivalent Function Evaluations: F + w*J

Weights for IDCVBP, PREV5 were w = O, 1, 0.1 in Problems l, 3, 6 respectively.

~ 3 (10 -3) 1 2
e

3(lo-6) 3(lo-7) 4 5 6

rroL == 10 -j

PASVAR 0.57 0.87 1.16 9.90 ll.33 2.11 1.13 0.1)

IIDCBVP 0.02 -- 0.03 -- -- -- -- o.o1

PREV5 0.02 -- o.o4 -- -- -- -- 0.02

isUPORT* o.o8 -- 0.07 0.23 0-35 0.12 0.15 -

~OL == 10-
8

PASVAR 1.77 2.67 3.01 19.60 20.42 12. 77· j. 78 0.34

IDCBVP 0.15 -- 0.12 -- -- -- -- 0.0"

PREV5 0.15 -- 0.09 -- -- -- -- 0.0"

~UPORT* 0.42 -- 0.50 2.06 2.81 0.74 2.51 --
Limiting
~recision

IPASVAR 7.34 8.34 . 5.23 -- -- 19.19 4.62 L2E

IIDCBVP 0.83 -- 0.43 -- -- -- -- 0.12

tffiEV5 0.72 -- 0.41 -- -- -- -- 0.12

SUPORT* 1.65 -- 0.95 2.70 3.17 0.90 5.29 --

Table 2.

CPU times in seconds on CDC 66oo/64oo at LBL, University of California
Berkeley; RUN76 compiler.

* On CDC 6600 at Sandia Labs., Albuquerque; FUN compiler.

34

.
1

'

,_

;

Conclusions

From this limited set of tests we can draw some preliminary

conclusions.

Overall,PASVAR is far superior to RICHARl and SYSSOL for all

accuracies, and this is more marked for higheraccuracy. RICHAR2

is competitive for low accuracies in the problems in which it works

(c. f. [10] for comparisons on smooth problems). In all fairness,

we should use a Richardson extrapolation program with nonuniform

mesh capabilities, but this code is still to be developed. It is

clear, that whenever applicable, the scalar equations codes are by

·far the fastest and most efficient.

The multiple shooting code MULSH02 compares well with PASVAR

in terms of total number of function evaluations and reliability for

most of the problems tested. The main exception is the turning point

Problem 3 where MULSH02 obtains the solution with considerably fewer

function evaluations than PASVAR • Furthermore, MULSH02 obtains

good results for E = 1 o-8
, 10-9, while PASVAR cannot resolve the

boundary layer with the allotted maximum number of grid points.

However, it is worth mentioning that in Problem 4 MULSH02 takes

4q% more computer time than MULSHO , despite the fact that this last

program requires almost 6 times more fUnction evaluations to achieve

convergence. We should point out also that the multiple shooting codes

do not choose the shooting points and various other parameters automati-

cally, and only give final results on the shooting points. Thus, PASVAR

requires much less user interaction and foreknowledge, and outputs a much

more detailed mesh solution. This detail is automatically more dense in

35

0 f)
'•· , n o

'

the regions -of rapid variation of any component of the solution

vector. It would be also useful to compare the performance of

MULSH02 for higher accuracy. Professor Bulirsch has indicated

that a more user oriented version of his program, correcting some

of these drawbacks, will be available in the future.

The comparisons with SUPORT show that PASVAR work too hard in

solving the turning point problem 3 for all tolerances and the spike

problem 4 for TOL = 10-3, lo-
8. This indicates that our net selection

procedure is too slow for handling this type of quasi-singularities.

The performance of SUPORT is consistently good for low and

moderate accuracies, though we have to keep in mind that the user has

no way of assuring that he will get that accuracy by specifying an input

parameter. We should also keep in mind that, so far, SUPORT only solves

linear problems, and that it can take advantage of certain special

situations, like homogeneous equations (probs. 3, 4, 5) and zero initial

values (Probs. 1, 4). The somewhat disappointing results for high or

limiting tolerance seem to stem from the inability of the initial value

codes to produce such accuracies. Apparently the boundary value·

techniques can reach tolerances close to full machine accuracy without

excessive degradation.

We are presently working on a new version of PASVAR which among

other features has a new system of equations solver (both linear and

nonlinear). Preliminary results indicate that this new code will solve

problems for which PASVAR fails, and also that it will cut the number

of function evaluations and time by half in most cases.

. .. ,
'··

In Table 3 we report some information about the mesh place-

ment and deferred correction procedures on the various problems.

We give N
1

, the number of times that a mesh refinement was requested.

Each one of these refinements requires several mesh modifications. The

quantity N
2

is the average number of these modifications. The row

~ gives the higher correction reached, and K is the total number of

corrections performed.

We see from these results that the mesh,placement routine

"does not wander" since the average number of inner sweeps is never

large than 3, which is reached in only one case (Frob. 5,

Tol = lo-13 }. ·On the other hand we see that high order methods really

came into play, and although we do not claim that a correctiQn of

index k = 10 will produce an O(h
22

) accurate solution, it is quite

remarkable that such high order corrections do actually produce visible

improvements in the computed solution •

37

0 f. 0 0

-V

Problem 1 2 3 (-3) 3(-6) 3 (-7) 4 5 6

To 1 = 10-3

N1 1 1 2 4 2 3 1 0

N2 1 1 1.5 1.25 2 2 2 0

A

k 3 3 2 5 4 3 2 1

K 4 6 5 ll 8 8 3 2

1 = l0-8 ' --To

N1 2 2 3 3 2 6 2 0

N2 1 2 1.33 1.33 - 0.5 1.83 1.5 0

k 6 5 4 8 10 7 6 3

K 9 10 9 13 13 17 8 4

To1 = 10-13

N1 2 4 - - - - 3 1

N2 1 1.75 - - - - 3 1

A

k 10 8 - 7 6 - - -

K 13 '17 - - - - 11 8
~1

TABLE 3

.REFERENCES

1. A. Bjorck and V. Pereyra, "Solution of Vandermonde systems of equations,"
Math. Camp. 24, 893-903 (1970).

2.

3.

4 .

5.

6.

7 .

8.

9.

10.

R. Bulirsch, J. Stoer, and P. Deuflhard, "Numerical solution of nonlinear
two-point boundary value problems I," To bepublished in Numer. Math.,
Handbook Series Approximation.

T. Cebeci and H. B. Keller, "Shooting and parallel shooting methods for
solving the Falkner-Skan bol,lndary-layer equation," J. Camp. Phys. I'
289-300 (1971).

H. B. Keller,"Accurate difference methods for nonlinear two-point boun­
. dary value problems," SIAM J. Nwner. Anal. 11, 305-320 (1974).

H.-0 Kreiss,"Difference approximation for singular perturbation problems,"
Proc. NSF Symp. on Numerical Solution of Boundary Problems for Ordinary
Differential Equations, Academic Press, New York (1975).

and N. Nichols, Personal communication (1974).

M. Lentini,"Correcciones diferidas para problemas de contorno en
sistemas de ecuaciones diferenciales ordinarias de primer arden,"
Pub. 73-o4, Depto. de Camp., Fac. Ciencias, Univ. Central de Venezuela,
Caracas (1973).

and V. Pereyra,"Boundary prbblem solvers for first order
---:----:-
systems based on deferred corrections," Proc. NSF Symp. on Numerical
Solution of Boundary Value Problems for Ordinary Differential Equations,
293-316, Academic Press, New York (1975).

,"A variable order finite difference method for
-n-o-n"'"l"""i_n_e_a_r_m_u-=-l.,..t..,..i_p_o..,..i_n..,..t~b-oundary value problems," Math. Comp. 28, 981-1004

(1974).

H. LOpez and L. Ruiz, "Extrapolaciones sucesivas paraproblemas de
contorno en sistemas no lineales de ecuaciones diferenciales ordinarias,"
Tesis de Grado, Univ. Central de Venezuela (1974).

11. Carl E. Pearson, "On a differential equation of boundary layer type,"
J. Math. Phys. 47, 134-154 (1968). .

12. V. Pereyra, "High order finite difference solution of differential
equations," Stanford University Computer Science Dept. STAN-CS-73-348
(1973).

13. and G. Sewell, "Mesh selection for discrete solution of
boundary problems in ordinary differential equations," Numer. Math.
23' 261-268(1975).

39

0 0

14. R. D. Russell and L. F. Shampine, "A collocation method for boundary
value problems," Numer. Math. 19, l-28 (lW2).

15. J. Stoer and R. Bulirsch, "Einftihrung in die Numerische Mathematik II
Heidelberg Taschenbticher No. 114, Springer-Verlag, Berlin (lW3).

16. J. M. Varah, "On the solution of block tridiagonal systems ar1s1ng from
certain finite difference equations," Math. Comp. 26, 859-868 (lW2).

17. C. de Bbor,"Good approximation by splines with variable knots II,"
Lecture Notes in Math. No. 363, 12-20, Springer-Verlag, Berlin (1973).

18. H. B. Keller, "Numerical solution of boundary value problems for ordinary
differential equations: survey and some recent results on difference
methods," Proc. NSF Symp. on Numerical Solution of Boundary Problems for
Ordinary Differential Equations, 27-88, Academic Press, New York (1975).

19. H. G. Burchard "Splines (with optimal knots) are better," App. Analysis l'
309-319 (lW4).

20. J. F. Holt,"Numerical solution of nonlinear two-point boundary problems
by finite differences using Newton's method," Aerospace Rep. No.
TR-0158(3307-02)-10 (1968).

21. D. 0. Gough, E. A. Spiegel, and J. Toomre, "Highly stretched meshes as
functionals of solutions," Proc. 4th Int. Conf. Num. Methods Fluid Dyn.,
Boulder, Colorado (1974).

22. J. H. Avila,"The feasibility of continuation method for nonlinear equations,"
SIAM J. Numer. Anal. 11, 102-122 (1974).

23. V. Pereyra and 0. Widlund, '.'
suggested by H.-0. Kreiss,"

A family of elliptic difference schemes
To appear.

24. P. Deuflhard, "A modified Newton method for the solution of ill-conditioned
systems of nonlinear equations with applications to multiple shooting,"
.Nwner. Math. 22, 289-315 (197 4).

25. J. W. Daniel and A. J. Martin, "Deferred corrections for the fourth­
order difference method for second-:order two-point boundary-value
problems," Center for Numer. Anal. Report, Univ. of Texas, Austin.
To appear (1975).

26. M. R. Scott and H. A. Watts, "SUPORT--A computer code for two-point
boundary-value problems via orthonormaliza tion," SAND 75-:0198,
Sandia Labs., Albuquerque, N.M. (1975).

4o

' •

---------LEGAL NOTICE------------.

This report was prepared as an account of work sponsored by the

United States Government. Neither the United States nor the United

States Energy Research and Development Administration, nor any of

their employees, nor any of their contractors, subcontractors, or

their employees, makes any warranty, express or implied, or assumes

any legal liability or responsibility for the accuracy, completeness

or usefulness of any information, apparatus, product or process

disclosed, or represents that its use would not infringe privately

owned rights.

r: n

TECHNICAL INFORMATION DIVISION

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

.~ ;;...·-

