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AN ADAPTIVE FINITE ELEMENT ALGORITHM
WITH RELIABLE AND EFFICIENT ERROR CONTROL

FOR LINEAR PARABOLIC PROBLEMS

ZHIMING CHEN AND JIA FENG

Abstract. An efficient and reliable a posteriori error estimate is derived for
linear parabolic equations which does not depend on any regularity assump-
tion on the underlying elliptic operator. An adaptive algorithm with variable
time-step sizes and space meshes is proposed and studied which, at each time
step, delays the mesh coarsening until the final iteration of the adaptive pro-
cedure, allowing only mesh and time-step size refinements before. It is proved
that at each time step the adaptive algorithm is able to reduce the error indi-
cators (and thus the error) below any given tolerance within a finite number
of iteration steps. The key ingredient in the analysis is a new coarsening strat-
egy. Numerical results are presented to show the competitive behavior of the
proposed adaptive algorithm.

1. Introduction

A posteriori error estimates are computable quantities in terms of the discrete
solution and data that measure the actual discrete errors without the knowledge of
exact solutions. They are essential in designing algorithms for mesh and time-step
size modifications which equidistribute the computational effort and optimize the
computation. Ever since the pioneering work of Babuška and Rheinboldt [4], the
adaptive finite element methods based on a posteriori error estimates have become
a central theme in scientific and engineering computations. There are considerable
efforts in the literature devoted to the development of efficient adaptive algorithms
for various linear and nonlinear parabolic partial differential equations. In par-
ticular, a posteriori error estimates are derived in Bieterman and Babuška [2], [3]
and Moore [14] for one-dimensional and in Eriksson and Johnson [12], [13], Picasso
[17], and Verfürth [20] for multidimensional linear and mildly nonlinear parabolic
problems. Efficient adaptive procedures based on a posteriori error estimates are
also developed in Chen and Dai [5], Chen, Nochetto and Schmidt [7], Nochetto,
Schmidt and Verdi [16] for solving nonlinear partial differential equations arising
from physical and industrial processes.
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1168 ZHIMING CHEN AND JIA FENG

Let Ω be a polyhedron domain in Rd(d = 1, 2, 3), Γ = ∂Ω, and T > 0. We
consider the following linear parabolic equation:

∂u

∂t
− div(a(x)∇u) = f in Ω× (0, T ),

u = 0 on Γ× (0, T ), u(x, 0) = u0(x) in Ω,
(1.1)

where f ∈ L2(0, T ;L2(Ω)), u0 ∈ L2(Ω), and a(x) is a piecewise constant function.
Let τn be the n-th time-step size and tn =

∑n
i=1 τi. Denote by Mn a uniformly

regular partition of Ω into simplexes such that a(x) is a constant on each element
K ∈ Mn. We use refinement/coarsening procedures based on the bisection algo-
rithm (cf., e.g., Bänsch [1]), which lead to compatible consecutive meshes whose
minimum angles are bounded uniformly away from zero. Two meshes are compat-
ible if one is the local refinement by bisection of the other. Let V n indicate the
usual space of conforming linear finite elements over Mn and V n0 = V n ∩H1

0 (Ω).
Let U0

h = P0u0, where P0 : L2(Ω) → V 0
0 is the L2 projection operator into the

linear finite element space V 0
0 over the initial meshM0. We consider the following

simple fully discrete finite element scheme for solving (1.1). For n = 1, 2, . . . , find
Unh ∈ V n0 such that〈Unh − Un−1

h

τn
, v
〉

+ 〈a∇Unh ,∇v〉 = 〈f̄n, v〉 ∀v ∈ V n0 ,(1.2)

where 〈·, ·〉 stands for the inner product on L2(Ω), and f̄n = 1
τn

∫ tn
tn−1 f(x, t) dt.

The main tool in deriving a posteriori error estimates in [5], [7], [12], [13], [16]
is the analysis of linear dual problems of the corresponding error equations. The
derived a posteriori error estimates, however, depend on the H2 regularity assump-
tion on the underlying elliptic operator. Without using this regularity assumption,
the energy method is used in [17] to derive an a posteriori error estimate for the
total energy error of the approximate solution. A lower bound for the local error
is also derived for the associated a posteriori error indicator in that paper. We
remark that while the energy method applies to less regular solutions than the du-
ality method, the latter yields a better rate in the case of regular solutions. Also
the norms that the error is being measured in are different. The duality technique
applies to lower order norms and yields better results for them when the underlying
elliptic operators are regular.

The results in [17] are obtained under the conditions that (1) the space-time
mesh {(tn−1, tn) × K : K ∈ Mn} is regular in the sense of [9], and (2) the finite
element spaces are nested V n−1 ⊂ V n; that is, no mesh coarsening is allowed. In
this paper, without these two conditions we derive an a posteriori error estimate
for the total energy error based on a direct energy estimate argument which has
been used in Chen, Nochetto and Schmidt [8] for the phase relaxation model, a
system of one parabolic equation coupled with one variational inequality. This
energy estimate argument is slightly different from that of [17]. We also prove a
lower bound for the local error for our a posteriori error indicator without using
the space-mesh regularity assumption in [17].

Let Un ∈ H1
0 (Ω) be the solution of the following semidiscrete problem〈Un − Un−1

τn
, ϕ
〉

+ 〈a∇Un,∇ϕ〉 = 〈f̄n, ϕ〉 ∀ϕ ∈ H1
0 (Ω).(1.3)
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AN ADAPTIVE FINITE ELEMENT ALGORITHM 1169

We observe that by modifying the time-step size τn, we are essentially controlling
the error between un = u(x, tn) and Un, not between un and Unh . Moreover, if we
let Un∗ ∈ H1

0 (Ω) be the solution of the auxiliary problem〈Un∗ − Un−1
h

τn
, ϕ
〉

+ 〈a∇Un∗ ,∇ϕ〉 = 〈f̄n, ϕ〉 ∀ϕ ∈ H1
0 (Ω),(1.4)

then we also observe that for fixed time-step size τn, by adapting the mesh Mn

we are essentially controlling the error between Unh and Un∗ , not between Unh and
Un (or the exact solution u). These two observations play an important role in
the subsequent analysis to prove the lower bound for the space a posteriori error
indicator and in the development of the refinement/coarsening strategy.

Based on the local error indicators, the usual adaptive algorithm solving the
parabolic problem (1.1) at the n-th time step reads as

Solve → Estimate → Refine/Coarsen.

Here the refinement/coarsening procedure includes both the mesh and time-step
size modifications. There are several possibilities proposed in the literature on
the strategies of the adaptive control of meshes and time-step sizes. We refer to
Schmidt and Siebert [18] for a nice review of various adaptive algorithms and their
implementation details. In this paper, at each time step n, we propose the following
algorithm to modify the time-step size τn and mesh Mn starting from the initial
time-step size τn,0 = τn−1 and initial mesh Mn,0 =Mn−1:

1. Refine the time-step size τn.0 and the mesh Mn,0 so that for the solu-
tion Unh ∈ V n0 of (1.2) on the final mesh Mn with final time-step size τn,
the associated space and time error indicators are less than the prescribed
tolerances respectively;

2. Coarsen the mesh Mn so that for the solution UnH on the coarsened mesh
Mn

H , the associated coarsening error indicator is less than some prescribed
tolerance;

3. Enlarge the initial time-step size τn+1,0 for next time step if the current
time error indicator is much less than the tolerance.

We will extend the convergence analysis of adaptive finite element methods de-
veloped for linear elliptic problems in Dörfler [11] and Morin, Nochetto and Siebert
[15] to prove that the iteration in Step 1 of the above algorithm terminates in a
finite number of steps. The main difficulty now is the treatment of the oscillation
of the residual Rn = f̄n − (Unh − Un−1

h )/τn which changes at each refinement pro-
cedure. The oscillation of any function ϕ ∈ L2(Ω) over the mesh Mn is defined
as

osc(ϕ,Mn) =
( ∑
K∈Mn

h2
K‖ϕ− PKϕ ‖2L2(K)

)1/2

,(1.5)

where PKϕ = 1
|K|
∫
K
ϕdx. For fixed time step size τn, let Mn,k+1 be a refinement

of the mesh Mn,k, and Un,k+1
k , Un,kh be the corresponding solutions of (1.2) over

the meshes Mn,k+1,Mn,k. Note that since Rn,k+1 6= Rn,k, the following relation,
which is crucial in the argument in [15], is no longer valid:

osc(Rn,k+1,Mn,k+1)2 ≤ ζ osc(Rn,k,Mn,k)2, for some constant ζ < 1.
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1170 ZHIMING CHEN AND JIA FENG

Instead, we show in Lemma 4.5 that

(1.6) osc(Rn,k+1,Mn,k+1)2 ≤ ζ1 osc(Rn,k,Mn,k)2 + ζ2‖Un,k+1
h − Un,kh ‖2τn,Ω

for some constants 0 < ζ1 < 1 and ζ2 > 0. Here ‖ · ‖τn,Ω is the weighted norm of
H1(Ω) with parameter τn > 0,

‖ϕ ‖τn,Ω =
( 1
τn
‖ϕ ‖2L2(Ω) + |||ϕ|||2Ω

)1/2

∀ϕ ∈ H1(Ω)(1.7)

with |||ϕ|||Ω = 〈a∇ϕ,∇ϕ〉1/2, the energy seminorm of ϕ. The additional term
‖Un,k+1

h −Un,kh ‖2τn,Ω in (1.6) can be controlled by extending the technique in [15].
The choice of the coarsening error indicator and coarsening strategy in Step 2 is

a subtle issue. The error incurred due to the over-coarsening can only be reduced
by re-refining the coarsened mesh. Thus over-coarsening leads to the unnecessary
solution of discrete problems, that is usually expensive and undesirable. Our coars-
ening error indicator is based on a direct control of the error between the coarsened
discrete solution and the continuous solution Un∗ of (1.4). More precisely, let Mn

H

be a coarsening of Mn, and UnH , U
n
h be the corresponding solutions of (1.2) with

fixed time-step size τn. Since V n,H0 ⊂ V n0 , we deduce by Galerkin orthogonality
(see Theorem 3.1 below) that

‖Un∗ − UnH ‖2τn,Ω ≤ ‖U
n
∗ − Uhh ‖2τn,Ω + ‖Unh − InHUnh ‖2τn,Ω,

where InH : C(Ω̄) → V n,H is the usual linear finite element interpolant over Mn
H .

Our coarsening error indicator is then given by

ηncoarse :=
1
τn
‖Unh − InHUnh ‖2L2(Ω) + |||Unh − InHUnh |||2Ω,

which does not depend on the coarsened solution UnH . We will show that this direct
error control leads to only one coarsening step.

The rest of the paper is organized as follows: In §2 we derive an a posteriori error
estimate between the solution Unh of the discrete problem (1.2) and the solution u
of the continuous problem (1.1). A lower bound for the local error in terms of our
space error indicator will be established which indicates that over-refinement will
not occur for the refinement procedure based on this indicator. In §3 we introduce
our adaptive algorithm and justify its various steps. In §4 we prove that at each
time step our adaptive algorithms are able to reduce the error indicators below any
given tolerance within a finite number of iterations. In §5 we discuss the coarsening
algorithm and present one numerical example to show the competitive behavior of
the proposed adaptive algorithm.

2. A posteriori error analysis

We begin with introducing some notation. For any open set G ⊂ Rd, we denote
by H1(G) the standard Sobolev space of functions in L2(G) whose first derivatives
are also in L2(G). The coefficient a(x) is assumed to be piecewise constant and
positive. Thus the seminorm ||| · |||G defined by |||ϕ|||2G = 〈a∇ϕ,∇ϕ〉G is equivalent to
the H1

0 (Ω) norm when G = Ω. Here 〈·, ·〉G stands for the L2(G) inner product or
the duality pair between H−1(G) and H1

0 (G). Throughout we write 〈·, ·〉 = 〈·, ·〉Ω.
Given f ∈ L2(0, T ;L2(Ω)) and u0 ∈ L2(Ω), the weak formulation of (1.1) reads

as follows. Find u ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) such that u(·, 0) = u0(·),
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AN ADAPTIVE FINITE ELEMENT ALGORITHM 1171

and for a.e. t ∈ (0, T ) the relation〈∂u
∂t
, ϕ
〉

+ 〈a∇u,∇ϕ〉 = 〈f, ϕ〉 ∀ϕ ∈ H1
0 (Ω)(2.1)

holds.
In this section we consider the a posteriori error analysis for the full time-space

discretization in §2.1. The lower bound of the local error in terms of the space error
indicator is derived in §2.2.

2.1. The upper bound. We introduce the implicit Euler scheme for solving (2.1).
Let τn be the n-th time-step size and set

tn :=
n∑
i=1

τi, ϕn(·) = ϕ(·, tn)

for any function ϕ continuous in (tn−1, tn]. Let N be the total number of steps;
that is tN ≥ T . At each time step n, n = 1, 2, . . . , N , we denote by Mn a uni-
formly regular partition of Ω into simplexes which is obtained fromMn−1 by using
refinement/coarsening procedures. Given an element K ∈ Mn, hK stands for its
diameter. Denote by Bn the collection of interior interelement sides e of Mn in Ω;
he stands for the size of e ∈ Bn. Let V n indicate the usual space of conforming
linear finite elements over Mn, and V n0 = V n ∩ H1

0 (Ω). Let U0
h = P0u0, where

P0 : L2(Ω) → V 0
0 is the L2 projection operator into the linear finite element space

V 0
0 over the initial meshM0. Then the fully discrete finite element approximation

at the n-th time step reads as follows. Given Un−1
h ∈ V n−1

0 , then Mn−1 and τn−1

are modified as described below to give rise toMn and τn and, thereafter, Unh ∈ V n0
computed according to the following prescription:

〈Unh − Un−1
h

τn
, v
〉

+ 〈a∇Unh ,∇v〉 = 〈f̄n, v〉 ∀v ∈ V n0 .(2.2)

We define the interior residual

Rn := f̄n − Unh − Un−1
h

τn
,

along with the jump residual across e ∈ Bn

Jne := [[a∇Unh ]]e · νe = (a∇Unh |K1 − a∇Unh |K2) · νe, e = ∂K1 ∩ ∂K2,

using the convention that the unit normal vector νe to e points from K2 to K1. We
observe that integration by parts implies

〈a∇Unh ,∇ϕ〉 = −
∑
e∈Bn

∫
e

Jne ϕds ∀ϕ ∈ H1
0 (Ω).(2.3)

Theorem 2.1. For any integer 1 ≤ m ≤ N , there exists a constant C > 0 depend-
ing only on the minimum angle of meshes Mn, n = 1, 2, . . . ,m, and the coefficient
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1172 ZHIMING CHEN AND JIA FENG

a(x) such that the a posteriori error estimate

1
2
‖ um − Umh ‖2L2(Ω) +

m∑
n=1

∫ tn

tn−1
|||u− Unh |||2Ωdt(2.4)

≤ ‖ u0 − U0
h ‖2L2(Ω) +

m∑
n=1

τnη
n
time + C

m∑
n=1

τnη
n
space

+ 2
( m∑
n=1

∫ tn

tn−1
‖ f − f̄n ‖L2(Ω)dt

)2

holds, where the time error indicator ηntime and space error indicator ηnspace are given
by

ηntime =
1
3
|||Unh − Un−1

h |||2Ω, ηnspace =
∑
e∈Bn

ηne

with the local error indicator ηne defined as

ηne =
1
2

∑
K∈Ωe

h2
K‖Rn ‖2L2(K) + he‖ Jne ‖2L2(e).

Here Ωe is the collection of two elements sharing the common side e ∈ Bn.

Proof. For the sake of completeness, we sketch the proof here. From (2.2) we know
that, for any ϕ ∈ H1

0 (Ω) and v ∈ V n0 ,〈Unh − Un−1
h

τn
, ϕ
〉

+ 〈a∇Unh ,∇ϕ〉 = −〈Rn, ϕ− v〉+ 〈a∇Unh ,∇(ϕ− v)〉 + 〈f̄n, ϕ〉.

For any t ∈ (tn−1, tn], we denote by

Uh(t) = l(t)Unh + (1− l(t))Un−1
h , l(t) = (t− tn−1)/τn.

Then from (2.1) and (2.5) we have, for a.e. t ∈ (tn−1, tn], and for any ϕ ∈ H1
0 (Ω), v ∈

V n0 ,〈∂(u− Uh)
∂t

, ϕ
〉

+ 〈a∇(u−Unh ),∇ϕ〉=〈Rn, ϕ−v〉−〈a∇Unh ,∇(ϕ−v)〉+〈f − f̄n, ϕ〉.

Now we resort to the Clément interpolant Πn : H1
0 (Ω) → V n0 , which satisfies the

following local approximation properties, for any ϕ ∈ H1
0 (Ω):

‖ϕ−Πnϕ ‖L2(K) + hK‖∇(ϕ−Πnϕ) ‖L2(K) ≤ C∗hK‖∇ϕ ‖L2(N(K)),(2.5)

‖ϕ−Πnϕ ‖L2(e) ≤ C∗h1/2
e ‖∇ϕ ‖L2(N(e)),(2.6)

where N(A) is the union of all elements inMn surrounding the sets A = K ∈ Mn

or A = e ∈ Bn (see Clément [10]). The constant C∗ depends only on the minimum
angle of mesh Mn. Based on this interpolant, by taking ϕ = u − Uh ∈ H1

0 (Ω),
v = Πn(u− Uh) ∈ V n0 , and using (2.3) and the identity

〈a∇(u− Unh ),∇(u − Uh)〉 =
1
2
|||u − Unh |||2Ω +

1
2
|||u− Uh|||2Ω −

1
2
|||Uh − Unh |||2Ω,
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we deduce that
1
2
d

dt
‖ u− Uh ‖2L2(Ω) +

1
2
|||u− Unh |||2Ω +

1
2
|||u − Uh|||2Ω(2.7)

=
1
2
|||Uh − Unh |||2Ω + 〈Rn, (u − Uh)−Πn(u− Uh)〉

+
∑
e∈Bn

∫
e

Jne [(u− Uh)−Πn(u− Uh)]ds+ 〈f − f̄n, u− Uh〉.

For any t∗ ∈ (tm−1, tm], by integrating (2.7) in time from 0 to t∗, using (2.5)-(2.6),
and exploiting the standard argument in finite element a posteriori analysis, we
have

1
2
‖ (u− U)(t∗) ‖2L2(Ω) +

1
2

m∑
n=1

∫ tn∧t∗

tn−1

(
|||u − Unh |||2Ω + |||u − Uh|||2Ω

)
dt

≤ 1
2
‖ u0 − U0

h ‖2L2(Ω) +
1
2

m∑
n=1

∫ tn

tn−1
|||Uh − Unh |||2Ωdt

+ C
m∑
n=1

∫ tn

tn−1
(ηnspace)

1/2|||u− Uh|||Ωdt+
1
4

max
0≤t≤t∗

‖ u− Uh ‖2L2(Ω)

+
( m∑
n=1

∫ tn

tn−1
‖ f − f̄n ‖L2(Ω)dt

)2

,

where tn ∧ t∗ = min(tn, t∗). This implies the desired estimate (2.4) by using the
fact that∫ tn

tn−1
|||Uh − Unh |||2Ωdt =

∫ tn

tn−1
(1− l(t))2|||Unh − Un−1

h |||2Ωdt =
1
3
τn|||Unh − Un−1

h |||2Ω.

This completes the proof. �
To conclude this section we give a few remarks about the a posteriori error

estimates derived.

Remark 2.1. Let Pn : L2(Ω)→ V n0 be the L2 projection operator. The coarsening
errors involving Un−1

h − PnUn−1
h which appeared in previous studies [7], [12], [16]

are not present in our a posteriori error estimates. They are hidden in the space
error term ‖ hnRn ‖2L2(Ω) and the time error term |||Unh − Un−1

h |||2Ω. Here hn is the
piecewise constant function which is equal to hK on each K ∈Mn.

Remark 2.2. The constant C in the a posteriori error estimate (2.4) is proportional
to the maximum jump of the coefficients Λ = maxx∈Ω̄ a(x)/minx∈Ω̄ a(x). This
dependence is rather undesirable for strongly discontinuous coefficients and indeed
can be removed by modifying the associated space error indicator (see Chen and Dai
[6] for a study on a posteriori error analysis and adaptivity for elliptic problems with
strongly discontinuous coefficients). In order to avoid unnecessary and inessential
complications of the argument, we will not elaborate on this issue in this paper.

Remark 2.3. In our a posteriori error estimate at the n-th time step, the time
discretization error is controlled by |||Unh −Un−1

h |||Ω and
∫ tn
tn−1 ‖ f−f̄n ‖L2(Ω)dt, which

can only be reduced by reducing the time-step sizes τn. On the other hand, the
time-step size τn essentially controls the semidiscretization error: the error between
the exact solution u and the solution Un of (1.3). Thus |||Unh − Un−1

h |||Ω is not a
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good error indicator for time discretization unless the space-discretization error is
sufficiently resolved. In the adaptive method for time-dependent problems, we must
do space mesh and time-step size adaptation simultaneously. Ignoring either one
of them may not provide correct error control of approximation to the problem.

Remark 2.4. For given Un−1
h ∈ V n−1

0 , let Un∗ ∈ H1
0 (Ω) be the solution of the

continuous problem (1.4). Then the space error indicator ηnspace controls only the
error between Unh and Un∗ , not between Unh and Un (or the exact solution u). This
observation plays an important role in the subsequent analysis.

2.2. A lower bound (space error). The objective of this subsection is to prove
the following estimate for the local error which ensures over-refinement will not
occur for the refinement strategy based on our space error indicator. For any
K ∈ Mn and ϕ ∈ L2(Ω), we define PKϕ = 1

|K|
∫
K ϕdx, the average of ϕ over K.

For any n = 1, 2, . . . , we also need the notation

Ĉn = max
K∈Mn

(h2
K/τn), hK = diam(K).(2.8)

Theorem 2.2. There exist constants C2, C3 > 0 depending only on the minimum
angle ofMn and the coefficient a(x) such that for any e ∈ Bn, the following estimate
holds:

ηne ≤ C2Ĉn
∑
K∈Ωe

( 1
τn
‖Un∗ − Unh ‖2L2(K) + |||Un∗ − Unh |||2K

)
(2.9)

+C3

∑
K∈Ωe

h2
K‖Rn − PKRn ‖2L2(K).

Before we proceed to the proof, we remark that the dependence of C2, C3 on the
coefficient in the case of strongly discontinuous coefficients can be traced by the
techniques developed in [6] for elliptic problems. We also remark that our form of
the lower bound (2.9) differs from the one in [17], where the space error indicator is
bounded by the sum of the energy-error and the time-error indicator |||Unh −Un−1

h |||Ω.

Proof. The proof makes use of the idea in Verfürth [19]. For any K ∈ Mn, let
ψK = (d + 1)d+1λ1 · · ·λd+1 be the bubble function, where λ1, . . . , λd+1 are the
barycentric coordinate functions. By the standard scaling argument, we have the
following inf-sup relation that holds for some constant β depending only on the
minimum angle of K ∈Mn:

inf
vh∈P1(K)

sup
ϕh∈P1(K)

∫
K

vhϕhψKdx

‖ϕh ‖L2(K)‖ vh ‖L2(K)
≥ β > 0.

Thus there exists a function ϕn ∈ P1(K) with ‖ϕn ‖L2(K) = 1 such that

β‖PKRn ‖L2(K)

≤
∫
K

(PKRn)ψKϕndx

=
∫
K

(PKRn −Rn)ψKϕndx +
∫
K

(
f̄n − Unh − Un−1

h

τn

)
ψKϕ

ndx

=
∫
K

(PKRn −Rn)ψKϕndx +
∫
K

Un∗ − Unh
τn

ψKϕ
ndx+ 〈a∇Un∗ ,∇(ψKϕn)〉K ,
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where we have used (1.4) in the last identity. Since Unh ∈ P1(K) and ψK = 0 on
∂K, simple integration by parts implies that 〈a∇Unh ,∇(ψKϕn)〉K = 0. Thus, we
have

‖PKRn ‖L2(K) ≤ C‖Rn − PKRn ‖L2(K) + Cτ−1
n ‖Un∗ − Unh ‖L2(K)

+C|||Un∗ − Unh |||K |||ψKϕn|||K .

Since |||ψKϕn|||K ≤ Ch−1
K by inverse estimate, we conclude by the definition of Ĉn

in (2.8) that

‖PKRn ‖L2(K) ≤ C‖Rn − PKRn ‖L2(K)

+CĈ1/2
n h−1

K

( 1
τn
‖Un∗ − Unh ‖2L2(K) + |||Un∗ − Unh |||2K

)1/2

.

Therefore, we have

h2
K‖Rn ‖2L2(K) ≤ Ch2

K‖Rn − PKRn ‖2L2(K)

+CĈn
( 1
τn
‖Un∗ − Unh ‖2L2(K) + |||Un∗ − Unh |||2K

)
.

For any e ∈ Bn, let ψe = ddλ1 · · ·λd be the bubble function, where λ1, . . . , λd
are the barycentric coordinate functions associated with the nodes of e. Denote
by ψn = Jne ψe ∈ H1

0 (Ω). Then, since Jne is constant on e ∈ Bn, we get, after
integration by parts, that

‖ Jne ‖2L2(e) ≤ C

∫
e

Jne ψ
ndx = −C

∑
K∈Ωe

∫
K

a(x)∇Unh∇ψndx

= C
∑
K∈Ωe

∫
K

a(x)∇(Un∗ − Unh )∇ψndx− C
∑
K∈Ωe

∫
K

Rnψndx,

where we have used the definition of Un∗ in (1.4). Moreover, it is easy to see that

‖∇ψn ‖L2(K) ≤ Ch−1/2
e ‖ Jne ‖L2(e), ‖ψn ‖L2(K) ≤ Ch1/2

e ‖ Jne ‖L2(e) ∀K ∈ Ωe.

Thus

he‖ Jne ‖2L2(e) ≤ C
∑
K∈Ωe

(h2
K‖Rn ‖2L2(K) + |||Un∗ − Unh |||2K).

This completes the proof. �

Summing up (2.9) for all e ∈ Bn, we obtain that the following important estimate

ηnspace ≤ 2C2Ĉn‖Un∗ − Unh ‖2τn,Ω + 2C3 osc(Rn,Mn)2,(2.10)

where the weighted norm ‖Un∗ − Unh ‖τn,Ω is defined in (1.7), and the oscillation of
the residual osc(Rn,Mn) is defined in (1.5).

3. Adaptive algorithm

We start by considering the algorithm for time-step size control. The adjust-
ment of the time-step size is based on the error equidistribution strategy: the
time discretization error should be equally distributed to each time interval
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(tn−1, tn), n = 1, . . . , N . Let TOLtime be the total tolerance allowed for the part
of a posteriori error estimate in (2.4) related to the time discretization; that is,

N∑
n=1

τnη
n
time + 2

( N∑
n=1

∫ tn

tn−1
‖ f − f̄n ‖L2(Ω)dt

)2

≤ TOLtime.(3.1)

A natural way to achieve (3.1) is to adjust the time-step size τn such that the
following relations are satisfied:

ηntime ≤
TOLtime

2T
,

1
τn

∫ tn

tn−1
‖ f − f̄n ‖L2(Ω)dt ≤

1
2T
√
TOLtime.(3.2)

The following algorithm can be used to control the time-step size at each time step
n (cf., e.g., [18]).

Algorithm 3.1 (Time-step size control). Prescribe tolerance TOLtime, parameters
δ1 ∈ (0, 1), δ2 > 1, and θtime ∈ (0, 1).

τn := τn−1

solve the time discretization problem and estimate the error
while (3.2) is not satisfied do

τn := δ1τn
solve the time discretization problem and estimate the error

end while
if the relations

ηntime ≤ θtime
TOLtime

2T
,

1
τn

∫ tn

tn−1
‖ f − f̄n ‖L2(Ω)dt ≤

1
2T

√
θtimeTOLtime(3.3)

are satisfied then
τn := δ2τn

end if

A good choice of the parameters in the algorithm above for the backward Euler
scheme in time is to take δ1 = 0.5, δ2 = 2, and θtime = 0.5. Algorithm 3.1 controls
only the time-step size, which must be combined with some algorithm for the mesh
adaptation in practical applications. The main difficulty now is the mesh coarsen-
ing, which increases the error. If the mesh adaptation procedure iterates several
times, it may occur that elements which were marked for coarsening in the begin-
ning must be refined at the end to reduce the error, which is certainly undesirable.
One possibility, which is proposed in [18], for overcoming this difficulty is to delay
the mesh coarsening until the final iteration of the adaptive procedure, allowing
refinements before only. Let TOLspace be the tolerance allowed for the part of the
a posteriori error estimate in (2.4) related to the space discretization. Then the
usual stopping criterion for the mesh adaptation is to satisfy the following relation
at each time step n:

ηnspace ≤
TOLspace

T
.(3.4)

This stopping rule is appropriate for mesh refinements but not for mesh coarsening.
In this paper we will use a new coarsening error indicator based on the following
theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN ADAPTIVE FINITE ELEMENT ALGORITHM 1177

Theorem 3.1. Given Un−1
h ∈ V n−1

0 and τn > 0, let Mn
H be a coarsening of the

mesh Mn. Let UnH ∈ V
n,H

0 , Unh ∈ V n0 be the solutions of the discrete problem (1.2)
over meshes Mn

H and Mn, respectively. Then the following error estimate is valid

‖Un∗ − UnH ‖2τn,Ω ≤ ‖U
n
∗ − Unh ‖2τn,Ω + ‖Unh − InHUnh ‖2τn,Ω,

where InH : C(Ω̄)→ V n,H is the standard linear finite element interpolant, and the
weighted norm ‖ · ‖τn,Ω is defined in (1.7).

Proof. By definition, UnH ∈ V
n,H

0 and Unh ∈ V n0 satisfy the relations〈UnH − Un−1
h

τn
, v
〉

+ 〈a∇UnH ,∇v〉 = 〈f̄n, v〉 ∀v ∈ V n,H0 ,(3.5) 〈Unh − Un−1
h

τn
, v
〉

+ 〈a∇Unh ,∇v〉 = 〈f̄n, v〉 ∀v ∈ V n0 ,(3.6)

SinceMn
H is a coarsening ofMn, we have V n,H0 ⊂ V n0 . Thus UnH −Unh ∈ V n0 . Now

the equation (3.6) together with (1.4) implies the Galerkin orthogonal identity〈Un∗ − Unh
τn

, UnH − Unh
〉

+ 〈a∇(Un∗ − Unh ),∇(UnH − Unh )〉 = 0.

Hence

‖Un∗ − UnH ‖2τn,Ω = ‖Un∗ − Unh ‖2τn,Ω + ‖UnH − Unh ‖2τn,Ω.(3.7)

Next, by subtracting (3.5) from (3.6) and taking v = UnH−InHUnh ∈ V
n,H

0 , we obtain
the Galerkin orthogonal relation〈UnH − Unh

τn
, UnH − InHUnh

〉
+ 〈a∇(UnH − Unh ),∇(UnH − InHUnh )〉 = 0,

which implies

‖UnH − Unh ‖2τn,Ω = ‖Unh − InHUnh ‖2τn,Ω − ‖U
n
H − InHUnh ‖2τn,Ω

≤ ‖Unh − InHUnh ‖2τn,Ω.
This completes the proof by using (3.7). �

Theorem 3.1 suggests that we introduce the coarsening error indicator

ηncoarse =
1
τn
‖ InHUnh − Unh ‖2L2(Ω) + |||InHUnh − Unh |||2Ω.(3.8)

The nice feature of this indicator is that it does not depend on UnH , the solution
of the coarsened problem. This property allows us to coarsen only once, without
checking whether the coarsened solution UnH satisfies some stopping criterion such
as (3.4). Combining the ideas above, we arrive at the following adaptive algorithm
for one single time step, which modifies the procedure proposed in [18].

Algorithm 3.2 (Time and space adaptive algorithm). Prescribe tolerances TOLtime,
TOLspace and TOLcoarse, parameters δ1 ∈ (0, 1), δ2 > 1 and θtime ∈ (0, 1). Let Un−1

h

be computed from the previous time step at time tn−1 with the mesh Mn−1 and
the time-step size τn−1.

1. Mn :=Mn−1,τn := τn−1, tn := tn−1 + τn
solve the discrete problem for Unh on Mn using data Un−1

h

compute error estimates on Mn
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2. while (3.2) is not satisfied do
τn := δ1τn, tn := tn−1 + τn
solve the discrete problem for Unh on Mn using data Un−1

h

compute error estimates on Mn

end while
3. while ηnspace > TOLspace/T do

refine mesh Mn producing a modified Mn

solve the discrete problem for Unh on Mn using data Un−1
h

compute error estimates on Mn

while (3.2) is not satisfied do
τn := δ1τn, tn := tn−1 + τn
solve the discrete problem for Unh on Mn using data Un−1

h

compute error estimates on Mn

end while
end while

4. coarsenMn producing a modified meshMn according to ηncoarse≤
TOLcoarse

T
solve the discrete problem for Unh on Mn using data Un−1

h

5. if (3.3) is satisfied then
τn := δ2τn

end if

The goal of the first three steps in the algorithm above is to reduce the time-
step size and refine the mesh so that the time and space error indicators become
smaller than the respective tolerances. We achieve this goal by first reducing the
time-step size to have the time error estimate below the tolerance while keeping the
mesh unchanged. In Step 5, when the time error indicator is much smaller than
the tolerance, the step size is enlarged (coarsened) by a factor δ2 > 1. In this case,
the actual time step is not recalculated; only the initial time-step size for the next
time step is changed.

We have the following theorem which guarantees the reliability of the algorithm
above in terms of error control.

Theorem 3.2. For n ≥ 1, assume Algorithm 3.2 terminates and generates the
final mesh Mn

H, time-step size τn, and the the corresponding discrete solution UnH .
The mesh Mn

H is coarsened from the mesh Mn produced by the first three steps.
Then for any integer 1 ≤ m ≤ N , there exists a constant C depending only on
the minimum angles of Mn, n = 1, 2, . . . ,m, and the coefficient a(x) such that the
estimate

1
2
‖ um − UmH ‖2L2(Ω) +

m∑
n=1

∫ tn

tn−1
|||u − UnH |||2Ω dt(3.9)

≤ ‖ u0 − U0
h ‖2L2(Ω) +

tm

T
TOLtime + C

tm

T
TOLspace + C ĈmH

tm

T
TOLcoarse

holds, where ĈmH = max{h2
K/τn : K ∈ Mn

H , n = 1, 2, . . . ,m}.
Proof. Let Unh be the solution of the discrete problem (2.2) over the meshMn and
with the time-step size τn. Then upon the termination of Algorithm 3.2 we have
that

ηntime ≤
TOLtime

2T
,

1
τn

∫ tn

tn−1
‖ f − f̄n ‖L2(Ω) dt ≤

1
2T
√
TOLtime, ηnspace ≤

TOLspace
T

.
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From (2.2) we know that for any ϕ ∈ H1
0 (Ω)〈UnH − Un−1

h

τn
, ϕ
〉

+ 〈a∇UnH ,∇ϕ〉(3.10)

=
〈UnH − Unh

τn
, ϕ
〉

+ 〈a∇(UnH − Unh ),∇ϕ〉

− 〈Rn, ϕ〉+ 〈a∇Unh ,∇ϕ〉+ 〈f̄n, ϕ〉.
SinceMn

H is a coarsening ofMn, by the Galerkin orthogonal relation, as in Theo-
rem 3.1, we have〈UnH − Unh

τn
, vH

〉
+ 〈a∇(UnH − Unh ),∇vH〉 = 0 ∀vH ∈ V n,H0 .

On the other hand, since Unh is the discrete solution over mesh Mn, we have

−〈Rn, v〉+ 〈a∇Unh ,∇v〉 = 0 ∀v ∈ V n0 .
Thus from (2.1) and (3.10) we deduce that for a.e. t ∈ (tn−1, tn] and for any
ϕ ∈ H1

0 (Ω), vH ∈ V n,H0 , v ∈ V n0 ,〈∂(u− UH)
∂t

, ϕ
〉

+ 〈a∇(u − UnH),∇ϕ〉

= 〈Rn, ϕ− v〉 − 〈a∇Unh ,∇(ϕ− v)〉+ 〈f − f̄n, ϕ〉

−
〈UnH − Unh

τn
, ϕ− vH

〉
− 〈a∇(UnH − Unh ),∇(ϕ− vH)〉,

where for any t ∈ (tn−1, tn], UH(t) = l(t)UnH + (1 − l(t))Un−1
h with l(t) =

(t − tn−1)/τn. By taking vH = Πn
Hϕ ∈ V n,H0 , the Clément interpolation of

ϕ ∈ H1
0 (Ω) in V n,H0 , we get, after using the estimate (2.5) for the Clément in-

terpolant, that∣∣∣〈UnH − Unh
τn

, ϕ−Πn
Hϕ
〉

+ 〈a∇(UnH − Unh ),∇(ϕ −Πn
Hϕ)〉

∣∣∣
≤ C

( ∑
K∈Mn

H

h2
Kτ
−2
n ‖UnH − Unh ‖2L2(K) + |||UnH − Unh |||2Ω

)1/2

|||ϕ|||Ω

≤ C(ĈmH )1/2‖UnH − Unh ‖τn,Ω|||ϕ|||Ω.
Again, since Mn

H is a coarsening of Mn, from the proof of Theorem 3.1 and Step
4 in Algorithm 3.2 we know that

‖UnH − Unh ‖τn,Ω ≤ ‖ InHUnh − Unh ‖τn,Ω ≤ (ηncoarse)1/2 ≤
√

TOLcoarse
T

,

which yields∣∣∣〈UnH − Unh
τn

, ϕ−Πn
Hϕ
〉

+ 〈a∇(UnH − Unh ),∇(ϕ −Πn
Hϕ)〉

∣∣∣ ≤ C
√
ĈmH TOLcoarse

T
|||ϕ|||Ω.

The rest of the proof is similar to that of Theorem 2.1. Here we omit the details. �

In practical computations, it is natural to choose the coarsening tolerance
TOLcoarse much smaller than the space tolerance TOLspace. However, the additional
factor ĈmH in estimate (3.9) suggests that the ratio between the coarsening tolerance
and the time tolerance should also be small; see Remark 4.7.
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4. Termination of the adaptive algorithm

The goal of this section is to show that for any given tolerances TOLtime, TOLspace
and TOLcoarse, Algorithm 3.2 will terminate in a finite number of steps. This is a
non-standard result in finite element theory for parabolic problems as it does not
require the underlying finite element mesh size and the time-step size tends to zero.
Since the algorithm only coarsens the mesh once in Step 4, we need only consider
the termination of the refinements in the first three steps.

Let τn,k andMn,k be the time-step size and mesh at the k-th iteration produced
by the first three steps in the algorithm. The associated finite element space and
discrete solution are denoted by V n,k and Un,kh , respectively. Let tn,k = tn−1 +τn,k.
Throughout this section we will use the notation that φn,k = φ(x, tn,k) if φ is

continuous in (tn−1, tn] and φ̄n,k = 1
τn,k

∫ tn,k
tn−1 φ(x, t) dt if φ ∈ L2(tn−1, tn,k;L2(Ω)).

By (1.2) we know that Un,kh ∈ V n,k0 = V n,k ∩H1
0 (Ω) satisfies〈Un,kh − Un−1

h

τn,k
, v
〉

+ 〈a∇Un,kh ,∇v〉 = 〈f̄n,k, v〉 ∀v ∈ V n,k0 .(4.1)

From Algorithm 3.2 we know that Mn,0 =Mn−1, τn,0 = τn−1 and

Mn,k is a refinement of Mn,k−1, τn,k = δ1τn,k−1 or τn,k = τn,k−1 ∀k ≥ 1.

4.1. Termination of time-step size refinements. Our first objective is to show
that the iteration to find the time-step size in Algorithm 3.2 can be terminated in
a finite number of steps. To begin with, we recall the following result.

Lemma 4.1. Assume that f ∈ L2(0, T ;L2(Ω)) and w0 ∈ H1
0 (Ω). Let w be the

solution of the linear parabolic problem

∂w

∂t
− div(a(x)∇w) = f in Ω× (0, T ),

w = 0 on Γ× (0, T ), w(x, 0) = w0(x) in Ω.
(4.2)

Let w̄(x, t) = 1
t

∫ t
0 w(x, s)ds. Then we have

1
t
‖w(t)− w0 ‖2L2(Ω) + |||w̄(t)− w0|||2Ω → 0 as t→ 0.

Proof. Since w0 ∈ H1
0 (Ω), it is well known that ∂tw ∈ L2(0, T ;L2(Ω)) and w ∈

L∞(0, T ;H1
0 (Ω)). Thus

1
t
‖ w̄(t)− w0 ‖2L2(Ω) +

1
t
‖w(t) − w0 ‖2L2(Ω)(4.3)

≤ 2
∫ t

0

‖ ∂tw ‖2L2(Ω)ds→ 0 as t→ 0.

Multiplying (4.2) by ∂tw and integrating over Ω× (0, t), we get∫ t

0

∥∥∥ ∂w
∂t

∥∥∥2

L2(Ω)
dt+

1
2
|||w(t)|||2Ω −

1
2
|||w0|||2Ω =

∫ t

0

〈
f,
∂w

∂t

〉
ds.

By letting t → 0 in the equality above, we know that |||w(t)|||Ω → |||w0|||Ω and thus
|||w̄(t)|||Ω → |||w0|||Ω as t→ 0. Now we integrate (4.2) in time from 0 to t to obtain〈w(t) − w0

t
, ϕ
〉

+ 〈a∇w̄(t),∇ϕ〉 = 〈f̄(t), ϕ〉 ∀ϕ ∈ H1
0 (Ω).(4.4)
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By (4.3), we have

1
t
〈w(t) − w0, w̄(t)− w0〉 → 0 and 〈f̄(t), w̄(t)− w0〉 → 0 as t→ 0.

Thus, by taking ϕ = w̄ − w0 in (4.4) and letting t→ 0, we get

lim
t→0

(1
2
|||w̄(t)|||2Ω −

1
2
|||w0|||2Ω +

1
2
|||w̄(t)− w0|||2Ω

)
= 0,

which yields |||w̄(t) − w0|||Ω → 0 since |||w̄(t)|||Ω → |||w0|||Ω as t → 0. This completes
the proof. �

Lemma 4.2. Assume f ∈ L∞(0, T ;L2(Ω)) and ∂tf ∈ L∞(0, T ;L2(Ω)). Then
there exists an integer L ≥ 1 depending only on the discrete solution Un−1

h at time
tn−1, the mesh Mn,0 =Mn−1, the source function f , and the coefficient a(x) such
that τn,k = τn,L for any k ≥ L; that is, at each time step, the algorithm to determine
the time-step size can be terminated in a finite number of steps.

Proof. Since ∂tf ∈ L∞(0, T ;L2(Ω)), we have

1
τn,k

∫ tn,k

tn−1
‖ f − f̄n,k ‖L2(Ω)dt ≤ τn,k sup

0≤t≤T

∥∥∥ ∂f
∂t

∥∥∥
L2(Ω)

.

Thus for sufficiently small τn,k, e.g.,

τn,k ≤
1

2T
√
TOLtime

(
sup

0≤t≤T

∥∥∥ ∂f
∂t

∥∥∥
L2(Ω)

)−1

,

the second inequality in (3.2) can be fulfilled. It remains to check the first inequality
in (3.2). Let ψ be the solution of the parabolic problem

∂ψ

∂t
− div(a(x)∇ψ) = f in Ω× (tn−1, T ),

ψ = 0 on Γ× (tn−1, T ), ψ(x, tn−1) = Un−1
h (x) on Ω.

Integrating the equation above in time from tn−1 to tn−1 + τn,k, we know that〈ψn,k − Un−1
h

τn,k
, ϕ
〉

+ 〈a∇ψ̄n,k,∇ϕ〉 = 〈f̄n,k, ϕ〉 ∀ϕ ∈ H1
0 (Ω).(4.5)

From Lemma 4.1 we have that for ε =
√

3TOLtime/2T , there exists a constant τ > 0
such that as long as τn,k ≤ τ , we have( 1

τn,k
‖ψn,k − Un−1

h ‖2L2(Ω) + |||ψ̄n,k − Un−1
h |||2Ω

)1/2

≤ ε

3
.(4.6)

Now for any given τn,k > 0, let Ûn,kh ∈ V n,00 be the solution of the problem〈 Ûn,kh − Un−1
h

τn,k
, v
〉

+ 〈a∇Ûn,kh ,∇v〉 = 〈f̄n,k, v〉 ∀v ∈ V n,00 .(4.7)

SinceMn,k is a refinement ofMn,0, we have Un,kh − Ûn,kh ∈ V n,k0 . Subtracting (4.5)
from (4.1) and taking the test function as Un,kh − Ûn,kh , we then have〈ψn,k − Un,kh

τn,k
, Un,kh − Ûn,kh

〉
+ 〈a∇(ψ̄n,k − Un,kh ),∇(Un,kh − Ûn,kh )〉 = 0.
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Using the identity (a− c)2 = (a− b)2− (b− c)2 + 2(a− c)(b− c) for any a, b, c ∈ R,
we obtain

1
τn,k
‖ψn,k − Un,kh ‖2L2(Ω) + |||ψ̄n,k − Un,kh |||

2
Ω(4.8)

=
1
τn,k
‖ψn,k − Ûn,kh ‖2L2(Ω) + |||ψ̄n,k − Ûn,kh |||2Ω

− 1
τn,k
‖ Ûn,kh − Un,kh ‖2L2(Ω) − |||Û

n,k
h − Un,kh |||

2
Ω

≤ 1
τn,k
‖ψn,k − Ûn,kh ‖2L2(Ω) + |||ψ̄n,k − Ûn,kh |||2Ω.

But, by the triangle inequality and (4.6), we have, for τn,k ≤ τ ,( 1
τn,k
‖ψn,k − Ûn,kh ‖2L2(Ω) + |||ψ̄n,k − Ûn,kh |||2Ω

)1/2

(4.9)

≤
( 1
τn,k
‖ψn,k − Un−1

h ‖2L2(Ω) + |||ψ̄n,k − Un−1
h |||2Ω

)1/2

+
( 1
τn,k
‖ Ûn,kh − Un−1

h ‖2L2(Ω) + |||Ûn,kh − Un−1
h |||2Ω

)1/2

≤ ε

3
+
( 1
τn,k
‖ Ûn,kh − Un−1

h ‖2L2(Ω) + |||Ûn,kh − Un−1
h |||2Ω

)1/2

.

Thus, combining (4.6), (4.8) and (4.9) and using the triangle inequality, we have,
for τn,k ≤ τ ,

|||Un,kh − Un−1
h |||Ω(4.10)

≤ |||Un,kh − ψ̄n,k|||Ω + |||ψ̄n,k − Un−1
h |||Ω

≤ 2
3
ε +

( 1
τn,k
‖ Ûn,kh − Un−1

h ‖2L2(Ω) + |||Ûn,kh − Un−1
h |||2Ω

)1/2

.

It remains to estimate the error Ûn,kh − Un−1
h . From (4.7) we know that, for any

v ∈ V n,00 ,〈 Ûn,kh − Un−1
h

τn,k
, v
〉

+ 〈a∇(Ûn,kh − Un−1
h ),∇v〉 = 〈f̄n,k, v〉 − 〈a∇Un−1

h ,∇v〉.

Since Un−1
h ∈ V n−1

0 = V n,00 , we can take v = Ûn,kh − Un−1
h ∈ V n,00 in the identity

above and obtain

1
τn,k
‖ Ûn,kh − Un−1

h ‖2L2(Ω) + |||Ûn,kh − Un−1
h |||2Ω(4.11)

= 〈f̄n,k, Ûn,kh − Un−1
h 〉 − 〈a∇Un−1

h ,∇(Ûn,kh − Un−1
h )〉.

By the Cauchy-Schwarz inequality we have

〈f̄n,k, Ûn,kh − Un−1
h 〉 ≤ ‖ f̄n,k ‖L2(Ω)‖ Ûn,kh − Un−1

h ‖L2(Ω)

≤ 1
4τn,k

‖ Ûn,kh − Un−1
h ‖2L2(Ω) + τn,k‖ f̄n,k ‖2L2(Ω).
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By the inverse estimate, we get

〈a∇Un−1
h ,∇(Ûn,kh − Un−1

h )〉
≤

∑
K∈Mn,0

C̄h−1
K ‖ a∇U

n−1
h ‖L2(K)‖ Ûn,kh − Un−1

h ‖L2(K)

≤ 1
4τn,k

‖ Ûn,kh − Un−1
h ‖2L2(Ω) + τn,kC̄

2
∑

K∈Mn,0

h−2
K ‖ a∇Un−1

h ‖2L2(K),

where C̄ is a constant depending on the minimum angle ofMn,0. Substituting the
estimates above into (4.11), we finally get

1
2τn,k

‖ Ûn,kh − Un−1
h ‖2L2(Ω) + |||Ûn,kh − Un−1

h |||2Ω(4.12)

≤ τn,k

(
‖ f ‖2L∞(0,T ;L2(Ω)) + C̄2

∑
K∈Mn,0

h−2
K ‖ a∇U

n−1
h ‖2L2(K)

)
=: τn,k∆n.

The quantity ∆n depends only on Mn,0, Un−1
h , f(x, t), and a(x), which are fixed

through the adaptive procedure at the n-th time step. Thus, for sufficiently small
τn,k (e.g., τn,k ≤ ε2/(18∆n)), we get

1
τn,k
‖ Ûn,kh − Un−1

h ‖2L2(Ω) + |||Ûn,kh − Un−1
h |||2Ω ≤ 2τn,k∆n ≤

1
9
ε2.(4.13)

Substituting (4.13) into (4.10), we finally get that if τn,k ≤ min(τ, ε2/(18∆n)), then

ηn,ktime =
1
3
|||Un,kh − Un−1

h |||2Ω ≤
1
3
ε2 =

TOLtime
2T

.

This completes the proof. �

To conclude this subsection, we remark that the condition ∂tf ∈ L∞(0, T ;L2(Ω))
can be weakened. In fact, Lemma 4.2 holds if f is piecewise smooth in time: f has
jumps at 0 < T1 < T2 < · · · < TI−1 < T and ∂tf ∈ L∞(Ti−1, Ti;L2(Ω)). Here
T0 = 0 and TI = T . In this case, we require additionally that Ti, i = 1, 2 . . . , I
are the nodes of the time discretization; that is, Ti = tni for some ni, where
tn, n = 0, . . . , N , is the partition of the time interval [0, T ].

4.2. Termination of space mesh refinements. Now we turn to the finite step
termination of mesh refinements. By Lemma 4.2 we can, without loss of generality,
fix the time-step size τn,k = τn,L. In the following we will write τn,k = τn. Let
Ĉn,k = max{h2

K/τn : K ∈ Mn,k}. Note that Ĉn,k+1 ≤ Ĉn,k if Mn,k+1 is a
refinement ofMn,k. Thus there exists a constant C̃n which is fixed in the procedure
for doing mesh refinements such that

Ĉn,k ≤ C̃n ∀k ≥ L.(4.14)

To begin with, we first introduce the following refinement strategy by Morin, No-
chetto and Siebert [15] for linear elliptic problems. This strategy is an improvement
of the Guaranteed Convergence Strategy of Dörfler [11].

MNS Refinement Strategy. Given two parameters 0 < θ, θ̂ < 1, mesh Mn,k,
and solution Un,kh ∈ V n,k0 over the mesh Mn,k,
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1. Select a subset B̂n,k of sides in Bn,k such that( ∑
e∈B̂n,k

ηn,ke

)1/2

≥ θ
( ∑
e∈Bn,k

ηn,ke

)1/2

.

2. Let M̂n,k be the set of elements with one side in B̂n,k. Enlarge M̂n,k such
that

osc(Rn,k,M̂n,k) ≥ θ̂ osc(Rn,k,Mn,k).

3. Refine every element in M̂n,k in such a way that a node is created in the
interior of the element.

Here Bn,k is the collection of all interior interelement sides, ηn,ke is the local space
error indicator associated with e ∈ Bn,k

ηn,ke =
1
2

∑
K∈Ωe

h2
K‖Rn,k ‖2L2(K) + he‖ Jn,ke ‖2L2(e)

with Rn,k = f̄n− (Un,kh −Un−1
h )/τn, Jn,ke = [[a∇Un,kh ]]e ·νe, and Ωe is the collection

of two elements sharing e as a common side. The oscillations osc(Rn,k,M̂n,k) and
osc(Rn,k,Mn,k) are defined as in (1.5). For a discussion on the choices of the
parameters θ, θ̂ and their influence on the performance of adaptive methods, we
refer to [6]. Usually, a smaller θ leads to better performance.

The starting point of the analysis is the following orthogonality result whose
proof is similar to that of (3.7) in Theorem 3.1.

Lemma 4.3. If Mn,k+1 is a refinement of Mn,k such that V n,k ⊂ V n,k+1, then
the relation

‖Un∗ − U
n,k+1
h ‖2τn,Ω = ‖Un∗ − U

n,k
h ‖2τn,Ω − ‖U

n,k
h − Un,k+1

h ‖2τn,Ω
holds. Here ‖ · ‖τn,Ω is defined in (1.7).

For any K ∈ Mn,k and ϕ ∈ L2(Ω), define PKϕ = 1
|K|
∫
K ϕdx. The following

lemma can be proved exactly as in [15, Lemma 4.2] by using a similar idea as in
the proof of Theorem 2.2. Here we omit the details.

Lemma 4.4. Let Mn,k+1 be a refinement of Mn,k according to the MNS Refine-
ment Strategy. Then there exist constants C4, C5 > 0, depending only on the min-
imum angle of Mn,k and on the coefficient a(x) such that, for all e ∈ B̂n,k, we
have

ηn,ke ≤ C4Ĉn,k
∑
K∈Ωe

‖Un,k+1
h − Un,kh ‖2τn,K + C5

∑
K∈Ωe

h2
K‖Rn,k − PKRn,k ‖2L2(K),

where Ĉn,k is defined at the beginning of this subsection.

Now since Un,kh ∈ V n,k0 is the solution of the discrete problem〈Un,kh − Un−1
h

τn
, v
〉

+ 〈a∇Un,kh ,∇v〉 = 〈f̄n, v〉 ∀v ∈ V n,k0 ,

which is an approximation of equation (1.4), we deduce by the standard a posteriori
error analysis that there exists a constant C1 > 0 such that

‖Un∗ − U
n,k
h ‖2τn,Ω ≤ C1

∑
e∈Bn,k

ηn,ke .
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From Step 1 in the MNS Refinement Strategy, we know that

θ2‖Un∗ − U
n,k
h ‖2τn,Ω ≤ θ

2C1

∑
e∈Bn,k

ηn,ke ≤ C1

∑
e∈B̂n,k

ηn,ke ,

which yields, upon using Lemma 4.4 and (4.14),

θ2‖Un∗ − U
n,k
h ‖2τn,Ω ≤ 2C1C4C̃n‖Un,k+1

h − Un,kh ‖2τn,Ω(4.15)

+ 2C1C5 osc(Rn,k,Mn,k)2.

Let γ ∈ (0, 1) be the reduction factor of element size associated with one refinement
step. Given θ̂ ∈ (0, 1), let α̂ = (1− (1− γ2)θ̂2)1/2 < 1. Then by Step 2 in the MNS
Refinement Strategy we obtain, as in [15, Lemma 3.8], that

osc(Rn,k,Mn,k+1) ≤ α̂ osc(Rn,k,Mn,k).(4.16)

On the other hand, since

Rn,k+1 = f̄n − Un,k+1
h − Un−1

h

τn
= Rn,k − Un,k+1

h − Un,kh

τn
,

we deduce from Young’s inequality and (4.16) that

osc(Rn,k+1,Mn,k+1)2(4.17)

≤ (1 + δ) osc(Rn,k,Mn,k+1)2 + (1 + δ−1) osc
(Un,k+1

h − Un,kh

τn
,Mn,k+1

)2

≤ α̂2(1 + δ) osc(Rn,k,Mn,k)2 + (1 + δ−1) osc
(Un,k+1

h − Un,kh

τn
,Mn,k+1

)2

,

where δ > 0 is some constant such that α̂2(1 + δ) < 1.

Lemma 4.5. Set ζ1 = α̂2(1 + δ) < 1 and ζ2 = (1 + δ−1)C̃n. Let α, β ∈ (0, 1) be
the constants defined by

β = 1− 2
2 + (1 − ζ1)(1 + δ−1)−1C4C

−1
5

, α =
(

1− θ2β

2C1C4C̃n

)1/2

.

Then ifMn,k+1 is a refinement ofMn,k according to the MNS Refinement Strategy,
the following estimate is valid:

‖Un∗ − U
n,k+1
h ‖2τn,Ω + (1− β)ζ−1

2 osc(Rn,k+1,Mn,k+1)2

≤ max(α2,
1
2

(1 + ζ1))
(
‖Un∗ − U

n,k
h ‖2τn,Ω + (1− β)ζ−1

2 osc(Rn,k,Mn,k)2
)
.

Proof. First we note that

osc
(Un,k+1

h − Un,kh

τn
,Mn,k+1

)2

=
∑

K∈Mn,k+1

h2
Kτ
−2
n ‖ (Un,k+1

h − Un,kh )− PK(Un,k+1
h − Un,kh ) ‖2L2(K)

≤ Ĉn,k+1

∑
K∈Mn,k+1

τ−1
n ‖U

n,k+1
h − Un,kh ‖2L2(K)

≤ C̃nτ
−1
n ‖U

n,k+1
h − Un,kh ‖2L2(Ω)

≤ C̃n‖Un,k+1
h − Un,kh ‖2τn,Ω.
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Thus, by (4.17) we get

osc(Rn,k+1,Mn,k+1)2 ≤ ζ1 osc(Rn,k,Mn,k)2 + ζ2‖Un,k+1
h − Un,kh ‖2τn,Ω.(4.18)

From (4.15) we obtain

‖Un,k+1
h − Un,kh ‖2τn,Ω ≥

θ2

2C1C4C̃n
‖Un∗ − U

n,k
h ‖2τn,Ω −

C5

C4C̃n
osc(Rn,k,Mn,k)2,

which, together with Lemma 4.3, yields

‖Un∗ − U
n,k+1
h ‖2τn,Ω

= ‖Un∗ − U
n,k
h ‖2τn,Ω

− β‖Un,k+1
h − Un,kh ‖2τn,Ω − (1− β)‖Un,k+1

h − Un,kh ‖2τn,Ω
≤ α2‖Un∗ − U

n,k
h ‖2τn,Ω

+ β
C5

C4C̃n
osc(Rn,k,Mn,k)2 − (1− β)‖Un,k+1

h − Un,kh ‖2τn,Ω.

Multiplying (4.18) by ζ−1
2 (1 − β) and adding it to the estimate above, we get

‖Un∗ − U
n,k+1
h ‖2τn,Ω + (1− β)ζ−1

2 osc(Rn,k+1,Mn,k+1)2

≤ α2‖Un∗ − U
n,k
h ‖2τn,Ω + (βC5C

−1
4 C̃−1

n + (1− β)ζ1ζ−1
2 ) osc(Rn,k,Mn,k)2

≤ max(α2, µ)
(
‖Un∗ − U

n,k
h ‖2τn,Ω + (1− β)ζ−1

2 osc(Rn,k,Mn,k)2
)
,

where

µ =
βC5C

−1
4 C̃−1

n + (1− β)ζ1ζ−1
2

(1− β)ζ−1
2

= ζ1 +
β

1− β (1 + δ−1)C5C
−1
4 .

This completes the proof by observing that β
1−β = 1

2 (1− ζ1)(1 + δ−1)−1C4C
−1
5 . �

Now by the lower bound (2.10) proved in §2.2 and using (4.14), we know that

ηn,k+1
space ≤ 2C2Ĉn,k+1‖Un∗ − U

n,k+1
h ‖2τn,Ω + 2C3 osc(Rn,k+1,Mn,k+1)2

≤ 2C2C̃n‖Un∗ − U
n,k+1
h ‖2τn,Ω + 2C3 osc(Rn,k+1,Mn,k+1)2.

Since α2 < 1 and 1
2 (1 + ζ1) < 1, we conclude from Lemma 4.5 that

lim
k→∞

‖Un∗ − U
n,k
h ‖τn,Ω = 0, lim

k→∞
osc(Rn,k,Mn,k) = 0.

Thus ηn,kspace → 0 as k → ∞. This together with Lemma 4.2 implies the following
theorem, which is the main result of this section.

Theorem 4.6. Assume that f ∈ L∞(0, T ;L2(Ω)) and ∂tf ∈ L∞(0, T ;L2(Ω)).
Then, at each time step n ≥ 1, if the MNS Refinement Strategy is used in doing
mesh refinements, Algorithm 3.2 will stop in a finite number of steps for any given
tolerances TOLtime, TOLspace and TOLcoarse.

Remark 4.7. The following observation, which is made to us by the referee of the
paper, points out an important consequence of the analysis in this section on the
choice of the coarsening tolerance and the time tolerance. If the exact solution has a
positive energy and is within a good tolerance from the approximate solution, then
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‖ a∇Un−1
h ‖2L2(Ω) ≥ c0 for some positive constant c0. It follows from the definition

of ∆n in (4.12) that

∆n ≥
c0C̄

2

h2
n,0

, where hn,0 = max
K∈Mn,0

hK .

This yields, from the proof of Lemma 4.2, that

τn = τn,L ≤
ε2

18∆n
≤

ε2h2
n,0

18c0C̄2
≤

h2
n,0

c0C̄2T
TOLtime.

On the other hand, according to the definition of Ĉn,0 at the beginning of §4.2, we
have

h2
n,0 ≤ Ĉn−1τn−1.

This implies that the constant ĈmH in Theorem 3.2 satisfies

ĈmH = max
n≤m+1

Ĉn−1 ≥
c0C̄

2T

TOLtime
max
n≤m+1

τn
τn−1

≥ c0C̄
2T

TOLtime
,(4.19)

whenever maxn≤m+1 (τn/τn−1) ≥ 1. Notice that if the global algorithm is ever to
terminate, that is, to reach time T with the estimated error below the prescribed
tolerances, then it is necessary that max (τn/τn−1) ≥ 1. A comparison of (4.19)
with estimate (3.9) implies that the ratio between the coarsening tolerance and the
time tolerance has to be small. In other words, a small time tolerance puts a severe
restriction on the coarsening tolerance if the overall error has to be small.

We also remark that Theorem 4.6 states that Algorithm 3.2 can be terminated
in a finite number of iteration steps at any time step tn starting from any given
solution Un−1

h at tn−1. Whether the adaptive algorithm can reach the final time
T is an open question which is not addressed in this paper and requires further
research.

5. Numerical experiment

The implementation of Algorithm 3.2 is based on a 2D adaptive finite element
solver for elliptic problems developed by Shibin Dai. The MNS Refinement Strategy
is implemented as in [15, Algorithm 5.1]. We use the method indicated in Figure 1
to refine a marked element which creates an interior node.

Now we turn to the algorithm for mesh coarsening in Step 4 in Algorithm 3.2.
Let K be some element which is obtained by dividing some parent element K̂ into
two elements using the bisection algorithm. Denote by ê the edge of K̂ which is
divided, and K̂ ′ the neighboring macro-element sharing the common edge ê with
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Figure 1. Refinement of a marked triangle which generates an
interior node
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K̂. We define the patch of elements P(K) associated with K as the collection of
all subelements included in K̂ and K̂ ′. We note that if K is marked for coarsening,
then all elements in P(K) must also be marked for coarsening. For n ≥ 1, we let
Mn be the mesh obtained after doing the first three steps in Algorithm 3.2 which
now is ready for possible coarsening, and Unh be the corresponding discrete solution.
The elements in Mn which are obtained by refining some element (possibly many
times) inMn,0 =Mn−1 are also not allowed for coarsening. All the elements inMn

which can be coarsened are called admissible coarsening elements. The collection of
all admissible coarsening elements is denoted by M̂n. For any K ∈ M̂n, we denote
by K̂ its parent element such that K is obtained by refining K̂ into two elements
using the bisection algorithm. Then for each K ∈ M̂n, we can compute the local
coarsening error indicator as follows:

ηncoarse,K =
1
τn
‖Unh − Ûnh ‖2L2(K) + |||Unh − Ûnh |||2K ,

where Ûnh is the linear function on K̂ whose values at the vertexes of K̂ are the
same as those of Unh . The guideline of the coarsening strategy is then to mark as
many elements K ∈ M̂n as possible so that∑

Kmarked

ηncoarse,K ≤
TOLcoarse

T

is satisfied. In a practical situation, it may happen that after all elements in M̂n

marked for coarsening have been coarsened, the coarsening error is still below the
tolerance; that is,

(5.1) ηn,1coarse =
1
τn
‖Unh − I

n,1
H Unh ‖2L2(Ω) + |||Unh − I

n,1
H Unh |||2Ω <

TOLcoarse
T

,

where M̂n,1
H is the mesh produced by coarsening all the elements inMn marked for

coarsening, and In,1H is the associated linear finite element interpolant over Mn,1
H .

If Mn
H is a further coarsening ofMn,1

H , then by the triangle inequality we have

‖Unh − InHUnh ‖τn,Ω ≤ ‖Unh − I
n,1
H Unh ‖τn,Ω + ‖ In,1H Unh − InHUnh ‖τn,Ω

= ‖Unh − I
n,1
H Unh ‖τn,Ω + ‖ In,1H Unh − InH(In,1H Unh ) ‖τn,Ω.

Thus in the case of (5.1) we can set Mn = Mn,1
H , Unh = In,1H Unh and start the

mesh coarsening iteration again. The algorithm to coarsen the mesh is terminated
when either ηncoarse ≤ TOLcoarse/T is violated or the marked coarsening set of Mn

is empty. The following algorithm provides one possible implementation of the
coarsening strategy.

Algorithm 5.1 (Mesh coarsening). Prescribe the tolerance TOLcoarse, the param-
eter ν ∈ (0, 1), the mesh Mn, and the solution Unh over the mesh Mn.

set σ1 = 0, σ2 = 0, γ = 0, ρ = TOLcoarse/4T
if σ2 < ρ do

form the set M̂n of admissible coarsening elements
compute ηncoarse,K for any K ∈ M̂n

ηmax = max{ηncoarse,K : K ∈ M̂n}
while γ ≤ 1 and ηmax > 0 do

γ = γ + ν
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for all K in M̂n do
if K is not marked for coarsening

if ηncoarse,K ≤ γηmax and K ′ ∈ M̂n for any K ′ ∈ P(K)
σ2 = σ2 +

∑
K′∈P(K) η

n
coarse,K′

if σ2 ≤ ρ
mark all elements in P(K) for coarsening

else
σ2 = σ2 −

∑
K′∈P(K) η

n
coarse,K′

end if
end if

end if
end for

end while
set σ1 = σ1 +

√
σ2, σ2 = 0

if ηmax = 0 do
mark all elements in M̂n for coarsening

end if
set Mn as the mesh obtained by coarsening all elements marked for coars-
ening
set Unh as the linear interpolant of Unh on the coarsened mesh
if the number of elements before and after the coarsening is the same

go to end
end if
ρ = max(0,

√
TOLcoarse/T − σ1)2

end if
if end

Now we report a numerical example computed by using Algorithm 3.2 with
the MNS Refinement Strategy and Algorithm 5.1. We take the parameters δ1 =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004
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0.008
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0.012
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time 

energy error 

Figure 2. The energy error at each time step when TOLspace = 0.01.
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Table 5.1. The number of time steps N , the average number of
nodes of the meshes av(Mn), the total estimated error η, the total
energy error E , and the effectiveness index eff for different values
of TOLspace.

TOLspace N av(Mn) η E eff

0.04 257 297 2.095E − 1 3.235E − 2 6.4740
0.01 512 786 1.057E − 1 1.671E − 2 6.3260

0.0025 1028 2736 5.300E − 2 8.470E − 3 6.2613
0.02 292 441 1.580E − 1 2.313E − 2 6.8326
0.005 587 1337 7.971E − 2 1.200E − 2 6.6421

0.00125 1175 4912 3.985E − 2 6.058E − 3 6.5784

0.5, δ2 = 2, θtime = 0.5 in Algorithm 3.2, θ = 0.2, θ̂ = 0.1 in the MNS Refinement
Strategy, and ν = 0.05 in Algorithm 5.1. We set Ω = (−1, 1)× (−1, 1) and T = 1.
The exact solution of the continuous problem is prescribed as

u(x, t) = β(t) ∗ e−[(x1−t+0.5)2+(x2−t+0.5)2]/0.04

with

β(t) = 0.1 ∗ (1− e−10000∗(t−0.5)2
).

We observe that β(t) drops exponentially around t = 0.5. The tolerances used are

TOLtime = TOLspace, TOLcoarse = 0.03 ∗ TOLspace.(5.2)

The effectiveness index eff of the a posteriori error estimate is defined as eff =
η/E , where E = (

∑N
n=1 τn|||un − Unh |||2Ω)1/2 is the total energy error and η is the

estimated error

η =
{ N∑
n=1

τn(ηnspace + ηntime + ηncoarse) + 2
( m∑
n=1

∫ tn

tn−1
‖ f − f̄n ‖L2(Ω)

)2}1/2

.
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Figure 3. The number of nodes ofMn and the time-step size τn
at each time step n when TOLspace = 0.01.
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Figure 4. Surface plots of discrete solutions (right) and the cor-
responding meshes (left) at time t = 0.01, 0.49, 0.998125 (from top
to bottom). The numbers of nodes of the meshes are 808, 459, 825
for t = 0.01, 0.49, 0.998125, respectively.

In Table 5.1 we report the number of time steps N , the average number of nodes
of the meshes av(Mn), the estimated error η, the total energy error E , and the
effectiveness index eff, when running the algorithm for different values of TOLspace.
Recall from Theorem 3.2 (neglecting the initial error) that E2 ≤ CTOLspace due to
Theorem 3.2 and (5.2). Thus by reducing the tolerance TOLspace by one-fourth we
are actually requiring the reduction of the total energy error E by half, which is
indeed observed in Table 5.1. Moreover, we observe that when the error E is reduced
by half, the number of time steps is increased by roughly twice, and the average
number of nodes of the meshes is increased less than fourth. Most interestingly,
the effectiveness indexes eff remain roughly constant in the computations.
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Now we show more computational results when TOLspace = 0.01. The energy
error |||un−Unh |||Ω at each time step n is depicted in Figure 2. The number of nodes
and the time-step size at each time step n are shown in Figure 3. We note that
the time-step size drops in a small time interval around t = 0.5 and is constant
away from this interval, which is not surprising as β(t) changes exponentially from
0.1 to 0 and then from 0 to 0.1 around t = 0.5, and away from t = 0.5, β ≈ 0.1
and the peak of the exact solution moves at constant speed and the shape of the
solution remains unchanged. This also explains why the energy errors and the
numbers of nodes of the meshes are smaller around t = 0.5 as the exact solution
u is smaller around t = 0.5. The surface plots of the computed solution and the
associated adaptive mesh at time t = 0.01, 0.49, 0.998125 are displayed in Figure
4 which clearly indicates the ability of Algorithm 3.2 to capture the singularity of
the solutions by locally refining and coarsening the meshes.
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