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Introduction

Contact analysis aims to calculate the contact area, divided into stick and
slip regions, as well as the contact tractions. Using discretisation methods
such as the finite element method discretisation errors are unavoidable.

In linear mechanics a couple of theories have been developed to es-
timate the discretisation error and to predict better meshes for improved
results [1, 2, 3, 4, 5]. One of the most accepted methods has been proposed
by ZIENKIEWICZ and ZHU [3]. But there are known problems to satisfy
the boundary conditions. And applications to nonlinear problems are not
reported until now.

Caused by these facts an improved error estimation method is proposed
taking the boundary traction error into account. This proceeding seems
to be natural because in engineering analysis the surface tractions are of
major interest. The first applications on nonlinear contact problems show
the advantage and the practicability of this method.

Theoretical Background

The finite element equations of static or a class of steady state problems in
nonlinear elasticity are formulated incrementally,

Ku = f© — £ | (1)
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where K is the tangential stiffness matrix, u the incremental displacement
and £ and £ are the external and internal forces, respectively. Addition-
ally, sets of constraint equations are formulated to satisfy contact conditions,
for example.

Our aim is now an a posteriori estimation of the discretisation error
and the prediction of an optimal mesh leading to an acceptable accuracy
with minimum numerical effort.

The Zienkiewicz/Zhu Error Estimation Method

The idea of error estimation proposed by Zienkiewicz and Zhu [3] is to
approximate the strain energy error in each element by

Hdizdt/AaTcﬂAadv 2)
$(B):

where
Ao =66-¢6 (3)

is the approximate error in stresses and C is the elasticity matrix. The stress
distribution & is computed from & = Cé = CBii and & is the projection
of & onto the nodal points calculated by a variational recovery strategy [6],

/HTHdv&= /HT&dv . (4)
#(B) (B)

& is C° continuous and gives a much better representation of the stress field
than &, it is interpreted as a least square fit of &.

The error estimator of an assemblage of m elements is computed by

llell = \lZ llell? - (5)

A problem independent relative strain energy error is calculated by

7755=H , where ||u|| = '/&TC-I&dv . (6)
¢(B)

An error indicator giving a measure of which elements have to be rebuilt to
reach a user defined precision 7, is defined as

G=-L  with 7, =2t (7)
Tm m
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Therefore, an element j should be refined when &; > 1.

An optimal mesh with respect to accuracy and computational effort
will be generated when for all elements ¢ ~ 1. For this task the necessary
element size can be calculated from

hi
&g

where p gives the polynomial order of the element description [6].

h = (8)

This method is physically simple and easily implemented into an ex-
isting finite element code. But there are some known disadvantages [4].
Espec1ally, there is no good representation of the boundary conditions by
6. This may lead to poor results of the adaptive refinement at the surface.
The method proposed in this paper will circumvent this lack. Based on an
estimation of the surface traction error it is the aim to refine (redefine) a
mesh so that the boundary conditions are fitted best.

Estimation of Surface Traction Error
Now an estimator of the surface traction error is constructed. It is stated

that the error in surface stress distribution is approximated in a L,-
(Tschebyscheff-) norm by

n
ek = [ 1t—%:|da and e = [lE=tlda = Ylec . (9)
8:4(B); 2:4(B) =1
where the calculation is restricted to the contact region 8,6(B) here. Then
lecl: physmally is 1nterpreted as the error of local contact forces. The contact
stress vector &, = & n, is calculated from the projected stress field and £,
is an approximation of the contact stress distribution calculated from the
equilibrium state [7],

/ HTHdat, =f . (10)
S.6(B)

The equivalent nodal forces f, may be interpreted as the equilibrium forces
in the contact region and are calculated from the right hand side of equation

(1.

Again a relative error is defined as

na= S ang g =S (1)
R Rl T E
The error indication measure is given by
£Ci = TZ_C' ) with ﬁn = 770‘_01 ) (12)
Tn n

where n is the number of elements in contact.
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Refinement Strategies

Two different methods to do the refinement have been studied. The available
preprocessing software has the abilities

1st to use the strain energy error indicators (eqn.(7)) as bases of remesh-
ing, and

2nd to prescribe the global element size in the interior and local element
sizes at all or parts of the boundary. Here the surface traction error
indicator (eqn.(12)) is used to predict the local element size at the
contact boundary.

In the case of nonlinear behavior the load is applied onto the initial
(starting) mesh during a couple of incremental load steps. Based on the
error estimation computed for this loading stage a new mesh is created.
The results from the initial calculation, e.g. displacement and stress field,
are mapped onto the adaptive refined meshes and thus only an additional
equilibrium iteration is necessary to get improved results. This strategy is
very eflicient because the whole nonlinear loading history is computed by
use of a rough model oeconomically, and the interesting results are corrected
with an adaptive rebuilt mesh.

Numerical Examples

Hertzian Contact
Hertzian Contact is of nonlinear nature because neither the contact area
nor the pressure distribution is known a priori.

Fig. 1 shows the model used to calculate the contact of an elastic circu-
lar disc with a rigid plane surface, or an identical counterpart. With respect
to symmetry only a quarter of the disc has been dicretized.

The refinement based on the strain energy error indication takes some
iterations to reach the wanted accuracy. Fig. 2 shows the convergence behav-
ior of both the strain energy error and the contact traction error depending
of the number of degrees of freedom (NDOF). In the first step the contact
traction error is decreased to 7. = 3% but the strain energy error is not
decreased as regarded. So it takes two more iterations to get an optimal
mesh where both errors are nearly of the same order and below 7;,; = 5%.

A similar result can be reached by following the 2nd procedure in one
single step. By prescribing a global element size averaged from eqn. (8)
and local element length in the contact region predicted from eqn. (12)
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Figure 1: Initial and Improved Mesh for Hertzian Contact Analysis

the mesh plotted in fig. 1 (right) is
generated. It leads to sufficient re-
sults shown as * and + in fig. 2.

The normalized pressure distri-
bution compared with the analyti-
cal solution is plotted in fig. 3. The
slight difference between Hertzian
solution and finite element results is
caused by geometrical nonlinearity.

Fig. 4 shows the surface trac-
tion error indication in the contact
region. It is shown that the contact
edges, which are of great interest
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Figure 2: Convergence Behavior of
Different Adaptive Methods

in contact analysis by use of discretisation methods, are detected very good.
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Figure 4: Surface Traction Error
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Steadily Breaked Roller

To proof the capability of the surface traction error estimation to indicate
the boundary between sliding and sticking part of the contact area a steadily
breaked roller has been analysed. For the formulation of steady state rolling
within finite element calculations it is referred to [8].

The roller consists of an elastic bond fixed on a rigid core. It is rolling
with constant angular frequency 2 on a rigid plane surface and loaded with
constant normal force P and breaking moment M so that partial slip occurs.

Left in Fig. 5 the initial finite element model is shown. At the final
loading state the estimated errors are calculated as nsg = 10% and nc =
7.1%. The predicted mesh by applying the 2nd method is plotted right in
fig. 5. The errors have been decreased to nsg = 5% and nc = 5%.
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Figure 6: Shear Stress Distribution  Figure 7: Surface Traction Error
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The corresponding shear stress distributions are plotted in fig. 6. The
improvements near the contact edges and the sticking/sliding edge are ob-
vious.

Fig. 7 shows the contact error indication. It is evident that the bound-
aries and the sticking/sliding edge are indicated clearly. At these points
local refinement is necessary to get more accurate results.

Conclusions

Motivated by the known disadvantage of the Zienkiewicz/Zhu method in
representing the surface stress state a new error estimation method has
been proposed. Based on an approximation of the surface traction error the
local element size at parts of the boundary is predicted to get results within
a user defined precision and a minimum of computational effort. It has been
shown that this method is capable to indicate contact boundaries and the
edges between sticking and sliding zones as well as singularities in contact
stress distributions.

By using this surface traction error estimation an efficient strategy for
the analysis of nonlinear problems has been worked out. At first, the loading
point is calculated by the use of a coarse mesh, then based on the error
estimation the mesh is rebuilt and the results are mapped from the coarse
mesh to the fine one. Thus, only an equilibrium iteration is necessary to get
improved results with regarded accuracy.

One major disadvantage of the Zienkiewics/Zhu method has been re-
moved, the poor representation of the surface tractions. Therefore, the pro-
posed method may be applied to any other problems and for all boundaries
with prescribed tractions and displacements or only parts of them, e.g. sharp
corners, and will lead to more accurate results than the original one.

In engineering calculations we are mainly interested in stresses near
the boundary, e.g. in contact analysis, because failure starts at the surface,
usually. So it is essential to calculate results accurately at the boundary
but not in the interior. The adaptive meshing based on the surface traction
error is the best known method to succed this task.

No mathematical proof of asymptotic exactitude has been performed
until now. This might be an interesting topic of future work. But even the
physically distinction caused us to adapt this method to linear and nonlinear
problems as well. The first practical experience shows the advance with
respect to practicability and accuracy.
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