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An Adaptive Fusion Strategy for Distributed

Information Estimation Over Cooperative

Multi-Agent Networks
Daxin Tian, Senior Member, IEEE, Jianshan Zhou, and Zhengguo Sheng

Abstract—In this paper, we study the problem of distributed
information estimation that is closely relevant to some network-
based applications such as distributed surveillance, cooperative
localization and optimization. We consider a problem where
an application area containing multiple information sources of
interest is divided into a series of subregions in which only one
information source exists. The information is presented as a
signal variable which has finite states associated with certain
probabilities. The probability distribution of information states
of all the subregions constitutes a global information picture for
the whole area. Agents with limited measurement and communi-
cation ranges are assumed to monitor the area, and cooperatively
create a local estimate of the global information. To efficiently ap-
proximate the actual global information using individual agents’
own estimates, we propose an adaptive distributed information
fusion strategy and use it to enhance the local Bayesian rule based
updating procedure. Specifically, this adaptive fusion strategy is
induced by iteratively minimizing a Jensen-Shannon divergence
based objective function. A constrained optimization model is also
presented to derive minimum Jensen-Shannon divergence weights
at each agent for fusing local neighbors’ individual estimates.
Theoretical analysis and numerical results are supplemented
to show the convergence performance and effectiveness of the
proposed solution.

Index Terms—Cooperative information estimation, adaptive
distributed fusion, nonlinear constrained optimization, multi-
agent networks, Jensen-Shannon divergence

I. INTRODUCTION

NETWORK-TYPE systems are general in both nature

(such as fish schools, ants and honeybee swarms) and

engineering (such as unmanned aerial vehicles, mobile robots,

and other wireless sensor networks). In these systems, infor-

mation estimation and fusion over multi-agent networks is

of great significance, which can support individual agents to

achieve some common tasks in a distributed manner such as

environmental monitoring, global localization, self-defending

or attacking invaders, etc. However, some challenges exist

to be dealt with for practically realizing highly-scalable in-

formation estimation and fusion paradigms such as limited

individual detection and interaction, lack of centralized con-

trol, and dynamic and noisy nature of measurements obtained
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by every agent. In some application scenarios relevant to

object detection or target locating, the goal of an information

estimation model is to estimate the actual probability that

a certain target is present in a given closed region. The

probability of a target existence within a given surveillance

region is usually assumed to follow the Bernoulli distribution

and all of the probabilities corresponding to different regions

constitute a so-called probability map [1]–[3]. The estimation

of the individual probability map can be iteratively updated

by following Bayesian rule. For example, in [3], to realize a

distributed strategy for probability map estimation, Bayesian

updating is combined with the traditional consensus proto-

col, which is used for fusing different individual probability

maps of the neighbors of an agent. Nevertheless, although

the proposed estimation fusion strategy based on Bayesian

updating is useful in the static object detection, it may fail

to be applied in a more general scenario where the probability

of a subregion state or an object state does not follow the

Bernoulli distribution.

Additionally, many distributed solutions have been proposed

in the context of adaptive distributed LMS (Least-Mean-

Square) estimation, which include the incremental adaptive

strategies [4]–[6], the consensus based strategies [7]–[9] and

the adaptive diffusion strategies [10]–[14]. Specifically, two

diffusion strategies ATC (Adapt-Then-Combine) and CTA

(Combine-Then-Adapt) have been proven to be powerful to

realize distributed optimization and cooperative learning over

networks [12], [13], [15]–[19]. In most of these studies,

the distributed optimization is always modeled as an un-

constrained LMS estimation problem, in which the global

objective function is formulated as a sum of all individual

components. The global function has to be localized so that the

distributed optimization procedure can be induced by adopting

the steepest descent algorithm. However, the unconstrained

LMS estimation solutions are not suitable in some specific

application situations, where a global task should be formu-

lated as a constrained distributed optimization problem. In

this context, distributed solutions are required to satisfy some

certain estimation constraints at each agent, which could be

more challenging and beyond the conventional unconstrained

LMS estimation schemes. Since the information estimation

over a distributed system can be modeled as a distributed

optimization problem, some distributed optimization algo-

rithms with consideration of certain constraints have been

proposed [20], [21]. In [21], two distributed optimization

cases are considered: the first case does not take into account
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the equality constraints and employs Lagrangian relaxation

approach to devise a distributed Lagrangian primal-dual sub-

gradient algorithm; the second case takes into account the

equality constraints and adopts a penalty relaxation approach.

Although both of equality and inequality constraints are taken

into account in the second case, it require identical local

constraint sets to guarantee the Slater’s condition due to the

nature of penalty relaxation approach.

In this paper, we present an ATC-type distributed frame-

work, which includes a nonlinear constrained optimization

model and a fusion-weight optimization model. The objective

function of the optimization model is defined based on the

Jensen-Shannon divergence [22], which allows the individual

fusion to iteratively approach to the actual information in terms

of minimizing the information-theoretic divergence measure

based on the Shannon entropy. Besides, the fusion-weight

optimization model is proposed to iteratively adapt the fusion

weights of each agent according to estimation results collected

from the other neighbors. Different from the existing work,

the distributed optimization algorithm proposed in this paper

does not need the assumption of identical constraint sets.

Furthermore, another essential difference between our work

and [21] is the distributed framework, where we adopt a

projection gradient approach and the distributed processing is

based on ATC. By resorting to the probabilistic theory, the

distributed information estimation is generalized as the process

of learning and approaching to probability distributions over

the multi-agent network. We do not assume any specific given

distribution (for instance, the Bernoulli distribution adopted in

[1], [3], [23], [24]) for the probabilities of the information

states. Hence, the proposed solution can be deployed for

a wide range of distributed applications once the detection

information of interest is appropriately represented as a certain

discrete probability distribution.

The remainder of the paper is organized as follows. In

Section II, relevant preliminaries are briefly outlined for the

distributed information estimation problem, which include

main mathematical notations and definitions. In Section III, we

introduce the non-cooperative individual information estima-

tion scheme, where the Bayesian rule is adopted to incorporate

the individual measurements. In Section IV, the nonlinear

constrained optimization model is proposed for improving

individual estimation. Section V presents the experimental

results of the adaptive fusion strategy. Finally, Section VI

concludes this paper.

II. PRELIMINARIES

A. Notations and Definitions

Notations: Throughput this paper, we use col{x1, . . . , xn}
to represent a column vector constructed by stacking entries

x1, . . . , xn on top of each other, and diag{x1, . . . , xn} to

represent a diagonal matrix with diagonal entries x1, . . . , xn.

Besides, let 1n×1 be a column vector of n dimensions all

of whose entries are equal to 1, and 0n×1 be a full-zero

column vector of n dimensions. The identity matrix of size

n is denoted by In. Unless otherwise specified, all vectors

are column vectors and denoted by boldface lowercase letters,

while matrices are denoted by boldface capital letters.

Definitions: Given a multi-agent network, we use a graph

G(V , E) to represent its communication topology with V =
{1, 2, . . . , n} denoting a node set and E ⊂ V ×V denoting an

edge set consisting of unordered pairs E = {(i, j)|i, j ∈ V}
excluding self-loop (i, i). (i, j) ∈ E represents a mutual com-

munication between the agents i and j, and any agent i ∈ V is

supposed to be periodically communicating with its immediate

neighbors {j|j ∈ V , (j, i) ∈ E} through one-hop broadcasting-

based communication. We assume that the communication

graph is a connected graph, i.e., the communication is bi-

directional and there is always a path between any two agents

in the network.

B. Problem Formulation

The multi-agent network is assumed to be deployed to

detect a geographical region that contains multiple information

sources. The set of the whole information sources is denoted

by Π, whose cardinality is m, i.e., m = |Π|. Then, the entire

surveillance region can be divided into a series of surveillance

subregions, each of which corresponds to one information

source. An agent i can only detect a part of subregions, i.e., a

fraction of information sources. The set of partial information

sources in i’s detection range is defined as πi, πi ( Π for

all i ∈ V and
∪
i∈V

πi = Π. Without loss of generality, we

also assume that the detection regions of any two different

agents i1 ̸= i2 (i1, i2 ∈ V) are not identical, i.e., πi1 ̸= πi2 .

This implies that two general situations are considered in our

study: i) some information sources can be only observed by

any single agent, and ii) some others can be observed by

multiple (at least two) agents simultaneously. We need to point

out that in the first situation, only a single agent’s observa-

tion contributes to information gain of the overall network

in estimation of an information source without overlapped

detection. As for any other agent who is blind in observation

of this information source, the sense of a fusion strategy is

reduced to the point that the agent simply needs to collect

the other’s useful observation information diffused over the

network and incorporates it into its own individual estimation,

at the meanwhile keeping silence in order to avoid diffusing

its blindness. By contrast, in the second situation, several

agents with overlapped detection can contribute to information

gain of the network in estimation of an information source in

their common detection region through diffusing and fusing

the multiple observation information with a certain fusion

strategy. The sense of the fusion strategy lies in that an

agent with overlapped detection region can combine several

others’ observation information with its own to enhance its

own individual estimation, at the same time diffusing its own

observation information for others’ fusion. In this paper, we

provide a unified algorithmic information fusion framework to

deal with both of the two considered situations.

Furthermore, we point out that the information released by

the sources can be some parameters of interest such as temper-

ature field, multi-target locations, or some phenomenons of in-

terest in the corresponding subregions. We divide the detection

time into discrete time intervals t ∈ Z≥0. Considering the dy-

namic and noisy nature of information detected by agents, we
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formulate the detection signal at time interval t corresponding

to an information source k ∈ Π as a random variable vk(t),
such that its time-dependent variability can be modeled by

a certain discrete probability distribution. The ranges of the

detection signal vk(t) are represented as various information

states. Let the total number of the information states associated

with the source k be Lk. The l-th information state is denoted

by Sk,l = [ak,l, bk,l) for l = 1, . . . , Lk − 1, while Sk,Lk
=

[ak,Lk
, bk,Lk

]. ak,l and bk,l are the lower and the upper bounds

of the detection signal vk(t) in the state Sk,l, which satisfy

bk,l = ak,l+1 for l = 1, . . . , Lk − 1. Each information

state Sk,l is associated with a certain probability, denoted by

p (vk(t) ∈ Sk,l), which indicates the possibility of the detec-

tion signal vk(t) currently ranging within Sk,l. Hence, for any

k ∈ Π, we have
∑Lk

l=1 p(vk(t) ∈ Sk,l) = 1. The objective of

the information estimation over the multi-agent network is to

enable each individual agent to approach the actual probability

distributions of information states of the entire surveillance re-

gion, {p(vk(t) ∈ Sk,l)|l = 1, 2, . . . , Lk; ∀k ∈ Π}, through lo-

cal measurements, estimations and interactions.

Define by vk(i, t) the detection signal of an agent i
received from the information source k ∈ πi at any

time interval t. Then, this agent is assumed to take mul-

tiple measurements on vk(i, t) during this time interval.

We collect these real-time measurements into a vector

vk(i, t) = {vk,s(i, t)|s = 1, 2, ..., Vi}, where vk,s(i, t) is

the s-th sample on the information source k and Vi de-

notes i’s sampling number. With the individual cumula-

tive observations {vk(i, τ)|τ = 0, 1, . . . , t}, the agent i can

plot a discrete histogram of vk(i, t), which implies a dis-

crete conditional probability distribution of the informa-

tion states of k, {pk,l(i, t) = p (vk(i, t) ∈ Sk,l|vk(t) ∈ Sk,l)},

where ∀pk,l(i, t) ≥ 0 and
∑Lk

l=1 pk,l(i, t) = 1. Indeed, this

conditional probability pk,l(i, t) representing the possibility

that the real-time detection signal range estimated by i is in

the l-th information state of k given that the actual detection

signal value exactly belongs to the same state. The conditional

probability pk,l(i, t) indicates the accuracy of observed infor-

mation at i. Correspondingly, the false detection probability

pk,l(i, t) is

pk,l(i, t) = p(vk(i, t) ∈ Sk,l|vk(t) ∈ Sk,l′ , l
′ ̸= l)

=

∑Lk

∀l′ ̸=l pk,l′(i, t)∑Lk

∀l′ ̸=l 1
=

1− pk,l(i, t)

Lk − 1

(1)

We further denote the actual probability distribution of

information states of any subregion k ∈ Π at time interval t as

pk(t) = col {p(vk(t) ∈ Sk,l)|l = 1, . . . , Lk}, and then define

p(t) = col {pk(t)|k = 1, . . . ,m} to collect all of the probabil-

ity distributions. Similarly, for any individual i ∈ V , we denote

pk(i, t) = col {p(vk(i, t) ∈ Sk,l|vk(t) ∈ Sk,l)|l = 1, . . . , Lk},
and p(i, t) = col {pk(i, t)|k = 1, . . . ,m}. In addition, we use

q to denote the total number of information states of the entire

region, i.e., q =
∑m

k=1 Lk. We note that the sizes of pk(t) and

pk(i, t) are identical to Lk, while the sizes of p(t) and p(i, t)
are identical to q.

III. INFORMATION ESTIMATION BASED ON INDIVIDUAL

OBSERVATION

The agents can yield the real-time posterior information

by combining the information accuracy of their real-time

observations, pk,l(i, t), based on the well-known Bayesian

rule, and have

p(vk(t) ∈ Sk,l|vk(i, t) ∈ Sk,l)

=
p(vk(i, t) ∈ Sk,l|vk(t) ∈ Sk,l)p(vk(t) ∈ Sk,l)

p(vk(i, t) ∈ Sk,l|vk(t) ∈ Sk,l)p(vk(t) ∈ Sk,l) + ∆k,l(i, t)

=
pk,l(i, t)p(vk(t) ∈ Sk,l)

pk,l(i, t)pk,l(vk(t) ∈ Sk,l) + ∆k,l(i, t)
(2)

where ∆k,l(i, t) is:

∆k,l(i, t)

= p(vk(i, t) ∈ Sk,l|vk(t) ∈ Sk,l′ , l
′ ̸= l)p(vk(t) ∈ Sk,l, l

′ ̸= l)

=

Lk∑

∀l′ ̸=l

p(vk(i, t) ∈ Sk,l|vk(t) ∈ Sk,l′)p(vk(t) ∈ Sk,l′)

(3)

By using (1), ∆k
i (n, t) can be further expressed as:

∆k,l(i, t) =

Lk∑

∀l′ ̸=l

pk,l(i, t)p(vk(t) ∈ Sk,l′)

=
1− pk,l(i, t)

Lk − 1

Lk∑

∀l′ ̸=l

p(vk(t) ∈ Sk,l′)

=
1− pk,l(i, t)

Lk − 1
(1− p(vk(t) ∈ Sk,l))

(4)

Generally, because of the existence of noises in a-

gents’ observations, the actual probability distribution

of information states corresponding to any k ∈ Π,

{p(vk(t) ∈ Sk,l)|l = 1, . . . , Lk}, is unknown to these agents.

At this point, it is unpractical to directly apply the equation (2)

to distributed estimation since the calculation of this formula

requires the exact knowledge of the parameter p(vk(t) ∈ Sk,l).
To obtain the current posterior information, we adopt the

recursive Bayesian updating method to combine the past

posterior information and the current observation information.

For simplicity, we denote i’s real-time estimation on the

posterior probability by ϕk,l(i, t), i.e., ϕk,l(i, t) = p(vk(t) ∈
Sk,l|vk(i, t) ∈ Sk,l). Then, we use the previous posterior

estimation, represented by ϕk,l(i, t − 1), to substitute the

unknown p(vk(t) ∈ Sk,l) in the right term of (2) and get

ϕk,l(i, t)

=
pk,l(i, t)ϕk,l(i, t− 1)

pk,l(i, t)ϕk,l(i, t− 1) +
1−pk,l(i,t)

Lk−1 (1− ϕk,l(i, t− 1))

(5)

In this paper, we generalize the term pk,l(i, t) in equation (5)

such that it can reflect any distribution pattern captured by

the individual observation information. The essential concept

of (5) is that it allows us to effectively incorporate the past

estimated information, ϕk,l(i, t−1), and the real-time observed

information, pk,l(i, t), into the current individual estimation,
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ϕk,l(i, t). To analyze the convergence of the Bayesian updating

(5), we rearrange the equation (5) as

(
1

ϕk,l(i, t)
− 1

)

=
1

Lk − 1

(
1− pk,l(i, t)

pk,l(i, t)

)(
1

ϕk,l(i, t− 1)
− 1

) (6)

and further derive a closed-form expression on ϕk,l(i, t):

ϕk,l(i, t) =
1

1 +
(

1−φk,l(i,1)
φk,l(i,1)

)(
1

Lk−1

)t−1∏t

τ=2
1−pk,l(i,τ)
pk,l(i,τ)

(7)

where t ≥ 2. By introducing an auxiliary parameter a(t)

a(t) =
1− pk,l(i, t)

pk,l(i, t) (Lk − 1)
(8)

we can simplify (7) as

ϕk,l(i, t) =
1

1 +
(

1−φk,l(i,1)
φk,l(i,1)

)∏t

τ=2 a(τ)
(9)

From (9), it can be found that the accuracy of the individual

real-time estimation, ϕk,l(i, t), depends on the number of the

information states of the subregion k, Lk, and the accuracy

of the individual observation, pk,l(i, t). Specifically, the influ-

ences of Lk and pk,l(i, t) on the convergence of ϕk,l(i, t) are

summarized as the Lemma 1.

Lemma 1 (The convergence of the individual Bayesian updating):

Given the individual prior information state probability of

any agent i ∈ V , pk,l(i, t) ∈ (0, 1) for l = 1, . . . , Lk, and the

finite number of information states of any k ∈ Π, Lk ≥ 2,

the following conclusions are held when calculating (9):

1) If 1
Lk

< pk,l(i, t) for ∀t, limt→+∞ ϕk,l(i, t) = 1 holds.

2) If 1
Lk

= pk,l(i, t) for ∀t, ϕk,l(i, t) does not converge.

Instead, it constantly equals to the initial posterior information

estimation over all time intervals, i.e., ϕk,l(i, 1) = ϕk,l(i, t) for

∀t.

3) If 1
Lk

> pk,l(i, t) for ∀t, limt→+∞ ϕk,l(i, t) = 0 holds.

Proof: The conditions required in the three cases corre-

spondingly result in three possible parameter a(t): 0 < a(t) <
1, a(t) = 1, and a(t) > 1 for ∀t. Then, we examine the time-

dependent cumulative product on a(t) under the three cases:

lim
t→+∞

t∏

τ=2

a(τ) =





0, 0 < a(τ) < 1;

1, a(τ) = 1;

+∞, a(τ) > 1

(10)

Substituting the results in (10) into (9) leads to the result.

From Lemma 1, it can be seen that the individual estimation

can not be improved despite of its further measurements if

the observed information accuracy stays at uniform level, i.e.,

pk,l(i, t) =
1
Lk

for ∀t. Besides, if the quality of the individual

observed information from the individual measurements is

good enough, i.e., pk,l(i, t) > 1
Lk

, the individual estimation

can converge to 1. Otherwise, it leads to failure in the

estimation of the information state probability distribution.

IV. ADAPTIVE FUSION STRATEGY

A. Global Optimization Model

As discussed in Section II, some subregions may be out of

the detection range of an agent i, which can be lumped in a

set πi = Π − πi. The prior information corresponding to the

subregion k′ ∈ πi, pk′,l(i, t), can not be obtained from the

individual measurements. From Lemma 1, it can be found

that the recursive Bayesian updating scheme based on (5) can

not be implemented in this situation. Therefore, a distributed

cooperative solution for information sharing and fusion among

local agents is needed to improve the accuracy of individual

observed information. In order to propose a cooperative dis-

tributed information estimation, we first develop a nonlinear

constrained distributed optimization model. Since we formu-

late the information of interest over the geographic region by a

series of finite discrete probability distributions of information

states of subregions, we can model the optimization objective

based on the information theory. Specifically, the Jensen-

Shannon divergence, as an information metric (also called

information radius (IRad) [25]), is adopted to represent an

estimation objective. It can measure the disparity between two

finite random graphs and can reflect the mutual information

between two related random variables [22]. Given a finite

discrete probability distribution p = (p1, p2, . . . , pU )
T

where∑U

u=1 pu = 1 and ∀pu > 0, the amount of uncertainty of this

distribution p, namely the entropy, can be calculated based on

Shannon’s information entropy function E(p) [26]:

E(p) = −
U∑

u=1

(pu log2 pu) (11)

From Jensen’s inequality theorem, it shows that this Shan-

non information entropy (11) is a concave function of the mul-

tiple probabilities p1, p2, . . . , pU [22]. However, the equation

(11) may not be applied under some discrete probability distri-

butions. For example, when one entry in p is equal to zero, i.e.,

pu = 0, (11) is not valid for numerical computation. Hence,

to overcome the drawback of the logarithmic function log(·),
we do not directly adopt (11) in our following mathematical

model. Instead, we establish a modified Shannon entropy by

introducing a parameter ϵ into (11):

H(p) = −
U∑

u=1

((pu + ϵ) log2(pu + ϵ)) (12)

where ϵ ∈ (0, 1) is a positive constant but should be small

enough. In (12), the range of the value of any pu is expanded

to be [0, 1] rather than (0, 1).

Letting ωk = (ωk,1, ωk,2)
T

where ωk,1 and ωk,2 are weights

of the two information state probability distributions pk(t)
and pk(i, t), respectively, satisfying ωk,1 + ωk,2 = 1 and

ωk,1, ωk,2 ≥ 0, we can define the Jensen-Shannon divergence

of weights ωk between pk(t) and pk(i, t) by [22]:

JSDk (pk(t),pk(i, t))

= H (ωk,1pk(t) + ωk,2pk(i, t))

− (ωk,1H(pk(t)) + ωk,2H(pk(i, t)))

(13)
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Based on the Jensen-Shannon divergence (13), we further

formulate an individual objective function for any agent i as

follows:

fi(p(t)) =
∑

∀k∈Π

JSDk (pk(t),pk(i, t)) (14)

Subsequently, a global objective function can be defined by

collecting all the individual components:

f(p(t)) =
n∑

i=1

fi(p(t)) (15)

For any k ∈ Π, the probabilities in pk(t) should satisfy an

equality constraint,
∑Lk

l=1 p(vk(t) ∈ Sk,l) = 1, and inequality

constraints, ∀p(vk(t) ∈ Sk,l) ≥ 0. To provide the compact

forms of these constraints, we introduce an equality constraint

coefficient matrix, C = diag {1L1
,1L2

, . . . ,1Lm
}

T
, and an

inequality constraint coefficient matrix, E = Iq . It should be

noted that the dimension of C is m× q while E is indeed a

q × q identity matrix. The constraints on p(t) are defined as:

s.t.

{
Ep(t) ≥ 0q

Cp(t) = 1m

(16)

where the inequality constraint is element-wise.

Because the Jensen-Shannon divergence is a nonnegative

measure [22], f(p(t)) is also a nonnegative real-value func-

tion, i.e., f(p(t)) ≥ 0 for any input p(t). Additionally, the

smaller the Jensen-Shannon divergence f(p(t)) is, the less

the difference between the actual and the observed information

distributions achieves. That is, the function f(p(t)) can reach

zero, if and only if any observed distribution pk(i, t) at

the individual agent i totally matches the actual distribution

pk(t). Therefore, treating the unknown p(t) as the decision

variable and the prior probability distributions estimated from

the observations, {p(i, t)|i ∈ V}, as input parameters, we can

develop an optimization model where the Jensen-Shannon

divergence based objective function (15) is expected to be

minimized under the constraints (16):

min f(p(t)) =
n∑

i=1

fi(p(t))

s.t.

{
Ep(t) ≥ 0q

Cp(t) = 1m.

(17)

From (17), we see that the optimization model has linear

constraints while its objective function is nonlinear. The fol-

lowing Lemma 2 shows the convexity of its objective function

f(p(t)).
Lemma 2 (The convexity of the optimization objective function):

Given ωk = (ωk,1, ωk,2)
T

satisfying ωk,1 + ωk,2 = 1 and

ωk,1, ωk,2 ≥ 0 for k = 1, . . . ,m, the optimization objective

f(p(t)) in the global model (17) is a strictly convex function

of p(t).
Proof: According to the Lemma 1 in the work [27], the

Jensen-Shannon divergence based function is strictly convex,

so that the objective function f(p(t)) summing the Jensen-

Shannon divergence functions of all the agents must be also

strictly convex. Thus, Lemma 2 is proved.

B. Local Optimization Model

From the Lemma 2, it can be found that if an algorithm

existing for the nonlinear optimization model can converge to

a stationary point of f(p(t)), this algorithm can converge to

a global minimum of the model. In the application context

of information estimation, such a global minimum indeed

corresponds to the actual probability distribution of infor-

mation states of the entire region. Hence, we consider that

every individual agent’s goal is to approach the same actual

global distribution, denoted by p∗(t). As each individual has a

common goal (determining the global distribution p∗(t)), they

are expected to share local independent observed information

and perform local cooperative interaction with other neighbors.

Two essential issues arises when a distributed processing

is considered: 1) how to enable each agent to adapt their

individual estimation in real time according to its own and

neighbors’ continuous measurements; 2) how to enable a

better local fusion of each agent’s and its neighbors’ infor-

mation to improve individual estimation performance rather

than solely solving the global p∗(t) on its own information.

To address these issues, we first propose a localized Jensen-

Shannon based objective function depending on interactions

among the neighboring agents. Then, each agent can minimize

the localized objective function under the same constraints in

the global model (17) through processing a gradient-projection

procedure. Finally, an adaptive fusion strategy also based on

Jensen-Shannon divergence is proposed to combine the local

intermediate estimations of each agent and its neighbors.

Let Vi denote the immediate neighborhood of an agent i
(including the agent i itself). By introducing some spatial

coefficients {xj,i} (j, i ∈ V), we present an objective function

for the agent i via a weighted sum strategy as:

gi(p(t)) =
n∑

j=1

xj,ifj(p(t)) (18)

where the coefficients {xj,i} are nonnegative and satisfy∑n

i=1 xj,i = 1 and xj,i = 0 if and only if j /∈ Vi. Considering

that each agent can only exchange its information with its

immediate neighbors Vi, we define gi(p(t)) as an optimization

objective for the individual i. Thus, the local optimization

model is defined as:

min gi(p(t)) =
n∑

j=1

xj,ifj(p(t))

s.t.

{
Ep(t) ≥ 0q

Cp(t) = 1m

(19)

where the local objective function gi(p(t)) combines the

neighbors’ individual cost functions. This enables the interme-

diate estimation information to be diffused among neighboring

agents in the network. Iteratively solving the localized model

(19) at every i can lead to a continuous local information

diffusion over the multi-agent network, which turns out to

improve the individual information estimation. Additionally,
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we remark that the nonnegative coefficients {xj,i} can lead to

n∑

i=1

gi(p(t)) =
n∑

i=1

n∑

j=1

xj,ifj(p(t))

=

n∑

j=1

n∑

i=1

xj,ifj(p(t))

=
n∑

j=1

fj(p(t))

(20)

which shows that the sum of all individual objective func-

tions {gi(p(t))} is identical to the global objective function

f(p(t)). Since local observed information is diffused over

the network and fused at individual nodes to enhance their

p(i, t), these individuals can gradually arrive at a consensus

on the probability distributions of information states of the

whole surveillance region. That is, their p(i, t) is expected

to approach the common distribution under t → +∞. Note

the local objective function gi(p(t)) is constructed with local

neighbors’ p(i, t) and the global objective f(p(t)) in (17)

indeed collects every individual objectives {gi(p(t))} (shown

in (20)). Along with t→ +∞, minimizing the global objective

function in (17) is approximately equivalent to minimizing the

local objective (18) at every node of the network G(V, E) in

a decentralized manner.

C. Gradient Projection Solution

Each agent can solve the local optimization model (19) by

the gradient projection algorithm. Let pi,t(t) be the agent’s

individual estimation of the global p∗(t) at the iteration t, i.e.,

a feasible iterator for the local model (19). Without loss of gen-

erality, at any pi,t(t), the inequality constraints Epi,t(t) ≥ 0q

can be decomposed into two parts, one of which is called

the active constraints, represented by Ei,1pi,t(t) = 0qi,1 ,

another is called the nonactive constraints, represented by

Ei,2pi,t(t) > 0qi,2 . The coefficient matrices Ei,1 and Ei,2

are sub-blocks of the matrix E, i.e., E = col {Ei,1,Ei,2}.
The full-zero vectors 0qi,1 and 0qi,2 are also sub-blocks

of 0q , i.e., 0q = col
{
0qi,1 ,0qi,2

}
, where the dimensions

satisfy qi,1 + qi,2 = q. We further point out that since all

of the probabilities in a discrete distribution cannot be zero

simultaneously (the sum of their values constantly equals to 1),

all the inequality constraints can not be active simultaneously.

That is, the dimension of Ei,1 can not be q, i.e., qi,1 < q being

always held. In fact, because there totally exist m discrete

information state distributions, we can see qi,2 ≥ m, which

equivalently implies qi,1 ≤ (q−m). With the active constraint

coefficient matrix Ei,1 and the equality constraint coefficient

matrix C, we can construct a new constraint matrix associated

with the iterator pi,t(t):

Mi,t(t) =

[
Ei,1

C

]
(21)

where the dimension of Mi,t(t) is (qi,1 +m)× q.

The basic idea behind the gradient-projection iterative

scheme is that a new iterator is generated in a feasible direction

starting from the current feasible iterator. When the current

feasible iterator is within the feasible region, the negative

gradient direction can be employed for searching a new point;

otherwise, when the current iterator is on the boundary of

the feasible region, a new feasible direction is generated by

projecting the negative gradient direction at the current point

to the null space constituted by the active constraints. Thus,

considering Mi,t(t) with full row rank, we are allowed to

establish another new matrix Pi,t(t), called projection matrix

Pi,t(t) = E −
(
Mi,t(t)

)T
(
Mi,t(t)

(
Mi,t(t)

)T
)−1

Mi,t(t)

(22)

It is worth pointing out that when the matrix Mi,t(t) is empty,

we can simply set Pi,t(t) = E.

Once the projection matrix Pi,t(t) is achieved at the agent

i, it can apply a steepest-descent iterative method to optimize

their individual objective functions gi(p(t)) in a negative

direction of projected gradient di,t(t):

di,t(t) = −Pi,t(t)▽p(t)gi(pi,t(t))) (23)

where ▽p(t)gi(pi,t(t)) denotes the gradient of the individual

objective function gi(p(t)) evaluated at the point pi,t(t).
Based on the equation (23), we can get a new iterator at the

current point pi,t(t) by

ui,t+1(t) = pi,t(t) + λidi,t(t) (24)

where the parameter λi > 0 is a nonnegative step size.

According to the equation (24), the iterative procedure can

be proceeded only when di,t(t) ̸= 0. To solve the problem

when di,t(t) = 0, we define an auxiliary vector si,t(t) as

si,t(t) =
(
Mi,t(t)

(
Mi,t(t)

)T
)−1

Mi,t(t)▽p(t)gi(pi,t(t))

(25)

Then, we divide this vector si,t(t) into two sub-blocks as

follows

si,t(t) =

[
si,t,1(t)
si,t,2(t)

]
(26)

where the row indexes of si,t,1(t) and si,t,2(t) correspond

to those of the blocks Ei,1 and C in Mi,t(t), respectively.

The Lemma 3 is presented for proceeding the iteration when

di,t(t) = 0.

Lemma 3 (Conditions on gradient projection matrix for iteration):

Given that the active-constraint coefficient matrix Mi,t(t),
the projection matrix Pi,t(t) and the iteration direction

di,t(t) are derived from (21), (22) and (23), respectively, and

di,t(t) = 0 is satisfied at the iterator pi,t(t), the following

two conclusions are held:

1) If si,t,1(t) is element-wisely nonnegative, i.e., Si,t,1(t) ≥
0, then the current point pi,t(t) is a minimizer for the

optimization model (19);

2) If si,t,1(t) has at least a negative element, denoted

by sr
i,t,1

(t) < 0 where r is its row index, then one can

remove the r-th row from Ei,1 to get a new active inequality

constraint coefficient matrix Êi,1 and to construct a new active

constraint matrix M̂i,t(t) by M̂i,t(t) = col
{
Êi,1,C

}
. With

the new M̂i,t(t), a new projection matrix P̂i,t(t) can also be
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established by (22):

P̂i,t(t)

= E −
(
M̂i,t(t)

)T
(
M̂i,t(t)

(
M̂i,t(t)

)T
)−1 (

M̂i,t(t)
)

(27)

then di,t(t) can be re-calculated by:

di,t(t) = −P̂i,t(t)▽p(t)gi(pi,t(t)) (28)

such that it can satisfy di,t(t) ̸= 0 to proceed the iteration

(24).

Proof: When si,t,1(t) ≥ 0 and di,t(t) = 0, we can see

0

=

(
E −

(
Mi,t(t)

)T
(
Mi,t(t)

(
Mi,t(t)

)T
)−1

Mi,t(t)

)

▽p(t)gi(pi,t(t))

= ▽p(t)gi(pi,t(t))−
(
Mi,t(t)

)T
(
Mi,t(t)

(
Mi,t(t)

)T
)−1

Mi,t(t)▽p(t)gi(pi,t(t))

= ▽p(t)gi(pi,t(t))− (Ei,1)
T
si,t,1(t)− (C)

T
si,t,2(t)

(29)

The equation (29) is exactly the Kuhn-Tucker condition [28].

Thus, under the condition of 1) in Lemma 3, pi,t(t) is indeed

a local minimizer of the optimization model (19). Recall that

Lemma 2 states the convexity of the Jensen-Shannon based

objective function. The model (19) has a convex objective

function and linear constraints, which indicates that pi,t(t)
is also a global optimum of this model.

Otherwise, there exists at least an element sr
i,t,1

(t) in

si,t,1(t) that is negative, i.e., sr
i,t,1

(t) < 0. Hence, we de-

note the corresponding r-th row of Ei,1 as Er
i,1. To pro-

ceed this proof, we turn to induce a contradiction given

P̂i,t(t)▽p(t)gi(pi,t(t)) = 0.

It can be found that (noting M̂i,t(t) = col
{
Êi,1,C

}
)

(Ei,1)
T
si,t(t) +CTsi,t(t)

=
(
Êi,1

)T

ŝi,t,1(t) + sr
i,t,1(t)

(
Er

i,1

)T
+CTsi,t,2(t)

=
(
M̂i,t(t)

)T

si,t(t) + sr
i,t,1(t)

(
Er

i,1

)T

(30)

where ŝi,t,1(t) is composed of all the entries in si,t,1(t) except

the r-th one, and si,t(t) is composed of ŝi,t,1(t) and si,t,2(t).
Substituting (30) into (29) gets

0 = ▽p(t)gi(pi,t(t))−
(
M̂i,t(t)

)T

si,t(t)− sr
i,t,1(t)

(
Er

i,1

)T

(31)

Furthermore, P̂i,t(t)▽p(t)gi(pi,t(t)) = 0 can lead to

0

= P̂i,t(t)▽p(t)gi(pi,t(t))

=

(
E −

(
M̂i,t(t)

)T
(
M̂i,t(t)

(
M̂i,t(t)

)T
)−1

M̂i,t(t)

)

▽p(t)gi(pi,t(t))

= ▽p(t)gi(pi,t(t))−
(
M̂i,t(t)

)T

si,t(t)

(32)

Thus, subtracting (32) from (31) yields

0 =
(
M̂i,t(t)

)T (
si,t(t)− si,t(t)

)
+ sr

i,t,1(t)
(
Er

i,1

)T
(33)

The right side of (33) illustrates a linear combination of

the row vectors of Mi,t(t). Since sr
i,t,1

(t) ̸= 0, the row

vectors of Mi,t(t) are linearly dependent. This is incompatible

with the fact that Mi,t(t) has full row rank. Therefore,

P̂i,t(t)▽p(t)gi(pi,t(t)) ̸= 0, and the conclusion 2) of Lemma

3 is proven.

Indeed, Lemma 3 gives a theoretical condition that indicates

when to stop iterating at a given point. Specifically, according

to the proof of Lemma 3, an iterator pi,t(t) satisfying both

of di,t(t) = 0 and si,t,1(t) ≥ 0 is a Kuhn-Tucker point, it

is also an optimum since the objective function of the model

(19) is strictly convex as presented in Lemma 2.

On the other hand, since the objective function of the

model (19), gi(p(t)), collects the agent i’s neighboring com-

ponents, {fj(p(t))|j ∈ Vi}, its gradient with respect to p(t)
also combines the gradient information of the neighbors,

i.e., ▽p(t)gi(p(t)) =
∑

j∈Vi
xj,i▽p(t)fj(p(t)). Recall that

in the equation (14), the real-time observation information

of any neighbor j ∈ Vi, p(j, t), has been introduced into

its Jensen-Shannon based function fj(p(t)). The agent i’s
gradient formula ▽p(t)gi(p(t)) not only incorporates its own

but also the neighbors’ real-time observation information. In

this way, the iterative procedure based on (24) can adapt the

individual intermediate estimation, ui,t+1(t), to local real-time

observation information. Furthermore, once the computation

of (24) is accomplished at each individual agent, the agent i
can enhance its estimation at iteration (t + 1) by combining

the intermediate estimations of all its neighbors based on a

linear-weighted fusion strategy. That is, we compute i’s next

iterator pi,t+1(t) by

pi,t+1(t) =
n∑

j=1

yj,iuj,t+1(t) (34)

where {yj,i|j = 1, . . . , n} are some non-negative weights that

satisfy
∑n

j=1 yj,i = 1 and yj,i = 0 if and only if j /∈ Vi.

Essentially, the equation (34) can lead to the fusion of

agents’ intermediate estimation information over the network,

which can further benefit the estimation performance of each

individual. Combining (24) and (34) induces a distributed
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cooperative estimation solution as:





ui,t+1(t) = pi,t(t)− λi

n∑

j=1

xj,iPi,t(t)▽p(t)fj(pi,t(t))

pi,t+1(t) =
n∑

j=1

yj,iuj,t+1(t)

(35)

for ∀i ∈ V .

The mathematical structure of the iterative formulas in (35)

coincides with the ATC-type (Adapt-Then-Combine) computa-

tion framework [10], [11]. The first iteration equation in (35)

can be treated as the individual adaptation to real-time ob-

servation information, while the second is the combination of

multiple agents’ intermediate information. In (35), considering

the constraints in the optimization model (19), it is required to

guarantee that the estimations
{
pi,t(t)

}
at each iteration t is

feasible. The following theorem is presented to guarantee the

feasibility of the proposed iterative algorithm based on (35).

Let b̂j,t(t) = 0qj,2 −Ej,2pj,t(t) and d̂j,t(t) = Ej,2dj,t(t) for

any j ∈ Vi, and denote the l-th (l = 1, . . . , qj,2) elements

of the vectors b̂j,t(t) and d̂j,t(t) by b̂j,t,l(t) and d̂j,t,l(t),
respectively. We establish the following

Theorem 1 (The feasibility of the iterative algorithm):

Suppose pj,t(t) is a feasible point of the optimization model

(19) for ∀j ∈ Vi and λj ∈ [0, λmax
j ]. Then, pi,t+1(t) obtained

by (35) is also a feasible point. λmax
j is defined by

λmax
j =





min

{
b̂j,t,l(t)

d̂j,t,l(t)

∣∣∣∣∣ d̂j,t,l(t) < 0

}
, d̂j,t(t) � 0qj,2

+∞, d̂j,t(t) ≥ 0qj,2

(36)

Proof: Substituting the first equation of (35) into the

second one leads to

pi,t+1(t) =
n∑

j=1

yj,ipj,t(t)−
n∑

j=1

yj,iλjPj,t(t)▽p(t)gj(pj,t(t))

(37)

The results of Epi,t+1(t) and Cpi,t+1(t) are:

Epi,t+1(t)

=

n∑

j=1

yj,iEpj,t(t)

−
n∑

j=1

yj,iλjEPj,t(t)▽p(t)gj(pj,t(t))

=
n∑

j=1

yj,iEpj,t(t)

−
n∑

j=1

yj,iλj

[
Ej,1

Ej,2

]
Pj,t(t)▽p(t)gj(pj,t(t))

=

n∑

j=1

yj,iEpj,t(t)

−

n∑

j=1

yj,i

[
λjEj,1Pj,t(t)▽p(t)gj(pj,t(t))
λjEj,2Pj,t(t)▽p(t)gj(pj,t(t))

]

(38)

Cpi,t+1(t)

=

n∑

j=1

yj,iCpj,t(t)−

n∑

j=1

yj,iλjCPj,t(t)▽p(t)gj(pj,t(t))

(39)

Firstly, according to the definition of the projection matrix

Pj,t(t), we can get

λjMj,t(t)dj,t(t)

= −λjMj,t(t)Pj,t(t)▽p(t)gj(pj,t(t))

= −λjMj,t(t)(
E −

(
Mj,t(t)

)T
(
Mj,t(t)

(
Mj,t(t)

)T
)−1

Mj,t(t)

)

▽p(t)gj(pj,t(t))

= −λj(
Mj,t(t)−Mj,t(t)

(
Mj,t(t)

)T
(
Mj,t(t)

(
Mj,t(t)

)T
)−1

Mj,t(t)

)

▽p(t)gj(pj,t(t))

= −λj

(
Mj,t(t)−Mj,t(t)

)
▽p(t)gj(pj,t(t))

= 0qj,1+m

(40)

Note Mj,t(t) = col{Ej,1,C}. (40) is equivalent to
{
λjEj,1Pj,t(t)▽p(t)gj(pj,t(t)) = 0qj,1

λjCPj,t(t)▽p(t)gj(pj,t(t)) = 0m

(41)

Substituting the second equation of (41) into (39) gets

Cpi,t+1(t) =
n∑

j=1

yj,iCpj,t(t) (42)

Since pj,t(t) is a feasible point satisfying Cpj,t(t) = 1m and∑n

j=1 yj,i = 1, (42) is equivalent to Cpi,t+1(t) = 1m, which

indicates that the new iterator pi,t+1(t) satisfies the equality

constraints of the model (17).

To investigate the equation (38), we consider two cases:

1) If d̂j,t(t) is element-wisely non-negative, i.e., d̂j,t(t) ≥
0qj,2 , then the upper bound of the step size, λmax

j , is set to

+∞ accordingly. In this case, we can see that

λjd̂j,t(t) = λjEj,2dj,t(t)

= −λjEj,2Pj,t(t)▽p(t)gj(pj,t(t)) ≥ 0qj,2

(43)

is held for λj ≥ 0.

Thus, according to (41) and (43), we have
[
−λjEj,1Pj,t(t)▽p(t)gj(pj,t(t))
−λjEj,2Pj,t(t)▽p(t)gj(pj,t(t))

]
≥

[
0qj,1

0qj,2

]
= 0q (44)

Note that the feasible point pj,t(t) satisfies Epj,t(t) ≥ 0q .

Substituting (44) into (38) derives

Epi,t+1(t) ≥
n∑

j=1

yj,iEpj,t(t) ≥ 0q (45)

At this point, the new iterator pj,t+1(t) also satisfies the

inequality constraints of the optimization model (17).

2) If there exists at least one element in d̂j,t(t), i.e.,

d̂j,t(t) � 0qj,2 , we can divide d̂j,t(t) into two sub-blocks
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d̂j,t,1(t) and d̂j,t,2(t) where the first sub-block d̂j,t,1(t) con-

tains the negative elements of d̂j,t(t) and the second d̂j,t,2(t)

contains the nonnegative elements, i.e., d̂j,t,1(t) < 0rj,1 and

d̂j,t,2(t) ≥ 0rj,2 . rj,1 and rj,2 are the dimensions of these two

sub-blocks, respectively, and satisfy rj,1 + rj,2 = qj,2. Thus,

d̂j,t(t) can be rearranged as d̂j,t(t) = col{d̂j,t,1(t), d̂j,t,2(t)}.
In addition, we also re-express the matrix Ej,2 as Ej,2 =
col{Ej,2,1,Ej,2,2} where Ej,2,1 ∈ Rrj,1×q and Ej,2,2 ∈
Rrj,2×q .

In the second case where the upper bound of the step size is

limited by (36), it can be found that for any negative element

d̂j,t,1,l(t) ∈ d̂j,t,1(t), the following inequality is held

λj ≤ λmax
j = min

{
b̂j,t,l(t)

d̂j,t,1,l(t)

}
≤

b̂j,t,l(t)

d̂j,t,1,l(t)
(46)

Additionally, noting d̂j,t,1,l(t) < 0, (46) is equivalent to

λj d̂j,t,1,l(t) ≥ b̂j,t,l(t) (47)

We can further induce

λjd̂j,t,1(t) ≥ b̂j,t,1(t) = 0rj,1 −Ej,2,1pj,t(t) (48)

where b̂j,t,1(t) is a sub-block of b̂j,t(t) whose row indexes

correspond to those of d̂j,t,1(t). Since d̂j,t,2(t) is element-

wisely nonnegative, we can also get

λjd̂j,t,2(t) ≥ 0rj,2 (49)

Combining (48) and (49), we can get

λjd̂j,t(t) = λj

[
d̂j,t,1(t)

d̂j,t,2(t)

]
≥

[
0rj,1 −Ej,2,1pj,t(t)

0rj,2

]
(50)

According to the definition of d̂j,t(t), i.e., d̂j,t(t) =
Ej,2dj,t(t), (50) is equivalent to

λjEj,2dj,t(t)

= −λjEj,2Pj,t(t)▽p(t)gj(pj,t(t)) ≥

[
0rj,1 −Ej,2,1pj,t(t)

0rj,2

]

(51)

According to (41) and (51), the following inequality is held

in this case:

[
−λjEj,1Pj,t(t)▽p(t)gj(pj,t(t))
−λjEj,2Pj,t(t)▽p(t)gj(pj,t(t))

]
≥




0qj,1

0rj,1 −Ej,2,1pj,t(t)
0rj,2




(52)

Then, substituting (52) into (38), we further derive

Epi,t+1(t)

≥
n∑

j=1

yj,i



Ej,1

Ej,2,1

Ej,2,2


pj,t(t)

+




∑n

j=1 yj,i0qj,1∑n

j=1 yj,i
(
0rj,1 −Ej,2,1pj,t(t)

)
∑n

j=1 yj,i0rj,2




=




∑n

j=1 yj,iEj,1pj,t(t)∑n

j=1 yj,i
(
Ej,2,1pj,t(t) + 0rj,1 −Ej,2,1pj,t(t)

)
∑n

j=1 yj,iEj,2,2pj,t(t)




≥ 0q

(53)

Therefore, in the second case, pi,t+1(t) also satisfies the

inequality constraints. To sum up, we have proven Theorem

1.

Based on Theorem 1, we can enhance the adaption step in

(35) by designing an appropriate step size λj . Specifically, we

consider to optimize λj at each iteration t so as to minimize the

objective function gj(p). Once the iteration direction dj,t(t)
is obtained by j ∈ Vi at any iteration t, we can treat the step

size as a decision variable, denoted by λ, and formulate an

objective function with respect to λ:

ϕj (λ) = gj
(
pj,t(t) + λdj,t(t)

)
(54)

Thus, an optimal searching step at t, denoted by λj,t, can be

derived as

λj,t = argmin
λ∈[0,λmax

j ]
{ϕj(λ)} (55)

where the upper bound λmax
j is given according to Theorem

1.

D. Optimization of fusion weights

We represent ui,t+1(t) = col
{
ui,k,t+1(t)|k = 1, . . . ,m

}

where ui,k,t+1(t) is the intermediate estimation on the prob-

ability distribution of information states of the subregion k.

From (35), it can be found that not only the step size λj

but also those fusion weights {yj,i|j ∈ Vi} have significant

influence on the performance of (35). For simplicity, let

yi denote the set of fusion weights of the agent i, i.e.,

yi = {yj,i|j ∈ Vi}, and Ui,k,t+1(t) =
{
uj,k,t+1(t)|j ∈ Vi

}
.

The Jensen-Shannon based cost function with respect to yi

can be defined by

JSD
(
Ui,k,t+1(t)

∣∣yi

)

= H


∑

j∈Vi

yj,iuj,k,t+1(t)




−


∑

j∈Vi

yj,iH
(
uj,k,t+1(t)

)



(56)

Subsequently, we can obtain optimal fusion weights by solving

the following model

min Wi(yi) =
∑

k∈Π

JSD
(
Ui,k,t+1(t)

∣∣yi

)

s.t.





∑

j∈Vi

yj,i = 1

yj,i ≥ 0 for ∀j ∈ Vi

(57)

In (57), yi represents the decision variable. This model takes

Ui,k,t+1(t) as input parameters, which implies that once{
uj,t+1(t)|j ∈ Vi

}
are aggregated at the agent i, the minimiz-

er of this model can be solely solved by the individual agent.

Thus, this model can be well integrated with the previous

model (19). Besides, according to Lemma 2, the weight

optimization model (57) also has a convex objective function.

It is a typical convex optimization problem which can be

solved by many existing efficient numerical algorithms such as
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Fig. 1. The deployment of a multi-agent network.

augmented Lagrangian methods and the sequential quadratic

programming techniques [29]–[34].

A schematic diagram of the deployment of a multi-agent

network is given in Fig.1. The implementation of the algorithm

presented by (35) mainly involves four steps: in the first

step, any agent i ∈ V collects the gradient information from

its immediate neighbors,
{
▽p(t)fj(pi,t(t))|j ∈ Vi

}
, so that

it can construct a projection matrix Pi,t(t) as well as the

iteration direction di,t(t); Then, the agent i can calculate an

optimal searching step λi,t according to (55), and obtains its

own intermediate estimation ui,t+1(t) based on the adaptation

equation in (35); Thirdly, i obtains an optimal fusion weights

yi by solving the model (57) constructed based on its own

and its neighbors’ intermediate estimations; Finally, a next

iterator pi,t+1(t) can be calculated based on the optimal

fusion weights according to the combination equation in (35).

These four steps are also performed at other agents, such

that the overall network can achieve a cooperative information

estimation.

To be specific, Fig.2 details the process of the overall

proposed solution for cooperative information estimation over

a multi-agent network, which combines the Bayesian updating

formula (5) with (35), (55) and (57). Fig.2 shows that each

agent i needs to broadcast its own intermediate estimation,

ui,t+1(t), as well as the individual estimation, pi,t(t), to

its immediate neighbors at each iteration t. Especially, any

agent’s individual estimation pi,t(t) is used by each of its

local neighbors to evaluate the gradient of the Jensen-Shannon

based function (14), and once the gradient ▽p(t)fj(pi,t(t))
is obtained by a neighbor j, it should be fed back from the

neighbor j to the agent i.
There are two time indexes, i.e., t and t. The former denotes

each discrete time interval, during which any agent i carries

out multiple measurements (i.e., collecting Vi samples on the

detection signal) to obtain the real-time observation informa-

tion on the local subregions, and then performs the iterative

algorithm presented by (35), (55) and (57). At the end of each

time interval t, the agent calculates the Bayesian updating

formula (5) with the individual estimation on the global region

obtained from the iterative algorithm. As shown in Fig.1, t is

used to index the iteration of the proposed algorithm. At the

beginning of the iterative procedure of any agent i at t = 0,

i.e., at t = 0 and t = 0, we initialize the individual estimation

pi,t(t) by following the uniform distribution. That is, the

Other neighboring agents

Observation

Coll ecting V i signal samples vk(i,t) and get the 

observation information distribution p(i,t) based on 

the cumulative observations {vk(i,τ )|τ =0,…,t}

An agent i

Information Estimation with Adaptive Fusion

AdaptationAdaptationAdaptation
Calculating the intermediate estimation

FusionFusion
Calculating the new individual estimation

Step-size OptimizationStep size OptimizationStep size Optimization
Optimizing the step size

Weights OptimizationWeights OptimizationWeights Optimization
Optimizing the fusion weights

p(i,t)

Bayesian Updating
Updating Bayesian formula by using the individual 

estimation, i.e., substituting p(i,t) ←  

Local Interactions

( )
i

k pÎ"

p -
Ti,

(t)

p -
Ti, (t)

Fig. 2. The framework of the adaptive fusion method.

adaptive fusion algorithm for information estimation is ini-

tialized by setting {pi,k,l,0(0) = 1/Lk|l = 1, . . . , Lk; ∀k ∈ Π}
for all i, where pi,k,l,0(0) denotes the probability of the l-
th information state of the subregion k estimated by the

agent i at t = 0. The individual prior distribution of

information states of any subregion out of the detection

range is also initialized by following the uniform distribution,

i.e., {pk′,l(i, 0) = 1/Lk′ |i = 1, . . . , Lk′ ; ∀k′ ∈ πi} for all i.
In addition, for t ≥ 1, at the beginning of the algorithm

cycle, t = 0, the individual estimation pi,0(t) is initialized

as p(i, t), i.e., pi,0(t) ← p(i, t). For the sake of practical

computation, we pre-specify the total number of the algorithm

iterations, denoted by T , sufficiently large to guarantee the

convergence of the algorithm. The detailed algorithm is shown

in Algorithm 1.

The main steps of the adaptive fusion strategy are:

Step 1 Observation: During time interval t, each agent i ∈ V
performs multiple measurements to collect Vi samples,

{vk(i, t)|k ∈ πi}, from the detection signals corre-

sponding to the subregions in its detection range.

Then, the agent can calculate the observation infor-

mation distribution pk(i, t) based on the cumulative

observations {vk(i, τ)|τ = 0, . . . , t; k ∈ πi}. For the

subregions out of the detection range, i.e., ∀k′ ∈ πi,

their prior distributions of information states are set to

a zero vector. That is, let pk′(i, t)← 0 for all k′ ∈ πi.

Step 2 Information estimation with adaptive fusion: Ini-

tialize pi,t(t) for any i by setting pi,k,0(t) = pk(i, t)
for the subregions in i’s detection range, i.e., for all

k ∈ πi, and setting pi,k′,0(t) = pk′(i, t− 1) for those

out of i’s detection range, i.e., for all k′ ∈ πi. Then,
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Algorithm 1 DCIE-AF (Distributed Cooperative Information

Estimation with Adaptive Fusion)

Input: p(i, t), pi,0(t) and T
Output: pi,T (t)

repeat

Broadcast pi,t(t) to j ∈ Vi as well as collect{
pj,t(t)|j ∈ Vi

}
.

Evaluate fi(p(t)) at each pj,t(t) and broadcast{
▽p(t)fi(pj,t(t))|j ∈ Vi

}
.

Collect
{
▽p(t)fj(pi,t(t))|j ∈ Vi

}
.

Construct Pi,t(t) and di,t(t) based on its own

▽p(t)fi(pi,t(t)) and
{
▽p(t)fj(pi,t(t))|j ∈ Vi

}
.

Compute λmax
i according to (36) and obtain an optimal

step λi,t by solving (55).

Obtain ui,t+1(t) based on pi,t(t), di,t(t) and λi,t ac-

cording to (35).

Broadcast ui,t+1(t) to j ∈ Vi as well as collect{
uj,t+1(t)|j ∈ Vi

}
.

Optimize the fusion weights yi with
{
uj,t+1(t)|j ∈ Vi

}

by solving (57).

Obtain new estimation pi,t+1(t) according to (35).

t← t+ 1.

until t = T

run the Algorithm 1 until t = T .

Step 3 Bayesian Updating: Let p(i, t) ← pi,T (t), do

Bayesian updating based on (5) where p(i, t) is input

parameter.

According to the iterative algorithm given above, we remark

that since there may be some subregions that are located out of

an agent’s detection range, this agent’s real-time observation

distributions over these subregions can be simply set to zero,

implying that this agent does not contribute to the information

gain in estimation of these subregions. In fact, following the

underlying idea of the model (35), the agents can achieve

their individual estimations over the subregions out of their

detection range by iteratively collecting and fusing the diffused

estimations of others that can directly detect these subregions.

E. Analysis of Convergence

In a distributed sensor environment, each agent’s computa-

tion is not only influenced by its own local observation data

but also by the shared information of its local neighbors. To

analyze the performance of the adaptive fusion strategy, we

introduce an error vector:

ei,t(t) , p∗(t)− pi,t(t) (58)

Combining (24) and (34), we derive

pi,t+1(t) =

n∑

j=1

yj,ipj,t(t)−

n∑

j=1

yj,iλj,tPj,t(t)▽p(t)gj(pj,t(t))

(59)

which can lead to (recalling
∑n

j=1 yj,i = 1)

ei,t+1(t) =

n∑

j=1

yj,iej,t(t)+

n∑

j=1

yj,iλj,tPj,t(t)▽p(t)gj(pj,t(t))

(60)

Besides, the mean value theorem [35] shows that for any con-

tinuously differentiable function R(x), the following integral

equation is held:

R(x+ h)−R(x) =

(∫ 1

0

R′ (x+ uh) du

)
h (61)

where x denotes a certain variable, h is a real parameter, and

u is an integral variable. In order to relate the gradient term

▽p(t)gj(pj,t(t)) with the error quantity ej,t(t), we substitute

h = −ej,t(t), x = p∗(t) and R , ▽p(t)gj(·) into (61) and

rewrite ▽p(t)gj(pj,t(t)) as

▽p(t)gj(pj,t(t))− ▽p(t)gj(p
∗(t))

= −

(∫ 1

0

▽2
p(t)gj

(
p∗(t)− uej,t(t)

)
du

)
ej,t(t)

(62)

Since p∗(t) represents an optimum of the objective function

gj(p(t)), we can have ▽p(t)gj(p
∗(t)) = 0. Thus, (62) is

reduced to

▽p(t)gj(pj,t(t)) = −

(∫ 1

0

▽2
p(t)gj

(
p∗(t)− uej,t(t)

)
du

)
ej,t(t)

(63)

Substituting (63) into (60) yields

ej,t+1(t) =
n∑

j=1

yj,i
(
E − λj,tPj,t(t)Hj,t(t)

)
ej,t(t) (64)

where Hj,t(t) is defined by

Hj,t(t) ,

∫ 1

0

▽2
p(t)gj

(
p∗(t)− uej,t(t)

)
du (65)

Lemma 4 (Positive semi-definiteness of gradient projection matrix):

Given that Pj,t(t) obtained from (22) satisfies
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Pj,t(t)▽
2
p(t)gj

(
pj,t(t)

)
̸= 0, Pj,t(t) is a non-zero

symmetrical positive-semidefinite matrix and its eigenvalues

only consists of 1 and 0.

Proof: According to (22), it is easy to validate(
Pj,t(t)

)T
= Pj,t(t) and

(
Pj,t(t)

)2
= Pj,t(t). Thus, for any

non-zero column vector x ̸= 0, we can get

xTPj,t(t)x = xTPj,t(t)
TPj,t(t)x =

(
Pj,t(t)x

)T (
Pj,t(t)x

)
≥ 0

(66)

Thus, Pj,t(t) is a positive semidefinite matrix.

Furthermore, since Pj,t(t)−Pj,t(t)
2 = 0, the characteristic

polynomial equation of Pj,t(t) can be expressed as x− x2 =
(0 − x)(1 − x) = 0. Therefore, the eigenvalue set of Pj,t(t)
is composed of 0 and 1. Additionally, it should be noted that

since Pj,t(t) ̸= 0 (otherwise, a contradiction would arise from

Pj,t(t) = 0 when considering Pj,t(t)▽p(t)gj(pj,t(t)) ̸= 0),

all of the eigenvalues of Pj,t(t) cannot be equal to 0 simulta-

neously. Thus, Lemma 4 is proved.

On the other hand, according to Lemma 2, the Jensen-

Shannon based function fi(p(t)) is strongly convex. This

implies that its Hessian matrix ▽2
p(t)fi(p(t)) can be suffi-

ciently bounded away from 0. To show this, we first derive

the expression of ▽2
p(t)fi(p(t)) as

▽2
p(t)fi(p(t)) = diag

{
▽2

pk(t)
JSDk(pk(t),pk(i, t))|k ∈ Π

}

(67)

Recalling the definition of JSDk(pk(t),pk(i, t)), we further

derive

▽2
pk(t)

JSDk(pk(t),pk(i, t))

= ▽2
pk(t)

H(ωk,1pk(t) + ωk,2pk(i, t))− ωk,1▽
2
pk(t)

H(pk(t))

(68)

Accordingly, ▽2
pk(t)

JSDk(pk(t),pk(n, t)) can be expressed

as

▽2
pk(t)

JSDk(pk(t),pk(i, t))

= diag

{
ωk,1ωk,2 (pk,l(i, t) + ϵ)

(ln 2) (pk,l(t) + ϵ) (ωk,1pk,l(t) + ωk,2pk,l(i, t) + ϵ)

∣∣∣∣
}

(69)

where l = 1, . . . , Lk. From (67) and (69), it can be found that

▽2
p(t)fi(p(t)) is indeed a diagonal matrix. Thus, we can easily

get the spectral radius of ▽2
p(t)fi(p(t))

ρ
(
▽2

p(t)fi(p(t))
)

= max
∀k,l

{
ωk,1ωk,2 (pk,l(i, t) + ϵ)

(ln 2) (pk,l(t) + ϵ) (ωk,1pk,l(t) + ωk,2pk,l(i, t) + ϵ)

}

(70)

Since the agent j′’s Hessian matrix evaluated at the agen-

t j’s individual estimation pj,t(t) can be represented by

▽2
p(t)fj′(pj,t(t)), we can calculate the upper bound of the

spectral radius of ▽2
p(t)fj′(pj,t(t))

ρ
(
▽2

p(t)fj′(pj,t(t))
)

= max
∀k,l

{
ωk,1ωk,2 (pk,l(j

′, t) + ϵ)

(ln 2)
(
pj,k,l,t(t) + ϵ

) (
ωk,1pj,k,l,t(t) + ωk,2pk,l(j′, t) + ϵ

)
}

≤ max
∀k,l

{
ωk,1ωk,2 (pk,l(j

′, t) + ϵ)

ϵ(ln 2) (ωk,2pk,l(j′, t) + ϵ)

}
= βj′,j

(71)

where pj,k,l,t(t) corresponds to the probability of the l-th
information state of the subregion k estimated by the agent

j, and βj′,j represents the upper bound. The Theorem 2 is

presented for stable-state performance.

Theorem 2 (The stable-state convergence): Given

0 < λj < min
{
λmax
j , 2∑

n
j′=1

xj′,jβj′,j

}
for any j ∈ V , the

iterative procedure given in (35) asymptotically converges to

a stable state for any initial feasible solutions {pj,0(t)|j ∈ V},
and as t→ +∞,

lim
t→+∞

∥ej,t(t)∥2 = 0 (72)

is held for all j ∈ V .

Proof: According to Lemma 4, the spectral radius of

Pj,t(t) cannot be larger than 1, i.e., ρ(Pj,t(t)) ≤ 1. This indi-

cates that ρ
(
λjPj,t(t)Hj,t(t)

)
≤ λjρ

(
Pj,t(t)

)
ρ
(
Hj,t(t)

)
≤

λjρ
(
Hj,t(t)

)
. From Hj,t(t) in (65), we can further get

λjρ
(
Hj,t(t)

)
= λjρ




n∑

j′=1

xj′,j

∫ 1

0

▽2
p(t)fj′

(
p∗(t)− uej,t(t)

)
du




(73)

Based on the mean value theorem and (71), there always exists

a certain point ξj,t(t) ∈
[
p∗(t)− ej,t(t),p

∗(t)
]

that

∫ 1

0

▽2
p(t)fj′

(
p∗(t)− uej,t(t)

)
du

= ▽2
p(t)fj′

(
ξj,t(t)

)(∫ 1

0

du

)

≤ ρ
(
▽2

p(t)fj′
(
ξj,t(t)

))
E

< βj′,jE

(74)

Substituting (74) into (73), we can get

λjρ
(
Hj,t(t)

)
< λj

n∑

j′=1

xj′,jβj′,j (75)

Since λj < 2∑
n
j′=1

xj′,jβj′,j
, we can get

ρ
(
λjPj,t(t)Hj,t(t)

)
< λj

∑n

j′=1 xj′,jβj′,j ≤ 2. This

result is equivalent to

∣∣1− ρ
(
λjPj,t(t)Hj,t(t)

)∣∣ < 1 (76)

which implies that the matrix
(
E − λjPj,t(t)Hj,t(t)

)
is

stable, namely, its sub-multiplicative matrix norm ∥E −
λjPj,t(t)Hj,t(t)∥2 satisfying

∥E − λjPj,t(t)Hj,t(t)∥2 ≤ ρmax + δ < 1 (77)
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where ρmax = maxj∈V

{
ρ
(
E − λjPj,t(t)Hj,t(t)

)}
, and δ is

a positive number that is sufficiently small.

Now, we denote the global error vector by Qt(t) that

collects the error quantities from all the agents

Qt(t) , col
{
∥ej,t(t)∥2

∣∣ j ∈ V
}

(78)

Also, we denote a fusion weight matrix as Y ′ , [yj,i]n×n

and lump all the step sizes into a diagonal matrix Λ
′ ,

diag {λj |j ∈ V}. Subsequently, we derive two block matrices

by using the Kronecker product operator ⊗:

Y = Y ′ ⊗E (79)

Λ = Λ
′ ⊗E (80)

where Y and Λ are of nq columns and nq rows. Using these

notations above, we can rewrite (64) as

Qt+1(t) = Y T (Inq −ΛZt(t))Qt(t) (81)

where Zt(t) = diag
{
Pj,t(t)Hj,t(t)|j ∈ V

}
.

Since ∥Y T ∥2 = 1, we can calculate the 2-norm of both

sides of (81) as

∥Qt+1(t)∥2 = ∥Y T (Inq −ΛZt(t))Qt(t)∥2

≤ ∥Y T∥2 · ∥Inq −ΛZt(t)∥2 · ∥Qt(t)∥2

≤ (ρmax + δ) ∥Qt(t)∥2

= (ρmax + δ)
t+1
∥Q0(t)∥2

(82)

Since (ρmax + δ) < 1, we can get limt→+∞ ∥Qt+1(t)∥2 = 0.

The result is equivalent to (72).

V. NUMERICAL EXAMPLES

To evaluate the performance of the distributed information

estimation method, we set up a scenario where the entire

surveillance region is divided into 16 = 4 × 4 subregions

and several agents are initially generated and distributed over

this surveillance region. Each agent is considered to be able to

detect partial subregions, and multiple agents are assumed to

be locally connected when they are within each other’s com-

munication range. An instance of a network’s communication

topology with 6 agents is shown in Fig.3, where every grid

denotes a subregion, and the whole grid plane of 2 dimensions

represents the overall surveillance region.

We assume that each subregion is an information source

which could generate a series of information of interest. And

the information values follow some certain distributions. For

example, the k-th subregion generates the information vk(t) at

time t, and this subregion’s actual information is assumed to be

a random variable following a finite discrete distribution that

could be represented with different states {Sk,l|l = 1, . . . , Lk}
(Lk is the number of the whole states.). Each state denotes a

certain range of the information variable vk(t) and is associat-

ed with a certain probability p (vk(t) ∈ Sk,l). For testing our

model, we randomly generate the distribution of information

states of each subregion, as shown by the dark histogram in

Fig.4. These distributions are treated as the actual information

distributions which each agent would like to estimate. In

measurement interval, each agent could observe sampleNum
samples from each subregion in its detection range and could

not detect those subregions out of its range. For instance, in

Fig.3, the grids at the right side of the entire plane could not

be detected by the agent located at the top left of the plane. We

also assume that there are some certain white Gaussian noises

existing in each agent’s observations. The mean value of the

noise corresponding to the agent i is set to 0, and the standard

deviation σi. For simulations, we randomly generate σi for

each agent by following a uniform distribution U [0, σmax],
namely, σi ∼ U [0, σmax]. Additionally, we denote the total

number of time intervals as T , i.e., 0 ≤ t ≤ T , and the num-

ber of epochs for performing the proposed iterative scheme

(Algorithm 1) as T , i.e., 0 ≤ t ≤ T . We firstly fix σmax = 1.5,

sampleNum = 100, T = 1000 and T = 50 respectively. In

the Shannon entropy based function (12), the small parameter

ϵ is set to 1×10−6. The probability distribution corresponding

to the information state of every subregion maintained by

each individual agent is initialized by following the uniform

distribution. Then, we set the agent number n = 6 and have

performed the simulations with 50 independent replications.

Thus, we could average the results over those 50 simulations

and then show the whole estimation results. we randomly se-

lect an agent (whose detection subregions are {2, 3, 4, 6, 7, 8})
and illustrate the convergence of its individual estimation

corresponding to the whole subregions in Fig.4 (the gray

histogram in Fig.4). It can be found that even though those

subregions (the subregions {1, 5, 9, 10, 11, 12, 13, 14, 15, 16})
are out of the detection range of this selected agent, its actual

information state distribution could also be well approached

by this agent’s estimation based on our proposed method.

In order to quantify the performance, we define the evalu-

ation metric, i.e., the averaged absolute error at t obtained by

an agent i, which is denoted by AAE(i, t) and calculated as

AAE(i, t) =

∑m

k=1

∑Lk

l=1

∣∣∣pk,l (i, t)− pk,l,T (i, t)
∣∣∣

q
(83)

Similarly, to evaluate the whole agent network, we could also

calculate the absolute error by averaging over all the agents’

results. We define the averaged absolute error relevant to the

0 1000 2000 3000 4000
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]

Fig. 3. A region and a network’s communication topology with 6 agents.
(Red dots: agents. Red dotted lines: agents’ detection ranges. Blue lines: the
network’s communication topology).
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Fig. 4. Simulated distributions of information states of 16 subregions.

agent network as AAE(t)

AAE(t) =

∑n

i=1 AAE(i, t)

n
(84)

Next, for evaluating the influence of different parameters on

the proposed scheme, we set up several simulation situations.

In the first situation, we use σmax = 1.5, sampleNum = 100,

T = 1000 and T = 50, and vary the number of agents from

6 to 14, namely, n ∈ {6, 8, 10, 12, 14}. In this situation, we

also compare our method with the distributed information es-

timation strategy based on the traditional consensus approach

[7], which adopts the same settings on σmax, sampleNum,

T and T . The compared method is simulated at n = 6. The

results at each point n are also averaged over 50 independent

simulations. These results are shown in Fig.5. In the second

situation, we fix the number of agents as n = 6 and then set

different σmax to show the impact of the noise magnitude

on the convergence. The consensus-based method uses the

fixed setting σmax = 0.1 in this situation. The third situation

simulates the proposed method at different settings on the

sample number, sampleNum ∈ {10, 50, 200, 300}, while we

fix sampleNum = 300 for the compared method. In this

situation we also keep σmax = 1.5, T = 1000, T = 50 and

n = 6.

From the results, it can be found that the agent number

impacts the estimation performance of the overall network.

Particularly, with the same number of agents (e.g., n = 6),

our proposed method is shown to outperform the compared

one. Besides, from Fig.5a, we find that more agents does not

always guarantee a better estimation. This figure shows that the

averaged absolute error of the individual estimation obtained

by a network consisting of 6 agents is slightly better than those

obtained by the other networks which contain more than 6
agents. The main reason for a slight drop in the performance is

that more agents, indicating a larger-scale network (involving

more decision variables in the optimization model), could slow

down the convergence of the overall network. In order to

ensure that the distributed algorithm could approach closer

to an optimal point of a larger-scale optimization problem,

they need more interactions and more numbers of learning

(iterations) to diffuse and fuse local information over the
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Fig. 5. The results obtained from different situations.

network. Recall that we have set the same total number of

iterations between successive observations, i.e., T = 50, for

all the networks. That is, the iterative algorithm dealing with a

larger-scale optimization problem in the case of a larger-scale

network is terminated in the same total step size as in the case

of a smaller-scale network, which could result in a relatively

conservative estimate for the optimal point. By contrast, the

optimization algorithm could approach much closer to the op-

timal point within a finite number of iterations when it handles

a smaller-scale optimization problem. Actually, it is clear that

there is a trade-off between the choice of the amount of the

agents deployed (i.e., the scale of the multi-agent network)

and the potential computing cost arising from complexity

in the distributed optimization. On one hand, a minimum

number of agents should be needed so as to ensure that their

overall detection range could cover the whole surveillance

area. More agents added could improve the reliability of the

distributed network. On the other hand, the network size is

also increased by more agents, leading to more complexity of

the network topology, which would require much more effort

to handle the corresponding distributed optimization problem.

Generally, a distributed algorithm needs more computing/

communication resources (e.g., data buffer, bandwidth) to

address a larger-scale model and more iterations to guarantee

its convergence. Thus, there should be an optimal number of

agents for deployment, which could depend on not only the

algorithm cost and performance in distributed computation,

but also the amount and distribution of surveillance regions,

noise level in observations and other comprehensive factors

involved in a specified application context. The issue is related

to the optimal coverage control, which aims at a solution that

could attain a specified optimal objective, at the meanwhile

determining a minimum number of agents whose coverage

could cover the target area. This issue is out of scope of this

paper, it can be referred to many existing works such as [36]–

[38].

In the second situation, see Fig.5b, the increased noise

level indicated by σmax could result in a larger averaged

absolute error of the overall network. The noise in individual

observations could also lead to the randomness of the gradient

process in the equation (62), so that the actual estimation error

of the network could not fully converge to zeros. This fact

could also be validated by the results in the first situation

as shown in Fig.5a. That is, the larger amount of agents

does not guarantee a lower gradient noise process of the

overall network. Nevertheless, from the results in Fig.5b, it

can be found that once the noises of individual observations

under a certain level, a good global information estimation

of the overall network could be guaranteed regardless of the

limitation of each individual agent’s detection and communi-

cation. The results from the third situation in Fig.5c shows

that increasing the amount of measurements (denoted by the

sample number sampleNum) at each individual observation

could decrease the absolute error on average by the proposed

method. It is because a larger number of samples observed

by each individual agent could make the individual estimation

more approximate to the actual distribution of a subregion.

The result is in accordance with the law of large number

[39]. Additionally, comparing the results obtained by our

proposed method with those of the consensus-based method,

the averaged absolute error converges to a lower level by our

method. Specifically, even when our method is simulated at a

higher noise level such as σmax = 0.5, 1 (see Fig.5b) or adopts

a smaller sample number such as sampleNum = 50, 200 (see

Fig.5c), it outperforms the consensus-based method as well.

Finally, to evaluate the influence of different observation

amounts and iteration numbers on the performance of the

multi-agent network, we simulate our method at different

T ∈ {100, 400, 700} and T ∈ {50, 80, 100}. In addition,

in this situation we fix sampleNum = 100, and the other

parameters σmax and n are set to be σmax = 1.5 and n = 6.

From the results shown in Fig.6, it can be found that more

observations or more iterations tend to reduce the averaged

absolute error of the whole network. The main reason is

that more observations, implying more measurements, could

make each agent approach to the actual information state

distributions of those subregions in its detection coverage, and

increasing iteration number could make individual estimation

much closer to the ideal solution of the optimization model

(19). Appropriate settings on them could be selected or tuned

based on a specified application scenario of interest.

VI. CONCLUSION

In this paper, we have proposed an adaptive distributed

fusion strategy for estimating global information over a coop-

erative multi-agent network. We have modeled the information
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of interest associated with a global region being detected

by the network from a probabilistic perspective, in which

probability is related to the accuracy of observed and estimated

information. We apply an information-theoretic measure, i.e.,

the Jensen-Shannon divergence, to formulate two objective

functions of any agent subject to linear equality and inequality

constraints, one of which is used in a localized estimation

optimization model and the other in a fusion weight optimiza-

tion model. The adaptive fusion strategy allows each agent to

achieve its own optimal individual estimation on the global

information of the entire region through minimizing the local-

ized objective functions in a distributed and online manner.

We have also analyzed the mean-square-error convergence

behavior of the proposed algorithm. Finally, the experimental

results have been provided to demonstrate the effectiveness of

the proposed algorithm and its advantage over the conventional

consensus protocol based algorithm. In our future research,

we will extend the proposed method with consideration of

optimal coverage control issue and potential failure of local

communication links.
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