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Abstract: Crude oil is one of the main energy sources and its prices have gained increasing attention

due to its important role in the world economy. Accurate prediction of crude oil prices is an

important issue not only for ordinary investors, but also for the whole society. To achieve the accurate

prediction of nonstationary and nonlinear crude oil price time series, an adaptive hybrid ensemble

learning paradigm integrating complementary ensemble empirical mode decomposition (CEEMD),

autoregressive integrated moving average (ARIMA) and sparse Bayesian learning (SBL), namely

CEEMD-ARIMA&SBL-SBL (CEEMD-A&S-SBL), is developed in this study. Firstly, the decomposition

method CEEMD, which can reduce the end effects and mode mixing, was employed to decompose

the original crude oil price time series into intrinsic mode functions (IMFs) and one residue. Then,

ARIMA and SBL with combined kernels were applied to predict target values for the residue and each

single IMF independently. Finally, the predicted values of the above two models for each component

were adaptively selected based on the training precision, and then aggregated as the final forecasting

results using SBL without kernel-tricks. Experiments were conducted on the crude oil spot prices of

the West Texas Intermediate (WTI) and Brent crude oil to evaluate the performance of the proposed

CEEMD-A&S-SBL. The experimental results demonstrated that, compared with some state-of-the-art

prediction models, CEEMD-A&S-SBL can significantly improve the prediction accuracy of crude oil

prices in terms of the root mean squared error (RMSE), the mean absolute percent error (MAPE), and

the directional statistic (Dstat).

Keywords: crude oil price forecasting; time series forecasting; hybrid model; complementary

ensemble empirical mode decomposition (CEEMD); sparse Bayesian learning (SBL)

1. Introduction

With the increase of global energy consumption, energy demand will continue to grow, according

to the recent British Petroleum (BP) energy outlook 2018 [1]. Crude oil, as one of the fundamental

energies, plays a key role in global economic growth and social development. The tendency of crude

oil price has been paid world-wide attention with the increase of importance of petroleum in the

international political and economic environment. Therefore, the accurate prediction of crude oil

prices would have great economic impacts and practical significance. However, crude oil prices are

influenced by a variety of factors, such as climate change, stock levels, technology development, supply

and demand, market speculation, substitution with other energy forms, geopolitical conflicts and

wars, etc., which cause the high nonstationary and nonlinear characteristics of the price series [2–5].

Therefore, it is a great challenge for the accurate forecast of crude oil prices.
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In the past decades, a variety of models have been proposed for forecasting crude oil prices. These

prediction models can be generally classified into two main categories: (1) statistical /econometric

models and (2) artificial intelligence (AI) models [5,6]. Statistical/econometric models used in

crude oil forecasting include vector autoregressive (VAR) models [7,8], error correction models

(ECM) [9], random walk model (RWM) [10], autoregressive integrated moving average (ARIMA)

model [11,12], generalized autoregressive conditional heteroskedasticity (GARCH) model [13,14], etc.

For instance, Baumeister and Kilian indicated that VAR models were capable of achieving lower

mean squared prediction error (MSPE) at short horizons than autoregressive (AR) and autoregressive

moving average (ARMA) models [7,8]. Lanza et al. investigated crude oil and predicted crude oil

prices from January 2002 to June 2002 using ECM [9]. The ARIMA model was selected to forecast

and analyze the macroeconomic impact of oil price fluctuations in Ghana using annual data from

2000 to 2011 [12]. Morana applied GARCH to crude oil price forecasting and the experimental

results suggested that the forecasting method could gain a performance measure for the forward

price [13]. Furthermore, there are a vast number of studies that assess the volatility of crude oil

market via comparing the statistical/econometric models. For example, Hou and Suardi showed

the nonparametric GARCH model outperformed the commonly used parametric GARCH model

in forecasting accuracy of oil price return volatility [14]. Mohammadi and Su investigated the

forecasting accuracies of four models—GARCH, exponential GRACH (EGARCH), asymmetric power

autoregressive conditional heteroskedasticity model (APARCH) and fractionally integrated GARCH

(FIGARCH) and the forecasting results demonstrated that the APARCH model outperformed the

others in most cases [15]. Wei et al. used linear and nonlinear GARCH-class models and found that

the nonlinear GARCH-class models exhibited better forecasting performance than the linear ones [16].

Generally, the above statistical/econometric models achieve good forecasting accuracies when the

original time series is linear or near linear. However, as we all know, crude oil prices have highly

complex characteristics of nonlinearity and nonstationarity, which makes it hard to employ these

statistical/econometric models to achieve satisfactory forecasting performance.

Due to the drawbacks of the statistical/econometric models, a variety of AI models, including

genetic algorithm (GA), support vector regression (SVR), artificial neural networks (ANN) and sparse

Bayesian learning (SBL), have been increasingly used in crude oil price forecasting. Kulkarni and

Haidar used a multilayer feed forward neural network to forecast the direction of crude oil price

at short horizons [17]. Mirmirani and Li applied VAR and GA-based ANN to forecast the U.S. oil

price movements and the forecasting results suggested that the GA-based ANN model noticeably

outperformed the VAR model [18]. Haidar et al. employed a three-layer feed forward neural network

to predict crude oil prices in the short-term and results showed that feed forward neural networks

were capable of forecasting crude oil prices with high accuracy [19]. Mostafa and El-Masry used ANN

and gene expression programming (GEP) to forecast crude oil prices from January 2, 1986 to June 12,

2012 and the results revealed that the GEP technique outperformed the ANN and ARIMA models [20].

Xie et al. compared the forecasting accuracy of support vector machine (SVM) with those of ARIMA

and back propagation neural network (BPNN) for the crude oil price prediction and the experiment

results showed that SVM outperformed the other two methods [21]. Li and Ge employed SVR with

a dynamic correction factor to predict crude oil prices [22]. Mustaffa et al. presented least squares

support vector machine (LSSVM) with enhanced artificial bee colony (eABC-LSSVM) to predict crude

oil prices and the proposed eABC-LSSVM showed higher prediction accuracy compared with LSSVM,

ABC-LSSVM and GA-LSSVM [23]. Khashman and Nwulu compared the forecasting performance of

SVM with that of neural networks for the crude oil price prediction and the experiment results showed

that the neural networks outperformed SVM with minimal computational expense [24]. Furthermore,

time series forecasting can be seen as a typical problem of regression. Therefore, Li et al. proposed that

any regression approach in the signal recovery and AI could be applied to forecast time series [2]. SBL

without kernel-tricks and SBL with kernel-tricks were utilized to predict crude oil spot prices and the
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experiment results demonstrated that SBL was promising for predicting crude oil prices compared

with traditional econometric models and AI models [2,6].

However, the above AI models also have their own limitations. SVR, GP and ANN are sensitive

to parameter optimization, while the ANN model easily traps into over-fitting and local minima [3].

To address the limitations, some hybrid forecasting models have been proposed to forecast crude

oil prices and achieve promising performance recently. Wang et al. proposed a novel hybrid AI

system framework for crude oil price forecasting by means of ANN and rule based expert system

(RES) [25]. Amin-Naseri and Gharacheh incorporated feed-forward neural networks, k-means

clustering and genetic algorithm, and developed a hybrid AI model for monthly crude oil price

forecasting [26]. Tehrani and Khodayar proposed a novel hybrid optimum model based on GA and

feed forward neural network (FNN) for crude oil spot price forecasting [27]. The advantages of the

above hybrid models are capable of overcoming the weakness of individual models and achieving

better forecasting performance.

Due to the complexity of signal, the scholars in the field of signal processing usually use

signal decomposition approaches to decompose the original signal into several components for

better performance of classification and regression [28–30]. This idea can be used for reference

in crude oil price forecasting because of the nonlinearity and nonstationarity of crude oil price

series. By decomposing an original time series into a group of relatively simple sub-modes with

stationary fluctuation, multiscale ensemble prediction was capable of enhancing the forecasting

performance [31]. A kind of “divide-and-conquer” framework of “decomposition and ensemble” was

introduced to effectively improve prediction accuracy, especially for the series data with nonlinearity

and nonstationarity [32]. The main idea of the “decomposition and ensemble” framework is to

decompose the original complex prediction task into several relatively simple subtasks, then, each

subtask is predicted by a single forecasting method, and finally, these forecasting results are aggregated

as the final forecasting results [3,33,34]. Therefore, the framework of “decomposition and ensemble”

can effectively simplify the modeling complexity. Furthermore, it has been reported that this framework

can achieve higher prediction accuracy, better directional predictions and higher robustness, showing

that it is promising for forecasting complex time series [35–39]. The main data decomposition

techniques include Wavelet Decomposition (WD), empirical mode decomposition (EMD), ensemble

EMD (EEMD), and complete ensemble EMD (CEEMD), independent component analysis (ICA),

etc. For example, Jammazi and Aloui used WD to decompose the crude oil prices into sub-modes,

forecasted the sub-mode prices using neural network model, and assembled the final forecasting

results [35]. Zheng et al. built a hybrid prediction model for short-term load forecasting by means of

EMD, similar days selection and long short-term memory (LSTM) neural networks [36]. Although these

decomposed sub-modes have their own data characteristics, most of the existing “decomposition and

ensemble” models predicted all the sub-modes employing a uniform model rather than choosing an

appropriate one for each sub-mode. Therefore, some studies improved the prediction steps [31,37–39].

The obtained sub-modes are identified as the differentiated components according to their own

characteristics, and then, an appropriate prediction model is chosen to predict these sub-modes.

For instance, Zhu et al. employed LSSVM to predict the low-frequency components and ARIMA

or GARCH to forecast the high-frequency components of energy prices [31,37]. Fan et al. applied

SVR model to forecast the high-frequency components and AR model to forecast the residuals of

electric load series [38]. Zhang et al. presented a particle swarm optimization-based least square

support vector machine (LSSVM–PSO) for nonlinear component forecasting and GARCH model for

time-varying component forecasting respectively [39]. Although the above models achieve better

forecasting performance compared with single prediction models, differentiated components need to

be distinguished before choosing appropriate prediction models. Therefore, model selection for each

component is of utmost importance for the forecasting performance. There are two major drawbacks

in existing studies. First, there is no general rule about how to recognize differentiated components.

The main methods are based on the frequency or linearity of sub-modes. Second, there is no general
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method to choose appropriate forecasting models. For example, Zhu et al. selected ARIMA or GARCH

to predict the high-frequency components and LSSVM to forecast the low-frequency ones [31,37]; while

Fan et al. employed SVR for high-frequency component prediction and AR model for low-frequency

component prediction [38].

To address the existing drawbacks and improve the forecasting performance, this research

proposes an adaptive hybrid ensemble leaning model incorporating CEEMD, ARIMA and SBL with

kernel-tricks, and SBL without kernel-tricks, namely CEEMD-ARIMA&SBL-SBL (CEEMD-A&S-SBL),

to improve the forecasting accuracy of nonstationary and nonlinear crude oil prices. The raw series of

crude oil prices is firstly decomposed into several components using CEEMD, which can effectively

reduce the end effects and mode mixing. Then, without considering the data characteristics of each

component, ARIMA and SBL with combined kernel-tricks are applied to forecast each component

independently. Finally, the two groups of predicted values of each component are selected based on the

training precision, and then aggregated as the final forecasting results using SBL without kernel-tricks,

so as to further improve the prediction accuracy of crude oil prices. Empirically, the proposed

CEEMD-A&S-SBL has been tested with the data of the West Texas Intermediate (WTI) and Brent spot

crude oil prices. Compared with traditional prediction models, the experimental results show that

the proposed model can cope well with the nonlinearity and nonstationarity of crude oil prices and

achieve promising performance. The main contributions of this research lie in three aspects: (1) a novel

adaptive hybrid forecasting model for crude oil prices that integrates CEEMD, ARIMA and SBL

was proposed. The proposed prediction model CEEMD-A&S-SBL adaptively selects an appropriate

prediction model for forecasting each decomposed component without identifying its characteristic in

advance. To our knowledge, it is the first time that adaptive hybrid model selection for the forecasting

of components (IMFs and residue) is developed in crude oil price forecasting. (2) Experiments were

conducted on the WTI and Brent spot crude oil prices, and the experimental results demonstrated that

the proposed prediction model outperformed several state-of-the-art models for forecasting crude oil

prices. (3) We further analyzed some characteristics of the proposed model for forecasting crude oil

prices, including CEEMD parameter settings, individual component prediction model and selection

and the weights of components in aggregation.

The rest of this paper is organized as follows. Section 2 briefly introduces CEEMD and SBL.

Section 3 gives the description of the proposed CEEMD-A&S-SBL method in detail, including CEEMD,

SBL with combined kernel-tricks and the ensemble method based on SBL without kernel-tricks.

Section 4 reports experimental results and evaluates the proposed model using several metrics,

followed by conclusions in Section 5.

2. Preliminaries

2.1. The Framework of Decomposition and Ensemble

In view of the highly complex characteristics of nonlinearity and nonstationarity, it is hard to

achieve satisfactory predictive performance on the original time series. Therefore, the framework of

decomposition and ensemble has been presented for forecasting time series [32]. This framework takes

the idea of divide and conquer, and includes three stages: (1) dividing the original complex prediction

task into several relatively simple subtasks using a data decomposition technique; (2) predicting each

subtask by a single forecasting method individually; and (3) aggregating individual forecasting results

as the final forecasting results.

2.2. Complete Ensemble Empirical Mode Decomposition

Complete ensemble empirical mode decomposition (CEEMD) [40] is proposed from the

decomposition techniques of ensemble empirical mode decomposition (EEMD) [41] and empirical

mode decomposition (EMD) [42]. EMD is a kind of adaptive time-frequency data analysis method

developed for nonlinear and nonstationary signal or time series analysis and has been widely used for
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engineering, sciences, financial data analysis, etc. However, there is a drawback of mode-mixing in

EMD, where widely disparate scales could appear in one intrinsic mode function (IMF) component. In

order to cope with the mode mixing problem, the noise added method of ensemble EMD (EEMD) has

been proposed. Although EEMD has effectively resolved the mode mixing problem, the residue noise

in the signal reconstruction has been raised. Hence, CEEMD was developed, where a different noise

realization is added at each phase of the decomposition process and a unique residue is calculated to

generate each mode. The decomposition result of CEEMD is complete, with a negligible error [40]. Let

us define the operator Ej(·), which generates the j-th mode obtained by EMD when a signal is given.

Let wi be white noise with N(0, 1), and allow the εi coefficients to select the Signal-Noise Ratio (SNR)

at each stage. If x[n] is the original signal, the decomposition procedure of CEEMD method can be

described as follows:

Step 1: repeat the decomposition I times using different noise realizations and calculate the

ensemble average as the first mode of the signal:

IMF1[n] =
1

I

I

∑
i=1

E1

(

x[n] + ε0wi[n]
)

(1)

Step 2: at the first stage (k = 1), compute the first signal residue r1[n]:

r1[n] = x[n]− IMF1[n] (2)

Step 3: decompose realizations r1[n] + ε1E1

(

wi[n]
)

, i = 1, . . . , I, until they satisfy their first IMF

conditions. Define the ensemble average as the second mode:

IMF2[n] =
1

I

I

∑
i=1

E1

(

r1[n] + ε1E1

(

wi[n]
))

(3)

Step 4: For k = 2, . . . , K, calculate the k-th residue:

rk[n] = r(k−1)[n]− IMFk[n] (4)

Step 5: decompose realizations rk[n] + εkEk

(

wi[n]
)

, i = 1, . . . , I, and calculate their

ensemble average:

IMF(k+1)[n] =
1

I

I

∑
i=1

E1

(

rk[n] + εkEk

(

wi[n]
))

(5)

Step 6: The sifting process continues until the residue does not have more than two extrema. The

final residue satisfies:

R[n] = x[n]−
K

∑
k=1

IMFk (6)

Thus, the original signal can be expressed as:

x[n] =
K

∑
k=1

IMFk + R[n] (7)

In summary, the original signal x[n] can be expressed as the sum of K IMFj (j = 1, 2, . . . , K) and one

residue R. Generally, these decomposed components, including K IMFs and one residue, are simpler

than the original complex crude oil price series. Thus the hard forecasting task of crude oil prices is

divided into forecasting relatively simple components.
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2.3. Sparse Bayesian Learning

Sparse Bayesian learning (SBL) [43], a Bayesian competitor of the traditional SVM, was first

developed as a machine learning method with kernel-tricks, which is also known as the relevance

vector machine (RVM). Owing to its good performance in regression and classification, SBL has been

applied in various fields, such as streamflow simulation [44], face recognition [45], fault diagnosis [46],

object localization [47], signal recovery [48], energy price prediction [2,6], etc. Compared with SVM,

SBL not only achieves comparable classification or prediction accuracy, but also performs better in

sparse property, computational cost and generalization ability [49].

Given a set of samples {xi, yi}
N
i=1, where xi ∈ Rd represent d-dimensional input vectors and

yi ∈ R indicate real target values, and assuming that ti = f (xi; w) + ǫi with ǫi ∼ N
(

0, σ2
)

, the SBL

model for regression can be formulated as:

y = f (x; w) =
N

∑
i=1

wiK(x, xi) + w0 (8)

where K(x, xi) represents a kernel function, and wi denotes the weight of the kernel. The learning

process of SBL is to seek the parameters of the function f (x; w). SBL model usually has the sparsity of

kernel function, because it inducts a priori distribution of the weights.

Assuming the samples {xi, yi}
N
i=1 are independently generated, the probability of y is expressed

as follows:

p(y|w, σ2) = (2πσ2)
− N

2 exp (−
‖t − Φw‖2

2σ2
) (9)

where y = (y1, y2, . . . , yN)
T , w = (w1, w2, . . . , wN)

T , and the Φ is a design matrix having the size

N × (N + 1):

Φ = [φ(x1), φ(x2), . . . , φ(xN)]
T (10)

φ(xn) = [1, K(xn, x1), K(xn, x2), . . . , K(xn, xN)]
T (11)

With as many parameters as the training samples, simple making the probability w and σ2

maximum will lead to over-fitting. To deal with this, Tipping imposed a prior probability distribution

over the weight wi ∼ N
(

0, αi
−1

)

, where α is an N + 1 vector named hyperparameters [43]. Assuming

the hyperparameter is Gamma distributed, the associated weights will be concentrated at zero

due to the posteriori distribution of hyperparameters, which will lead to the “irrelevance” of most

input vectors.

Like SVM, the kernel function in SBL plays a key role, which greatly influences the prediction

performance of SBL. Li et al. have indicated that SBL with combined kernels outperformed that with a

single fixed kernel in forecasting crude oil prices [6]. Therefore, SBL with combined kernel-tricks was

adopted to forecast the sub-modes in this study.

In addition, SBL without kernel-tricks has also been proved effective in sparse signal recovery

and time series prediction [2,50]. SBL without kernel-tricks can be formulated by Equation (12):

y = Dw + ǫ (12)

where D ∈ RN×M is a matrix with N samples and M attributes; y = [y1, y2, . . . , yN]T is a vector of

targets, w = [w1, w2, . . . , wM]T is the weight vector to represent the weights of each column in D. The

training goal of SBL is to seek an optimal vector of weights w [50].

In order to obtain sparse solutions, SBL estimates a parameterized prior over weights, which is

expressed as follows:

p(w; γ) =
M

∏
i=1

(2πγi)
− 1

2 exp (−
w2

i

2γi
) (13)

where γ = [γ1, γ2, . . . , γM]T is a vector of M hyperparameters.
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Compared with kernel version, SBL without kernel-tricks has a faster training speed. Furthermore,

the weights found by SBL can reflect the importance of each component for forecasting crude oil prices,

which make the aggregation method better interpretability. Therefore, we chose SBL without the

kernel-trick to aggregate the prediction values of individual components to obtain the final prediction

results of crude oil prices in this study.

3. The Proposed CEEMD-A&S-SBL Model

Inspired by the framework of “decomposition and ensemble”, this study proposes an adaptive

hybrid ensemble model that integrates CEEMD, ARIMA and SBL with combined kernel-tricks, and

SBL without kernel-tricks, termed as CEEMD-A&S-SBL, to forecast crude oil prices. The proposed

model is shown in Figure 1, which includes three stages:

Stage 1: Decomposition. CEEMD is used to decompose the original series of crude oil prices x(n)

into two parts: (1) K IMF components IMFj (j = 1, 2, . . . , K); (2) one residue component R.

Stage 2: Individual forecasting. The data samples in each decomposed component are respectively

divided into a training set and a test set. The prediction models of ARIMA and SBL with combined

kernel-tricks are built on the training set independently, and then, these two prediction models are

applied to the test set separately.

Stage 3: Ensemble forecasting. These two groups of prediction results of all components

are adaptively selected based on the training precision, and then are aggregated by SBL without

kernel-tricks as the final forecasting results.

 

Original crude oil price series

CEEMD

IMFi Residue

ARIMA
SBL with combined 

kernel-tricks 
ARIMA

Prediction 
result of IMFi

Prediction 
result of IMFi

Prediction 
result of residue 

Prediction 
result of residue 

Select and aggregate using SBL without 
kernel-tricks

final results

Stage 1:
Decomposition

Stage 2:
Individual 
forecasting

Stage 3:
Adaptively 
ensemble

forecasting

SBL with combined 
kernel-tricks 

Figure 1. The flowchart for the CEEMD-A&S-SBL. CEEMD: complete ensemble empirical mode

decomposition; A&S: autoregressive integrated moving average (ARIMA) and sparse Bayesian learning

(SBL); SBL: sparse Bayesian learning.

The proposed CEEMD-A&S-SBL employs the strategy of “divide and conquer”. The complex

task of crude oil price forecasting is divided into a group of relatively simple sub-tasks of forecasting

components independently. The CEEMD-A&S-SBL firstly applies CEEMD to decompose the original

series of crude oil price into several components (IMFs and one residue), and each component contains

some specific characteristics of crude oil prices. Generally, the first several IMFs imply high-frequency
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parts, while the last ones and the residue involve the low-frequency parts of crude oil prices. Secondly,

the ARIMA and SBL with a combined kernel are independently applied to each component without

distinguishing between high- and low-frequency in the prediction stage. We selected these two models

because each belongs to one of the two typical types of differential prediction models (i.e., statistical

method and AI method). ARIMA is one of the most representative statistical methods and SBL with a

combined kernel, as a type of AI method, has been proven promising for crude oil price forecasting [6].

Finally, the predicted values of the above two models for each component are adaptively selected

based on the training precision, and then are aggregated as the final forecasting results of crude oil

prices using SBL without kernel-tricks. This framework of “decomposition and ensemble” makes it

possible for the CEEMD-A&S-SBL to improve the performance of crude oil price forecasting.

Significantly, some recent studies applied differential models to forecast the high-frequency and

low-frequency components separately. These studies obviously differed from the current research

with respect to individual component forecasting and ensemble in that (1) they distinguished

the decomposed crude oil prices into two parts: high-frequency and low-frequency components,

and employed appropriate models to forecast the two parts; (2) they aggregated the prediction results

of all components as the final forecasting results using simple addition or learning methods. In contrast,

the current study uses two kinds of differential prediction models (i.e., ARIMA and SBL with combined

kernel-tricks) to forecast each single component independently without identifying high-frequency

and low-frequency, and then adaptively selects and aggregates the predicted values of two models as

the final forecasting results of crude oil prices.

4. Experimental Results

4.1. Data Description

In order to better evaluate the performance of the proposed CEEMD-A&S-SBL, this study collected

WTI and Brent crude oil spot prices in view of their representative significance in global crude oil

markets. The daily closing price data set is divided into two subsets: the first 80% of sample data for

training and the last 20% for testing. The training set is used to train models and optimize parameters,

and the testing data set is applied to evaluate the performance of established prediction models.

The divided samples of crude oil prices are shown in Table 1.

Table 1. Samples of crude oil prices.

Market Size Date

West Texas Intermediate (WTI)
Sample set 8312 2 January 1986~17 December 2018
Training set 6649 2 January 1986~9 May 2012
Testing set 1663 10 May 2012~17 December 2018

Brent

Sample set 8018 20 May 1987~17 December 2018
Training set 6414 20 May 1987~28 August 2012
Testing set 1604 29 August 2012~17 December 2018

The original crude oil price series and corresponding components (i.e., IMFs and residue)

decomposed by CEEMD of WTI and Brent are demonstrated in Figures 2 and 3, respectively.
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Figure 2. The original series and corresponding components decomposed by complete ensemble

empirical mode decomposition (CEEMD) of WTI crude oil prices.



Energies 2019, 12, 1239 10 of 23

 

C
ru

d
e

 o
il 

p
ri

c
e

s
IM

F
1

IM
F

2
IM

F
3

IM
F

4
IM

F
5

IM
F

6
IM

F
7

IM
F

8
IM

F
9

IM
F

1
0

IM
F

1
1

R
e

s
id

u
e

MAPE = 	 1 −
RMSE = 	 1 ( − )

D = 	 1 × 100%

Figure 3. The original series and corresponding components decomposed by CEEMD of Brent crude

oil prices.

4.2. Evaluation Measures

In order to evaluate the model from multiple aspects, we employed four frequently used

evaluation metrics, including two error indexes: the mean absolute percent error (MAPE) and the root

mean squared error (RMSE), one direction index: the directional statistic (Dstat) and one statistic index:

the Diebold–Mariano (DM) statistic. Firstly, MAPE and RMSE were selected to evaluate the prediction

accuracy, as defined by Equations (14) and (15), respectively:

MAPE =
1

n

n

∑
t=1

∣

∣

∣

∣

yt − ŷt

yt

∣

∣

∣

∣

(14)

RMSE =
1

n

√

n

∑
t=1

(yt − ŷt)
2 (15)

where ŷt is the predicted value and yt is the actual value at time t and n is the total number of data in a

testing data set.
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The Dstat was used to evaluate the ability of direction prediction, which is defined as follow:

Dstat =
1

n

n

∑
t=1

αt × 100% (16)

where αt =

{

1, (yt − yt−1)× (ŷt − yt−1) ≥ 0;

0, otherwise.
.

Generally, the smaller the MAPE and RMSE, the greater the Dstat, which represents a higher

prediction accuracy and a better performance of direction prediction.

In order to better evaluate whether the prediction accuracy of the proposed prediction model

is significantly better than those of previous models or not, the Diebold–Mariano (DM) statistic was

introduced in this study, as defined by Equation (17):

S =
d

√

Var(d)
(17)

where d = 1
n ∑

n
t=1 dt, dt = (yt − ŷ1t)

2 − (yt − ŷ2t)
2, Var(d) = 1

n (γ0 + 2 ∑
n−1
k=1 γk) and

γk = cov(dt − dt−k). ŷ1t are the predicted values of the first prediction model, and ŷ2t are those of

the second prediction model at time t. When the DM statistic is negative, the first prediction model

statistically outperforms the second one.

4.3. Experimental Settings

In this study, the development and evaluation of prediction model included three aspects:

First, previous research has demonstrated that ensemble models outperformed single models

in crude oil price forecasting [6]. Therefore, the overall performance of CEEMD-A&S-SBL was

only compared with that of some state-of-the-art ensemble prediction models in terms of the

above evaluation metrics in this study. Thus, on the basis of the same crude oil price data, we

evaluated whether our proposed CEEMD-A&S-SBL was effective for improving prediction precision.

The compared models included one classical statistical method (ARIMA), three popular AI models

(LSSVR, ANN, CK-SBL) and a hybrid model that forecasts high-frequency, low-frequency and trend

components individually (HLT) [31]. In addition, since SBL with a combined kernel has shown better

prediction performance compared with that with a single kernel, SBL with a combined kernel was

selected as the predict model. Therefore, we had five individual prediction methods (ARIMA, LSSVR,

ANN, CK-SBL and HLT) for each component to compare forecasting with A&S. All prediction methods

are shown in Table 2.

Table 2. Descriptions of all the prediction methods in the experiments.

Method Description

ARIMA Autoregressive integrated moving average
LSSVR Least squares support vector regression
ANN Back propagation neural network

CK-SBL SBL with a combined kernel

HLT
ARIMA for high-frequency components and combined kernel LSSVR

for low-frequency and trend components

A&S
All component are predicted by ARIMA and CK-SBL independently

and then are aggregated adaptively

Following the previous work [6], an adaptive PSO (APSO) method was used to optimize the

parameters in CK-SBL, which adaptively adjusted the inertia weight of each particle based on the

distance between the global best particle and the current one. In addition, the Akaike information

criterion (AIC) [51] was used to determine the ARIMA parameters (p-d-q). RBF kernel was applied in
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LSSVR and grid search was used to seek the optimal parameters. For ANN, a back propagation neural

network was employed, the number of hidden nodes was set to 10, and the iteration time was set to

10,000. For HLT, the PSO was used for adaptive parameter selection for LSSVR.

Second, we evaluated the three different decomposition methods (EMD, EEMD, CEEMD) for

the proposed model in this study. In this phase, on the basis of same aggregation method (SBL) and

prediction method (A&S), we evaluated the performance of different decomposition methods.

Third, we compared the two different ensemble methods (simple addition and SBL) for the

proposed model in this study. In this phase, on the basis of same decomposition method (CEEMD)

and prediction method (A&S), we evaluated the performance of the SBL ensemble method.

In addition, data normalization is an important work for computational efficiency and fair

comparison of AI-based time series forecasting [6]. In this study, we applied the Min-Max

normalization, a frequently-used normalization method, for AI-based predictors. It is worth pointing

out that inverse normalization needs to be executed after the normalized predicted values are obtained.

We conducted three-step-ahead predictions with horizon h = 1, 2, 3 and lag order lo = 6 in this study.

Especially, in CEEMD-A&S-SBL, the predicted values of the two differential models for each

component were adaptively selected based on the training precision. Therefore, how to accurately

evaluate the training precision is utmost important for adaptive selection of models. RMSE and

MAPE are frequently used evaluation indexes. In this study, we selected RMSE mainly because there

existed some actual zero values after CEEMD, thus RMSE was more effective for reflecting the training

precision than MAPE.

All the experiments were performed by MATLAB R2017a on a 64-bit Microsoft Windows 10 with

an i5-7820X CPU @1.8 GHz and 8 GB RAM.

4.4. Results and Analysis

4.4.1. Experimental Results of Overall Predictive Models

On the basis of same decomposition (i.e., CEEMD), we firstly compared the overall

performance of the five extant prediction models (i.e., CEEMD-ARIMA-ADD, CEEMD-LSSVR-ADD,

CEEMD-ANN-ADD, CEEMD-CK-SBL-ADD, CEEMD-HLT-ADD) with our proposed adaptively

prediction model (CEEMD-A&S-SBL) in terms of MAPE, RMSE, and Dstat. We adopted these five

models because they were the most frequently used and effective prediction methods [2,6,11,12,21–24,31].

Among all these models, ARIMA is one classical statistical method; LSSVR, ANN and CK-SBL are three

popular AI models; HLT is one recent hybrid prediction model. The experimental results are reported in

Tables 3–5, respectively.

Table 3. The mean absolute percent error (MAPE) values of different prediction models on WTI and

Brent crude oil prices.

Market Horizon
CEEMD-

ARIMA-ADD
CEEMD-

LSSVR-ADD
CEEMD-

ANN-ADD
CEEMD-

CK-SBL-ADD
CEEMD-

HLT-ADD
CEEMD-

A&S-SBL

WTI

One 0.0169 0.0063 0.0120 0.0058 0.0049 0.0048
Two 0.0302 0.0080 0.0184 0.0079 0.0075 0.0074

Three 0.0371 0.0111 0.0279 0.0099 0.0082 0.0081

Brent

One 0.0408 0.0057 0.0146 0.0053 0.0044 0.0043
Two 0.0824 0.0080 0.0423 0.0071 0.0066 0.0065

Three 0.1158 0.0106 0.0254 0.0092 0.0075 0.0074

CEEMD: complete ensemble empirical mode decomposition; ARIMA: autoregressive integrated moving average;
LSSVR: least squares support vector regression; ANN: back propagation neural network; SBL: sparse Bayesian
learning; CK-SBL: SBL with a combined kernel; HLT: a hybrid model that forecasts high-frequency, low-frequency
and trend components individually; ADD: addition.

Among all these models, CEEMD-A&S-SBL model achieved the lowest (the best) MAPE values

in all cases on both markets. Although the previous hybrid model CEEMD-HLT-ADD achieved
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the lowest MAPE values compared with the single prediction models, the proposed hybrid model

CEEMD-A&S-SBL outperformed the CEEMD-HLT-ADD model in all cases. For each prediction model,

the MAPE values increased with the horizon.

Table 4 reported the RMSE values of all prediction models on WTI and Brent crude oil prices.

It can be seen that CEEMD-A&S-SBL outperformed the hybrid model CEEMD-HLT-ADD and all

single prediction models in all cases. Of all single models, the statistical model ARIMA obtained

the worst RMSE values in all six cases. For the AI models, LSSVR, ANN and CK-SBL achieved

close RMSE values, and the model CK-SBL was slightly better than others. As to the hybrid models,

CEEMD-A&S-SBL achieved the lower RMSE values than CEEMD-HTL-ADD model, showing that the

former was more powerful for crude oil price forecasting.

Table 4. The root mean squared error (RMSE) values of different prediction models on WTI and Brent

crude oil prices.

Market Horizon
CEEMD-

ARIMA-ADD
CEEMD-

LSSVR-ADD
CEEMD-

ANN-ADD
CEEMD-

CK-SBL-ADD
CEEMD-

HLT-ADD
CEEMD-

A&S-SBL

WTI

One 1.0983 0.5317 0.9536 0.4766 0.3963 0.3878
Two 1.9390 0.6468 1.3625 0.6425 0.6113 0.5977

Three 2.3850 0.9331 2.2405 0.7883 0.6578 0.6474

Brent

One 3.0815 0.4494 1.1034 0.4410 0.3697 0.3590
Two 6.2689 0.6611 3.6149 0.5902 0.5560 0.5424

Three 8.8840 0.8237 2.0899 0.7536 0.6251 0.6111

As to the directional statistics, it can be seen from Table 5 that CEEMD-A&S-SBL model achieved

the highest values in five out of six cases, indicating that the CEEMD-A&S-SBL model had better

performance in the direction forecasting of crude oil prices. For each model, the corresponding Dstat

values decreased with the increase of the horizon. Amongst the single prediction models, ANN, LSSVR

and CK-SBL obtained the higher Dstat values than ARIMA, showing that the AI models were capable

of achieving better directional predictions compared with the statistical model ARIMA. Moreover,

the hybrid models greatly outperformed the single prediction models.

Table 5. The directional statistic (Dstat) values of different prediction models on WTI and Brent crude

oil prices.

Market Horizon
CEEMD-

ARIMA-ADD
CEEMD-

LSSVR-ADD
CEEMD-

ANN-ADD
CEEMD-

CK-SBL-ADD
CEEMD-

HLT-ADD
CEEMD-

A&S-SBL

WTI

One 0.6949 0.8598 0.8147 0.8712 0.8995 0.9007
Two 0.5716 0.8303 0.7244 0.8388 0.8394 0.8418

Three 0.5626 0.7521 0.7118 0.7593 0.8135 0.8147

Brent

One 0.6301 0.8528 0.7511 0.8740 0.8734 0.8784
Two 0.5727 0.7972 0.6925 0.8447 0.8390 0.8422

Three 0.5527 0.7480 0.6881 0.7698 0.8091 0.8185

From the overall results above, it can be seen that the hybrid prediction models consistently

outperformed the single prediction models in all cases in terms of MAPE, RMSE, and Dstat. Between

the two hybrid models, our proposed CEEMD-A&S-SBL achieved better prediction performance

compared with CEEMD-HLT-ADD.

In order to better evaluate whether the prediction accuracy of CEEMD-A&S-SBL is significantly

better than those of other models or not, the Diebold–Mariano (DM) test [52] was used in this study.

The statistics and p-values (in brackets) are reported in Tables 6 and 7.

DM test results on the prediction of WTI and Brent crude oil prices demonstrated that the

CEEMD-A&S-SBL model significantly outperformed CEEMD-ARIMA-ADD, CEEMD-ANN-ADD,

CEEMD-LSSVR-ADD, CEEMD-CK-SBL-ADD and CEEMD-HLT-ADD, and the corresponding p-values

were much less than 0.05 in all cases.



Energies 2019, 12, 1239 14 of 23

Table 6. The Diebold–Mariano (DM) test results on WTI crude oil prices.

Horizon Tested Model
Benchmark Model

CEEMD-ARIMA-ADD CEEMD-ANN-ADD CEEMD-LSSVR-ADD CEEMD-CK-SBL-ADD CEEMD-HLT-ADD

One

CEEMD-ANN-ADD −6.401 (0.000)
CEEMD-LSSVR-ADD −37.579 (0.000) −22.376 (0.000)
CEEMD-CK-SBL-ADD −34.935 (0.000) −20.175 (0.000) −4.014 (0.000)

CEEMD-HLT-ADD −39.696 (0.000) −23.213 (0.000) −10.167 (0.000) −9.846 (0.000)
CEEMD-A&S-SBL −39.822 (0.000) −23.262 (0.000) −10.865 (0.000) −9.971 (0.000) −3.682 (0.000)

Two

CEEMD-ANN-ADD −17.100 (0.000)
CEEMD-LSSVR-ADD −41.834 (0.000) −21.798 (0.000)
CEEMD-CK-SBL-ADD −41.245 (0.000) −22.272 (0.000) −0.406 (0.685)

CEEMD-HLT-ADD −42.080 (0.000) −23.126 (0.000) −4.288 (0.000) −4.984 (0.000)
CEEMD-A&S-SBL −42.329 (0.000) −23.339 (0.000) −5.489 (0.000) −5.710 (0.000) −3.887 (0.000)

Three

CEEMD-ANN-ADD −2.722 (0.007)
CEEMD-LSSVR-ADD −43.031 (0.000) −24.609 (0.000)
CEEMD-CK-SBL-ADD −41.550 (0.000) −24.130 (0.000) −6.002 (0.000)

CEEMD-HLT-ADD −43.561 (0.000) −25.395 (0.000) −11.064 (0.000) −12.549 (0.000)
CEEMD-A&S-SBL −43.684 (0.000) −25.423 (0.000) −1.290 (0.000) −11.200 (0.000) −2.792 (0.005)

Table 7. The Diebold–Mariano (DM) test results on Brent crude oil prices.

Horizon Tested Model
Benchmark Model

CEEMD-ARIMA-ADD CEEMD-ANN-ADD CEEMD-LSSVR-ADD CEEMD-CK-SBL-ADD CEEMD-HLT-ADD

One

CEEMD-ANN-ADD −24.977 (0.000)
CEEMD-LSSVR-ADD −25.324 (0.000) −19.530 (0.000)
CEEMD-CK-SBL-ADD −25.333 (0.000) −19.737 (0.000) −0.934 (0.350)

CEEMD-HLT-ADD −25.500 (0.000) −21.137 (0.000) −9.783 (0.000) −9.724 (0.000)
CEEMD-A&S-SBL −25.521 (0.000) −21.339 (0.000) −10.420 (0.000) −10.095 (0.000) −4.202(0.000)

Two

CEEMD-ANN-ADD −16.241 (0.000)
CEEMD-LSSVR-ADD −25.250 (0.000) −26.451 (0.000)
CEEMD-CK-SBL-ADD −25.273 (0.000) −26.728 (0.000) −6.775 (0.000)

CEEMD-HLT-ADD −25.299 (0.000) −26.814 (0.000) −10.215 (0.000) −6.072 (0.000)
CEEMD-A&S-SBL −25.311 (0.000) −26.847 (0.000) −10.869 (0.000) −6.949 (0.000) −4.261(0.000)

Three

CEEMD-ANN-ADD −23.494 (0.000)
CEEMD-LSSVR-ADD −24.832 (0.000) −22.274 (0.000)
CEEMD-CK-SBL-ADD −24.841 (0.000) −23.071 (0.000) −4.521 (0.000)

CEEMD-HLT-ADD −24.898 (0.000) −24.284 (0.000) −13.058 (0.000) −12.715 (0.000)
CEEMD-A&S-SBL −24.9040 (0.000) −24.394 (0.000) −12.995 (0.000) −11.982 (0.000) −4.135(0.000)



Energies 2019, 12, 1239 15 of 23

On one hand, when we chose the single prediction models, including CEEMD-ARIMA-ADD,

CEEMD-ANN-ADD, CEEMD-LSSVR-ADD, CEEMD-CK-SBL-ADD, as the benchmark models,

CEEMD-A&S-SBL was statistically superior to these single prediction models, indicating that the

former was more powerful for nonlinear and nonstationary crude oil price forecasting. On the

other hand, when we chose the hybrid model CEEMD-HLT-ADD as the benchmark model,

the prediction results of CEEMD-A&S-SBL were also significantly better. In summary, the hybrid

model CEEMD-A&S-SBL achieved the best prediction accuracy in all models. The DM test results

further statistically confirmed the conclusion.

4.4.2. Experimental Results of Decomposition Methods

On the basis of same prediction (A&S) and ensemble (SBL) methods, we evaluated the

performance of the various decomposition methods. Tables 8–10 report the corresponding prediction

results in terms of MAPE, RMSE and Dstat, respectively. It can be found that the CEEMD method was

the best decomposition method that achieved the lowest MAPE and RMSE values and the highest

Dstat values at each horizon.

Table 8. The MAPE values of different decomposition methods on WTI and Brent crude oil prices.

Market Horizon EMD EEMD CEEMD

WTI

One 0.0083 0.0079 0.0048
Two 0.0100 0.0095 0.0074

Three 0.0117 0.0097 0.0081

Brent

One 0.0078 0.0079 0.0043
Two 0.0091 0.0089 0.0065

Three 0.0112 0.0091 0.0074

Table 9. The RMSE values of different decomposition methods on WTI and Brent crude oil prices.

Market Horizon EMD EEMD CEEMD

WTI

One 0.6661 0.6225 0.3878
Two 0.8185 0.7511 0.5977

Three 0.9497 0.7758 0.6474

Brent

One 0.6750 0.6447 0.3590
Two 0.7713 0.7274 0.5424

Three 0.9296 0.7456 0.6111

Table 10. The Dstat values of decomposition methods on WTI and Brent crude oil prices.

Market Horizon EMD EEMD CEEMD

WTI

One 0.8189 0.8189 0.9007
Two 0.7966 0.7768 0.8418

Three 0.7341 0.7714 0.8147

Brent

One 0.8341 0.7998 0.8784
Two 0.8035 0.7711 0.8422

Three 0.7299 0.7623 0.8185

In order to better evaluate whether the decomposition method CEEMD is significantly better than

other decomposition methods or not, the DM test was used. The statistics and p-values (in brackets) are

reported in Table 11. DM test results on the prediction of WTI and Brent crude oil prices demonstrated

that the CEEMD decomposition method significantly outperformed EEMD and EMD in all cases,

and the corresponding p-values were much less than 0.05 in all cases.
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Table 11. The Diebold–Mariano (DM) test results on WTI and Brent crude oil prices.

Market Horizon Tested Model
Benchmark Model

EMD EEMD

WTI

One
EEMD −2.373 (0.018)

CEEMD −14.79 (0.000) −15.93 (0.000)

Two
EEMD −3.168 (0.002)

CEEMD −11.63 (0.000) −11.12 (0.000)

Three
EEMD −8.208 (0.000)

CEEMD −14.04 (0.000) −9.944 (0.000)

Brent

One
EEMD −1.143 (0.253)

CEEMD −9.993 (0.000) −18.632 (0.000)

Two
EEMD −2.172 (0.030)

CEEMD −11.296 (0.000) −13.513 (0.000)

Three
EEMD −9.024 (0.000)

CEEMD −14.566 (0.000) −10.694 (0.000)

4.4.3. Experimental Results of Ensemble Methods

Traditional ensemble method uses addition operation. All IMFs and residue are simply added

as the final forecasting results. In order to potentially enhance the prediction precision, SBL without

kernel-tricks was chosen as the ensemble method in our proposed model. We chose SBL without

kernel-tricks mainly because it is a kind of fast and efficient ensemble method. Tables 12–14 show the

corresponding prediction results using addition or SBL ensemble method for A&S model in terms of

MAPE, RMSE and Dstat, respectively. It can be easily seen that the SBL ensemble method outperformed

the simple addition, achieving the lower MAPE and RMSE values, and the highest Dstat values at

each horizon.

Table 12. The MAPE values of different prediction models on WTI and Brent crude oil prices.

Market Horizon CEEMD-A&S-ADD CEEMD-A&S-SBL

WTI

One 0.0049 0.0048
Two 0.0075 0.0074

Three 0.0082 0.0081

Brent

One 0.0044 0.0043
Two 0.0066 0.0065

Three 0.0075 0.0074

Table 13. The RMSE values of different prediction models on WTI and Brent crude oil prices.

Market Horizon CEEMD-A&S-ADD CEEMD-A&S-SBL

WTI

One 0.3955 0.3878
Two 0.6106 0.5977

Three 0.6562 0.6474

Brent

One 0.3659 0.3590
Two 0.5555 0.5424

Three 0.6247 0.6111

Table 14. The Dstat values of different prediction models on WTI and Brent crude oil prices.

Market Horizon CEEMD-A&S-ADD CEEMD-A&S-SBL

WTI

One 0.9001 0.9007
Two 0.8388 0.8418

Three 0.8123 0.8147

Brent

One 0.8727 0.8784
Two 0.8421 0.8422

Three 0.8110 0.8185
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In order to better evaluate whether the SBL ensemble method is significantly better than the

addition ensemble method, the DM test was used. The statistics and p-values (in brackets) are reported

in Table 15. DM test results on the prediction of WTI and Brent crude oil prices showed that the

SBL ensemble method significantly outperformed the simple addition method in all cases, and the

corresponding p-values were much less than 0.05 in all cases.

Table 15. The Diebold–Mariano (DM) test results on WTI and Brent crude oil prices.

Market Horizon Tested Model
Benchmark Model

Addition

WTI

One SBL −3.402 (0.001)
Two SBL −3.764 (0.000)

Three SBL −2.333 (0.020)

Brent

One SBL −2.952 (0.003)
Two SBL −4.336 (0.000)

Three SBL −4.146 (0.000)

4.5. Discussions

In order to better analyze the proposed CEEMD-A&S-SBL, we will further discuss some

characteristics of the proposed model for forecasting crude oil prices, including CEEMD parameter

settings, the impact of the lag order, individual component prediction model and selection and the

weights of components in aggregation.

4.5.1. CEEMD Parameter Settings

In the decomposition of the original series, a particular white noise was added at each stage

of CEEMD. Let the parameter St be the white noise strength and I be the number of realizations in

CEEMD. In order to investigate the impact of these parameters for crude oil price forecasting, we

conducted the experiments on WTI crude oil prices with one-step-ahead forecasting. First, we fixed

I = 100 and ran CEEMD-A&S-SBL with a variable St in the range of {0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3,

0.5}. The results are shown in Figure 4. Second, we fixed St = 0.2 and repeated the experiments with

a variable I in the range of {20, 40, 60, 80, 100, 200, 500, 1000, 2000, 5000}; the results are shown in

Figure 5.

As shown in Figure 4, the values of RMSE, MAPE and Dstat simultaneously achieve the best

values when the noise strength in CEEMD equals to 0.1. When the noise strength is greater or less

than 0.1, the prediction performance becomes worse and worse. This indicates that too much or too

little added noise decreases the forecasting precision. The experimental results show that the noise

strength has a significant impact on forecasting accuracy, and an ideal value of added noise strength

is about 0.1.

On the other hand, with the increase of the number of realizations in CEEMD, the values of both

RMSE and MAPE decrease and Dstat increases when the number of realizations is less than 1000,

showing that the forecasting performance continuously improves as shown in Figure 5. However,

when the number of realizations is greater than 1000, RMSE, MAPE and Dstat tend to be roughly

stable. Therefore, if time cost is considered, 1000 is an appropriate value for the number of realizations

in CEEMD in terms of RMSE, MAPE and Dstat.
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ahead forecasting.

4.5.2. The Impact of the Lag Order

In order to further investigate the impact of the lag order on our proposed CEEMD-A&S-SBL

model, we conducted the one-step-ahead forecasting experiment on WTI crude oil prices with the

number of lag orders from 1 to 10. The results are shown in Figure 6. It can be seen that the forecasting

performance significantly improves with the increase of the lag order from 1 to 4. Then, RMSE slightly

decreases with the increase of lag order from 5 to 6, while MAPE and Dstat remain unchanged. When

the lag order is greater than 6, all three metrics tend to be stable. The experimental results demonstrate

that the lag order has a significant impact on forecasting accuracy, and an ideal value of lag order is

about 6.
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Figure 6. The impact of lag order on WTI crude oil prices with one-step-ahead forecasting.
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4.5.3. Individual Component Prediction Model and Selection

In the proposed CEEMD-A&S-SBL model, the prediction models of ARIMA and SBL with

combined kernel-tricks are built on the training set independently for each component, and then these

two prediction models are applied to the test set separately. These two groups of prediction results of

all individual components are adaptively selected based on the training precision. Table 16 shows the

prediction model selection results for each component in terms of RMSE.

Table 16. Prediction model selection for each component on WTI and Brent crude oil prices.

Market IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 Residue

WTI ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA CK-SBL CK-SBL ARIMA ARIMA CK-SBL
Brent ARIMA ARIMA ARIMA ARIMA ARIMA CK-SBL CK-SBL CK-SBL ARIMA ARIMA ARIMA ARIMA

From the above table, we can find that ARIMA and CK-SBL were adaptively selected for

forecasting different components. For WTI crude oil data, CK-SBL was chosen for forecasting the IMF8,

IMF9 and residue, while ARIMA was chosen for forecasting the rest of the components. Regarding

Brent crude oil data, CK-SBL was chosen for forecasting the IMF6, IMF7 and IMF8, while ARIMA was

chosen for forecasting the rest of the components. In the previous HTL model, the first IMFs were

identified as low-frequency components and the rest as high-frequency ones, and then the appropriate

models were employed to forecast the two parts respectively. Our proposed CEEMD-A&S-SBL model

is capable to adaptively select appropriate prediction models based on the training precision without

identifying the characteristic of each component. Therefore, the proposed CEEMD-A&S-SBL model is

more flexible and can better adapt to differential components, showing higher forecasting performance

on crude oil prices.

4.5.4. The Weights of Components in Aggregation

Most previous models aggregate the prediction results of all components as the final forecasting

results using simple addition. The proposed CEEMD-A&S-SBL model uses SBL without kernel-tricks

to aggregate the prediction values of individual components to obtain the final prediction results of

crude oil prices. Table 17 shows the weights of components in aggregation using SBL for WTI and

Brent oil price forecasting.

Table 17. Weights of components in aggregation using SBL.

Market IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 Residue

WTI 0.9296 1.1345 0.9983 1.0038 0.9925 1.0032 0.9969 0.9982 1.0050 0.9938 1.0140 1.0001
Brent 0.9256 1.1440 1.0241 1.0146 1.0004 1.0013 0.9988 1.0001 1.0009 0.9979 1.0035 1.0000

In the ensemble of addition, each component has an equal weight. It can be seen from Table 17

that each component has a differential aggregation weight when using the SBL ensemble. Especially,

IMF1 has a relatively small weight mainly because IMF1 fluctuates dramatically, making it hard to

accurately forecast. Figures 7 and 8 show the prediction result of each component in one-step-ahead

forecasting on WTI and Brent crude oil prices. It can be seen that all components can be accurately

predicted except IMF1. Therefore, each component should have a differential weight in the aggregation

stage. Due to the relatively larger prediction error, the IMF1 should have a relatively smaller weight in

the aggregation stage. Compared with addition and other ensemble methods, ensemble using SBL has

some advantages as follows: (1) good interpretability, (2) better prediction accuracy.
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Figure 7. Prediction result of each component in one-step-ahead forecasting on WTI crude oil prices.
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Figure 8. Prediction result of each component in one-step-ahead forecasting on Brent crude oil prices.

4.6. Summary

From the above results and analysis, some findings can be summarized as follows:

(1) The AI models outperform the traditional statistical/econometric models in terms of MAPE,

RMSE and Dstat, indicating that AI models are much better at forecasting nonlinear and

nonstationary crude oil price series.

(2) The hybrid ensemble models, including CEEMD-HLT-ADD and CEEMD-A&S-SBL, can further

improve the prediction performance.

(3) Our proposed prediction model CEEMD-A&S-SBL adaptively selects an appropriate prediction

model for forecasting each component without identifying high-frequency and low-frequency

in advance, and the adaptive hybrid model significantly outperforms the other compared

hybrid model.

(4) The CEEMD method achieves better prediction results than the counterpart EEMD and EMD

methods, indicating that CEEMD is more suitable for decomposing original crude oil price series.
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(5) The SBL ensemble method outperforms the traditional addition method in terms of MAPE, RMSE

and Dstat, showing that SBL is more suitable for aggregating individual prediction components.

5. Conclusions

It is a great challenge for the accurate forecast of crude oil prices because of its nonlinearity

and nonstationarity. To better forecast the crude oil price time series, this paper proposed a novel

adaptive hybrid ensemble learning paradigm (CEEMD-A&S-SBL) incorporating CEEMD, ARIMA

and SBL. Firstly, the decomposition method CEEMD was employed to decompose the original time

series of crude oil prices into several IMFs and one residue. In the individual forecasting phase,

ARIMA and SBL with combined kernel-tricks were used to predict target values for the residue and

each single IMF independently. Finally, the prediction results of the above two models for each

component were adaptively selected based on the training precision, and then aggregated as the final

forecasting results using SBL without kernel-tricks. To our knowledge, this is the first time that the

adaptive model selection for individual component forecasting has been developed to forecast crude oil

prices. The experimental results show that: (1) compared with five state-of-the-art prediction models,

the proposed model can significantly improve the prediction accuracy of crude oil prices; (2) CEEMD

is superior to EEMD and EMD for decomposing the original time series of crude oil prices; and (3) SBL

outperforms addition method in aggregating the individual forecasting results of components.

Future work could be extended in four aspects: (1) selecting more appropriate prediction

approaches to build the hybrid ensemble model for forecasting crude oil prices; (2) developing more

metrics for evaluating the training precision instead of RMSE only; (3) applying the CEEMD-A&S-SBL

to forecast other time series of energy, such as carbon price, wind speed and electricity load; and (4)

assessing the scaling ability of CEEMD-A&S-SBL to other time series with various volume of data,

such as hourly price series and weekly price series.
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