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ABSTRACT In this paper, an adaptive improved ant colony algorithm based on population information

entropy(AIACSE) is proposed to improve the optimization ability of the algorithm. The diversity of the

population in the iterative process is described by the information entropy. The non-uniform distribution

initial pheromone is constructed to reduce the blindness of the search at the starting phase. The pheromone

diffusion model is used to enhance the exploration and collaboration capacity between ants. The adaptive

parameter adjusting strategy and the novel pheromone updating mechanism based on the evolutionary

characteristics of the population are designed to achieve a better balance between exploration of the search

space and exploitation of the knowledge during the optimization progress. The performance of AIACSE is

evaluated on the path planning of mobile robots. Friedman’s test is further conducted to check the significant

difference in performance between AIACSE and the other selected algorithms. The experimental results and

statistical tests demonstrate that the presented approach significantly improves the performance of the ant

colony system (ACS) and outperforms the other algorithms used in the experiments.

INDEX TERMS Ant colony optimization, path planning, mobile robot, grid map, pheromone diffusion

model, parameter adjusting strategy, pheromone updating strategy, population information entropy.

I. INTRODUCTION

Nowadays, the research of mobile robots has expanded

widely, due to their effective use in repetitive and unattainable

environments for humans [1]. There are many research topics

on mobile robots, including simultaneous localization and

mapping (SLAM), path planning, and trajectory tracking [2],

in which path planning is one of the most essential and

important research areas [3]. As a whole, path planning aims

to provide a collision-free, optimal or approximate optimal

path from the initial position to the destination position in

an environment with obstacles and to optimize it in respect

of some criteria [4], such as traveling distance (length of the

path), traveling time, and/or efficiency, etc.

The study of path planning began in the 1960s [5], and

various methodologies have been investigated to generate

the optimal path involving cell decomposition [6], roadmap
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approaches [7], and potential field methods [8]. However,

these methods suffer from a lack of robustness, adaptivity,

and local minimum. So, many heuristic methods have been

promoted to overcome the essential drawbacks of traditional

methods. The representative methodologies include Artificial

Neural Network (ANN) method [9], Genetic Algorithm

(GA) [10], Biogeography-Based Optimization (BBO) [11],

Particle Swarm Optimization (PSO) [12], Artificial Bee

Colony (ABC) [13] and Cuckoo Search (CS) [14]. It is worth

mentioning that some recently proposed meta-heuristics,

such as Gradient-Based Optimizer (GBO) [15], Slime Mould

Algorithm (SMA) [16] and Whale Optimization Algorithm

(WOA) [17] have also contributed to the path planning

problem. However, these intelligent optimization algorithms

cannot be used directly for the path planning problem in

grid environments. Besides, these methodologies were shown

some drawbacks such as large search space, inefficient

search, local minimum, etc. Therefore, the improvement of

existing algorithms or the exploration of new path planning
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methods has become the current research hotspot [18]–[22].

The Ant colony optimization (ACO) algorithms are dif-

ferent from other swarm intelligence algorithms since a

set of parallel artificial ants need to iteratively build the

candidate solutions for a given optimization problem using

a probabilistic transition rule which can make them more

suitable for solving combinatorial optimization problems,

such as the traveling salesman problem (TSP) and the path

planning of mobile robots. Therefore, this study concentrates

on an adaptive improved ant colony algorithm for robot path

planning.

The first ant system (AS) algorithm was presented by

Dorigo and Stutzle in the early 1990s. The basic idea of

this algorithm has been inspired by the foraging activity

that ants can determine the shortest path between their

colony and a food source [23]. ACO algorithms have been

successfully used in many various fields, including assign-

ment problem [24], scheduling problem [25], image edge

detection [26], constraint satisfaction problem [27], economic

sciences [28] and robot path planning [29]–[31] because of

the characteristics of distributed parallel computing, positive

feedback, strong robustness and easily integrating with

different algorithms. However, there are some deficiencies,

such as stagnation and premature convergence, difficultly

determining control parameters, slow convergence speed, and

so on. Those drawbacks will be more obvious as the size of

problem instances increases. In addition, it is difficult to keep

a balance between efficiency and optimality. For example,

some algorithms only focus on improving the efficiency of

the algorithm but failed in guaranteeing the optimality of

the algorithm, and vice versa. Some variants based on ant

system have been proposed to overcome the disadvantages

mentioned above.

The ant colony system (ACS) was proposed to improve

the convergence rate by updating pheromones on the optimal

path of each generation [32], however, these attempts reduce

the overall exploration ability and easily falls into local

optimum. Another improvement over AS is the Rank-based

Ant System (RAS) where all ants should be sorted by the

length, the top ranked ants release pheromones proportionally

according to their ranks (i.e., better solutions contribute more

pheromones) [33]. These classical improved algorithms bring

some valuable experiences for future research.

Additionally, another research trend consists in the

hybridization of ACO algorithms with other optimization

algorithms to improve its global searching capability.

A hybrid PS-ACO algorithm is developed by combining

the mechanisms of PSO and ACO to expand the search

space in the literature [38]. Dong et.al [39] presented a new

hybrid approach that is designed to execute both AS and

GA concurrently and cooperatively. The hybrid algorithms

can obtain better optimization performance by making full

use of the excellent advantages of the combined original

algorithms, however, they still exist low search efficiency

and slow convergence speed. Meanwhile, some attempts

have been made to strengthen the performance of ACO

algorithms by the collaborative work between multiple ant

colonies. Sreeja and Sankar [40] proposed a hierarchical

heterogeneous ant colony optimization with different ant

agents and the minimal cost action rules to reduce time

cost. Zhang et al. [41] proposed a dynamic multi-role

adaptive collaborative ant colony optimization (MRCACO)

based on heterogeneous multi-colony and multi-role adaptive

cooperation mechanism. To determine a suitable path for

application to mobile robots, a heterogeneous-ants-based

path planner (HAB-PP) as a global path planner was proposed

by Lee [2]. Even though multi colony ant algorithms is

beneficial to balance the convergence and the diversity of

the population, a suitable strategy for information exchange

is difficult to design for improving the performance of the

algorithm.

The above proposed works have been focused on some

variants of basic ACO, the hybridization of ACO algorithms

with other algorithms andmulti ant colony optimization algo-

rithms, at the same time, a variety of improved techniques,

such as search strategy [35], pheromone initialization [30]

and update strategy [4], state transition rules [36] and

heuristic information [37], have been delivered by many

scholars to effectively enhance the performance of the ant

colony algorithm. Liu et al. [30] have combined the ant

colony algorithm with the artificial potential field (APF)

to accelerate the convergence speed of the path planning

algorithm. To avoid blind search in the initial stage of

the algorithm, the method of unequal allocation initial

pheromone, which calculates the initial pheromone based on

the relative distance between the current node, next node

and the starting-ending point connection is proposed in the

literature [4]. Uneven distribution of initial pheromone is

introduced in [42] to improve the speed of convergence.

However, these pheromone initialization methods exist some

drawbacks that the scope of search space is small and the

local optimal solution is easy to produce due to the loss of

population diversity.

The parameters settings of ACO algorithms have a signif-

icant impact on the performance of the algorithm. Because

of the disadvantage of static parameter values, various

parameter-adaption methods have been designed to enable

the most suitable parameter values to be identified in a more

computationally efficient manner. An adaptive polymorphic

ant colony algorithm based on the adaptive state transition

strategy and the adaptive information update strategy was

designed to ensure the relative importance of pheromone

strength and desirability [36]. Akka and Khaber proposed

an improved ACO algorithm in the paper [18] which adopts

a new pheromone updating rule and dynamic adjustment

of the evaporation rate to accelerate the convergence speed

and to enlarge the search space. The main disadvantage

of these methods is that the parameter value is related to

the number of iterations carried out so far, resulting in

insufficient adaptability. Mavrovouniotis and Yang et al. [44]

used a self-adaptive evaporation mechanism to enhance the

ability of global search for addressing dynamic optimization
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problems. Favuzza et al. [45] regulated control parameter q0
to push exploration or exploitation as the search procedure

stops in a local minimum. However, these adaption strategies

are often challenged because these parameter values may

have different performance for different problems, and these

adaptive parameter adjustment strategies rarely consider the

characteristics of the iteration progress. In fact, it has already

been confirmed that different parameter settings are required

not only for different problems but also for different stages of

the optimization algorithm.

Although the studies mentioned above can achieve high

algorithmic performances, there are still some inherent

shortcomings that have not been effectively solved, such as

low search efficiency, the problems of local optimum, and the

contradiction between convergence speed and diversity loss.

For this reason, the pheromone initialization strategy based

on A* algorithm, pheromone diffusion mechanism, adaptive

adjustment strategies of the parameter q0, and dynamic

pheromone updatingmechanism, are introduced into the ACS

to develop an adaptive improved ant colony system algorithm

based on population information entropy(AIACSE). The path

planning problem in mobile robotics is selected to verify the

effectiveness of the proposed algorithm. The novelty in the

presented approach is in the combination of the following

strategies with the ACS:
1) We introduce a non-uniform distribution initialization

strategy into ACS algorithm to avoid blindness in

the starting of evolution phase and improve the

convergence speed.

2) The pheromone diffusion model is embedded to

promote the exploration and collaboration capabilities

of the ant colony algorithm and reduce the probability

of premature convergence.

3) The adaptive parameter adjusting strategy based on

population entropy is developed to achieve a better

balance between exploration of the search space and

exploitation of the collected experiences during the

steps of the process.

4) The adaptive global pheromone updating strategy

based on the evolutionary characteristics of the pop-

ulation dynamically adjusts the pheromone increment

caused by the iterative optimal ants to further increase

the potential of the iterative optimal path.

Particularly, the adaptive parameter adjusting strategy and

the adaptive global pheromone updating strategy are designed

based on the evolutionary characteristics of the population

measured by population entropy.

The remaining part of this paper is structured as follows:

First, Section 2 briefly describes some preliminaries, such

as ant colony systems, information entropy and pheromone

diffusion model, and then Section 3 expatiates the design

of our adaptive improved ant colony algorithm, including

the initial pheromone settings based on A*, pheromone

diffusion mechanism, adaptive adjustment strategies of the

parameter q0, dynamic pheromone updating strategy and the

pseudo-code of the AIACSE algorithm. Section 4 reveals

the experimental results, including experimental setup, the

simulation test of the proposed algorithm for solving the

path planning of mobile robots and the statistical tests of the

obtained results. Finally, some conclusions and further works

are discussed in Section 5.

II. PRELIMINARIES

A. ANT COLONY OPTIMIZATION ALGORITHM

ACO algorithm is a promising meta-heuristic algorithm for

solving hard combinatorial optimization problems, inspired

by the foraging behavior of ants in nature [32]. Generally, the

classical ACS is described as the interplay of three phases:

initialization, solution construction and pheromone update.

ACO solves the problem by repeating the steps of solution

construction and pheromone update until the termination

conditions are satisfied.

The parameters of the ant colony algorithm need to

be initialized during the initialization procedure, such as

the initial value of the pheromone, the number of ants,

the evaporation factor of pheromone, the parameters for

controlling the comparative significance of pheromone and

heuristic values in the state transition rule.

During the phase of constructing solutions in ACS, the

pseudo-random proportional rule is used to choose the next

node to be visited, which favors transitions toward nodes

connected by short edges and with a large amount of

pheromone. The decision rule of the ant to move from node i

to node j is defined as the following equation [32]:

j=







argmax
j∈allowedk

[

τij(t)
]α [

ηij
]β

if q ≤ q0(exploitation )

J otherwise(exploration)

(1)

pij =















[

τij(t)
]α [

ηij
]β

∑

s∈allowedk
[τis(t)]

α [ηis]
β

if s ∈ allowedk

0 otherwise

(2)

where q ∈ [0, 1] is a random variable parameter, q0 ∈ [0, 1] is

a pre-defined parameter allowing to regulate the elitism of the

algorithm, τij(t) and ηij = 1/dij are, respectively, the amount

of pheromone concentration and heuristic information on the

edge between node i and node j, where dij is the distance

between node i and node j, s in the Eq.(2) is a node that

has not been visited by ants, allowedk is the set of unvisited

nodes yet when ant k is located at node i, α and β are two

constants that determine, respectively, the relative influence

of the pheromone amount and the heuristic information on

the decision of the ant, J is a random value selected using the

probability distribution given by the Eq.(2).

The parameter q0 determines the relative importance of

exploitation versus exploration of the search space. With

probability q0, the ant moves to the node j for which the

product between pheromone trail and heuristic information

is maximum, while with probability 1 − q0, the ant operates

a biased exploration in which the probability is the same as
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in AS. When q0 is set to a value close to 1, exploitation is

favored over exploration.

During the iteration process, the local and global

pheromone update rules are used to update the pheromone

values. The local pheromone update is performed by an ant

after making a moving from node i to node j, while the global

pheromone update is executed in the end of each construction

process, these pheromone update rules are shown as follows:

1) Local update rule

τ(i,j)(t + 1) = (1 − ζ ) · τ(i,j)(t) + ζ · 1τ0 (3)

where ζ is a coefficient regulating evaporation of the

pheromone over time, τ0 = (n ∗ Lnn)
−1 is the initial

value of the pheromone trails, where n is the number of

nodes in the TSP and Lnn is the cost produced by a greedy

nearest-neighbor algorithm. The main object of the local

update is to prevent premature convergence and to increase

variety in the constructed solutions.

2) Global update rule

τ(i,j)(t + 1) = (1 − ρ) · τ(i,j)(t) + ρ · 1τ
gb
ij (t) (4)

1τ
gb
ij (t) =







Q

Lgb
if edge(i, j) ∈ global best tour

0 otherwise

(5)

where ρ(0 < ρ < 1) is the pheromone evaporation rate,

Q is a non-zero positive constant, and Lgb is the total length

of the globally best path from the beginning of the run.

The global update rule gives the edges belonging to the best

solution found so far higher probabilities of being selected

in the subsequent iterations which is helpful to speed up

convergence to the optimal solution.

B. INFORMATION ENTROPY

The concept of information entropy was introduced by Shan-

non [47]. It is a measure of the unpredictability associated

with a random variable X with possible state x1, x2, . . . , xn,

which occur with the probability p(x1), p(x2), . . . , p(xn).

In another word, it refers to the average of diversity or

uncertainty in a system. The information entropy of X is

defined as follows:

H (X ) = −
n

∑

i=1

p(xi) · ln(p(xi)) (6)

If each state of the random variable X occurs with equal

probability, the information entropy is rather high, otherwise,

it is relatively low. In addition, an increase in entropy

represents an increase in diversity. In this paper, we use the

information entropy to measure the diversity and evolution of

the ant colony during the run to improve the adaptability of

the algorithm.

C. PHEROMONE DIFFUSION MODEL

The pheromone trails play an important role in the perfor-

mance and collaborative capability of the ACO family of

algorithms. In the classical ACO algorithms, the pheromone

is only released on the edges of path or the nodes that ants

passed through. This mode can only affect the following ants

with the passed same point, and cannot guide the search

of ants in a certain range of surrounding regions. This

phenomenon leads to the problem of insufficient cooperation

between ants and brings the risk of entrapment in the local

optimum.

In fact, the pheromones are not only deposited on the

path where ants passed through, but also spread to the

neighboring regions of the path. It is usually more likely

to get a better solution in the neighborhood of the optimal

solution than in other regions. Therefore, the pheromone

diffusion mechanism can make ants deposit pheromones

at a certain point, and gradually affects the adjacent areas

within a certain range [46]. The basic idea of the pheromone

diffusion model is to take into account the pheromone

influences among neighboring locations in the current

grid while building solutions. Acknowledging these facts,

the pheromone diffusion model which can enhance the

exploration and collaboration capabilities of the ant colony

algorithm is presented as follows. Fig. 1 illustrates the

distribution model of unit pheromone diffusion. Assume that

pheromone concentration is equal to one at the ant’s current

grid.

FIGURE 1. Distribution model of unit pheromone concentration.

There are eight neighboring grids around the current grid,

then the amount of diffusion pheromone at a given grid is

designed as follows:

f (g, g0) =











1 d (g, g0) = 0

0.5 d (g, g0) = 1

0.33 d (g, g0) =
√
2

(7)

where g0 represents the grid where ant is located, g is a free

given grid around the current grid, d (g, g0) is the distance

between grid g0 and g, the distance could be described as:

d(g, g0) =
{

1 if g and g0 in vertical or horizontal√
2 otherwise

(8)

III. ADAPTIVE IMPROVED ANT COLONY SYSTEM BASED

ON POPULATION INFORMATION ENTROPY

The proposed algorithm in this paper is based on

ACS but presents some important differences in three

aspects: pheromone initialization strategy, adaptive param-

eter adjusting strategy and pheromone updating strategy.
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In the following sections, each modified strategies will be

described, respectively.

A. PHEROMONE INITIALIZATION STRATEGY

The initial value of the pheromone should be initialized

before running and is often important to the ACS’s perfor-

mance as it affects the relative importance of pheromone

additions. This effect is especially exaggerated in the early

stages of the optimization process when good solutions have

not yet been established. However, the initial pheromone

concentrations of all edges in the classical ant colony

algorithm are equally initialized. As a consequence, it takes

a long time to find a better solution from a great number of

candidate solutions.

To avoid the blindness in the starting of evolution phase

and accelerate the convergence speed of the algorithm, the

non-uniform distribution initial pheromone based on A*

algorithm is used to adjust the initial allocation of pheromone.

First, an optimal path obtained by A* algorithm is used for

pheromone initialization. The initial pheromone value can be

defined as follows:

τ0(i, j) =
{

k ∗ C if edge(i, j) ∈ T ∗

C otherwise
(9)

where τ0(i, j) represents the initial pheromone value between

node i and node j, k (k>1) is a constant that express the

difference of the pheromone between the optimal path and the

other path, T ∗ is the optimal path found by A* algorithm, C

is the initial pheromone value which is described as:

C =
1

L∗ (10)

where L∗ is the length of the path T ∗.
In addition, the initial pheromones on the optimal path

constructed by A* algorithm are diffused to the surrounding

areas according to the pheromone diffusion model to enhance

the cooperation among ants.

B. ADAPTIVE PARAMETER ADJUSTING STRATEGY BASED

ON INFORMATION ENTROPY

The performance of ACO algorithms is strongly influenced

by the settings of their parameters. The parameter value

of q0 in the basic ACO algorithms determines the ratio of

the deterministic and probabilistic selection modes. Seeking

an appropriate parameter value q0 in different stages of the

search process is useful to maintain a good balance between

exploration and exploitation. If the value of q0 is large, the

transition rule is more likely to the deterministic mode, which

improves exploitation of the best solution and increases the

convergence speed, but reduces the global search ability.

On the contrary, if the value of q0 is small, the transition rule

is apt to random mode, which increases the diversity of path

construction to prevent premature convergence and further

extends the exploration of unexplored search space regions

to locate a better solution, but reduces the convergence speed.

Therefore, the setting of q0 value directly relates to the global

search ability and convergence speed.

The randomness of path selection in the ACO algorithms

results in the uncertainty of the fitness value of candidate

solutions in each iteration. This uncertainty can reflect

the diversity of the population to some extent. As men-

tioned earlier, the information entropy is a measure of

the unpredictability of a random event, therefore, it can

be used to describe the diversity and the evolutionary

characteristics of the population. To make a search move

efficiently and effectively, the parameter q0 is adaptively

controlled according to this entropy measure. The change

of the population entropy is used as feedback to guide the

parameter adjustment. More precisely, the parameter q0 will

be changed according to the following equation:

q0 = q0min + (q0max − q0min) · (HR_(pop(t))
1
2 ) (11)

HR_(pop(t)) =
H_(pop(t))

ln(n)
(12)

H_pop(t) = −
N

∑

i=
p(xi) · ln(p(xi)) (13)

where q0max and q0min indicate respectively the minimum

and maximum values of the q0, HR_(pop(t)) ∈ [0, 1]

is the relative value of the population entropy in the

iteration t ,H_pop(t) is the value of the population entropy, xi
represents the fitness value of candidate solution, p(xi) ≥ 0 is

the probability of occurrence of the xi in the current

iteration,
N
∑

i=1

p(xi) = 1, N is the number of valid candidate

solutions. The change curve of the parameter q0 is shown

in Fig. 2.

FIGURE 2. The varying curve of parameter q0.

Observing Fig. 2, we can conclude that the value of the

parameter q0 is automatically tuned according to the change

of the population entropy in the evolutionary process. When

the information entropy of the population is small, it means

that the candidate solutions are relatively concentrated, so a

smaller q0 value is adopted to allow the generation of

a broad distribution of solutions. When the information
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entropy value is large, it means that the distribution of

the candidate solutions is relatively scattered, and a larger

q0 value should be adopted to accelerate the convergence

speed of the algorithm. To balance the trade-off between

search diversification and intensification, q0 has a range of

values between 0.4 and 0.9 [43]. In summary, this adaptive

parameter control strategy based on the characteristics of the

optimization progress can automatically adjust the value of

the parameter q0 to keep a better balance between exploration

and exploitation.

C. ADAPTIVE PHEROMONE UPDATING STRATEGY

The ACS is one of the popular ACO variants over AS.

There are two types of pheromone update rules in the

ACS algorithm: the local pheromone updating and the

global pheromone updating. Global pheromone updating

only allows the ants on the best solution found so far

to update pheromone, which accelerates the convergence

speed of the algorithm. In the existing literature, the ACO

algorithms only evaporate and enhance pheromone when

applying the pheromone updating rules and do not consider

the dynamic information of the evolutionary process. So,

we designed a dynamically weighted global pheromone

updating strategy to improve the optimization performance of

the ACS algorithm, which updates the pheromone adaptively

based on the information entropy of the population and

the iterative optimal solution. The formula of pheromone

updating is defined as follows:

τ(i,j)(t + 1) = (1 − ρ) · τ(i,j)(t) + ρ · 1τ
gb
ij (t)

+ (1 − HR_(pop(t))) · 1τ ibij (t) (14)

1τ ibij (t) =







1

Lib
if edge(i, j) ∈ T ib

0 otherwise

(15)

where ρ(0<ρ<1) is the pheromone evaporation rate, the

calculation method of HR_(pop(t)) has been detailed in

Section 3.2, 1τ
gb
ij (t) denotes the increase of trail level on

the global-best solution and is defined as the Eq.(5), 1τ ibij (t)

represents the total amount of pheromone released by the

ant on the iteration-best solution, Lib is the cost of the

iteration-best solution, T ib is the current optimal solution.

The proposed pheromone updating mechanism looks

similar to that in MMAS [34], however, MMAS only allows

the best ant to update the pheromone trails after each iteration,

the proposed pheromone updating strategy not only considers

the iterative optimal and the global optimal path concurrently

but also dynamically adjusts the pheromone increment caused

by the iterative optimal ants according to the evolutionary

characteristics of the population.

Besides, to enhance the cooperation among ants and

improve the global optimization ability, the pheromone

diffusion model presented in section 2 is also applied

to the pheromone updating strategy designed above. This

modification provides the ability to achieve a better balance

between exploring new paths and reinforcing popular paths.

Moreover, it also improves the solution quality of the

algorithm to some extent.

D. THE PSEUDO-CODE OF THE AIACSE ALGORITHM

The detailed steps of the proposed AIACSE algorithm for

path planning of mobile robot are shown as follows:

Step1 The environment model is loaded and the initializa-

tion process takes place during which the initial pheromone

value and many other parameters are set.

Step2 Ants are placed at the start point and construct the

paths according to Eq.(1) and Eq.(2). This cycle is repeated

until the ant reaches the goal point or occurs deadlock state.

Then the local pheromone update is executed in terms of

Eq.(3) for the feasible paths.

Step3 When all ants have completed a search, we evaluate

all feasible paths generated by the ants, and find the best one.

Step4 The global pheromone update is performed for the

best path found so far by Eq.(14), and the pheromones on the

optimal path are spread according to Eq.(7).

Step5 Calculate information entropy by Eq.(12).

Step6 Adaptively adjust the value of q0 based on Eq.(11).

Step7 The algorithm repeats the above step2 to step6

continuously until the maximum number of iterations is

reached.

Step8 Output Optimal path.

The pseudo-code of the proposed AIACSE algorithm is

illustrated in Algorithm 1.

Algorithm 1 Pseudo-Code of the AIACSE Algorithm

Input: start, goal, k,NCmax ,m, α, β, ρ, ζ, q0,Q

Output: Optimal path

1 Load environment model

2 Calculate the initial pheromone according to Eq.(9)

3 for i = 1 to NCmax do

4 for ant = 1 to m do

5 while node 6= goal and allowedk /∈ ∅ do

6 Construct path according to Eq.(1) and

Eq.(2)
7 end

8 Local pheromone update of feasible paths by

Eq.(3)
9 end

10 Evaluate all the feasible paths obtained by the ants

11 Global pheromone update of the best path by Eq.(14)

12 Pheromone diffusion of the best path by Eq.(7)

13 Calculate information entropy by Eq.(12)

14 Adjust the value of q0 based on Eq.(11)

15 end

16 return Optimal path

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The different experimental scenarios, as well as the experi-

mental results and discussions, are presented in this section.

Three experiments were carried out to demonstrate the valid-

ity and the performance of the proposed AIACSE in solving
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path planning of mobile robots. All the experiments and anal-

ysis were performed using the same PC(with a 3.40GHzCore

i5 CPU and 8 GB RAM) with Windows 7 64-bit professional

for a fair comparison. The MATLAB(R2016b) programming

language was used to implement the proposed algorithm

and other comparing algorithms. To avoid occasional cases

and have a more accurate deduction, all experiments were

executed independently 30 times with the same parameters.

All results are reported and compared based on the average

performance of the algorithm over 30 independent runs.

The maximum number of iterations is used as the stopping

condition for all algorithms.

The performance metrics used to compare the relative

performance of our proposed algorithm with the comparing

algorithms include the best path length (denoted as best), the

worst path length (denoted as worst), the mean path length

(denoted as mean) and the standard deviation of path length

(denoted as std) over 30 independent runs. Also, the two

novel performance metrics, denoted as fbest and rate, are

introduced to describe the number of iterations when the

optimal solution is obtained for the first time, and to some

extent also reveals the convergence speed of the algorithm

and the success rate of finding the optimal path in all runs.

Besides that, it is worth pointing out that the length of each

grid is 1 unit (1m) and the length of the path is measured in

terms of the number of grid units in all experiments hereafter

unless stated otherwise.

A. EXPERIMENTAL SETUP

In all experiments, the working environment is divided

into grid cells of binary information in which the grids

are numbered from left to right and from top to bottom.

Fig. 3(a) gives an example of a grid map with a dimension

of 10 × 10 nodes representing an environment. The black

grids represent obstacles and the white ones represent the

free spaces to move, S represents the start grid, G remarks

the goal grid. From Fig. 3(b), the robot can move in eight

directions which are forward, backward, right, left, right-up,

right-down, left-up and left-down.

FIGURE 3. Environment model:(a)A grid map example (b)Possible
directions of motion.

B. PARAMETERS SETTINGS

In the ant colony algorithm, there are several parameters, such

as the number of ants (m), the global pheromone evaporation

rate (ρ), the local pheromone evaporation rate (ζ ), the

pheromone total amount (Q), information heuristic factor (α),

expected heuristic factor (β), the maximum iteration times

(NCmax), the minimum and maximum values of the parame-

ters (q0min and q0max). The parameter values of the PS-ACO

are identical to those in [38]. The parameter values for the

MRCACO are the same as the recommended settings in the

literature [41]. In all experiments of the following sections,

the common parameters for the other algorithms are shown

in Table 1 [4].

C. VERIFICATION FOR THE EFFECTIVENESS OF THE

PROPOSED STRATEGIES

In the first experiment, we independently study the effects of

adaptive adjusting strategy and pheromone diffusion model

on the performance of the algorithm.

1) THE EFFECT OF ADAPTIVE ADJUSTING STRATEGY

The adaptive strategy is used to adjust the degree of

exploration and intensification of the search space and

the global pheromone updating mechanism according to

the evolutionary characteristics of the population. The grid

map1 is selected for this experiment, the ACS algorithm

combined with the proposed adaptive parameter q0 and

adaptive pheromone updating mechanism are introduced to

demonstrate the effect of the adaptive adjusting strategy.

Fig. 4 shows the optimal path generated by the ACS with the

adaptive adjusting strategy. The statistical results of different

values of q0 and adaptive adjusting strategy are listed in

Table 2, and the best ones are in bold.

FIGURE 4. The optimal path generated by the ACS with adaptive adjusting
strategy( q0 = 0.8) under the grid map1.

As it is seen from Table 2, the performance of the ACS

algorithm in the grid map1 can be improved with the increase

of the parameter q0 in terms of the best distance, the worst dis-

tance, mean distance, standard deviation, convergence rate,

and success rate towards optimal paths. This shows that the

parameter q0 can effectively improve the optimization ability

of the ACS algorithm. Furthermore, the ACS algorithm with
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TABLE 1. The parameter settings of different algorithms.

TABLE 2. Obtained results of the grid map1. The best result for each
section is highlighted in bold.

adaptive adjusting strategy can obtain better performance

than the classical ACS algorithm with the different parameter

q0. Particularly, the proposed method does not set the initial

value of q0. In this case, we can deduce from Table 2 that the

proposed strategy not only increases the optimization ability

of the ACS algorithm but also improves the adaptability and

robustness of the algorithm.

2) THE EFFECT OF PHEROMONE DIFFUSION STRATEGY

In this section, we designed a comparative experiment to

validate the effectiveness of the pheromone diffusion strategy

in the grid map2. In case I, the ACS algorithm without the

pheromone diffusion strategy is performed. In case II, the

ACS algorithm without the pheromone diffusion strategy is

executed. The parameter q0 is set to 0.8, and other parameters

of the ACS algorithm are shown in Table 1. The pheromone

distribution of the ACS algorithm at different iterations are

shown in Fig. 5 and Fig. 6. The statistical results of the

experiment are listed in Table 3, and the best ones are in bold.

The optimal path generated by the ant colony systemwith and

without the pheromone diffusion strategy is shown in Fig. 7.

TABLE 3. Obtained results of the grid map2. The best result for each
section is highlighted in bold.

By comparing Fig. 5 and Fig. 6, it could be obviously

noticed that the pheromone diffusion strategy increases the

pheromone concentration of the adjacent areas of the optimal

solution, enlarges the searching range, and reduces the

probability of premature convergence. From Table 3, we can

see that the two cases have almost similar experimental

results in terms of best, worst, and mean. Besides, the

ACS without pheromone diffusion mechanism has a smaller

standard deviation. This could be because the pheromone

diffusion strategy leads to a more dispersed distribution

of feasible solutions. Even so, the ACS with pheromone

diffusion mechanism slightly outperforms the original ACS

according to convergence speed and success rate.

FIGURE 5. Pheromone distribution of the ACS without pheromone
diffusion at 1, 10, 50 and 200 iterations( q0 = 0.8).

D. PERFORMANCE COMPARISON BETWEEN AIACSE

AND OTHER ALGORITHMS

To investigate the efficiency of the proposed AIACSE in

the path planning of mobile robots, the second experiment

is conducted to compare the AIACSE approach with other

algorithms such as the classical Ant System [23], two

variants of Ant System (RAS [33] and ACS [32]), and

two state-of-the-art optimization algorithms based on ant

system (PS-ACO [38] andMRCACO [41]) based on the best,

worst, average of the results, standard deviation, convergence

rate and success rate towards optimal solutions. Here,

brief reviews of the comparison methods are discussed to

understand the difference between them.

1) AS. Ant System is the first and basic ACO algorithm.

This algorithm proved that the methodology was

promising and provided the valuable experiences to

further research, but it also showed some drawbacks,

such as premature convergence, long search time, low

convergence rate.
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FIGURE 6. Pheromone distribution of the ACS based on pheromone
diffusion at 1, 10, 50 and 200 iterations( q0 = 0.8).

FIGURE 7. The optimal path generated by the ACS with and without
pheromone diffusion strategy( q0 = 0.8).

2) RAS. Rank-based Ant System is a well-known

improvement of AS where all ants should be sorted

by the length, the top ranked ants release pheromones

proportionally according to their ranks (i.e., better

solutions contribute more pheromones).

3) ACS.Ant Colony system is another improvement of AS

and is the most widely used ACO algorithm. It differs

mainly in three aspects: (a) ACS introduces a local

pheromone update into AS to diversify the solutions;

(b) ACS applies the global pheromone updating rule

only to the global best tour found by the ant; and

(c) ACS adopts a modified state transition rule called

the pseudo-random proportional rule to determine the

ratio of the deterministic and probabilistic decision

modes.

4) PS-ACO. It is a hybrid optimization method based on

the ACO with the difference that it uses PSO’s particle

velocity vector for doing the pheromone updates to

expand the search space. Readers are encouraged to

refer to [38] for further detail of PS-ACO.

5) MRCACO. It is a dynamic multi-role adaptive collab-

orative ant colony optimization. The main features of

the algorithm are summarized that an adaptive dynamic

complementary algorithm (ADCA) is proposed to form

a heterogeneous multi-colony together with ACS and

MMAS. Besides, a multi-role adaptive cooperation

mechanism is proposed to realize the exchange and

sharing of information. Readers are suggested to refer

to [41] for a detailed process of MRCACO.

6) AIACSE. Our approach is an improved version of

the classical ACS by combining the improvement

strategies proposed in our paper with the classical ACS.

As this study uses ACS as the base algorithm, AS and RAS

will not be discussed here and readers can refer to the related

literature for further detail.

The test is performed in the grid map3 and map4 of the

same size with a different distribution of obstacles. The

simulation results of the optimal paths in both grid map

are shown in Fig. 8 and Fig. 9 respectively. Table 4 and

Table 5 show the statistical results of the performance metrics

obtained by the AIACSE and other algorithms for the grid

map3 and map4 respectively.

FIGURE 8. The optimal path generated by the different algorithms in the
grid map3.

As it can be deduced from Table 4 and Table 5, AIACSE,

MRCACO and ACS found shorter paths than the other algo-

rithms, however, AIACSE can obtain the best results among

presented methods in terms of performance metrics used in

this paper. Besides, the proposed algorithm demonstrates its

superiority and efficiency in cases of convergence speed and
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FIGURE 9. The optimal path generated by the different algorithms in the
grid map4.

TABLE 4. Statistical results of the different algorithms in the grid map3.
The best result for each section is highlighted in bold.

TABLE 5. Statistical results of the different algorithms in the grid map4.
The best result for each section is highlighted in bold.

success rate. Therefore, it can be concluded that the proposed

AIACSE can improve the quality of the solution and perform

better overall.

E. SIMULATIONS IN VARIOUS ENVIRONMENTS

To evaluate the performance and adaptability of the AIACSE

algorithm in the path planning of the robot, the third exper-

iment is conducted under four different size environments,

FIGURE 10. The optimal path generated by the AIACSE in the gird maps
with different scales.

as shown in Fig. 10. The optimal path of each grid map

generated by AIACSE is also depicted in Fig. 10. Table 6

provides the statistical results of the performance metrics

obtained by AIACSE and other algorithms under different

grid maps in terms of performance metrics mentioned above.

TABLE 6. Statistical results obtained by the different algorithms under
the grid maps of different scales. The best result for each section is
highlighted in bold.

It can be seen from Table 6 that RAS, ACS, MRCACO

and AIACSE can find the optimal path for all runs in case of

small-scale environments, such as map5 and map6. With the
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scale of the environment expansion, such as map7 and map8,

ACS, MRCACO and AIACSE can still obtain the optimal

path, but there is a decreasing trend in the performance index

of fbest and rate. This means that more time ormore iterations

are needed to get the optimal path when facing large-scale

environments. Generally speaking, the proposed AIACSE

algorithm performs well overall in all of the environments,

and we can conclude that AIACSE has better algorithmic

performance when compared against the other algorithms in

terms of the given metrics.

F. STATISTICAL ANALYSIS OF THE EXPERIMENTAL

RESULTS

Although the experimental results shown above show that the

AIACSE algorithm outperforms the comparative algorithms,

we cannot judge whether there are significant differences

among all the methods due to the probabilistic characteristics

of ACO algorithms. According to the guidelines given by

Derrac et al. in [48], a statistical test should be conducted

to improve the evaluation of the different algorithms’ perfor-

mance. Therefore, to obtain rigorous and fair conclusions,

we have performed two statistical tests with the results

obtained in previous subsections. The statistical software

package SPSS is used for this test based on the results in the

Table 4,Table 5 and Table 6.

First, Friedman’s non-parametric test is used to check

whether there are any significant differences in performance

among all the algorithms. The mean ranking achieved by

this statistical test for each of the compared algorithms is

given in can be seen in Table 7 (the lower the rank, the

better the performance). The obtained Friedman statistic is

equal to 28.33. Considering that the confidence interval has

been stated at the 95%, the critical point in a χ2 distribution

with 5 of freedom is 11.07. Since 28.33 > 11.07, we can say

that there are statistically significant differences among the

algorithms based on themean ranking returned by Friedman’s

test, thus AIACSE can be regarded as the method having the

lowest rank.

The above results achieved by the Friedman test only

show whether there are overall differences, but do not

pinpoint which groups in particular differ from each other.

Therefore, to adequately evaluate the statistical significance

of the better performance of AIACSE, we present a test

in which the AIACSE algorithm will be compared with

the rest algorithms using multiple comparison procedures.

Table 9 summarizes the results of multiple comparisons,

where the column ‘Adj. Sig.’ shows the p-values adjusted by

the Bonferroni correction for multiple tests. From the results

reported in Table 9, we can see that the adjusted p-values

between AIACSE and PS-ACO and AS are 0.008 and

0.001, respectively, which are lower than 0.05, so AIACSE

is significantly better than PS-ACO and AS at the 95%

confidence level. Although AIACSE is not significantly

better than MRCACO, RAS, and ACS, AIACSE performs

better than them according to the average rankings shown

in Table 7.

TABLE 7. Mean rankings achieved by Friedman’s non parametric test.

TABLE 8. Test summary between AIACSE and the other compared
algorithms.

V. CONCLUSION AND FUTURE WORK

In the present paper, an adaptive improved ant colony

algorithm based on the non-uniform distribution initial

pheromone, the pheromone diffusion model, the adaptive

parameter adjusting strategy, and the novel pheromone updat-

ing mechanism are proposed to enhance the optimization

ability and efficiency of the ACS algorithm. The non-uniform

distribution initial pheromone can avoid the blindness in the

starting of the evolution phase and improve the convergence

speed. The pheromone diffusion model is utilized to enhance

the exploration and collaboration capabilities of the ant

colony algorithm and reduce the probability of premature

convergence. The adaptive parameter adjusting strategy

based on population entropy is proposed to achieve a

better balance between exploration of the search space

and exploitation of the knowledge during the steps of the

process. The adaptive global pheromone updating strategy

dynamically adjusts the pheromone increment caused by the

iterative optimal ants and further utilizes the potential of the

iterative optimal path. The proposed AIACSE algorithm is

applied to mobile robot path planning. Several comparative

experiments were carried out to evaluate the validity and

performance of the proposed methodology. Additionally,

Friedman’s non-parametric test was further applied to

demonstrate the efficacy of the algorithm more scientifically.

The results of the simulation experiment and statistical test

show that the AIACSE algorithm outperforms all the other

algorithms in terms of performancemetrics used in this paper,

as well as adapting to different scale maps.

For further studies, it would be interesting to modify the

algorithm to perform path planning in dynamic environments.

In addition, it is recommended to apply AIACSE to other

practical applications, such as the routing problem, feature

subset selection, vehicle scheduling problem, disassembly

sequence planning, and so on. Another interesting direction

is to further study the performance improvement and

parameters analysis of the ACO algorithms.
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