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An Adaptive Kalman Filter for ECG
Signal Enhancement

Rik Vullings*, Bert de Vries, and Jan W. M. Bergmans

Abstract—The ongoing trend of ECG monitoring techniques to
become more ambulatory and less obtrusive generally comes at the
expense of decreased signal quality. To enhance this quality, consec-
utive ECG complexes can be averaged triggered on the heartbeat,
exploiting the quasi-periodicity of the ECG. However, this averag-
ing constitutes a tradeoff between improvement of the SNR and
loss of clinically relevant physiological signal dynamics. Using a
Bayesian framework, in this paper, a sequential averaging filter is
developed that, in essence, adaptively varies the number of com-
plexes included in the averaging based on the characteristics of
the ECG signal. The filter has the form of an adaptive Kalman fil-
ter. The adaptive estimation of the process and measurement noise
covariances is performed by maximizing the Bayesian evidence
function of the sequential ECG estimation and by exploiting the
spatial correlation between several simultaneously recorded ECG
signals, respectively. The noise covariance estimates thus obtained
render the filter capable of ascribing more weight to newly arriv-
ing data when these data contain morphological variability, and of
reducing this weight in cases of no morphological variability. The
filter is evaluated by applying it to a variety of ECG signals. To
gauge the relevance of the adaptive noise-covariance estimation,
the performance of the filter is compared to that of a Kalman filter
with fixed, (a posteriori) optimized noise covariance. This compar-
ison demonstrates that, without using a priori knowledge on signal
characteristics, the filter with adaptive noise estimation performs
similar to the filter with optimized fixed noise covariance, favoring
the adaptive filter in cases where no a priori information is available
or where signal characteristics are expected to fluctuate.

Index Terms—Electrocardiography, Kalman filter, noise
estimation.

I. INTRODUCTION

MONITORING and analysis of the ECG has long been
used in clinical practice. In recent years, the application

field of ECG monitoring is expanding to areas outside the clinic.
An example of such an area is at-home monitoring of patients
with sleep apnea [1]. Also within the clinic, a transition in ECG
monitoring applications is taking place. With developments in
sensor technology (e.g., textile electrodes and capacitive elec-
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trodes), sensors that are incorporated in garments or the matrass
of an incubator [2] have become available.

As a result of these new sensor technologies, the comfort
of the patient is improving progressively. Whereas some years
ago the patient had to reconcile himself or herself with the dis-
comforts of the only available technology, nowadays patients
prefer the more comfortable ways of recording the ECG. How-
ever, in most cases, this increased comfort comes at the expense
of signal quality. Electrodes that are incorporated in garments
generally provide signals with a lower SNR and more artifacts
than contact electrodes that are glued to the body [3]. Another
example of ECG signals with a typically low SNR is fetal ECG
signals, either recorded invasively after membrane rupture [4]
or noninvasively from the maternal abdomen [5].

Some of the SNR and artifact problems that arise during these
recordings can be suppressed by simple, frequency-selective fil-
tering [5]–[7]. However, due to the partial overlap of signal
and noise bandwidths [8], [9], this frequency-selective filtering
can only help to some extent. Further improvement of the ECG
can be achieved by exploiting its (quasi-)periodicity. Consecu-
tive ECG complexes resemble one another and are, moreover,
in general uncorrelated with noise and artifacts. Hence, by av-
eraging several consecutive ECG complexes, the SNR can be
improved. For additive Gaussian noise, this improvement is di-
rectly related to the number of ECG complexes included in the
average [10]. The drawback of averaging multiple consecutive
ECG complexes is that, besides noise, also the physiological dy-
namics of the ECG are suppressed. That is, changes in the ECG
that originate from physiological events—for instance, changes
in the ST segment that might be associated to metabolic acido-
sis [11]—are suppressed in the averaging, complicating clinical
diagnosis.

From this, it is clear that the averaging of ECG complexes
entails a tradeoff between the pursued increase in SNR and the
time scale at which physiologically relevant changes in ECG
morphology are expected to occur. Hence, for each specific ap-
plication, the number of complexes n included in the averaging
needs to be reconsidered. If it were possible, however, to dy-
namically adapt the number of complexes in the average, based
on newly arriving data, the problem of selecting a proper value
for n could potentially be overcome. In this paper, we develop
a filter that can do exactly this.

The filter is derived using a Bayesian framework and con-
stitutes a Kalman filter in which the dynamic variations in the
ECG are modeled by a covariance matrix that is adaptively es-
timated every time new data arrive. In contrast to filters that
filter the ECG by modeling it by parametric functions [12], the
presented filter uses the actual recorded ECG as basis and infers

0018-9294/$26.00 © 2011 IEEE
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Fig. 1. (a) Illustration of the state-space model that describes the evolution of
the ECG over time. The evolution of the state vectors is indicated by the dotted
box. (b) Illustration of the measurement noise estimation.

whether this ECG is corrupted by noise or dynamic variations.
As a result, unanticipated physiological anomalies in the ECG,
which cannot be easily captured by simple parametric functions,
can be accurately modeled. For parametric functions, to capture
such physiological anomalies, large families of analytical func-
tions or many function parameters need to be considered, both
inherently slowing down the filter process.

The derivation of this filter is provided in Section II. The
ECG dataset, on which the filter is evaluated, is discussed in
Section III, and the results of this evaluation are provided in
Section IV. Finally, discussion and conclusions are provided in
Sections V and VI, respectively.

II. DERIVATION OF ADAPTIVE KALMAN FILTER

A. Bayesian Model

Typically, ECG complexes that originate from consecutive
heartbeats are very similar but not identical. Moreover, when
recording the ECG, the signals are corrupted to some extent
by noise and artifacts. In a simplified form, both the relation
between consecutive ECG complexes and the corruption of the
recorded ECG can be described by means of a state-space model
[see also Fig. 1(a)] as follows:{

xk+1 = xk + vk

yk+1 = xk+1 + wk+1
(1)

where xk denotes the [T×1] ECG complex for heartbeat k and
yk denotes the [T×1] recorded signal where T is the length of
the ECG complex. The isolation of individual ECG complexes
from the recorded signals is discussed in Section III-C. Also
in this section, the choice for T and the implicit assumption
of equal lengths for all ECG complexes is discussed. The evo-
lution of the ECG complexes between heartbeats is modeled
by the [T×1] stochastic component vk (also referred to as the
process noise). The measurement noise, i.e., corrupting signals,
such as electromyographic signals, movement artifacts, and in-
terferences from the powerline grid, is represented by the [T×1]
vector wk .

When critically assessing (1) and Fig. 1, it is clear that based
on the state-space model alone, no clear distinction between the
process noise vk and the measurement noise wk can be made.
Therefore, a separate model [illustrated in Fig. 1(b)] is used
for estimating the measurement noise. In this model, the spa-
tial correlation between ECG signals recorded simultaneously
at different locations is exploited. This spatial correlation ren-
ders it possible to approximate a particular ECG signal by the
combination of the other, simultaneously recorded ECG signals.
The part of the ECG signal that cannot be approximated by the
combination of the other signals is subsequently assumed to be
measurement noise. The estimation of the measurement noise
will be discussed in more detail in Section II-B. With regard to
the process noise, vk is assumed to be zero mean with adaptive
covariance Λk . Similarly, the measurement noise wk is assumed
to be zero mean with covariance Σk . The assumption of zero
mean for both vk and wk can be justified by high-pass filtering
the ECG signals, as will be described in Section III-B.

In the state-space description of (1), the problem of enhanc-
ing the SNR of the ECG is reduced to the problem of sequen-
tially estimating the model parameter vector xk and the noise
covariances Σk and Λk . Here, sequential estimation refers to
the estimation of the relevant parameters based on the earlier
estimate and all newly arriving data.

B. Estimation of Measurement Noise

When recording several ECG signals simultaneously, these
signals are spatially correlated to some extent. Specifically,
the electrical activity of the heart can be modeled as a time-
dependent dipole that is variable in both amplitude and (3-D)
orientation. In this model, each ECG signal constitutes the pro-
jection of the electrical field generated by this dipole onto the
vector that describes the position of the recording electrode.
Hence, each ECG signal can be constructed from the linear
combination of three independent ECG signals [13]. For M
recorded ECG signals, this means that the ECG signal xi can
be modeled [see also Fig. 1(b)] as follows:

xi = X−iγ (2)

where X−i is a [T × (M − 1)] matrix, of which the M ECG
signals xj constitute the column vectors, and for which the ith
column is missing. The [(M − 1)×1] vector γ comprises the
coefficients of the linear combination. The index k that denotes
the heartbeat in (1) is omitted from this description for clarity.

With the adopted dipole model of the heart’s electrical ac-
tivity, it can be argued that dynamical variations in the ECG
morphology are reflected in all recorded ECG signals y. Anal-
ogously, measurement noise w that does not exhibit the same
spatial correlation as the ECG is suppressed in the linear com-
bination of ECG signals. As a result, the measurement noise
vector wi for ECG signal i can be approximated by ŵi using
the estimate ŷi = Y−iγ as follows:

ŵi = yi − ŷi (3)

also yielding an estimate for the measurement noise covariance
Σ.
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Fig. 2. Example of the estimation of the measurement noise in an ECG com-
plex obtained from an eight-channel, noninvasive fetal ECG recording (see
Section III). The solid line represents the recorded ECG complex and the “·-”
line represents the estimate of this ECG complex obtained by the linear com-
bination of the seven simultaneously recorded signals. The differential signal,
represented by the dotted line, constitutes an approximation of the measure-
ment noise. Note that for clarity, the measurement noise signal is depicted with
a vertical offset. The scalings of all signals are the same.

The estimates γ̂ that minimize the mean-squared error (MSE)
between yi and its estimate ŷi = Y−i γ̂ can be determined by
the following:

γ̂ =
(
YT

−iY−i

)−1
YT

−iyi . (4)

The matrix inversion in (4) exists in case the column vectors
in Y−i are linearly independent [14]. This condition of linear
independence is satisfied in the case of ECG signals, for one
due to the fact that each column vector is corrupted by indepen-
dent, additive noise. The estimation of the measurement noise
is illustrated in Fig. 2.

The main limitation of this method for estimating the mea-
surement noise is that, at any time, at least four ECG signals
have to be recorded: three independent ones to estimate the
fourth. For most cases exemplified in Section I, however, the
recording of multiple ECG signals is the standard procedure,
and hence, the requirement for more than three signals does not
impose a serious restriction to the applicability of the proposed
SNR enhancement method.

C. Kalman Filter for Parameter Estimation

The uncertainty in the state-space model of (1) and in the
associated noise parameters suggests the use of a probabilistic
approach for solving the parameter estimation problem [15].
In addition, the sequential nature of the estimation problem
motivates the use of a Bayesian framework in which the prior
probability distribution assigned to the unknown parameters is
updated every time new data arrive. Here, again, sequential
refers to the estimation of model parameters based on earlier
parameter estimates and on newly arriving data.

Using Bayes’ rule, the solution to the parameter estimation
problem can be described as follows:

p (xk+1 |yk+1 ,Λk ,Σk )

=
p (yk+1 |xk+1 ,Λk ,Σk ) p (xk+1 |yk ,Λk ,Σk )

p (yk+1 |yk ,Λk ,Σk )
. (5)

The conditional probability density function p(xk+1 |yk+1) is
referred to as the posterior. Since it contains all statistical in-
formation about xk+1 , this posterior constitutes the complete
solution to the parameter estimation problem [16]. The proba-
bility density functions on the right-hand side of (5) are referred
to as the likelihood and the prior, respectively, for the numerator
and as the evidence for the denominator.

By assuming the prior and likelihood to be Gaussian, the pos-
terior and evidence are necessarily Gaussian as well. The use of
Gaussian approximations is dictated by the fact that they ren-
der the posterior describable by a limited number of parameters
and, as such, enable the estimation of the ECG in a maximum
a posteriori (MAP) fashion [15]. For applications in which the
posterior is expected to be multimodal (i.e., a function with
several peaks), a combination of Gaussians can be used, each
describing a different mode of the posterior. The fact that, here,
the posterior is assumed as a single Gaussian, implies that the
parameter vector estimate x̂k+1 and its associated covariance
Ψk+1 together completely describe the posterior probability
density function and can be inferred analytically. Hence, using
(5) and the assumptions in the state-space model, the posterior
is given by [15] the following:

N (xk+1 |x̂k+1 ,Ψk+1 )

=
N (yk+1 |xk+1 ,Σk+1 )N (xk+1 |x̂k ,Ψk + Λk )

N (yk+1 |x̂k ,Ψk + Λk + Σk+1 )
(6)

where N (x|y, z) denotes a Gaussian probability distribution for
x with mean y and covariance z.

By rewriting (6), the optimal Bayes estimate x̂k+1 and its
variance Ψk+1 can be sequentially updated according to

x̂k+1 = x̂k + Kk+1 (yk+1 − x̂k ) (7)

Ψk+1 = Ψk + Λk − Kk+1 (Ψk + Λk ) (8)

where Kk+1 is known as the Kalman gain [17]

Kk+1 =
Ψk + Λk

Σk+1 + Ψk + Λk
. (9)

Together, (7)–(9) constitute the Kalman filter equations.

D. Adaptive Process Noise Covariance Estimation

A limitation of the derived Kalman filter is its implicit as-
sumption of known a priori statistics for the measurement noise
wk and process noise vk . Moreover, in the ECG monitoring
applications for which the filter is intended, the noise statis-
tics are expected to be nonstationary and, hence, any choice for
particular noise covariances potentially leads to large estimation
errors [18]. These estimation errors can nonetheless be restricted
by including a sequential estimation of the noise statistics in the
Kalman filter equations.

The estimation of the measurement noise statistics has been
discussed in Section II-B. The discussion in this section is hence
limited to the estimation of the process noise covariance Λk .
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Again using Bayes’ rule, the conditional probability density
function for Λk , given the recorded signal yk+1 is given by

p (Λk |yk+1 ,Σk )

=
p (yk+1 |yk ,Λk ,Σk )

p (yk+1 |yk )
p (Λk |yk ,Σk ) . (10)

It can be noted here that the likelihood of the noise covariance
p (yk+1 |yk ,Λk ,Σk ) is identical to the evidence function in the
parameter estimation level of (5). Hence, maximizing the evi-
dence function in this parameter estimation level is analogous
to maximizing the likelihood of Λk for newly arriving data.
Maximization of the evidence function, however, yields that the
estimated noise covariance constitutes the maximum likelihood
(ML) estimate instead of the MAP estimate, implying the as-
sumption of no knowledge of the prior at the noise estimation
level [15].

When defining the model residual to be

ρk+1
�
= yk+1 − E [yk+1 |yk ,Λk ,Σk ]

= yk+1 − x̂k (11)

it can easily be calculated that E[ρk+1 |yk ] = 0 and
E[ρk+1ρ

T
k+1 |yk ] = Ψk + Λk + Σk+1 . Since in addition

E[ρT
k ρl |yk ] = 0, it follows that

p
(
ρk+1

)
=

exp
[
− 1

2 ρT
k+1 (Ψk + Λk + Σk+1)

−1 ρk+1

]

(2π)T /2 |Ψk + Λk + Σk+1 |1/2

is equivalent to the evidence function at the parameter estimation
level given in (6). Hence, by maximizing p(ρk+1) with respect
to the process noise covariance Λk , the ML estimates for this
covariance can be obtained.

The maximization of p(ρk+1) can be simplified, if we re-
turn to the intended purpose of the Kalman filter, to adaptively
vary the number of averages n used in the enhancement of the
ECG complexes, depending on the dynamic variations in sig-
nal morphology. From (7), it can be inferred that this purpose
means that the Kalman gain Kk can be simplified to a scalar
matrix (i.e., a diagonal matrix with all entries equal), or even
a scalar. Specifically, by varying the scalar value of Kk in (7),
either more or less weight can be ascribed to the newly arriving
ECG complex yk+1 . In other words, the relative contribution of
preceding ECG complexes to the estimate x̂k+1 varies with the
value of Kk , essentially similar to adaptation of the number of
averages used. The scalar value for Kk here ensures that all T
samples in yk+1 and all T samples in x̂k are assigned the same
weight (Kk for yk+1 and (1 − Kk ) for x̂k ), preventing distor-
tion of the ECG complexes. With the assumption of the Kalman
gain being a scalar matrix, from (9), it then follows that also Ψk ,
Λk , and Σk can be assumed scalar matrices (i.e., ψ2

kI, λ2
kI, and

σ2
kI, respectively, with I the [T×T ] identity matrix I), implic-

itly also assuming that both the measurement and process noise
are spatially uncorrelated. The effect of the latter assumptions
will be discussed in Section V. With the simplification of scalar
matrices, not only can each of the scalar covariance matrices
be regarded as the matrix representation of the variances of the
vectors xk , vk , and wk , but also does the maximization of (the

Fig. 3. Illustration of the algorithmic implementation of the developed adap-
tive Kalman filter.

logarithm of) p(ρk+1) reduce to the derivative of ln p(ρk+1)
with respect to λ2

k equated to zero

∂

∂λ2
k

ln p
(
ρk+1

)
=

1
2

tr
[
ρT

k+1
(
ψ2

kI + λ2
kI + σ2

k+1I
)−2

ρk+1

]

− 1
2

tr
[(

ψ2
kI + λ2

kI + σ2
k+1I

)−1
]

= 0 (12)

where tr[·] denotes the trace of the matrix. The use of ln p(ρk+1)
instead of the use of p(ρk+1) is justified by the monotonic
behavior of the logarithm function.

Solving (12) for λ2
k yields an estimate for the process noise

covariance as follows:

λ̂
2
k =

1
T

ρT
k+1ρk+1 − ψ2

k − σ2
k+1 . (13)

By computing the second derivative of p(ρk+1), it is straight-
forward to prove that this result indeed corresponds to a global
maximum in p(ρk+1). In case the model errors 1

T ρT
k+1ρk+1 are

smaller than what the theoretical value of the measurement noise
σ2

k+1 predicts, no additional process noise input is required. This
leads to the estimator as follows:

λ2
k =

⎧⎨
⎩

1
T

ρT
k+1ρk+1 − ψ2

k − σ2
k+1 , if positive,

0, otherwise.

(14)

The operation of the filter can be explained as follows. In case
the model error 1

T ρT
k+1ρk+1 is larger than what its theoretical

value σ2
k+1 predicts, λ2

k increases and this in turn leads to an
increase in the Kalman gain. Hence, more emphasis is put on
newly arriving data [15]. To improve the robustness and sta-
tistical significance of the estimator of (15), instead of a single
residual ρk+1 , the sample mean of N residuals will be used [18].
The effect of the chosen value for N will be evaluated in
Section IV.

Implementation of the aforedescribed methods in an algo-
rithm constitutes the sequential execution of (4) and (3) to esti-
mate the measurement noise covariance and, subsequently, (9),
(7), (8), (11), and (14) for estimation of the ECG signals and
process noise covariances. The algorithm is illustrated schemat-
ically in Fig. 3.
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III. DATA PREPARATION AND INITIAL FILTER SETTINGS

A. Data Acquisition

To evaluate the developed Kalman filter, a diversity of ECG
signals is used. These signals comprise ECG signals of adult
patients that suffer from T-wave alternans (TWA: a condition
that renders the amplitude or shape of the ECG’s T-wave to
often vary significantly between heartbeats), fetal ECG signals
recorded from the maternal abdomen, and neonatal ECG signals
recorded with textile electrodes.

The three categories of ECG signals are mainly used to il-
lustrate the performance of the filter. The first category (i.e.,
adult ECG signals with TWA), however, is also used for quan-
titative evaluation of the filter. In total, 12-lead ECG signals
from 23 patients suffering from TWA and of 2 min length
each are used in this evaluation. The signals are obtained from
the Massachusetts Institute of Technology–Beth Israel Hospi-
tal TWA challenge database [19]. To map the filter’s perfor-
mance as a function of the SNR of the recorded signals as well,
then to the performance’s dependence on N , the ECG signals
are corrupted with additive Gaussian noise of various ampli-
tudes, yielding ECG signals with SNRs ranging from −3 to
24 dB.

The TWA signals comprise a rather ideal dataset for eval-
uating the performance of the developed filter. They exhibit
relatively high SNR values that can be made smaller by ad-
ditive Gaussian noise, and that moreover facilitate quantitative
assessment of the filtered ECG signals (i.e., by comparing the fil-
tered, with additive noise corrupted, ECG signals to the original
ECG signals). In addition, the TWA signals exhibit morpho-
logical variability in the ECG that originates from underlying
physiology.

B. Preprocessing

The acquired ECG data are preprocessed to remove noise,
artifacts, and baseline wander that do not exhibit spectral overlap
with the ECG. To this end, two frequency-selective fourth-order
Butterworth filters [20] are used: one high-pass filter with cutoff
frequency at 0.5 Hz and one low-pass filter with cutoff frequency
at 90 Hz.

To suppress the interferences from the powerline grid, a notch
filter centered around 50 Hz (or 60 Hz for recordings perfor-
mance in U.S.) is used. Again, this filter is implemented as
a fourth-order Butterworth filter. In contrast to the aforemen-
tioned high-pass and low-pass filters, this filter, however, also
affects the ECG due to the fact that the frequency content of the
ECG extends from frequencies of about 1 Hz to frequencies be-
yond 50 Hz. By choosing the width of the notch filter relatively
small—but wide enough to account for fluctuations in the pow-
erline frequency—the distortion of the ECG signals can be kept
small.

For the transabdominally recorded fetal ECG recordings, it
has to be noted that these are processed as described earlier,
but with an additional processing step in which the interfering
maternal ECG is suppressed. The details of this maternal ECG
suppression are provided in [21].

C. Demarcation of Individual ECG Complexes

The consecutive individual ECG complexes that are used as
input for the filter are defined based on their QRS complexes.
Specifically, the QRS complexes are detected in the signals,
and the ECG complexes are subsequently defined as the signal
within a predefined time window around the QRS complex. Af-
ter these ECG complexes have been filtered by the developed
Kalman filter, the filtered counterparts of the original ECG sig-
nals are generated by placing the filtered ECG complexes back
on their original positions. Because the Kalman filter is limited
by the fact that the length of the input ECG complexes needs
to be fixed (i.e., the length should be T s) and because the in-
terval between consecutive ECG complexes varies over time,
this ECG signal generation approach suffers from the drawback
that in some cases there will be overlap between consecutive
filtered ECG complexes, and in some cases there will be a gap.
By choosing the time-window for the ECG complexes, such as
to minimize the number of gaps, as much of the original ECG
signals as possible are filtered. The gaps that inevitably remain
are smoothed by interpolation of the data between successive
complexes. The overlapping signal parts, in turn, are smoothed
by gradually averaging the contributions of both overlapping
complexes. Specifically, the contribution of the first ECG com-
plex is gradually reduced and the contribution of the trailing
complex is gradually increased. The value of T chosen here is
120% of the mean interval between consecutive heartbeats.

As mentioned earlier, before defining the individual ECG
complexes, the QRS complexes need to be detected. To facilitate
this detection, the SNR of the ECG signals is a priori enhanced
by linearly combing the signals in such a way as to maximize
the variance [principal component analysis (PCA)] [22]. The
linear combination with maximum variance is referred to as the
principal component. The QRS complexes are subsequently de-
tected in the principal component as local extrema that exceed
an adaptive threshold. This adaptive threshold is updated con-
tinuously by means of a simple Kalman filter and depends on
the SNR of the ECG signals complexes in the principal com-
ponent [21]; when the SNR changes, the threshold is adapted
to prevent noise from exceeding it, in the mean time ensuring
that the QRS complexes still exceed the threshold. For a more
detailed description of the QRS complex detection, the reader
is referred to [21] and [23].

D. Initializing the Filter

Before commencing the filtering of the ECG signals, all vari-
ables and parameters need to be initialized. For the initial es-
timate of the ECG complex x̂0 , the mean ECG complex over
N heartbeats is used. Here, N is the same value as used for
estimation of λ2 . The initial estimate for the measurement noise
vector ŵ1 is determined according to its description in Sec-
tion II-B. The initial estimates for the noise variances ψ2

0 and
σ2

1 are determined as the variances of the respective vectors x̂0
and w1 .

For N , various values ranging between 1 and 25 are used
and the performance of the filter for each particular value is
evaluated in Section IV.
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Fig. 4. In (a), the performance of the developed Kalman filter, expressed in
terms of the normalized MSE ε, is plotted as a function of the SNR and the
number of ECG complexes N used in the estimation of the noise covariances.
The SNR values corresponding to each of the lines are provided in the graphs
and expressed in decibel. In (b)–(d), examples of the TWA signals are plotted
(each 4 s long). The SNRs of these signals are −3, 6, and 24 dB, respectively.

IV. EVALUATION OF FILTER

A. TWA Signals

As mentioned earlier, the performance of the filter is assessed
as a function of both N (i.e., the number of residuals ρ aver-
aged for robust estimation of the process noise covariance) and
the SNR, using the TWA signals of 23 different patients. The
performance is quantified by calculating ε, the normalized MSE
between the filtered ECG signals x̂ and the original ECG signals
x used (i.e., the signals without additive noise) as follows:

ε =
∑

k (xk − x̂k )T (xk − x̂k )∑
k xT

k xk
(15)

where the summation indicates that ε is averaged over all heart-
beats in the TWA signals. In addition, as the TWA signals com-
prise 12 individual ECG signals, ε is averaged over these signals
as well (not indicated in (15) for clarity). Note that the original
ECG signals x are not completely free of noise. However, as
the amplitude of this noise is small compared to the amplitude
of the ECG signals, the effect of this noise on the calculated
ε values is small and disregarded in further discussions on the
performance of the filter.

In Fig. 4, the normalized MSE ε is plotted as a function of
both N and the SNR. The results in Fig. 4 are averaged over all
the 23 TWA patients.

From Fig. 4(a) it can be seen that for the ECG signals with
SNR of −3 dB and 0 dB, ε decreases with increasing N . That
is, for the 0-dB signal, ε increases until N = 5, and decreases
slightly for larger N . For the ECG signals with SNR larger than
0 dB, ε increases with N . These findings can be explained as
follows. The fact that for high-SNR ECG signals ε is minimal for
small N stems from the fact that, with almost no noise present,
most variations in the ECG signals are of physiological origin.
Since a large value for N causes slow adaptation of the pro-
cess noise covariance, a large N would yield underestimation
of the process noise covariance λ2 , and consequently, a too small
weight ascribed to newly arriving data. Low-SNR signals, on
the other hand, are mostly affected by measurement noise rather
than by morphological variability. In this case, large values for

Fig. 5. Examples of TWA signals before filtering (top graph), after prepro-
cessing (center graph), and after filtering with the developed adaptive Kalman
filter (bottom graph) filtering, with N = 5. In (a), the SNR of the TWA signal
is 8 dB, and in (b), this SNR = 0 dB.

N ensure that the process noise covariance is not overestimated,
hence rendering the weight ascribed to newly arriving data rel-
atively small.

From the aforementioned discussion, it is straightforward to
state that the choice for N involves a tradeoff between robustness
against measurement noise and flexibility of the process noise
estimation. In Fig. 5, the performance of the developed filter
(with N chosen as 5) is exemplified on two TWA signals.

To illustrate the tradeoff between robustness and flexibility
of the filter, in Fig. 4(a), it can be seen that for all recordings,
specifically the high-SNR recordings, the normalized MSE ε
saturates at about −12 dB. This saturation is due to the persis-
tent underestimation of the process noise covariance for large
N . As a result, the output of the filter cannot fully keep track
of morphological variations in the TWA signal, leading, in this
particular case, to an estimation error of −12 dB. To ensure
optimal performance of the developed filter, the choice for N
should be based on expected signal behavior. For the TWA sig-
nals, N is chosen as 5. Due to the larger measurement noise
amplitudes anticipated in the fetal and neonatal ECG signals
that will be discussed shortly, for these signals N will be chosen
as 10. From the relatively small gradients in Fig. 4(a), it can,
nevertheless, be concluded that the specific choice for N does
not strongly affect the performance of the filter. In other words,
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Fig. 6. Plot of the performance of the developed Kalman filter, expressed in
terms of ε, as a function of the SNR of the ECG signals. The performance
of the filter with adaptive noise-covariance estimation is indicated with the
solid line (N is chosen as 5). The performances of the filters with fixed noise
covariance are represented by the dotted lines. The selected noise covariances
λ2 are indicated in the graphs. Due to overlapping, the graphs for 10, 20, 30,
and 40 dB are jointly labeled as 10–40.

irrespective of the value used for N , the performance of the
developed filter will be about the same. Based on this conclu-
sion, it can be argued that with the adaptive noise-covariance
estimation, the problem of a priori selecting the noise covari-
ances, mentioned in the beginning of Section II-D, is overcome
and replaced by the much less critical problem of selecting N .
To substantiate this remark, in Fig. 6, the performance of the
developed filter is compared with the performance of the same
Kalman filter, but now with the adaptive noise-covariance esti-
mation replaced by a fixed a priori estimation. The estimation
of the measurement noise covariance is kept the same for both
filters. The values for λ2 in this comparison range between −40
and 40 dB and are defined relative to the amplitude of the ECG
signals.

From Fig. 6, it can be seen that for the Kalman filter with
fixed process noise covariance, for simplicity, from here on re-
ferred to as the fixed Kalman filter, the performance improves
with decreasing λ2 until λ2 = −20 dB; from here on, the per-
formance slightly deteriorates. This behavior is consistent with
the aforementioned discussion that the choice for λ2 affects the
performance of the filter more strongly than the choice for N .
Underestimation of λ2 will result in a relatively small Kalman
gain and, hence, little flexibility of the filter output to account for
morphological variations in the ECG. Overestimation of λ2 , on
the other hand, yields a relatively large Kalman gain leading to
an output of the filter that not only accounts for morphological
variations but also for measurement noise. Straightforwardly, an
optimal value exists for which the performance of the filter is
rather good. In the case of the TWA signals used in Fig. 6, this
optimal value is around −20 dB, but for other ECG signals, this
value needs to be re-evaluated.

Fig. 7. (a) Top panel shows a fetal ECG signal recorded from the maternal
abdomen, before filtering, but after preprocessing (top graph), after filtering
with the adaptive Kalman filter (center graph), and after filtering with the fixed
Kalman filter (bottom graph). The ECG complexes indicated in the rectangles
are shown zoomed in in the accompanying graphs. The second panel shows
the estimated process noise covariance λ2 for the adaptive Kalman filter (solid
line), the process noise covariance for the fixed Kalman filter (dash-dot line),
and the estimated measurement noise covariance σ2 (dotted line). The bottom
panel shows the Kalman gain K for both the adaptive (solid line) and fixed
(dash-dot line) filters. For the estimation of λ2 and K in the adaptive Kalman
filter, N is chosen equal to 10. Since the process noise covariance is often
estimated as 0 [see (15)], λ2 cannot be expressed in decibel as in Fig. 6. Hence,
λ2 is expressed here in an absolute sense (i.e., in V2 ). In (b), a zoom of the top
panel between 42 and 55 s is depicted.

B. Fetal ECG Signals

When comparing the performance of the fixed filter with λ2 =
−20 dB in Fig. 6 with the performance of the adaptive Kalman
filter, it can be concluded that this performance is about the same,
with the fixed Kalman filter performing slightly better for high-
SNR signals. It, however, needs to be emphasized once more that
the fixed Kalman filter operates with a process noise covariance
that is fixed at a rather optimal value. When employing both
filters for long-term monitoring tasks, a proper a priori selection
of λ2 becomes virtually impossible. Moreover, even when it is
possible to a priori assess for which value of λ2 the filter will
perform optimally, the long-term nature of the recording renders
the ECG signals likely to exhibit dynamical variations. With
these variations, the a priori assessed value for λ2 needs to be
re-evaluated and adapted. Since the adaptive Kalman filter is
capable of making this adaptation, it is expected to outperform
the fixed Kalman filter for long-term monitoring tasks. To study
the behavior of both filters for a dynamical variation in the ECG
signal, in Fig. 7, a transabdominally recorded fetal ECG signal
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is presented, exhibiting significant morphological variation as a
result of movement.

From Fig. 7, it can be seen that, as expected, the estimated
adaptive process noise covariance λ2 increases when variations
in the ECG signal occur (e.g., around 5 and 45 s). Especially,
the variation in the ECG around 45 s is of relevance because the
fetus shows significant movement here, as was demonstrated by
an echocardiographic analysis performed simultaneously with
the ECG recording. After the movement epoch, the fetus has
taken a slightly different orientation with respect to the elec-
trodes on the maternal abdomen, affecting the morphology of
the ECG signal. When the movement sets in, the increased pro-
cess noise covariance causes an increase in the Kalman gain,
hence ascribing more weight to the newly arriving data, as in-
tended.

When comparing the Kalman gains of both the adaptive
and fixed Kalman filter—for the latter, λ2 is empirically set at
2 × 10−13 V2 —it strikes that the gain of the fixed filter shows
significantly fewer fluctuations than the gain of the adaptive
Kalman filter. Consistent with the aforementioned discussion
on long-term monitoring, this rigidity of the fixed Kalman fil-
ter renders the fixed Kalman filter less capable of accounting
for fast morphological changes in the ECG. This statement is
substantiated by the filtered ECG signals in the top panel of
Fig. 7. After the movement of the fetus, the fixed Kalman filter
needs about 10 s to completely adapt its output to the new ECG
morphology [see Fig. 7(b)], whereas adaptation by the Kalman
filter with adaptive noise covariance is more than twice faster.

Regarding the measurement noise covariance σ2 , it can be
seen in Fig. 7 that it decreases as a result of the fetal movement.
This decrease can be explained by the fact that, whereas the
noise amplitude remains about the same, the signal amplitude
increases as a result of the movement. This rise in the ECG am-
plitude can be explained by, e.g., a movement-inflicted reduction
in the heart–electrode distance.

C. Neonatal ECG

For the (maternal) movement artifact occurring around 5 s in
Fig. 7, it can be argued that the fixed Kalman has an advantage
over the adaptive Kalman filter in that it is less affected by
the movement artifact. However, when examining the original,
unfiltered ECG signal, this signal appears so corrupted that it
hardly contains any ECG information. The output generated by
the fixed Kalman filter, therefore, mostly comprises information
from earlier heartbeats. Naturally, in case of a local artifact that
only affects a single ECG signal also the adaptive Kalman filter
does not update the estimated ECG. That is, when the artifact
occurs locally, the estimated measurement noise covariance will
be relatively large, significantly decreasing the Kalman gain.
Conversely, in cases where the artifact occurs simultaneously at
more than one location, the estimated measurement noise will
decrease and both the estimated process noise covariance and
Kalman gain will increase. This process is illustrated in Fig. 8
in which a neonatal ECG, recorded in an incubator with textile
electrodes, is depicted.

Fig. 8. In the top panel, two neonatal ECG signals recorded in the incubator
using textile electrodes are depicted. The first and third signals from above
are the preprocessed ECG signals, and the second and fourth signals are the
corresponding signals after filtering with the adaptive Kalman filter. In the
bottom panel, the Kalman gains for both filtered signals are plotted. The solid
line corresponds to the upper ECG signal, and the dotted line corresponds to the
lower ECG signal.

The neonatal ECG signals shown in Fig. 8 illustrate that in
case of an artifact that occurs in more than one ECG signal at the
same time, the newly arriving data are ascribed more weight (i.e.,
the Kalman gain is increased) to ensure rapid updating of the
ECG estimate. For local artifacts, such as in the upper neonatal
ECG signal occurs around 55 s, the Kalman gain changes only
little, ensuring that the artifact is no longer present in the filtered
ECG signal.

V. DISCUSSION

A. Limitations of Bayesian Model

In the derivation of the adaptive Kalman filter, several as-
sumptions are made for mathematical simplicity, but that might
limit the applicability of the filter. For one, the ECG is assumed
to be normally distributed, or equivalently, both the process and
measurement noise are assumed to be Gaussian. In addition, the
measurement and process noise are assumed to be uncorrelated.
The latter assumption might limit the performance of the filter
to some extent as, in particular, the process noise generally ex-
hibits spatial correlation across the individual ECG signals. This
limitation seems, however, small, as evidenced by the results.
The same thing holds for the assumption of Gaussian noise.
Although this assumption might impose a rather severe limita-
tion to the filter’s applicability, the evaluation of the filter on
the fetal and neonatal ECG signals—that are corrupted by phys-
iological noise, rather than by Gaussian noise—demonstrates
that the filter also performs relatively well for non-Gaussian
ECG signals. Similarly, the implicit assumption that the (prior)
probability distributions in (5) and (10) sum to 1 might not be
fully satisfied, but is demonstrated by our results to have only
marginal effect (if any) on the performance of the filter. Besides
providing a rather elegant solution to the filter problem, the
mentioned mathematical simplification also relaxes the compu-
tational complexity of the filter, rendering an implementation of
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the filter in MATLAB (The Mathworks, Inc.) capable of filtering
at least 12 ECG signals simultaneously in real time.

Another decision that might limit the applicability of the de-
veloped filter is the fixed choice for the length of the ECG
complexes (i.e., 120% of the mean interval between consec-
utive heartbeats). In cases of significant heart rate variability,
it can occur that a single ECG complex contains information
that originates from two consecutive heartbeats. Problems as-
sociated with this fixed ECG complex length can, however, be
circumvented by only including those parts of the ECG com-
plex that correspond to the same heartbeat in the calculation of
the measurement noise, process noise, and Kalman gain. Upon
reassembling the filtered ECG complexes into a filtered ECG
signal that is composed of a multitude of heartbeats, the redun-
dant parts of the filtered ECG complexes can be omitted.

B. Inaccuracies in Estimation of Measurement Noise

The accurate estimation of the measurement noise covariance
is rather critical for the performance of the adaptive Kalman
filter. When this covariance is overestimated, all ECG signal
variations will be ascribed to measurement noise, and hence,
the process noise covariance will be underestimated, rendering
the filter less capable of quickly adapting to dynamical sig-
nal variations. Conversely, underestimation of the measurement
noise covariance leads to overestimation of the process noise
covariance, causing the filter to also ascribe more weight to
ECG complexes that are corrupted by measurement noise. The
estimation of the measurement noise covariance is performed
by exploiting the spatial correlation of simultaneously recorded
multichannel ECG signals. In a simplified model, all ECG sig-
nals can be assumed to originate from the same 3-D source,
and hence, three independent ECG signals should be enough
to predict the morphology of a fourth ECG signal. Those parts
of the fourth ECG signal that cannot be accounted for by the
three other ECG signals can, therefore, be marked as noise con-
tributions. One of the main drawbacks of this approach is that
for enhancing the ECG of one signal, at least three other ECG
signals need to be recorded. However, for most clinical applica-
tions, several ECG signals are recorded, and even if there is no
clinical relevance of recording several channels, it hardly consti-
tutes a technological challenge to record more than three ECG
signals simultaneously. Another drawback lies in the adopted
model for the spatial correlation between the ECG signals. In
this model, all ECG signal components that cannot be accounted
for by the 3-D source are taken to be measurement noise, leading
to underestimation of the process noise. By using more than four
ECG signals, e.g., a standard configuration of 12 electrodes, this
problem can be largely overcome.

C. Data Used in Filter Evaluation

As mentioned earlier, the TWA signals comprise a rather ideal
set for quantitative evaluation of the developed filter. Here, how-
ever, distinction needs to be made between TWA signals that ex-
hibit morphological variability at the microvolt level and macro-
scopic TWA signals that exhibit substantially more morpholog-
ical variability. In our evaluation, only the latter TWA signals

were used. With regard to the preprocessing of the TWA (and
fetal and neonatal ECG) signals, the high-pass filter is expected
to slightly distort the susceptible ST segment. Preprocessing is
nevertheless performed to ensure that the measurement noise
has indeed zero mean, as assumed in Section II. The effect of
omitting the preprocessing, in order to yield as little distortion
of the filtered ECG signals as possible, on the performance of
the filter is a subject of future research. Also subject of future
research is the evaluation of the filter’s performance on ECG
signals that are even more ideal than the TWA signals, such as
ECG signals with isolated or slow pattern changes.

For noninvasive fetal ECG recordings performed on the ma-
ternal abdomen, the aforementioned requirement of at least four
ECG signals, of which three are linearly independent, could be
troublesome. Approximately between the 28th and 34th week
of gestation, the fetus is covered by a waxy layer (i.e., vernix
caseosa) that electrically isolates the fetus, apart from a few
places that are hypothesized to be over the oronasal area and the
umbilical cord [24]. As a result of this layer, preferred conduc-
tion paths for the ECG signals arise, potentially making the num-
ber of independent ECG signals drop below three. Additional
research to determine whether the presented method indeed fails
in the presence of vernix caseosa is, however, required.

Additional research is also required to assess whether the ap-
plication field of the filter can be extended. For ECG enhance-
ment, the filter basically operates by averaging consecutive ECG
complexes and varying the number of complexes included in the
average, based on the amount of variation in the data. This ap-
proach can, however, also be applied in enhancement of other
quasi-periodical signals that may vary due to either changes in
the process or changes in the measurement noise. An example
of such an application is the SNR enhancement of event-related
potentials in electroencephalography studies [25].

VI. CONCLUSION

In this paper, a Kalman filter with adaptive noise-covariance
estimation has been developed and evaluated on a variety of
ECG signals to assess whether the filter is capable of enhancing
the SNR of these signals, while at the same time preserving
clinically relevant morphological variations in the ECG. The
filter operates by sequentially estimating the measurement and
process noise covariances and uses these covariances to estimate
the Kalman gain and update the estimated ECG complexes. In
cases where the variations between consecutive ECG complexes
can no longer be explained as measurement noise, the variations
are taken to be morphological variations and the process noise
covariance is increased. This, in turn, leads to an increase of the
Kalman gain, and consequently, more weight is ascribed to the
newly arriving ECG complex.

The performance of the filter is compared with the perfor-
mance of a similar Kalman filter with fixed process noise covari-
ance. For this fixed Kalman filter, the process noise covariance
needs to be a priori estimated, and hence, to ensure adequate
performance of the filter, requires rather detailed information on
the ECG signal dynamics. The comparison between the fixed
and adaptive Kalman filters demonstrates that the adaptive filter
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performs almost as a fixed Kalman filter with optimally chosen
process noise covariance. In addition, for long-term monitor-
ing tasks in which the ECG signal characteristics change, the
adaptive Kalman filter is capable of quickly adapting its noise
estimation to match the filter’s output to the new input. The fixed
Kalman filter, on the other hand, needs about 10 s to adjust its
output due to its less flexible estimation of the Kalman gain.
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