
Proc. 1998 IEEE Int. Symp. on Circuits and Systems, May 31-June 3, 1998, Monterey, California 1

AN ADAPTIVE KALMAN FILTER FOR THE ENHANCEMENT
OF NOISY AR SIGNALS

Gerhard Doblinger

Institut für Nachrichtentechnik und Hochfrequenztechnik
Vienna University of Technology, Gußhausstraße 25/E389, A-1040 Vienna Austria

gerhard.doblinger@tuwien.ac.at

ABSTRACT

In this paper, we describe a new adaptive system for the
enhancement of autoregressive (AR) signals which are dis-
turbed by additive broadband noise. The system is com-
prised of an adaptive Kalman filter operating as a fixed-lag
smoother and a subsystem for AR parameter estimation. As
opposed to the conventional approach of employing an ex-
tended Kalman filter, we estimate the Kalman filter parame-
ters using the enhanced signal and thus establishing a feed-
back between the Kalman filter output and the estimated
parameters. Our system is capable of tracking short-time
stationary signals. It is computationally efficient and can
easily be implemented on today’s integrated digital signal
processors.

1. INTRODUCTION

Many natural signals can be sufficiently represented by au-
toregressive (AR) models. Examples are audio signals like
speech and music, seismic signals, and biomedical signals.
In many applications, however, these signals are corrupted
by additive broadband noise (e.g. measurement noise, envi-
ronmental noise) and thus signal enhancement must be ap-
plied prior to further processing of these signals.
Because of its high flexibility, the Kalman filter is widely

used for signal enhancement. The key point for the perfor-
mance of such a signal enhancement system is the estima-
tion of the AR parameters in the presence of noise. Since
the AR model is built into the structure of the Kalman fil-
ter, we must ensure that the estimated AR parameters yield
stable filters. For this reason, we have investigated two re-
cently published and computationally efficient methods to
obtain AR parameters of noisy signals [1, 2]. The first tech-
nique makes use of the fact that the covariance matrix of
the enhanced signal may be obtained – in principle – by
subtracting the diagonal noise covariance matrix from the
noisy AR signal covariance matrix [1]. Unfortunately, this
compensation method is very sensitive with respect to co-
variance matrix estimation errors, and according to our ex-
perience delivers unstable AR filters in most cases. Thus,

the Kalman filter tends to be unstable, even at moderate
noise levels (signal-to-noise ratio SNR� �� � � ��� dB). The
second approach involves an adaptive transversal filter with
a special LMS algorithm for improved AR parameter esti-
mation of noisy signals [2]. Again, stability is not guaran-
teed by this algorithm. In addition, convergence time is very
large which in turn results in a large settling period of the
Kalman filter.
The most promising method is given by the extended

Kalman filter which works very well at moderate noise lev-
els [3]. However, for SNRs less than 10 dB this algorithm
exhibits convergence problems, i.e. a stalling effect may be
observed. The stalling phenomenon results in intermittent
signal segments and in slow convergence (as compared to
the convergence speed at higher SNRs).
In this paper, we describe a different enhancement al-

gorithm based on an adaptive Kalman filter (fixed-lag
smoother) which avoids the aforementioned problems and
which also requires a minimum of a priori parameters. The
novelty of our approach is the proper combination of a
Kalman filter and a parameter estimation procedure which
allows for tracking of nonstationary signals. We first present
a computationally efficient set of Kalman fixed-lag equa-
tions tailored for use with AR signal models. Afterwards,
we show the block diagram of our adaptive system and dis-
cuss its operation principle, convergence and performance
behavior in some detail. Finally, we present typical experi-
mental results and an illustrative example.

2. KALMAN FIXED-LAG SMOOTHER FOR AR
SIGNALMODELS

Throughout this paper, we represent the desired signal s�n�
by a pth order AR process:

s�n � �� �

pX
k��

ak�n�s�n � k � �� � u�n�

� aT �n�s�n� � u�n��

(1)
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where a�n� � �a��n�� � � � � ap�n��T denotes the time de-
pendent AR parameter vector and s�n� � �s�n�� � � � � s�n�
p � ���T is the signal vector. The driving noise sequence
u�n� of the AR model is assumed to be zero mean white
Gaussian noise with variance ��u�n�. Observations y�n� of
the desired signal s�n� may be contaminated according to

y�n� � s�n� � v�n�� (2)

where the disturbing noise v�n� is uncorrelated to s�n� and
is zero mean white Gaussian noise with variance ��v�n�.
In practice, a fixed model order p in the range of � � � ���

may be selected. We assume that only the variance ��v�n�
of the disturbing noise must be known in advance. All other
parameters are supplied by our adaptive algorithm. Addi-
tionally, it turns out that the algorithm is relatively robust
with regard to estimation errors of ��

v�n�. Thus, a precise
measurement of the disturbing noise variance is not neces-
sary.
If the parameter set fa�n�� ��u�n�� �

�
v�n�g of the signal

model is known, then we can design a Kalman filter which
optimally suppresses the disturbingnoise v�n�. We prefer to
use a Kalman fixed-lag smoother instead of the Kalman fil-
ter, since smoothing involves additional data in the estima-
tion procedure. As a consequence, the estimation error vari-
ance is further decreased, and with a large lag length (delay)
the performance approaches that of a noncausal Wiener fil-
ter for stationary signals [4].
In order to obtain a Kalman fixed-lag smoother we repre-

sent the AR signal model (1) in state-space form

s�n� �� � A�n�s�n� �
�
u�n�� �� � � � � �

�T
� (3)

In contrast to (1), the d � � dimensional state vector s�n�
now consists of the current signal sample s�n� and d de-
layed samples where d � p is the smoother delay. Com-
parison of the state-space model (3) with the scalar signal
model (1) immediately unveils the following structure of the
�d� �� � �d� �� state matrixA�n�:

A�n� �

�
BBBBBBBBBB�

a��n� � � � ap�n� � � � � � �
� � � � � � � � � � �
...

. . .
...

� � � � � � � �
� � � � � � � �
...

. . .
...

� � � � � � � � � � �

�
CCCCCCCCCCA
� (4)

Having established the state-space signalmodel we may for-
mulate the optimal state estimation as a Kalman filter:

x�n � �� � A�n�x�n� � k�n�
�
y�n� � aT �n�xp�n�

�
(5)

	s�n� d� � xd���n�� (6)

where x�n� � �x��n�� � � � � xp�n�� � � � � xd���n��T is the
Kalman filter state vector which in turn is the estimate of
the desired signal vector s�n�. Vector xp�n� contains the
first p components of x�n�. The enhanced signal sample
	s�n � d� is given by the state vector component with index
d� �.
The update equations for the Kalman fixed-lag smoother

can be simplified due to the special structure of state ma-
trix A�n�. In the following equations, we use a notation
for submatrices which can be easily converted to MATLAB
syntax:
If P � P���d���d� is a d� d matrix, then we will use

P���p���q� to denote the p � q submatrix containing
the first p rows and first q columns of P,

P����� to be the first row vector of P,
P����� to be the first column vector of P,
P����� to be the first element of P, etc.
A similar notational convention will be used for subvec-

tors and single vector components. Therefore, (5) reads as


x�n� �

�
aT �n�x���p��n�

x���d��n�

�
(7)

x�n � �� � 
x�n� � k�n�
�
y�n� � 
x����n�

�
(8)

	s�n � d� � x�d����n� (9)

Modifying the general Kalman equations as given e.g. in
[5] we obtain:

pT �n� � aT �n�P���p���d��n� (10)

eP�n� � �pT���p��n�a�n� � 	��u�n� pT �n�

p�n� P���d���d��n�

�
(11)

k�n� �
eP������n�eP������n� � 	��v�n�

(12)

P�n� �� � eP�n�� k�n�eP������n�� (13)

The Kalman filter variables may be initialized by

P�������� � 	��u��� (14)

P���d�����d������ � � (15)

x���d������ � �� (16)

Both the state matrix A�n� and the Kalman gain vector
k�n� depend on the signal model parameters and thus the
Kalman filter will track nonstationary signals.

3. OPERATION PRINCIPLE OF THE ADAPTIVE
KALMAN FILTER

The block diagram of our signal enhancement system is
shown in Fig. 1. The enhanced signal at the output of the
Kalman filter is fed to an AR parameter estimation subsys-
tem. At the beginning of the system’s convergence period
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the noisy signal is used for AR parameter estimation. How-
ever, after convergence the parameter estimation is carried
out on the de-noised signal. Convergence of the system is
ensured as long as the AR signal contains signal compo-
nents which are stronger than the disturbingnoise. Since the
Kalman filter operates as an optimum filter, it emphasizes
strong signal components. Due to the feedback loop the pa-
rameter estimation of the AR signal is further improved.

�

�

�

�

y�n� � 	s�n�

	��v�n�

	��u�n� 	a�n�

Kalman
fixed-lag smoother

AR parameter
estimation

s�n� � v�n�

Figure 1: Block diagram of the adaptive Kalman filter for
the enhancement of AR signal s�n� disturbed by noise v�n�.

We have selected and compared two algorithms for the AR
parameter estimation subsystem in Fig. 1. Method I is
a block processing technique where the block length and
overlapping is chosen in accordance to the nonstationarity
of the AR signal. It uses correlation function estimation and
the Levinson algorithm to obtain 	a and 	��u. The details can
be found e.g. in [6]. Method II uses a recursive least-squares
lattice (LSL) algorithm and operates on a sample per sam-
ple basis [7]. We use an exponential error weighting for a
gentle fit of the LSL algorithm to nonstationary signals.
Both methods show a comparable computational com-

plexity and performance behavior. However, application of
method I (based on the Levinson algorithm) guarantees sta-
bility of the AR model. In general, the recursive LSL al-
gorithm with exponential error weighting used in method
II may produce unstable AR filters. However, stability can
be easily checked by observing the reflection coefficients of
the LSL algorithm. In addition, in all our experiments with
a wide range of AR signals we have never encountered any
stability problems.
The estimation of ��u is a crucial point since its value de-

termines the noise reduction behavior and the convergence
speed of the adaptive Kalman filter. Furthermore, we must
use a lower bound ��min �� � for 	��u since 	�

�
u � � prevents a

proper start up of the algorithm (see (11) and (14)). If � �
min

is chosen too small, then the signal enhancement is certainly
better but convergence is slow in general, and vice versa. It
should be noted that the estimate 	��

u is less reliable when

using method II because of the exponential error weighting
of the LSL algorithm.

4. PERFORMANCE ANALYSIS

The performance of the system shown in Fig. 1 lies in be-
tween two limiting cases. The ideal case will occur, if the
AR parameters are known exactly and thus we can achieve
the performance of the standard (non-adaptive) Kalman
smoother. The worst case will arise, if we use the noisy
input data to estimate the AR parameters.
In the sequel, we assume stationary signals disturbed by

additive zero mean white Gaussian noise to present a sim-
plified error analysis of our system. Our goal is to derive
an upper bound of the AR parameter error vector since that
error limits the performance of our system. Therefore, we
first investigate how additive noise affects an AR parameter
estimation in principle.
If the noisy signal is given by y�n� � s�n� �w�n�, then

its p� p correlation matrixRy is

Ry � Rs � ��wI� (17)

where ��w is the noise variance and I is the identity ma-
trix. The true AR vector a can be found as the solution of
Rsa � rs whereas 	a (estimated with the noisy data) is ob-
tained be solvingRy	a � ry. For white noise disturbances
the correlation vectors rs and ry are equal since they both
contain the correlations rs���� rs���� � � � � rs�p�. Combina-
tion of these facts with (17) yields

	a �
�
I� ��wR

��
y

�
a� (18)

Using a vector (matrix) norm, the relative error regarding
the AR coefficient vector can be expressed by

� �
jj	a� ajj�
jjajj�

� ��w
jjR��y ajj�

jjajj�
� ��wjjR

��
y jj�� (19)

The matrix norm in (19) is given by jjR��
y jj� � ���ymin

with the eigenvalue �ymin � �smin ���w. Thus, we finally get

� �
��w

��w � �smin
� (20)

In the system shown in Fig. 1, we use the enhanced sig-
nal 	s�n� for AR parameter estimation and ��w in (20) is the
variance of the remaining noise at the system output. Be-
cause this variance is decreased during the adaptation phase
the error � in (20) will move towards a minimum. This in
turn further improves the noise reduction performance of
the system. After the settling period, the remaining noise
variance causes the estimated AR vector to differ slightly
from the true one. As a consequence, we cannot exactly
achieve the performance of the idealized case where the AR
parameters are known a priori. However, our experiments
show that the difference in SNR gain is typically less than
0.5 dB.
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5. EXPERIMENTAL RESULTS

We have tested the adaptive Kalman filter using a variety
of AR signals with different model orders p, delays d, and
noise variances ��v. If the true model order p� of the desired
signal is known, then the noise reduction behavior can be
improved for an input SNR � 3 dB by selecting p � p�
as parameter of the adaptive Kalman filter (over-determined
parameter estimation).
For stationary signals, the delay d should be large in or-

der to get a large data set for the smoothing operation. In
practical implementations, its value will be limited mainly
by the increase in computational complexity.
We illustrate the performance of our enhancement sys-

tem by a typical experimental result as shown in Fig. 2.
The clean signal is composed of a p� � � order AR sig-
nal (time interval n � � � � ����) and a p� � 
 order AR
signal (time interval n � ���� � � �����). The SNR at the
input of the adaptive Kalman filter is 5 dB and the resulting
SNR improvement is 10.94 dB. A fixed parameter p � �
was used by the enhancement system. By observing the en-
hanced signal trace Fig. 2 (c) the ability of our system to
track the signal nonstationarity at n � ���� is clearly vis-
ible. It should be noted that the extended Kalman filter [3]
did not converge at this high noise level.
The adaptive Kalman filter has also been implemented

on an ADSP-21061 floating point signal processor for real-
time operation with sampling frequencies up to 16 kHz.
The computational complexity of the DSP implementa-
tion is O��d� � �p � ���d � 
p� for the Kalman fil-
ter, O����p�p � �� � ��p� for the LSL algorithm, and
O�p� � ��N � 
��p� N � for the Levinson algorithm (AR
model order p, Kalman smoother delay d, and block length
N ).

6. CONCLUSIONS

We have described a robust and efficient adaptive Kalman
smoother for enhancing AR signals corrupted by additive
broadband noise. The system requires a minimum a priori
knowledge of signal and noise parameters and is capable of
tracking short-time stationary signals. As shown in an error
analysis for stationary signals the signal enhancement per-
formance is close to the optimal case where the AR param-
eters are known a priori. Future extensions of the algorithm
will include colored noise and impulsive noise disturbances.
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Figure 2: Signal enhancement using the adaptive Kalman
filter (Levinson algorithm for AR parameter estimationwith
p � �, Kalman smoother delay d � 
�, block length N �

��, new AR parameters are computed every 10 samples,
lower bound of 	��

u set to �
�
min � ����).


