
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 27, 2022

An adaptive large neighborhood search metaheuristic for the vehicle routing problem
with drones

Sacramento, David; Pisinger, David; Røpke, Stefan

Published in:
Transportation Research. Part C: Emerging Technologies

Link to article, DOI:
10.1016/j.trc.2019.02.018

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Sacramento, D., Pisinger, D., & Røpke, S. (2019). An adaptive large neighborhood search metaheuristic for the
vehicle routing problem with drones. Transportation Research. Part C: Emerging Technologies, 102, 289-315.
https://doi.org/10.1016/j.trc.2019.02.018

https://doi.org/10.1016/j.trc.2019.02.018
https://orbit.dtu.dk/en/publications/de5c7fac-a4e0-41fc-b8e8-2f3bcb033b2b
https://doi.org/10.1016/j.trc.2019.02.018
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Abstract

Unmanned Aerial Vehicles, commonly known as drones, have attained considerable
interest in recent years due to the potential of revolutionizing transport and logistics.
Amazon were among the first to introduce the idea of using drones to deliver goods,
followed by several other distribution companies working on similar services.

The Traveling Salesman Problem, frequently used for planning last-mile delivery
operations, can easily be modified to incorporate drones, resulting in a routing problem
involving both the truck and aircraft. Introduced by Murray and Chu (2015), the Flying
Sidekick Traveling Salesman Problem considers a drone and truck collaborating. The
drone can be launched and recovered at certain visits on the truck route, making it
possible for both vehicles to deliver goods to customers in parallel. This generalization
considerably decreases the operational cost of the routes, by reducing the total fuel
consumption for the truck, as customers on the routes can be serviced by drones without
covering additional miles for the trucks, and hence increase productivity.

In this paper a mathematical model is formulated, defining a problem similar to
the Flying Sidekick Traveling Salesman Problem, but for the capacitated multiple-
truck case with time limit constraints and minimizing cost as objective function. The
corresponding problem is denoted the Vehicle Routing Problem with Drones. Due to
the difficulty of solving large instances to optimality, an Adaptive Large Neighborhood
Search metaheuristic is proposed. Finally, extensive computational experiments are
carried out. The tests investigate, among other things, how beneficial the inclusion of
the drone-delivery option is compared to delivering all items using exclusively trucks.
Moreover, a detailed sensitivity analysis is performed on several drone-parameters of
interest.
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1 Introduction

Unmanned Aerial Vehicles (UAVs), better known as drones, have attained considerable
attention during the last decade due to their huge potential in logistics, inspection and
monitoring. As the name indicates, UAVs are vehicles that are able to stay in the air
and travel along specified routes in an automated way. Among the many applications, the
transport of parcels, food or other goods stands out, and pilot projects are being studied
by several companies (French, 2015).

The delivery of goods using drones reached a new level, when Jeff Bezos, Amazon’s CEO,
announced that the company was developing the idea of using UAVs for the delivery of small
commodities (Rose, 2013). Amazon company intends to launch its program for the delivery
of goods from warehouses to customers, or simply moving goods between warehouses, using
its “Prime Air” drone from 2017 (Wang, 2016). Later, DHL stated it was already developing
a similar project for the delivery of medicals and other goods considered as urgent on a
small island in northern Germany, obtaining promising results (Hern, 2015). In addition,
a similar project is being developed by Google X, using the drone “Project Wing” with
similar properties as a plane. Moving vertically and horizontally, it drops the merchandise
from the air, when it arrives to the location, with the help of a wire to guarantee a safe
landing (Muoio, 2016). Many more companies have begun joining parcel-deliveries with
drones, highlighting UPS, FedEx or Domino’s Pizza (Sacramento, 2017). An example of a
delivery drone is shown in Figure 1.

Figure 1: Example of a delivery drone. Photo by Sam
Churchill 1.

The use of drones can lead to con-
troversial issues, causing accidents or be-
ing used improperly for surveillance. The
American organization Federal Aviation
Administration (FAA) has laid down reg-
ulations that limit the use of drones for
commercial activities when operating in
the airspace. The new rules that were
presented by the FAA on the use of UAVs
for commercial activities will greatly fa-
vor the companies, but will continue rep-
resenting a considerable amount of con-
straints (McDougal, 2016). Also, with re-
spect to the load that the drones can
carry, the combined total weight cannot
exceed 55 pounds (Choi-Fitzpatrick et al., 2016). Nonetheless, the drone being within the
visual line of sight during the operation is still a prevailing rule. The latter regulation means
that fully automated drone delivery still is a future scenario.

1This image is available at: https://www.flickr.com/photos/samchurchill/14586999783/ and li-
censed under CC BY 2.0: https://creativecommons.org/licenses/by/2.0/
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Looking at the potential use of drones to deliver goods, it can be seen that there are
limitations to the distance, the flight endurance of the drone’s battery, and the capacity
that these flying vehicles can carry. However, considering the synchronization of drones and
trucks when delivering goods can be of great importance in reducing operational costs or
delivery times. It is observable that the disadvantages of a truck is counteracted by the
advantages of flying vehicles and vice versa. The use of airborne robots capable of safely
grasping and transporting small packages will significantly change the delivery industry,
since it will be an important tool to assist drivers in making deliveries, allowing more
deliveries per hour without covering additional miles (Trop, 2016).

In the operations research literature, delivery of small packages are frequently formulated
as a Vehicle Routing Problem (VRP) (Toth and Vigo, 2014) where a number of trucks
are based at a common depot and delivery routes starting and ending at the depot are
constructed in order to serve all delivery requests and minimize routing costs. After the
emergence of drones as a delivery option it has been envisioned that each truck can be
equipped with a supporting drone. The drone can take care of some of the deliveries while
using the truck as launch and recovery site (allowing the truck to move between launch and
recovery if the drone is used). Modelling the addition of drones leads to the Vehicle Routing
Problem with Drones (VRP-D). The first works that study the cooperation between truck
and drone used the Traveling Salesman Problem (TSP) (Applegate et al., 2011) as a base
model.

The pioneers in studying the truck-drone problem were Murray and Chu (2015), who
formulated the Flying Sidekick Traveling Salesman Problem (FSTSP). The problem is a
variant of the TSP where only one truck equipped with a single drone delivers the goods
to customers. The drone is dispatched from a location to deliver goods to a customer and
meet again in a rendezvous location with the truck. While the drone is flying, the truck
can visit other customers, however, it will have to recover the drone at the rendezvous
location before the battery of the drone runs out. In this case, the objective is to minimize
the completion time of the route. Recent studies, as Murray and Chu (2015) and those
presented in Section 2, have investigated the advantages of using these two vehicles for
operations management, comparing the results with distributing the goods only using the
truck. The benefits obtained are noticeable in terms of completion time.

This paper studies an extension of the VRP where each truck is collaborating with a
single UAV. Since the problem is a generalization of the classical VRP, it is NP-hard to
solve. Although it is not the main contribution of the paper, a new mathematical formulation
for the problem is presented, which is an extension of the FSTP for the multi-truck case,
and includes capacity and time completion constraints, while having cost minimization
as objective function. An Adaptive Large Neighborhood Search (ALNS) metaheuristic is
presented for solving the multi-truck problem. The algorithm represents a new approach for
route planning of both vehicles in cooperation. It is experimentally shown that solutions of
very high quality can be obtained, and the results provide significant savings in operational
cost compared to the truck-only case.
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Section 2 presents a review of the literature related to Vehicle Routing Problems using
drones for delivery of goods. Most of these studies focus on the TSP and there seems to be
very few papers focusing on the application of several trucks. Section 3 reports the mathe-
matical model for the VRP-D, which is inspired by the mathematical model presented by
Murray and Chu (2015). The formulation includes different vehicles, multi-trucks, capacity
constraints and time limitations. Section 4 is dedicated to the ALNS metaheuristic, which
will be described in detail and adapted to solve this variant of the VRP. Furthermore, it
is described how the initial solution is obtained. Section 5 deals with the generation and
analysis of the instances used for the problem presented in this paper and the study of the
performance of the selected algorithm to evaluate it in the different scenarios. Likewise,
a comparison of the performance of the algorithm against the case of not using drones is
presented and discussed. Finally, a study concerning the modification of different charac-
teristics of the drones is assessed. The paper is concluded and future research is discussed
in Section 6.

2 Related Literature

Technological progress has allowed drones to be increasingly used in the civilian sector,
where one of the most immediate applications is the delivery of goods. This extends the
classical TSP and the VRP to use UAVs for complete or partial delivery. The literature
for TSP and VRP is comprehensive as can be seen in Applegate et al. (2011), Eksioglu
et al. (2009) and Toth and Vigo (2014). Among the many variants of these problems, there
are a few papers considering delivery of goods in combination with UAVs. Also, there are
conceptually related variants of these problems in the literature.

The model considered in this paper has similarities with the FSTSP formulation by
Murray and Chu (2015). This is an optimization problem of parcel deliveries using a single
truck with a single drone in synchronization. The objective is to reduce the duration time
of the route to service all customers and return both vehicles to the depot. The paper also
presents a different problem that is applicable to scenarios in which the distribution center is
close to a significant proportion of customer that may be serviced by the UAV, the Parallel
Drone Scheduling TSP (PDSTSP). In this problem, a single truck and a fleet of UAVs
work together to deliver the goods to customers, although synchronization between the
UAV and the truck is not needed since the truck operates independently on the remaining
customers. Furthermore, saving heuristics for both formulations are provided by the authors,
obtaining considerable improvements in the solution with respect to the truck-only case.
Later, Ponza (2016) presents a Simulated Annealing metaheuristic for the resolution of an
improved formulation for the FSTSP, whereas Freitas and Penna (2018) present a hybrid
heuristic, where the initial solution is obtained by solving a MIP model for the TSP route,
which is converted to a FSTSP by an improvement heuristic, based on several truck-only
neighborhoods and a single truck-to-drone relocation. Ham (2018) studies an extension of
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the PDSTSP, where the drone can perform multiple trips to carry out pick-up and deliver
operations. A Constraint Programming approach is proposed to solve this variant of the
problem.

Within the last-mile delivery concept, in which a truck collaborates with a drone to
make deliveries, there are more problems that are worth noting, such as the TSP-D (Agatz
et al., 2015). The TSP-D is very similar to the FSTSP, but it is assumed that the drone
is faster than the truck by a factor α and both vehicles travel on the same road network.
It is therefore possible to provide a bound on the maximum attainable gains that can be
achieved by using the two vehicles in union versus the simple case of using a truck exclu-
sively. Moreover, this problem is assuming that the truck can wait for the drone in the
same position that it is launched, an aspect that was not considered in FSTSP. A heuristic
approach is presented, based on a route first—cluster second procedure with a greedy and
exact partitioning algorithm as well as the consideration of an iterative improvement pro-
cedure to find a solution. Later, Poikonen et al. (2018) presented different heuristics based
on a branch-and-bound algorithm for the TSP-D, considering only a subset of the potential
package delivery orders at each node. Mathew et al. (2015) study a similar problem, called
the Heterogeneous Delivery Problem (HDP), for the scheduling and routing problem of the
cooperating vehicles in urban environments, while minimizing the total delivery cost. In this
problem all deliveries are done by the drone and the truck is waiting at a single point (called
a street vertex) while the drone is doing a delivery. A number of street vertices are given and
not all of them have to be visited. The authors propose a solution approach by reducing the
problem to the Generalized Traveling Salesman Problem (GTSP), which can be solved by
existing heuristic methods. Moreover, the authors propose additional algorithms for solving
the special case of the HDP where all street vertices are considered warehouses. In this
version the truck becomes superfluous, since the drone can just fly between warehouses to
collect goods to be delivered. Lastly, an iterative approach for the TSP-D is proposed by
Yurek and Ozmutlu (2018). At each iteration the solution approach is divided into two
stages, determining the truck route in the first-stage and assigning the drone customers in
the second-stage.

Another problem for the parcel delivery with UAVs is considered in Ha et al. (2018).
Like FSTSP, the launch and recovery operations for the drone are again restricted to dif-
ferent locations. A Mixed Integer Linear Programming (MILP) formulation is proposed as
an extension to the formulation proposed by Murray and Chu (2015). Nonetheless, the ob-
jective function is focused on minimizing the overall operational costs, which includes the
transportation cost as well as a penalty for wasted time, incurred when vehicles need to
wait for each other. The paper presents two different heuristic approaches, known as TSP-
LS and Greedy Randomized Adaptive Search Procedure (GRASP). The first algorithm is
an adaptation of the saving-algorithm proposed by Murray and Chu (2015) to solve the
cost-minimization problem, whereas the second algorithm is a metaheuristic based on a
split procedure to construct a feasible solution of the TSP-D from a TSP solution. The
performance of the methods is compared under different objective functions and construc-
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tion heuristics. The effectiveness of the GRASP algorithm is documented, outperforming
TSP-LS in terms of solution quality. Furthermore, the GRASP algorithm, with a min-time
objective function, is compared with FSTSP, achieving better results for small instances
with 10 customers.

Four versions of a “single drone and single truck” routing problem are studied by bin
Othman et al. (2017). Common to all versions is that the truck’s route is predetermined.
The two main variations of the problem considered are 1) the truck can stay at a single
point while launching and receiving the drone, 2) the truck has to move between launching
and receiving the drone. Two more variants are obtained by disallowing that the drone can
move together with the truck (hitch a ride). The paper studies complexity of the different
versions, polynomially solvable cases and approximation algorithms.

Carlsson and Song (2017) and Campbell et al. (2017) use continuous approximation
methods for the strategic analysis of the design of hybrid truck-drone delivery systems.
Carlsson and Song (2017) show that the efficiency of the delivery system is proportional to
the square root of the ratio of the speed of both vehicles. Moreover, the authors develop
intuitive heuristic rules to determine the coordinated routes of the vehicles. On the other
hand, the results provided by Campbell et al. (2017) highlight the economic advantages of
such a system in many settings, especially with multiple drones per truck. However, the
authors show that the benefits from the truck-drone delivery system are dependent on the
relative operating and idle costs of both vehicles, and spatial density of customers.

The drone literature is mainly focused on the use of drones exclusively or in combi-
nation with a single truck, especially with focus on delivery operations. There seems to
be few papers dealing with the joint work of a fleet of trucks equipped with a series of
drones. The most interesting is presented by Wang et al. (2017), which presents a theoret-
ical study of the maximum savings obtained when using drones in a fleet of vehicles. The
goal remains to minimize the total time to complete the routes. The coordination between
the vehicles in this problem provides a theoretical bound on how beneficial the drones can
be, confirming in the results the time saved in comparison to the case of simply using the
fleet of trucks. This work is extended by Poikonen et al. (2017) where the effect of limited
drone battery life and the effect of having two different distance matrices for the trucks and
drones are considered. Relations to the close-enough VRP (CEVRP) are also considered.
In the CEVRP, the truck does not have to visit all customer but just travel “close-enough”
to each customer. An application of this problem is, for example, reading of meters using
wireless technology. Pugliese and Guerriero (2017) present a mathematical formulation for
the multi-truck approach with time windows and minimization of the total transportation
cost, and Daknama and Kraus (2017) propose a nested-local search heuristic for solving the
Vehicle Routing with Drones (VRD), where drones are allowed to be travel between trucks.

Finally, Otto et al. (2018) present an exhaustive review of optimization problems con-
sidering the use of drones for operations planning to civil applications. The authors give an
overview of more than 218 articles in the field, most of them published in the five past years,
but they do not include papers dealing with military and security applications of drones
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or obstacle-avoiding path planning. The paper highlights the recent growing presence of
drones in business activities and the advantage to combine and assist the operations to
available vehicles and robots.

3 The Vehicle Routing Problem with Drones

Given a fleet of homogeneous driver-operated delivery trucks, each of them equipped with
a single UAV or drone, the task is to deliver packages to a given set of customers, each of
whom must be served exactly once by either the driver-operated delivery truck or the UAV
operating in coordination with the truck. Each truck with its corresponding UAV on board
must depart from, and return to, a single depot. The two vehicles may depart (or return)
either in tandem or independently to the depot. When the drone is not operational, it will
be transported by the truck, saving battery power. The drones can be dispatched from the
truck and picked up again by the same truck in a different location multiple times along
the truck route. However, the drone can visit only a single customer each time due to the
limited payload capacity and there is a maximum flying endurance due to battery capacity.
A time is associated with the launch and recovery of the drone, as well as a service time
for the customers when delivering the packages. The trucks have a limited capacity that
must be respected and the route of the trucks should not exceed a certain time limit during
the day of operation. The objective is to minimize the overall cost of the operation of using
the fleet of vehicles while respecting the capacity and time constraint, and while meeting
the customers’ demand. A visual representation of a solution to the problem is depicted in
Figure 2.

Figure 2: Example of a VRP-D solution. The solid lines indicate the route of the trucks, while the
dashed lines indicate the trips of the drones. Filled circle nodes represent customers that, due to a
heavy delivery, can only be visited by the truck and emptied circle nodes represent customers that
can be visited by either the truck or the drone. Triangle nodes corresponds to drone visits in the
solution.
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3.1 Mathematical Formulation for the VRP-D

We will now present a mathematical formulation for the VRP-D. The mathematical formu-
lation is an extension of the MIP formulation of the FSTSP presented in Murray and Chu
(2015), taking into account the time at which a truck and/or a UAV visits a customer. The
truck and the UAV must be synchronized in time during the truck’s route, except at the
end, where the truck and the UAV can arrive separately to the depot. Moreover, the capac-
ity and the completion time of the routes are considered. The mathematical formulation is
extended with an extra index indicating the truck assigned to the route.

3.1.1 Definitions

The following sets will be used for this formulation.

• C = {1, 2, ..., c} : Set of customers.

• C ′ ⊆ C : Subset of customers that may be serviced by the UAV, i.e. whose demand
can be carried by a drone.

• D = {0, c+ 1} : Depot nodes indicating the beginning and end of the route.

• N = {0, 1, ..., c, c+ 1} : Set of all nodes.

• N0 = {0, 1, 2, ...c} : Set of nodes from which a vehicle may depart.

• N+ = {1, 2, ..., c, c+ 1} : Set of nodes to which a vehicle may arrive.

• ∆+(i) = N+ \ {i} : The set of nodes that can be reached from node i ∈ N0.

• ∆−(i) = N0 \ {i} : The set of nodes that can be used to reach node i ∈ N+.

• A = {(i, j) : i ∈ N0, j ∈ ∆+(i)} : Set of feasible arcs.

• V = {1, ...,m} : Set of homogeneous trucks, where m is a sufficiently large number.

The parameters required for the mathematical formulation are introduced below. The truck
and the drone do not present the same features, and this is reflected by different parameters
for each vehicle.

• τTij : Time required for a truck to travel from i ∈ N0 to j ∈ N+.

• τDij : Time required for a UAV to travel from i ∈ N0 to j ∈ N+.

• cTij : Cost for operating a truck to travel from i ∈ N0 to j ∈ N+.

• cDij : Cost for operating a UAV to travel from i ∈ N0 to j ∈ N+.

• Q : Capacity of the trucks.

• qi : Demand of customer i ∈ C.

• e : Flight endurance of the battery of the UAV.
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• SeTi : Service time for the truck at customer i ∈ C.

• SeDi : Service time for the UAV at customer i ∈ C ′.

• SL : Required time for launching the UAV.

• SR : Required time for recovering the UAV.

• M : A sufficiently large number. A precise value is given in the following.

• Tmax : Maximum duration time of a route.

Furthermore, additional notation is needed for the identification of the possible three-
node sorties from where a UAV can operate in the problem. Let P be the set of possible
sorties, represented by the tuples 〈i, j, k〉. The first node represents the launch position of
the UAV, the second node represents the customer that is visited by the UAV, and finally,
the third node represents the recovery position of the UAV. Hence, an element 〈i, j, k〉
belongs to the set P if the following conditions hold:

• The launch position i ∈ N0 of a tuple is the location from which a UAV can be
launched, corresponding to the location from which a truck can depart.

• The delivery position j ∈ {C ′ : j 6= i} of a tuple is the set of customers that can be
serviced by the UAV different from the launch position i.

• The rendezvous position or recovery position k ∈ {N+ : k 6= i, k 6= j, SL+SR+ τDij +

τDjk + SeDj ≤ e} of a tuple is the location at which the UAV can be recovered by the
truck while respecting the battery life.

Furthermore, the tuples 〈0, i, c + 1〉 are excluded from P for all i ∈ C ′. These tuples
correspond to drone deliveries with launch and rendezvous position at the depot. For a
sortie s = 〈i, j, k〉, we define its cost as cDs = cDij + cDjk. We define P+

i as all the sorties from
P with a launch at node i ∈ N0, P−

k as all the sorties from P with a recovery at node
k ∈ N+ and Pj as all the sorties from P that delivers to customer j ∈ C ′.

The formulation makes use of the following variables.

• xvij : Binary variable indicating if truck v ∈ V travels from i ∈ N0 to j ∈ N+.

• uvi : Continuous variable indicating the position of the visit i ∈ N in the route of
truck v ∈ V .

• tvi : Continuous variable indicating the time in the route of truck v ∈ V arriving to
location i ∈ N .

• t′vi : Continuous variable indicating the time of a UAV from truck v ∈ V arriving to
location i ∈ N .

• pvij : Binary variable indicating if a customer j ∈ C is visited after location i ∈ N0 in
the route of truck v ∈ V .

• yvs : Binary variable indicating if the sortie s ∈ P is used in the route of truck v ∈ V .
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3.1.2 Mathematical Formulation

We can now formulate a MIP model for the VRP-D.

min
∑

v∈V

(

∑

(i,j)∈A

cTijx
v
ij +

∑

s∈P

cDs y
v
s

)

(1)

Subject to:
∑

v∈V

∑

i∈∆−(j)

xvij +
∑

v∈V

∑

s∈Pj

yvs = 1 j ∈ C (2)

∑

j∈N+

xv0,j ≤ 1 v ∈ V (3)

∑

i∈N0

xvi,c+1 ≤ 1 v ∈ V (4)

xv0,c+1 = 0 v ∈ V (5)
∑

i∈∆−(j)

xvij =
∑

k∈∆+(j)

xvjk v ∈ V, j ∈ C (6)

uvi + 1 ≤ uvj +M(1− xvij) v ∈ V, (i, j) ∈ A (7)

uvj ≤M
∑

i∈∆−(j)

xvij v ∈ V, j ∈ N+ (8)

∑

j∈C





∑

k∈∆+(j)

qjx
v
jk +

∑

s∈Pj

qjy
v
s



 ≤ Q v ∈ V (9)

∑

s∈P+
i

yvs ≤ 1 v ∈ V, i ∈ N0 (10)

∑

s∈P−

k

yvs ≤ 1 v ∈ V, k ∈ N+ (11)

2yvs ≤
∑

h∈∆+(i)

xvih +
∑

l∈∆−(k)

xvlk v ∈ V, s = 〈i, j, k〉 ∈ P (12)

tv0 = 0 v ∈ V (13)

t′v0 = 0 v ∈ V (14)

tvc+1 ≤ Tmax

∑

i∈N0

xvi,c+1 v ∈ V (15)

t′vc+1 ≤ Tmax

∑

s∈P−

c+1

yvs v ∈ V (16)

tvh + τThk + SeTh+
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SL
∑

s∈P+(h)

yvs + SR
∑

s∈P−(k)

yvs ≤ tvk + Tmax(1− xvhk) v ∈ V, (h, k) ∈ A (17)

tvi + τDij + SL− Tmax

(

1−
∑

s∈P+
i ∩Pj

yvs

)

≤ t′vj v ∈ V, (i, j) ∈ A (18)

t′vj + τDjk + SeDj + SR− Tmax

(

1−
∑

s∈Pj∩P
−

k

yvs

)

≤ t′vk v ∈ V, j ∈ C ′, k ∈ ∆+(j) (19)

tvi − Tmax

(

1−
∑

s∈P+
i

yvs

)

≤ t′vi v ∈ V, i ∈ N0 (20)

tvi + Tmax

(

1−
∑

s∈P+
i

yvs

)

≥ t′vi v ∈ V, i ∈ N0 (21)

tvk − Tmax

(

1−
∑

s∈P−

k

yvs

)

≤ t′vk v ∈ V, k ∈ C (22)

tvk + Tmax

(

1−
∑

s∈P−

k

yvs

)

≥ t′vk v ∈ V, k ∈ C (23)

e+ Tmax

(

1−
∑

s∈P+
i ∩P−

k

yvs ) ≥ t′vk − t′vi v ∈ V, i ∈ N0, k ∈ N+ (24)

(uvj − uvi ) ≤Mpvij v ∈ V, i ∈ N0, j ∈ C \ {i} (25)

(uvj − uvi ) ≥M(pvij − 1) + 1 v ∈ V, i ∈ N0, j ∈ C \ {i} (26)

t′vk − Tmax

(

3−
∑

s∈(P+
i ∩P−

k
)

yvs −
∑

s∈P+
b

yvs − pvib

)

≤ t′vb v ∈ V, i ∈ N0, k ∈ N+, b ∈ C \ {b}

(27)

xvij ∈ {0, 1} v ∈ V, (i, j) ∈ A (28)

yvs ∈ {0, 1} v ∈ V, s ∈ P (29)

uvi , t
v
i , t

′v
i ≥ 0 v ∈ V, i ∈ N (30)

pvij ∈ {0, 1} v ∈ V, i ∈ N0, j ∈ C \ {i} (31)

The objective function (1) minimizes the operational cost when visiting the customers.
Constraint (2) ensures that each customer is visited exactly once, either by a truck or by
a drone. Constraint (3) ensures that all the trucks must depart from the depot at most
once. Similarly in (4), it has to be ensured that all the trucks must return to the depot
at most once. Moreover, it is prohibited to travel between depots as given by (5). The
flow conservation constraints for the truck are defined in (6). The subtour elimination
constraints for the truck are defined in Constraints (7) and (8), referring to the position a
customer is visited in the truck’s route. Moreover, the capacity constraint is given in (9).
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Additionally, the UAV can be launched and recovered at most once from each node, as
given by Constraints (10) and (11). Constraint (12) makes sure that if the UAV is launched
and recovered in location i ∈ N0 and k ∈ N+ respectively, then the truck visits the same
locations.

The initialization of the times for the truck and the UAV at the beginning of each route
are given in (13) and (14). Moreover, the maximum duration of a route is established by
imposing a limit to the time of returning to the depot by the vehicles, as stated in (15) and
(16).

The time constraints (17) for the truck movement, defines the time at which the truck
arrives to the location with respect to the corresponding actions that can happen in between.
The time constraints for the drone movement, defining the time a UAV visits a customer
according to the truck position are defined in (18) and (19). Constraint (18) ensures that
if a UAV is launched from location i ∈ N0 to customer j ∈ C ′, then the arrival time for
the UAV to customer j has to be greater than the arrival time for the truck to location i
plus the travel time for the UAV between the location and the launch time of the UAV.
Similarly for the recovery operation, (19) ensures that if a UAV finishes serving a customer
j ∈ C ′ and flies back to the truck at location k ∈ N+, then the arrival time of the UAV to
location k has to be greater than the arrival time of the UAV to location j plus the travel
time between the locations, the service time of the UAV at customer j and the recovering
time of the UAV.

The time synchronization constraints for the truck and the UAV are defined in (20)–(23).
These constraints impose that the launch and recovery operations are time synchronized.
Note that the synchronization is not needed when the truck and the UAV are separately
coming back to the depot, hence the constraints (22) and (23) are defined for the set of
customer C instead of N+.

The endurance constraint for the battery of the UAV is given by the launch and recovery
variables. Constraint (24) assures that if a UAV is launched from position i ∈ N0 to customer
j ∈ C ′ to be recovered at position k ∈ N+, then the difference in time between the operations
has to satisfy the endurance time of the battery.

The binary variable pvij defines the order in which the truck makes the visits, establishing
whether one customer is visited before another on the route. The value for this variable is
assigned according to the difference in the position between the location as stated in (25)
and (26). Assuming the departure location i ∈ N0 and the customer j ∈ C, if the truck
does visit the customer j after being in location i, then the difference between the position
variables uvi will be positive, imposing the value 1 to pvij . Otherwise, if the difference is
negative, pvij is imposed to 0. When a truck does not visit a customer in the route, the
previous constraints (7)–(8) set the position of the visit to zero. Therefore, in constraint
(26) a 1 is added on the right hand side to ensure that pvij is set to zero when both uvi and
uvj are zero.

Constraint (27) is defined to avoid that new launches occur while the UAV is already
flying in the route. The arrival time of a UAV to another customer location b ∈ C from
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which the UAV can be launched again has to be greater than the arrival time to the location
k ∈ N+ if and only if a drone is recovered at location k occurred earlier. This is taken into
account by the order in which the truck visits locations i and b (pvib), if a launch occurs from
position b and if a drone is recovered at location k. Finally, the domain of the variables is
defined in (28)–(31).

3.2 Discussion of the Mathematical Model

The mathematical formulation presented in Section 3.1 is an extension of the formulation
presented by Murray and Chu (2015). The formulation keeps the sortie selection from the
set P in a single variable and the variables are extended with an extra index to account for
different trucks (yvs ). We have considered an unlimited homogeneous fleet of delivery trucks,
assuming that there are no specific distinctions between them. As expected, the formulation
becomes harder to solve with the inclusion of this extra index, increasing considerable the
running time as the number of trucks and customers increase compared to the case of a
single vehicle.

Contrary to Murray and Chu (2015), the objective function is no longer focused on
reducing the completion time for the trucks returning to the depot, instead, there is a
maximum duration time for all routes. This comes from the assumption that drivers have
contracts with maximum workable-hours per day that has to be respected. Additionally,
there is a cost cTij and cDij associated with the truck and the UAV respectively for traversing
arc (i, j), where the cost entails for an estimation of the fuel consumption incurred by the
vehicles. We are interested in studying the problem from a cost-minimization perspective,
as seen in (1), rather than from a time-minimization. Technology is continuously devel-
oping, and in the near future, autonomous trucks will be available for delivery purposes,
where drivers will no longer be needed. Therefore, the driver cost is neglected in this case.
Moreover, we could also assume that the driver cost is a fixed cost already incurred in
the drivers’ contracts. Therefore, it would be interesting to study the collaboration of both
vehicles for delivery operations under a cost-minimization objective function, where the ve-
hicles are operated within a time limit as long as they incur minimum cost. Furthermore, it
is important to notice that drone-arc costs can be direction dependent in reality, due to the
payload and speed, among many others. However, we do not have actual data for correctly
modeling these generalizations, and hence assume that drone-arc costs are symmetric and
independent of the load.

The endurance constraint (24) can be more easily defined than in Murray and Chu’s
formulation. The number of constraints can be reduced, as it is not necessary to consider
the arrival time of the UAV to the delivery position. Instead, the constraint only accounts
for the time difference between the launch and recovery positions incurred by the UAV, if
there exists such sortie.

The model presents several constraints regarding the prohibited moves that cannot be
carried out by the UAV. These moves correspond to illegal dispatches of drones in the
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route. For a better understanding, as shown in Ponza (2016), visual representation of the
prohibited moves are depicted in Figures 3-6. The solid and the dashed lines indicate the
route of the truck and the UAV respectively. Similarly, circle nodes correspond to customers
visited by the truck whereas triangle nodes correspond to customers visited by the drone.
The filled squared node correspond to the single depot. Firstly, the truck cannot wait for
the UAV in the same location from which it was launched. In the formulation, this move
is not considered in the definition of the sorties and its visual representation can be seen
in Figure 3. Similarly, due to the definition of the depot nodes, it is not allowed for a UAV
to operate independently from the truck, i.e. start the operation from the depot, deliver
the goods to the customer, and then come back to the depot. This is also ensured by the
set of feasible sorties P . The visual representation of this prohibited move is similar to the
previous one, but considering the depot node, as shown in Figure 4.

Figure 3: Prohibited move of the UAV for
the launch and recovery operation.

Figure 4: Prohibited move of the indepen-
dently operation of the UAV.

Finally, (27) is ensuring that new launches do not occur before the previous UAVs in
the same route have been recovered. Regarding the definition of the variables pvij , the time
of the launch t′vb of the UAV from the location b ∈ C is forced to be greater than the time
of the recovery t′vk of the previous UAVs. The corresponding prohibited moves can be seen
in Figures 5 and 6.

Figure 5: Prohibited move of new launches.
Figure 6: Prohibited move of new launches
within a sortie.

3.3 Parameters

The mathematical formulation for the VRP-D introduces several parameters reflecting the
characteristics and operation times related to the UAV and the truck. We have attempted
to find values close to reality, but there are no eligible parameters to be considered in the
models as drone delivery is still in early stages to be applied in reality. Table 1 summarizes
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the parameters and their values. The values have been found in the literature or have been
used by companies in their prototype models.

Table 1: Values for the parameters in the main configuration of the problem.

Parameter Notation Value Reference

Launch Time SL 1 min Murray and Chu (2015)
Recovery Time SR 1 min Murray and Chu (2015)
Truck Speed νT 35 mph Ponza (2016)
Drone Speed νD 50 mph Trop (2016)
Endurance e 30 min Kharpal (2016)

Truck Capacity w/ drones Q 1300 kg See text
Truck Capacity w/o drones Q∗ 1400 kg See text

Drone Capacity QD 5 kg Trop (2016)
Fuel Price fp 1.13 e/ l See text

Fuel Consumption fc 0.07 l/km See text
Miles Converter mc 1.61 km/mi –

Drone Factor Cost α 10 % Kharpal (2016)
Maximum Route duration Tmax 8 hours Standard working hours

The subset C ′ of potential drone customers is determined by the maximum load capacity
of a drone QD. Given a customer i ∈ C, the customer is a potential drone customer if the
drone can carried its demand, i.e qi ≤ QD. Amazon states that its drones can carry up
to 5 pounds (2.27 kilograms) (Allain, 2013), although there are companies like Workhorse
that are capable of carrying up to 10 pounds (4.54 kilograms) (Trop, 2016). As future
technological achievements may increase the load limit, we set the maximum load for drones
to 5 kg. Furthermore, the trucks used for the operations are assumed to be similar to Long
Wheelbase Vans, such as a Ford Transit Custom Van 330 L2 2.2 TDCi 125 CV, with a
total payload of 1400 kg and an average fuel consumption of 0.07 l/km, as indicated in
its technical specifications. However, since the trucks have to be equipped with the UAV
material (i.e. the drone, batteries, tools, among other things), the capacity of the truck is
reduced by 100 kg. Therefore, the payload capacity of truck fleet is imposed to 1300 kg for
the truck-drone case, whereas in the truck-only case, the truck capacity is imposed to 1400
kg.

The speed for the different vehicles is defined assuming the average speed in the opera-
tions. The speed limitation of the truck may vary according to the road network, but it is
assumed that the trucks operate with a constant average speed of 35 mph (Ponza, 2016).
For the UAV’s speed, we will look at companies researching drones for delivery operations,
such as Amazon and Workhorse, stating that drones can fly at up to 50 mph (Trop, 2016).
Similarly, regarding the endurance of the UAV, the battery total life is set to 30 minutes
(Kharpal, 2016).

The distance dij between locations i ∈ N0 and j ∈ N+ in the problem is given as the
Euclidean distance between the coordinates in the plane. This distance matrix can be used
to determine the travel time matrix τTij and τDij for the truck and the UAV respectively.
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Assuming the equation of motion, as the speed νT,D of the vehicles (UAV and truck respec-
tively) was set to constant, the travel time matrix can be calculated as τT,Dij = dij/ν

T,D.

The cost matrix cT,Dij is determined by the distance matrix dij . The truck’s cost is related
to the fuel price fp and consumption rate fc as cTij = fp · fc ·mc · dij .

As the cost of using the UAV is considerably cheaper than using the truck, it is set to
a factor α of the cost matrix for the truck, as cDij = α · cTij . Although it might be difficult to
determine a precise factor of the total cost, α = 0.1 seems to be a good approximation, since
Workhorse determined an approximate value of 2 cents per mile because of the electricity
(Kharpal, 2016), which closely corresponds to between 10-15% of the total truck’s cost.
Moreover, the fuel price is set to 1.13 e/l, as the average diesel price in Europe by the end
of year 2017.

Finally, the model presents several big-M constraints. The value M is solely used in the
subtour elimination constraints and in the order on which the truck visits the locations.
As the uvi variables determines the position in the truck’s route, the worst case scenario is
that only one truck visits all the customer and return to the depot and this is given by the
cardinality of the set of all the nodes, i.e. M = |N | = n+ 2.

4 Adaptive Large Neighborhood Search

In this section we propose an ALNS metaheuristic for the VRP-D. The ALNS framework
has been applied to many other VRP variants in the past and is often easy to adapt to new
problems (Pisinger and Ropke, 2010). Large Neighborhood Search (LNS) was introduced
by Shaw (1998) and is based on progressively improving an initial solution by repeatedly
destroying and repairing the current solution. The ALNS framework presented by Ropke
and Pisinger (2006) is an extension of LNS, which presents many destroy and repair meth-
ods that are statistically chosen according to the performance achieved during the search.
Destroy methods eliminate part of the current solution, while repair methods rebuild the
partial solution. Typically, the destroy methods contain some randomness to be able to
destroy different parts of the solution and thus to diversify the search for new solutions.
The repair methods can also be stochastic to avoid building the same solution if the same
partial solution is encountered several times during the search. An important parameter of
the metaheuristic is the degree of destruction. If a too small part of the solution is destroyed,
it can be difficult for the method to escape local minima. On the other hand, if too much
of the solution is destroyed, the repair can have difficulties reconstructing a good solution.

Let Ω− and Ω+ denote the set of destroy and repair methods, respectively. At each
iteration, a destroy method d ∈ Ω− and a repair method r ∈ Ω+ are selected to modify the
current solution. The selection of each of these methods are chosen probabilistically, based
on the weights assigned to the different methods and using the roulette wheel selection
principle. At the beginning, the weights are initialized with equal probability and they
are updated iteratively with respect to a reaction factor ρ ∈ [0, 1] and the score Ψ of the
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corresponding method, as defined in Table 2.

Table 2: Score of the corresponding method.

Parameter Ψ Description

σ1 The new solution resulted in a new global best solution
σ2 The new solution resulted in a solution which was accepted with a cost

better than the cost of the current solution
σ3 The new solution resulted in a solution which was accepted with a cost

worse than the cost of the current solution
σ4 The new solution is rejected

Let wij be the weight of the method i at iteration j. Therefore, after each iteration, the
weights are updated as follows:

wi,j+1 = ρwij +Ψ(1− ρ)

To avoid that the algorithm moves randomly through the solution space, it is neces-
sary to control and accept the solutions that are created by each destroy/repair iteration.
The ALNS metaheuristic is therefore extended with an acceptance criteria borrowed from
Simulated Annealing (see e.g. Černỳ (1985) and Kirkpatrick et al. (1983)). The algorithm
makes use of a temperature parameter T that controls the acceptance probability. If a de-
stroy/repair operation results in an solution st with better objective value than the current
solution s, then st is always accepted. If the new solution st has a higher objective value
then st is accepted with probability

e
f(s)−f(st)

T

where f(s) denotes the objective value of s. We let T start at value Tst and it is linearly
decreased towards zero (following Santini et al. (2018)). We wish to use time as a stopping
criterion for the algorithm and for that reason we want T to reach zero when the time has
run out. Therefore, we control the temperature using the elapsed time. Let telap denote the
elapsed time since the algorithm was started and let tmax denote the time limit imposed
on the algorithm. We then update the temperature using the formula

T = Tst

(

1−
telap

tmax

)

The algorithm is stopped as soon as telap ≥ tmax. The elapsed time is measured using CPU
time.

The pseudo-code for the algorithm is given in Algorithm 1. Different from other ALNS
metaheuristics the algorithm includes a feature that restores the best solution so far if
a certain number of iterations has passed without any improvement (Lines 15 to 17 in
Algorithm 1).
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Algorithm 1: Pseudo-Code for the ALNS Algorithm.
input: Initial Temperature: Tst,

Max iterations without improvement: noImpvMax,
Time limit: tmax

1 s← InitialSolution();
2 s∗ ← s;
3 noImpv ← 0 ;
4 while telap < tmax do
5 Choose a destroy method d() and a repair method r() from Ω− and Ω−;
6 st ← r(d(s));
7 T = Tst(1− telap/tmax);

8 if Random(0,1) < exp(f(s)−f(st)
T

) then
9 s← st;

10 if f(s) < f(s∗) then
11 s∗ ← s;
12 noImpv ← 0;
13 else
14 noImpv ← noImpv + 1;
15 if noImpv > noImpvMax then
16 s← s∗ ;
17 noImpv ← 0 ;

18 Update scores of Ω− and Ω+ based on acceptance criteria

19 return s∗;

4.1 Initial Solution

An initial solution is constructed by means of heuristics. The initial solution is divided into
three steps: a construction algorithm that only considers service by truck; a local search
algorithm that also only considers service using the trucks; and a drone addition algorithm.

The chosen construction algorithm in the first step is the Nearest Neighbor Algorithm.
The truck route is built progressively looking for the nearest neighbor to the last visit
added as long as the capacity and the time of the route have not been exceeded. If one of
these resources is exceeded, a new route is initiated and the process is repeated until all
customers have been visited. The solution will be improved in the second phase by means
of an improvement heuristic through relocation moves (Fosin et al., 2014). The insertion of
customers visited by drones is carried out in the third phase. First, a set D of all customers
that can be visited by the drone in the current solution is constructed. Then, for each
customer in D, the customer is removed from the truck route and all possible feasible
sorties in the current solution where the customer is visited by the drone are identified.
The selection of the sortie is performed by the function FindSortie(c, s, η) as shown in
Algorithm 2, which finds the best sortie where customer c ∈ D is a drone customer in the
partial solution s with respect to a threshold cost η. The check of the feasibility of the sortie
in Line 6 ensures that prohibited moves are not constructed in the current solution. The
customer is then returned to the truck route and the method continues until all customers
in the subset D are checked. The sortie incurring the biggest saving is retrieved and it is
added to the current solution. This phase is repeated until no more savings can be obtained.
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Algorithm 2: FindSortie(c, s, η) function for finding the best sortie for customer c
in the partial solution s with respect to a threshold cost η.

input: Partial Solution: s,
customer to insert as drone-customer: c,
threshold cost: η

1 BestSortie = ∅;
2 for Each Route in s do
3 if Capacity(Route) + qc < Q then
4 for Pair Positions (i, k) in Route where i < k do
5 Construct sortie p = 〈i, c, k〉 with launch-position i, delivery position c

and recovery-position k;
6 Check feasibility for sortie p ;
7 if SL+ SR+ τDic + τDck + SeDc < e AND f(s)+ CostSortie(p) < η then
8 BestSortie← p;
9 Update η;

10 return BestSortie;

The initial solution is further improved by a local search heuristic with a string reloca-
tion neighborhood. Basically, the local search heuristic selects a string of customers to be
relocated in the same order somewhere else in the current solution. The operator depends
on the route to relocate the string, defining a 2−opt move if the string is relocated in the
same route and a string relocation move if the string is relocated to another route. The
string can have any length, but the start location and end location of the string should
not be locations that are visited while a drone is conducting a sortie. The implementation
of the string relocation may improve the obtained solution in the previous phases, as it
is able to eliminate crosses between visits that cannot be eliminated by single relocation
moves. Figure 7 presents examples of how a string is relocated in the same route (top) and
in another route (bottom). It can be seen in green the string to be relocated, while the read
arcs corresponds to the arcs that will be removed (left) and added afterwards (right).

Figure 7: Example of the String Relocation algorithm in the same route (top) and in another route
(bottom). On the left, there is the initial solution after the first three steps and on the right, there
is the initial solution improved after the string relocation algorithm.
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4.2 Destroy Methods

In each iteration, the ALNS algorithm destroys a part of the current solution. The number
β of customers to remove is controlled by the parameters δ, clow and clim using the formula

β = min
(

max(clow, δ · |C|), clim
)

(32)

Here, δ is the ratio of customers to remove, while clow and clim defines absolute lower
and upper bounds on the number customers to remove. The parameter clow is chosen as
a random number between the interval 1 to 3 while parameter clim is set to 40. In the
formula we consider δ as the main parameter, but clow and clim are included to ensure that
the values for β are sensible even for very small and very large instances.

Two destroy methods are defined as described below. In each iteration one of them is
chosen randomly with equal probability. The same probability is used throughout the whole
course of the algorithm. The adaptive part of ALNS is therefore only used for the repair
methods.

4.2.1 Random destroy

The first destroy method removes random customers from the solution until β customers
have been removed. If a customer that hosts a launch or recovery operation is chosen for
removal, the corresponding drone customer(s) are removed as well. We note that both a
launch and a recovery operation can take place at a single customer and therefore the
removal of one truck customer can lead to the removal of two drone customers. Hence, the
method may remove one or two more customers than specified by β.

4.2.2 Cluster destroy

In the second destroy method the removal of customers is carried out in a zone around a
random seed customer. A random customer c1, defining the focal point of the removal, is
selected and removed from the current solution. Then, progressively, customers are removed
until β customers have been removed. In each step the next customer to be removed is cho-
sen randomly from a subset of the two closest customers to the focal customer c1 in the
current partial solution. The elimination of customers occurs in a concentrated zone of the
current solution but adding some noise to the elimination procedure to avoid obtaining the
same partial solution before the repair step. Like the previous random destroy method, if
the corresponding customer to be removed presents a launch and/or recovery operation, the
drone customer(s) will be removed as well. The pseudo-code for this destruction method is
outlined in Algorithm 3. Notice that in line 9, removed is incremented by 1,2 or 3 depending
on whether any extra drone customers are removed when removing c.
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Algorithm 3: Cluster Removal of Customers.
input: Current Solution: s,

number of customers to remove: β
1 c1 ← RandomCustomer(s);
2 remove c1 from s;
3 removed← c1;
4 while removed < β do
5 c← RandomCloseCustomer(c1, s);
6 if c is Launch and/or Recovery Position then
7 remove drone customer(s) associated with c from s

8 remove c from s;
9 update removed;

10 return s;

4.3 Repair Methods

During the second phase, the algorithm rebuilds the current partial solution. The destroy
step has removed a subset of customers (denoted D) from the solution and these need
to be reinserted. The chosen repair methods are greedy algorithms, as they repair the
solution by inserting the customers from D one-by-one in the position that seems most
promising. The repair methods ensure that infeasible solutions are not constructed. If no
feasible insertion for a customer can be found in the current partial solution by the repair
method, the customer is kept for a later insertion or a new route is opened to serve such
customer. The ability to open a new route ensures that the repair methods always will
find a feasible solution, since it is always feasible to serve a customer by a truck, when
the customer is alone on the truck route. The adaptive part of the algorithm is defined in
the selection of repair methods. These methods indicate the strategy to be followed when
deciding how to reconstruct the partial solution. Four repair methods are defined and the
ALNS metaheuristic chooses one of them according to the corresponding weights which
are assigned to the repair methods iteratively. The repair methods are described in the
following subsections.

4.3.1 Greedy truck-first sortie-second repair method

The first repair method is divided in two phases. Phase one inserts the customers from
D into the routes as truck visits while phase two changes the service of some customers
from truck to drone. The method is shown in Algorithm 4. The first phase of the repair
method takes place in Lines 1–4. A random customer from D is selected and the function
TruckBestInsertion(c, s) inserts customer c in the partial solution s by a Best Insertion
algorithm, i.e. at the position that increases cost the least. The function only considers
truck-service insertions in the current routes and the opening of a new route for the selected
customer c. Moreover, as the truck-insertion can be performed within a sortie, the function
also checks if the endurance time of a sortie is respected after the insertion. Hence, only
feasible solutions are considered when inserting the customers in the current partial solution.
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The procedure is repeated until no more customers are left in D. Lines 6–17 implement
phase two of the algorithm. Similarly, a random customer is selected from the set C of all
customers in the current solution s. In line 9 we check if the selected customer c currently
is visited as a truck-only customer (no launch or recovery is taking place at c) and we check
whether the demand qc of customer c is within the drone capacity QD. If these checks are
positive, we remove the customer from the route and we attempt to find a suitable way
of serving c by a drone using the function FindSortie(c, s, η), as defined in Algorithm 2,
where η is the objective value of s before the removal of customers c. Only if this results in
a solution with lower cost, the move is carried out.

Algorithm 4: Repair method Greedy truck-first sortie-second.
input: Partial solution: s,

set of free customers: D
1 while D 6= ∅ do
2 c← RandomCustomer(D);
3 D = D \ {c};
4 TruckBestInsertion(c, s);

5 C = AllCustomers(s) ;
6 while C 6= ∅ do
7 c← RandomCustomer(C);
8 C = C \ {c};
9 if qc ≤ QD AND Type(c) = Truck then

10 s′ ← s;
11 η = f(s′);
12 s← s \ {c};
13 p← FindSortie(c, s, η);
14 if p 6= ∅ then
15 s← s ∪ {p}
16 else
17 s← s′;

18 return s;

Figure 8 shows an example of the repair method. Initially, a set of customers has been
removed from the current solution (Figure 8 left). Then, the truck route is reconstructed
through the best insertion algorithm for the removed customers (Figure 8 middle). Finally,
for all those customers that can be still visited by a drone, the algorithm finds the best
sortie to add in the current solution (Figure 8 right).

4.3.2 Nearby-Area truck-first sortie-second repair method

This repair method works in a similar way as the previous repair method presented in
Section 4.3.1, however, the seeking of new solutions in the neighborhood is no longer per-
formed by the Best Insertion algorithm. The method is divided in two phases, as defined
previously. Nonetheless, during the first phase, the customers are inserted into the routes as
truck visits by randomly selecting a feasible position from a set of nearby positions to the
customer in the current partial solution. The nearby area is defined within a 5-mile range.
Furthermore, in the second-phase, the service of some customers is changed from truck to
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Figure 8: Example of Greedy truck-first and sortie-second repair method in the algorithm. The solid
lines indicate the route of the trucks, while the dashed lines indicate the trips of the drones. Filled
circle nodes represent customers that can only be visited by the truck and circle nodes represent
customers that can be visited by either the truck or the drone. Triangle nodes corresponds to drone
visits in the solution.

drone. Similarly as before, a random truck-only customer c with a portable demand by a
drone (qc ≤ QD) is selected. The customer is removed from the route and we identify all the
feasible sorties that can be added to the current partial solution as presented in function
FindSortie(c, s, η). However, instead of selecting the sortie which incurs the biggest saving,
we randomly select a sortie that does not increase the cost of the partial solution more
than 10% with respect to the partial solution before the removal. This method can be seen
as a weaker version of the previous repair method presented in Section 4.3.1. Instances of
smaller size can benefit from this method, as it presents a greater variability when searching
for sorties.

4.3.3 Closest insertion repair method

The next repair method attempts to insert customers using both truck and drone services, as
outlined in Algorithm 5. For each free customer c, it only attempts insertion into one route,
namely the one that contains the customer closest to c in the current partial solution, this
takes place in lines 5–7. The function AttemptBestInsertion(c, r) considers every feasible
insertion of c into route r, both using the truck and the drone and performs the least costly
insertion. If it is not possible to insert c in r then c is added to the set of leftover customers
DN . It can be observed that this repair method internally calls another repair method, as
the customers left in DN are inserted using the repair method described in Section 4.3.1
(see Line 10).

23



Algorithm 5: Repair method Closest Insertion.
input: Partial solution: s,

set off free customers: D
1 DN = ∅;
2 while D 6= ∅ do
3 c← RandomCustomer(D);
4 D = D \ {c};
5 c′ ← NearestCustomer(c, s);
6 r ← RouteOf(c′);
7 if AttemptBestInsertion(c,r) = false then
8 DN = DN ∪ {c} ;

9 if DN 6= ∅ then
10 s← RepairTruckFirstSortieSecond(DN , s) (Algorithm 4);

11 return s;

4.3.4 Heavy insertion repair method

Finally, the last repair method follows a heavy-first policy. The method retrieves all cus-
tomers from the set D with a demand greater than the drone capacity QD, and these
customers are removed from D and added to a new set DT of truck customers to be
inserted. First, a random truck-customer c from DT is selected and inserted in the cur-
rent partial solution s through the Best Insertion Algorithm, as defined in the function
TruckBestInsertion(c, s). This process is repeated until no more customers are left in DT .
In this way, we first introduce those customers that cannot be serviced by a UAV. Next, the
remaining customers in D are inserted using the close insertion repair method described
in Section 4.3.3. Similarly as before, there is also an internal call to the previous repair
method. In the first place, the left-out customers in D are attempted to be inserted in
the route of their closest active neighbor, and next, the remaining customers are greedily
inserted as defined in Section 4.3.1.

5 Experiments and Empirical Results

The ALNS metaheuristic was implemented in Java, and run on a Huawei XH620 V3 com-
puter with Intel Xeon Processor 2660v3 at 2.60 GHz. The mathematical model presented
in Section 3.1.2 has been solved using CPLEX version 12.7.

5.1 Test Instances

Since we have no knowledge of real-life instances publicly available, we generated random
instances to test the algorithm. The central depot is always located at coordinates (0,0),
while the customers are generated in a grid of dimensions 2d× 2d around the depot, with
coordinates following a uniform distribution U(−d, d). The random generated instances are
named n.m.t, where n is the number of customers in the scenario, m is the dimension of
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the grid and t is the generic name of the scenario. Moreover, a few clustered instanced are
studied in Appendix B.

Amazon assumes that drones can operate a round trip with a range of about 10 miles
from the distribution center (Rose, 2013). Setting the dimension of the grid d to values
greater than 10 miles might generate scenarios where the drone cannot work independently,
therefore the interaction of the drone with the truck is enforced. On the other hand, gener-
ating bigger grids for d > 20 will expand the horizon and cover a fairly large area, typical of
rural areas. Hence, for the experiments, we will generate instances with grid sizes between
5× 5 and 40× 40.

Amazon argues that 86% of its deliveries correspond to items weighing less than 5
pounds (2.27 kilograms) (Allain, 2013). Moreover, since the truck is only operated by the
driver, we impose an upper limit on the weight of packages delivered by the truck. According
to UPS, the maximum load for a package transported in the truck is 150 pounds (68
kilograms) (UPS, 2017). Following the above limits, the customer demands are generated
according to a uniform distribution, depending on whether the delivery can be served by a
drone or not. Let c be a customer in the instance and let 0 ≤ p < 1 be a random number
associated with the customer in the instance. Then the customer’s demand (in kilograms)
is given by:

q(c, p) =

{

qc ∈ U(0, 2.27) if p < 0.86

qc ∈ U(2.27, 68) otherwise
(33)

The aforementioned assumption imposes that capacity constraints may not play a major
role, even for some larger instances. As specified in Sections 3.2 and 3.3, we have assumed a
homogeneous fleet of standard delivery vans with a capacity limit of 1300 kg for the truck-
drone case. For some instances, the capacity constraint may become irrelevant, as the total
demand of customers will be less than the truck capacity. However, this corresponds to real-
life scenarios for small package delivery where we envision that drones may be used. Several
routes may still be necessary, but more likely because trucks run out of time compared to
that they run out of capacity. Finally, all instances have been made available at Zenodo2.

5.2 Experiments and Results

In the following sections, the performance of the algorithm and the results obtained for
VRP-D will be studied, using the configuration for the problem-parameters (i.e. drone en-
durance, truck speed, etc.) described in Section 3.3. In Section 5.2.3 we perform a sensitivity
study for some of the problem-parameters to analyze the effect of different drone features.

The algorithm-parameters were found using a parameter tuning experiment, docu-
mented in Sacramento (2017). The algorithm-parameters are set as follows: initial temper-
ature factor T ∗

ST = 0.004, degree of destruction δ = 0.15, and non-improvement parameter
noImprovMax = 1000. The reconstruction of the solution is based on greedy methods,

2https://doi.org/10.5281/zenodo.2572764
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therefore, it makes sense that the non-improvement parameter is set to a small value. If
the algorithm cannot find better solutions in the given number of iterations, it returns to
the best known solution to continue the search from this origin. Moreover, the degree of
destruction, although being a small percentage, destroys an important part of the solution
within the specified threshold. Furthermore, the remaining algorithm-parameters concern-
ing the adaptive part of the metaheuristic were set to the values as documented in Ropke
and Pisinger (2006). Therefore, the reaction factor is set to ρ = 0.9 and the scores of the
methods to σ1 = 33, σ2 = 9, σ3 = 13 and σ4 = 0.

The initial temperature TST is calculated as T ∗
ST times the value of the initial solution.

This adaptation will allow the algorithm to adjust the temperature according to the size of
the instance. To avoid too small temperatures for small instances, the initial temperature is
increased by 10% for these instances. As an example, in Figure 9 the value of the accepted
solutions at each iteration when solving instance 12.10.3 (left) and instance 150.10.3

(right) is shown along with the value of the best known solution found so far at each
iteration. Moreover, the number of times that the different repair methods were accepted
during the running of the algorithm and the number of times the accepted solutions provided
a new global best solution are shown in the adjacent tables. Focusing on instance 12.10.3,
it can be seen that the optimal solution is found in the early stages of the algorithm,
hence the flat curve for the best known solution. During the search, the algorithm inspects
the solution space, accepting solutions that are worse than the current best with certain
probability according to the value of the current temperature. Due to the size of the problem,
the algorithm accepts very poor moves at the beginning of the search, the accepted solutions
are considerably worse than the best know solution and the graph fluctuates notoriously.
However, as the temperature is decreased, these fluctuations are more controlled and only
very mild deteriorating solutions are accepted. On the other hand, for instance 150.10.3,
the fluctuations in the graph are less aggressive and the curve for the best known solution
presents a more gradual drop, as we do not have information about the optimal solution.
Similarly, the algorithm is more likely to accept solutions that are much worse than the
current best know solution at the beginning of the algorithm, but in a more controlled
manner. Correspondingly, towards the end, the algorithm only accepts solutions which are
slightly worse. Furthermore, from the tables below, it can be observed how the first repair
method (Section 4.3.2) is mainly beneficial for small instances. The adaptive part of the
algorithm ensures that this repair method is mainly used when it can help the search.

5.2.1 Experiments with small instances

First, the mathematical formulation will be tested against the ALNS metaheuristic. It is
known that VRP is an NP-hard problem, which makes VRP-D also a computationally
difficult problem to solve. Thus, in order to be able to run the mathematical models to
optimality and compare the solutions, a collection of 36 small instances are considered.
Each of the instances has been run in Java with an execution of exactly tmax = 5 minutes,
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Repair Method Nearby-Area Greedy TF-SS Close Heavy

Accepted 20128 136142 167992 187523
Best 3 1 5 7

Iterations 768228

Repair Method Nearby-Area Greedy TF-SS Close Heavy

Accepted 0 2376 2734 7243
Best 0 23 12 50

Iterations 67648

Figure 9: Left: Results for instance 12.10.3. Right: Results for instance 150.10.3. Top: The
figures show the cost of the accepted solutions and the best know solutions as function of the iteration
count. Bottom: The tables show information about the number of iterations, the number of times
the corresponding repair method produced a solution which was accepted, and the number of times
such solution provided a new global best solution.

and the results can be found in Table 3. The table provides information regarding the value
of the optimal solution (z∗) and the execution time (tMIP ) to optimality by the MIP model,
as well as the value of the best obtained solution (zALNS), the average objective function
(µALNS), the standard deviation (σALNS) by the metaheuristic, together with the average
amount of time (topt) in seconds within the 5 minutes time limit before the metaheuristic
encounters the best solution of each individual run in the 10-run batch, for each instance.
Finally, the ratio of the average value of the metaheuristics with respect to the optimal
solution is calculated as zALNS

Ratio = µ
z∗
− 1.

The small instances are constructed with 6, 10 and 12 customers randomly generated in
a grid of dimensions 5×5, 10×10 and 20×20. From the table it can be seen that the optimal
solution can be reached relatively easily in all cases by the metaheuristic. Moreover, for all
instances, the average objective value µ coincides with the optimal value of the instances,
therefore, the standard deviation σ and the optimality gap present a zero value. This proves
the effectiveness of the metaheuristic, which is able to find the optimal solution for any of
the 10 runs of the instances.

From the results, it can also be seen that when the number of customers increases, the
mathematical model becomes more difficult to solve to optimality in a reasonable amount
of time. As an example, CPLEX spends nearly 17 hours to solve to optimality instance
12.05.1. On the other hand, the metaheuristic is able to obtain optimal solutions for all
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Scenario |C ′| z∗ tMIP (s) zALNS µALNS σALNS topt(s) zALNS
Ratio (%)

06.05.1 5 1.09821 0.926 1.09821 1.09821 0.000 0.014 0.00%
06.05.2 6 0.84215 3.506 0.84215 0.84215 0.000 0.001 0.00%
06.05.3 5 1.21137 2.429 1.21137 1.21137 0.000 0.001 0.00%
06.05.4 5 0.94599 1.365 0.94599 0.94599 0.000 0.003 0.00%
06.10.1 5 2.40611 7479.000 2.40611 2.40611 0.000 0.004 0.00%
06.10.2 6 1.67927 6.802 1.67927 1.67927 0.000 0.002 0.00%
06.10.3 6 1.32552 5.360 1.32552 1.32552 0.000 0.003 0.00%
06.10.4 6 1.44307 5.228 1.44307 1.44307 0.000 0.001 0.00%
06.20.1 6 2.67759 4.726 2.67759 2.67759 0.000 0.011 0.00%
06.20.2 5 4.31959 1.164 4.31959 4.31959 0.000 0.054 0.00%
06.20.3 6 3.82475 1.813 3.82475 3.82475 0.000 0.002 0.00%
06.20.4 6 3.67872 2.170 3.67872 3.67872 0.000 0.001 0.00%
10.05.1 5 1.65563 13.368 1.65563 1.65563 0.000 0.002 0.00%
10.05.2 9 1.45185 433.150 1.45185 1.45185 0.000 0.339 0.00%
10.05.3 8 1.47357 236.110 1.47357 1.47357 0.000 0.193 0.00%
10.05.4 9 1.28489 345.220 1.28489 1.28489 0.000 0.002 0.00%
10.10.1 8 2.32647 369.920 2.32647 2.32647 0.000 0.026 0.00%
10.10.2 8 3.15856 121.280 3.15856 3.15856 0.000 0.075 0.00%
10.10.3 7 2.55274 88.410 2.55274 2.55274 0.000 0.427 0.00%
10.10.4 9 2.53931 246.430 2.53931 2.53931 0.000 0.008 0.00%
10.20.1 7 4.45240 6.650 4.45240 4.45240 0.000 3.946 0.00%
10.20.2 8 6.16776 180.160 6.16776 6.16776 0.000 0.011 0.00%
10.20.3 9 4.54630 251.140 4.54630 4.54630 0.000 1.197 0.00%
10.20.4 7 6.15355 275.360 6.15355 6.15355 0.000 49.170 0.00%
12.05.1 9 1.37381 1161.880 1.37381 1.37381 0.000 31.444 0.00%
12.05.2 12 1.05899 62131.170 1.05899 1.05899 0.000 1.110 0.00%
12.05.3 10 1.44765 433.900 1.44765 1.44765 0.000 0.028 0.00%
12.05.4 10 1.58100 2259.660 1.58100 1.58100 0.000 0.100 0.00%
12.10.1 10 2.68103 811.260 2.68103 2.68103 0.000 81.447 0.00%
12.10.2 10 2.68420 1004.350 2.68420 2.68420 0.000 0.059 0.00%
12.10.3 9 2.88048 793.870 2.88048 2.88048 0.000 0.030 0.00%
12.10.4 10 2.31418 176.740 2.31418 2.31418 0.000 0.011 0.00%
12.20.1 11 5.77759 3723.830 5.77759 5.77759 0.000 0.272 0.00%
12.20.2 10 8.27254 1081.570 8.27254 8.27254 0.000 0.004 0.00%
12.20.3 9 4.16693 24.520 4.16693 4.16693 0.000 0.054 0.00%
12.20.4 11 6.08859 1335.740 6.08859 6.08859 0.000 0.210 0.00%

Table 3: Performance of the metaheuristics for small scenarios. The column tMIP reports the
execution time (in seconds) in CPLEX for obtaining the optimal solution z∗, whereas the column
topt reports the average amount of time (in second) within the 5 minutes time limit employed by the
metaheuristic to obtain the best know solution zALNS.

instances quickly, using at most a couple of seconds, with some exceptions.

5.2.2 Larger Instances

Due to the computational complexity, the MIP model cannot be used to evaluate the
performance of the metaheuristic for larger instances. In order to check the efficiency of the
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algorithm and the quality of the solution obtained by the metaheuristic when considering
drones in delivery operations, the solutions will be compared to the solutions for the truck-
only case. For this purpose, 112 instances have been generated, containing between 6 and 200
customers distributed in areas from 5×5 miles to 40×40 miles and the ALNS metaheuristic
has been applied 10 times to each instance with an execution time of exactly tmax = 5
minutes. Two main KPIs are extracted from these experiments, the saving obtained by
serving the customers using a mixed truck/drone approach compared to using a truck-
only approach (SVRP) and the saving obtained by the ALNS metaheuristic over the initial
solution in the mixed truck/drone case (SI). For each instance, the two KPIs are calculated
as shown in Equation (34), using the notation zALNS : the best objective found using ALNS
and drones, zV RP : best objective found for the truck-only case, zin objective found by the
heuristic for generating initial solutions for the drone case (described in section 4.1).

SVRP = 1−
zALNS

zV RP
and SI = 1−

zALNS

zin
(34)

zV RP was obtained using an updated version of the ALNS metaheuristic described in
Pisinger and Ropke (2007), the ALNS metaheuristic was applied 10 times to each instance
and the best objective value was kept. As the drone constraints have been removed from the
problem, the truck will have a larger capacity, corresponding to the space that would occupy
all the material related to the drone in the truck. This means that we, in the truck-only
experiment, have set Q∗ = 1400 kg, as discussed in Section 3.3.

Figure 10 (left) shows the savings with respect to the initial solution. In most of the
instances, it can be observed how the initial solution is improved by 15-25% by the ALNS
metaheuristic, thus showing the effectiveness of the ALNS metaheuristic to escape local
optima and to obtain better solutions. For small instances, the saving with respect to the
initial solution is scattered on the chart. This might be because near-optimal solutions
can sometimes be obtained by the initial solution, presenting a small gap with respect
best-known solutions.

Figure 10 (right) shows the savings with respect to the truck-only approach. The saving
is typically in the range of 20% to 30% and sometimes even larger. It is noticeable that the
smallest instances have the largest variation in saving relative to the truck-only solution.
We explain this observation by the fact that the placement of one or two customers in a
small instance can have a huge impact on the potential saving. If one or two customers are
placed far from the depot and both must be served by the truck (due to heavy deliveries) it
can be impossible to obtain a significant saving for that instance compared to an instance
where such customers are placed close to the depot. In instances with many customers such
variation is to a certain extent cancelled out because larger instances, by-and-large, would
contain a similar mix of easy and hard customers that must be served by the truck. A more
detailed study of the behavior of the savings with respect to the truck-only approach is
carried out in Appendix C.

Overall the impact of the drones is significant, showing remarkable improvements to the
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objective value. The cooperation of both vehicles presents a significant saving that must be
considered when planning the routes of the vehicles. It is important to point out that the
objective is based on an estimate of fuel costs and does not cover all the cost involved in
goods distribution. An important factor that is not considered is, for example, driver wages.
Giving a more precise estimation of the total cost involved in both distribution modes is an
interesting subject for future work. The complete results for all 112 instances are shown in
Table 4 in Appendix A. Furthermore, from the results presented in Table 4, it can be seen
that even the initial solution presents a considerable saving with respect to the truck-only
case.

Figure 10: Average saving of the best known solution with respect to the initial solution (left) and
to the truck-only case (right) per instance.

Figure 11, on the left, shows the average number of sorties used by the solutions to each
instance. It can be seen how the number of customers visited by drones grows linearly as the
number of customers increases, corresponding approximately to a total of 50% of potential
customers to be visited by a drone. It is important to remark that due to the definition of
the tuples 〈i, j, k〉 for the drone operations, where i 6= j 6= k, there is a theoretical limit
on the maximum number of sorties that can be operated. Considering that a route with
nt truck visits can at most launch nt + 1 drones, a VRP-D instance with n customers can
operate at most 2n

3 sorties with n
3 trucks. However, deploying so many trucks would be very

expensive, and the number of drone deliveries is within reasonable limits.
In the same Figure 11, on the right, it can be seen how the average usage of the total

endurance time tends to decrease as the number of customers increases. Moreover, this
reduction is present in all scenarios, indicating a greater use of the endurance time as the
scenario grid increases. We understand the usage of the total endurance time as the flying
time of the drone while performing a sortie. In general, it can be seen that no more than
60% of the endurance time is consumed between the launch and recovery of a drone. In
the following Section 5.2.3, a more detailed sensitivity analysis for this parameter is carried
out.

Finally, Figures 12 and 13 show the best known solutions found by the metaheuristics
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Figure 11: Average number of sorties (left) and average sortie endurance utilization (right) per
instance.

for the VRP-D and the VRP for a scenario with 20 and 100 customers respectively. From
the figures it can be seen how the final routes for the trucks are affected by the addition
of drones in the problem. It is noticeable how the drone routes tend to shorten the truck
route by sending the drone to the hard-to-reach customer, if possible.

Figure 12: Best known solution for the VRP-D and VRP for an instance with 20 customers. The
solid lines indicate the route of the trucks, while the dashed lines indicate the trips of the drones.

5.2.3 Experiments with the Drone Features

The main setup provides a study of the performance of the algorithm using problem-
parameters set to realistic values used by companies and other studies. These parameters
have been selected according to certain assumptions as explained in Section 3.3. However,
as there is still no real-life parameters on drones delivery, we would like to study the relative
importance of different drone-parameters on the model output. In this section we perform a
sensitivity study by changing the value of certain parameters of interest. For this, we will fix
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Figure 13: Best known solution for the VRP-D and VRP for an instance with 100 customers. The
solid lines indicate the route of the trucks, while the dashed lines indicate the trips of the drones.

the main configuration of the problem, and for each parameter of interest, we will study the
impact of altering the value of the aforementioned drone-parameter. The sensitivity analy-
sis will help us draw some preliminary conclusions on the collaboration of both vehicles for
delivery operations. For a clear comparison, we have set the size of the grid to 30× 30. The
experiments are carried out for a collection of 100 randomly generated instances of four
scenarios, each of them consisting of 25 instances. The scenarios are 100.30.X, 150.30.X,
200.30.X and 250.30.X.

Battery Cost The collaboration of both vehicles is the innovative feature in this VRP-
approach. We are studying the problem from a cost minimization perspective, where the
use of the drone is given as a percentage of the fuel consumption of the truck. In the main
setup, this value was set at 10%, but what would happen if the cost associated with using
a drone was more expensive? Would it be beneficial with regard to the truck-only case?

Figure 14 shows the impact of the cost of the drone-arcs in the different scenarios.
Clearly, the advantages of the collaboration of both vehicles is reduced as the associated
drone-cost is increased. The operational cost can be reduced considerably if the use of
drones is relatively cheaper than operating a truck. However, the savings become negligible
as the drone-cost is increased to 50% of the truck cost. The same trend can be observed in
the number of sorties, which decrease as the use of drones becomes more expensive. Figure
14 also indicates that, for a fixed drone cost (e.g. 10%), the curve that describe the savings
as a function of the number of customers has a bell-like shape. This shape is also visible in
the following experiments and in Appendix C. We explain this shape as follows

• In a scenario, with few customers scattered in a large area, it may be difficult to make
use of the drones if endurance is low compared to the time needed to travel between
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Figure 14: Left: Average saving with respect to the best known solution for the truck-only case as
function of the drone-arc cost for each scenario. Right: Average number of sorties as function of
the drone-arc cost for each scenario.

customers. Even if endurance is not limiting it may be necessary for the truck to
drive long stretches between customers since the truck has to move for every sortie
performed and since there are some customers that only can be served by the truck.

• As we increase the number of customers while keeping other parameters fixed we are
enlarging the possibilities for using the drones since more potential customers will be
within range and we have better possibilities for stringing together good routes where
the trucks drive little and the drones do most of the traveling.

• At a certain point, the area becomes saturated and adding more customers no longer
increase savings, but rather decrease the saving per customer. One can think of the
extreme scenario where customers are located so close that the truck could already
have served the next customer in the time we spend on launching and recovering the
drone. Some saving is still possible, but not as much as in a more sparse scenario.

Part of the explanation for the drop-off in saving for larger number of customers can also
be that the time limit of the heuristic is fixed to 5 minutes and therefore solution quality
deteriorates for larger instances. Furthermore, Figure 14 shows instances in the ranges from
100 to 250 customers. In the future it could also be interesting to investigate the saving for
small number of customers as Figure 10 seems to indicate a higher saving with around 10
customers compared to 50 customers. One cannot make firm conclusions from Figure 10
given the small number of samples for a fixed set of instance parameters.

Endurance The main setup from Section 3.3 sets the total time endurance of a drone to
30 minutes, however, as shown in Figure 11, drones do not consume all the endurance time
once they are dispatched. If the endurance time is decreased, the battery can be reduced,
which would decrease cost and the reduced battery weight could be used for carrying higher
loads instead. At the same time, technology is constantly improving, and it is not hard to
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image drones equipped with better batteries that will allow them to stay longer in the air.
By increasing the endurance, the set of feasible drone visits will increase. Therefore, we
investigate whether it would be relevant to increase or decrease the endurance time.

Scenario
Endurance 100.30.X 150.30.X 200.30.X 250.30.X

Avg. Sorties

5 min 0.712 1.784 3.528 6.840
7.5 min 11.480 28.512 46.760 67.312
10 min 28.720 52.680 75.832 97.840
15 min 42.400 65.448 86.824 107.952
30 min 45.008 67.320 86.896 108.056
60 min 45.160 67.224 87.024 108.392

(%) Endurance

5 min 55.58 75.47 94.88 94.06
7.5 min 88.20 87.87 86.67 85.37
10 min 83.02 79.81 76.85 73.75
15 min 68.48 62.34 58.06 54.68
30 min 38.20 33.19 29.97 28.41
60 min 19.77 16.77 15.00 14.22

Figure 15: Left: Average saving with respect to the best known solution for the truck-only case as
function of the endurance time for each scenario. Right: The table shows the average number of
sorties and the average time of the total endurance time used by the sorties for each scenario and
for the different endurance times.

From Figure 15 it can be seen that there needs to be an appropriate endurance time
for the collaboration of the vehicles to be efficient. Modest savings are obtained when the
endurance time is low, because drones do not have enough time to perform feasible sorties,
and these savings are much lower when the customers are more spread within the grid.
Negative savings are observed in scenarios where the drone endurance time is set to 5
minutes. In this case 3 minutes are spent on launch, recovery and serving the customer,
leaving only 2 minutes of flying time. With such a short flying time no or only a few sorties
will be possible and the instances almost turn into ordinary truck-only VRP. Assuming
identical vehicle capacity (recall that in the truck-only scenario the truck can carry 100 kg
more, see Section 3.3) an exact method for the VRP-D would never experience negative
savings. Since the proposed method is only a heuristic, negative savings can occur. The
negative savings indicate that the heuristic for the truck-only case (Pisinger and Ropke
(2007)) is superior to the VRP-D heuristic when the VRP-D heuristic cannot make use of
its drones. This is no surprise as the VRP-D heuristic is not constructed for this scenario.

When the endurance time increases, drones have more room for maneuver and large
savings can be obtained, especially for larger instances, as the average distance between
customer is reduced. However, due to the limited drone capacity of carrying a single pay-
load per sortie, increasing the endurance past 15 minutes hardly impacts the value of the
objective function and the number of drones launched. The fact that the objective function
is almost unchanged may seem surprising at first, but it can be explained. One reason can
be found by inspecting the solution for VRP-D shown in Figure 13, left. The customers
shown with filled circles have to be visited by the truck due to their demand, which limits
the flexibility even when the drone endurance is increased. Furthermore, given the defini-
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tion of the problem (following Murray and Chu (2015)), we require the launch customer
to be different from the recovery customer. This further limits the use of the drones in a
single route, as it implies that we at most can do a k+1 drone deliveries on a route with k
truck visits. Finally, the drone sorties that become possible with the increased endurance
are often not very attractive, since they require traveling far and are time consuming.

We notice that the savings curves for 7.5 and 10 minutes endurance at first look dif-
ferent from the bell-like shape observed in Figure 14 and in Figure 15 for higher values of
endurance. We believe that for these values, we are only observing the beginning of the
bell-like curve. If we increased the number of customers in these scenarios we expect to see
that the saving again decreases.

Drone Speed The drone speed is another critical factor for the collaboration of both
vehicles in the delivery process. The value of the drone speed was set to 50 mph in the main
setup, and we are interested in studying what would happen if the drone operated at the
same speed as the truck, as well as slower speeds and considerably superior ones. Similar to
the endurance time, by increasing the drone speed, the set of feasible sorties is expanded,
since the drone can travel faster and reach more customers within the endurance time.

Scenario
Speed 100.30.X 150.30.X 200.30.X 250.30.X

Avg. Sorties

25 mph 42.640 55.952 83.760 97.656
35 mph 44.264 65.552 86.304 107.240
50 mph 44.920 67.416 87.296 108.368
75 mph 45.632 67.888 88.072 108.456

(%) Endurance

25 mph 57.93 46.91 45.24 39.55
35 mph 47.07 40.12 36.48 32.13
50 mph 37.90 33.40 30.02 28.54
75 mph 31.81 28.08 25.87 24.57

Figure 16: Left: Average saving with respect to the best known solution for the truck-only case as
function of the drone-speed for each scenario. Right: The table shows the average number of sorties
and the average time of the total endurance time used by the sorties for each scenario and for the
different considered drone speeds.

As seen from Figure 16, the speed of the drone has a minor impact on the objective
function. As the speed of the drone increases, the savings with respect to the truck-only
case grows more monotonously. However, the collaboration of both vehicles brings a notable
benefit even operating drones at speed lower than the trucks, with saving above 20%. Having
a look at the table presented on the right in Figure 16, the total number of sorties remains
stable as the speed increases. However, it is observable that the average delivery time of
the drones is progressively reduced as the speed increases. Moreover, we observe that the
saving curve of the 25 mph scenario, does not exhibit the bell-like shape as observed earlier.
We explain this by the limited number of 25 samples instances used for this experiments.

35



We expect to observe that ordinary curve if the experiment was based on an even higher
number of instances.

Payload Capacity According to the main configuration, the maximum payload capacity
of a drone is set to 5 kg. Nonetheless, there is no doubt that drones could, in the future, be
equipped with better engines that will allow them to carry heavier loads. This increase in
drone capacity will extend the set of customers that may be serviced by the drone.

Scenario
Payload 100.30.X 150.30.X 200.30.X 250.30.X

Avg. Sorties

1 kg 21.456 34.936 45.488 58.664
2 kg 40.032 60.456 79.104 100.032
3 kg 44.896 67.128 87.032 108.160
5 kg 45.224 67.464 87.104 108.080
20 kg 45.52 68.144 88.224 109.232

Unlimited 47.552 70.128 90.920 112.12

(%) Potential
Drone

Customers
|C′|/|C|

1 kg 34.80 35.87 34.20 34.94
2 kg 69.20 69.01 67.64 69.71
3 kg 86.40 85.79 85.72 86.54
5 kg 86.72 86.32 86.14 86.82
20 kg 90.16 89.63 89.86 89.76

Unlimited 100 100 100 100

Figure 17: Left: Average saving with respect to the best known solution for the truck-only case as
function of the maximum payload capacity for each scenario. Right: The table shows the average
number of sorties and the average percentage of potential drone customers for each scenario and
for the different maximum payload capacity. A potential drone customer belongs to the subset C ′ if
its demand can be carried by drone, as discussed in Section 3.3.

The effect of the maximum payload capacity is much more significant as we increase
this value, with a clear rise in the savings with respect to the truck-only case, as it can
be seen from Figure 17, left. On the right-hand side, it is shown that by increasing the
payload capacity of the drone, the number of potential drone customers increases. This
means that customers, who could only be visited by the truck, might now be visited by
dispatching a drone. Thus, the truck’s route can be more efficient, launching more drones
and perhaps reducing the total cost of the route by not forcing to send a truck to far-off
locations. Due to the distribution followed by the customers’ demand, the savings tend to
stagnate in the intermediate values of the figure, since larger payload only means a slight
increase in the number of potential drone customers. Nevertheless, when no limits on the
maximum payload is imposed, the savings for the truck-drone case are higher, due to the
possibility of reaching more distant customers with drones. As an example, Figure 18 shows
an instance where 56% of the customers have a demand below 2 kg, whereas 88% of the
customers have a demand below 20 kg. Considering the maximum payload capacity of the
drone to 20 kg supposes an increase of 32% in the number of potential drone customers. It
can be observed how customers that previously were forced to be visited by a truck now
become drones customers, reducing the total operational cost significantly.
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Figure 18: Scenario with a light drone capacity (2 kg, left) with a total operational cost of z = 12.660
and a heavy drone capacity (20 kg, right) with a total operational cost of z = 10.511. The solid lines
indicate the route of the trucks, while the dashed lines indicate the trips of the drones.

6 Conclusion and Future Researches

Amazon, DHL and Workhorse, among many other companies, are intensively studying
how drones can be used for delivery activities. This new technology has also stimulated
the development of several mathematical models and solution techniques for this problem,
contributing with an analysis of the possible benefits of using small aircrafts in the delivery
of merchandise. Especially, the cooperation of the drones along with the trucks on the
day of operation can improve the last-mile delivery, since the routes can be designed more
efficiently in terms of time and cost savings.

Analyzing the results obtained in the previous section, the clear advantage of using these
small aircraft for delivery activities is remarkable. Comparing the results with the case of
only using trucks in the problem, the savings are noteworthy. Even the initial solution in
most cases surpasses the best known solution for the trucks-only approach. However, we
must point out that the objective considered is based on an estimate of fuel costs and does
not cover all the cost involved in goods distribution.

The sensitivity analysis shows some preliminary conclusions on the drones’ endurance,
which has to be significantly reduced compared to our initial estimate of 30 minutes before
it has a clear impact on the solutions obtained. The sensitivity analysis also pointed out
that the speed of the drone is not a determining factor in the objective function, bringing
notable benefits even operating drones at speeds lower than the trucks. On the other hand,
by modifying the maximum payload-capacity of the drone, a reduction on the fuel cost can
be more easily observed. Routes can be built more efficiently since the number of potential
drone customers increases. This might avoid the dispatch of a truck to visit some remote
customers, enabling better routes by sending drones to those positions.
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Many extensions of the VRP-D can be studied in future works. One interesting subject
is the dynamic case, where routes can be altered during the day of operation through
cancellations, break-down of vehicles and other factors related to time and capacity of
the customers. These constraints pose a problem of greater complexity where the optimal
solution may be utopia. To solve this problem it would be necessary to develop different
heuristic methods that can solve the problem quickly to come back to the scheduled plan
as fast as possible without affecting many of the routes.

Other possible extensions to the problem that can successfully increase the parcel-
delivery are related to the number of drones per vehicle, their total transport capacity
and the interaction with the vehicle. The increase on the number of drones per vehicle
and payload capacity of the drones could significantly impact the operational cost of the
problem. However, when considering this new feature in the problem, energy consumption
may be affected, influencing the speed and endurance of the drone due to the increased
transport load. One possible adaptation to this consideration in the problem is the inclusion
of a factor that affects the speed and duration of the battery as more loads are considered
to be transported. Furthermore, due to the definition of the objective function, it would
be interesting to consider the case where the truck can wait in the same location where
it launches the drone, as considered in Agatz et al. (2015). Therefore, several potential
launches of drones could be done from the same location while the truck is stopped, saving
the total truck cost, since the truck is just waiting to recover the drone in the same location.

Finally, future research could investigate how to solve this problem to optimality through
exact methods. Like other VRP-like problems, the VRP-D has a structure that makes it
possible to apply Dantzig-Wolfe decomposition to reach a tighter formulation.
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A Table Result for Large Instances

Table 4 provides the results after running the metaheuristics in the 112 instances, where
each instance is run in a 10-run batch with a time limit of 5 exactly minutes. From the
table the best known value (z), the average and standard deviation of the performance of
the algorithm (µ and σ, respectively), the average number of iterations (it), the cardinality
of the set of potential drone customers (|C ′|), the average number of drone customers in
the solution (#C ′) and the average number of routes (#V ) can be observed. Moreover, the
savings with respect to the initial solution zin and to the best known solution for the VRP
zV RP are computed (SI and SVRP, respectively).

Table 4: Performance of the metaheuristics for each scenario.

Scenario |C′| zALNS µALNS σALNS itALNS #C′ #V zin SI (%) zV RP SVRP (%)
6.5.1 5 1.09821 1.09821 0.000 41959813 3 1 1.33681 17.85% 1.74449 37.05%
6.5.2 6 0.84215 0.84215 0.000 42802018 3 1 1.10843 24.02% 1.41679 40.56%
6.5.3 5 1.21137 1.21137 0.000 44620683 3 1 1.33722 9.41% 1.78165 32.01%
6.5.4 5 0.94599 0.94599 0.000 44129451 3 1 1.01979 7.24% 1.81631 47.92%

6.10.1 5 2.40611 2.40611 0.000 38949492 4 2 2.87963 16.44% 3.02602 20.49%
6.10.2 6 1.67927 1.67927 0.000 37191908 4 2 1.77023 5.14% 3.26563 48.58%
6.10.3 6 1.32552 1.32552 0.000 38426647 4 2 1.90326 30.36% 3.18434 58.37%
6.10.4 6 1.44307 1.44307 0.000 40046320 3 1 1.73451 16.80% 2.65423 45.63%
6.20.1 6 2.67759 2.67759 0.000 39483597 4 2 3.67040 27.05% 5.81887 53.98%
6.20.2 5 4.31959 4.31959 0.000 42665143 3 1 5.56104 22.32% 5.95116 27.42%
6.20.3 6 3.82475 3.82475 0.000 43387965 4 2 5.05161 24.29% 7.48706 48.92%
6.20.4 6 3.67872 3.67872 0.000 38621176 4 2 4.54767 19.11% 7.25279 49.28%
10.5.1 5 1.65563 1.65563 0.000 25746784 2 1 1.66376 0.49% 2.00444 17.40%
10.5.2 9 1.45185 1.45185 0.000 26450623 5 1 1.51512 4.18% 1.76462 17.72%
10.5.3 8 1.47357 1.47357 0.000 27265176 5 1 1.86194 20.86% 2.10786 30.09%
10.5.4 9 1.28489 1.28489 0.000 25627890 5 1 1.80316 28.74% 2.15180 40.29%

10.10.1 8 2.32647 2.32647 0.000 28019615 5 1 2.67365 12.99% 4.37806 46.86%
10.10.2 8 3.15856 3.15856 0.000 26639115 5 1 3.50870 9.98% 3.85290 18.02%
10.10.3 7 2.55274 2.55274 0.000 29000966 6 2 3.54566 28.00% 3.94166 35.24%
10.10.4 9 2.53931 2.53931 0.000 26113164 5 1 2.87111 11.56% 3.67069 30.82%
10.20.1 7 4.45240 4.45240 0.000 26201747 4 1 4.53510 1.82% 7.10035 37.29%
10.20.2 8 6.16776 6.16776 0.000 26938008 4 1 6.78446 9.09% 8.18607 24.66%
10.20.3 9 4.54630 4.54630 0.000 27736599 5 1 5.16542 11.99% 7.15878 36.49%
10.20.4 7 6.15355 6.15355 0.000 28239850 4 2 6.74167 8.72% 7.65948 19.66%
12.5.1 9 1.37381 1.37381 0.000 22287186 6 1 1.53008 10.21% 1.77670 22.68%
12.5.2 12 1.05899 1.05899 0.000 22431403 7 2 1.78259 40.59% 2.08454 49.20%
12.5.3 10 1.44765 1.44765 0.000 23479327 6 1 1.62929 11.15% 2.32577 37.76%
12.5.4 10 1.58100 1.58100 0.000 23118928 6 1 1.75405 9.87% 2.19318 27.91%

12.10.1 10 2.68103 2.68103 0.000 23554627 7 2 3.77076 28.90% 4.17530 35.79%
12.10.2 10 2.68420 2.68420 0.000 21947382 6 1 3.30802 18.86% 4.00144 32.92%
12.10.3 9 2.88048 2.88048 0.000 21958882 6 1 3.68373 21.81% 3.89544 26.06%
12.10.4 10 2.31418 2.31418 0.000 22823268 6 1 3.17127 27.03% 4.43975 47.88%
12.20.1 11 5.77759 5.77759 0.000 22746779 7 2 7.01873 17.68% 9.69233 40.39%
12.20.2 10 8.27254 8.27254 0.000 20178441 4 1 8.27325 0.01% 9.91900 16.60%
12.20.3 9 4.16693 4.16693 0.000 21708160 5 1 5.43964 23.40% 6.65320 37.37%
12.20.4 11 6.08859 6.08859 0.000 24023052 7 2 7.71453 21.08% 8.17198 25.49%
20.5.1 15 1.79347 1.79347 0.000 11301575 9 1 2.03456 11.85% 2.55338 29.76%
20.5.2 14 1.95401 1.95401 0.000 10631574 8 1 2.04774 4.58% 2.58028 24.27%
20.5.3 19 1.48658 1.48658 0.000 11114470 9 1 1.91912 22.54% 2.11026 29.55%
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20.5.4 18 1.37893 1.37893 0.000 12616178 10 1 1.84439 25.24% 2.16427 36.29%
20.10.1 17 3.25253 3.25253 0.000 13287214 10 1 3.92297 17.09% 5.27324 38.32%
20.10.2 19 3.08938 3.08938 0.000 12565887 10 1 4.75887 35.08% 5.17932 40.35%
20.10.3 19 3.70226 3.72576 0.050 11718401 9.8 1 4.63102 20.06% 5.04668 26.64%
20.10.4 15 3.30890 3.31367 0.015 12508345 10 1 4.36469 24.19% 5.69902 41.94%
20.20.1 19 7.34453 7.35115 0.021 11638755 10 1 8.04799 8.74% 9.60624 23.54%
20.20.2 16 7.54889 7.54889 0.000 11942478 9 1 8.58928 12.11% 9.54910 20.95%
20.20.3 18 7.46100 7.47458 0.043 10418184 10 1 8.52744 12.51% 10.84568 31.21%
20.20.4 17 7.01331 7.01331 0.000 11091582 9 1 8.66985 19.11% 10.52166 33.34%
50.10.1 37 5.86134 5.86134 0.000 1110439 18 1 6.25507 6.29% 6.96079 15.79%
50.10.2 41 5.58493 5.62101 0.076 1351994 21.2 1 6.40940 12.86% 7.74661 27.90%
50.10.3 44 5.42240 5.42546 0.001 1453177 25 1 7.10793 23.71% 7.89376 31.31%
50.10.4 44 5.20834 5.35262 0.109 1762387 23.7 1 6.80485 23.46% 7.71366 32.48%
50.20.1 41 10.45526 10.45635 0.001 1313010 22 1 13.20900 20.85% 14.28486 26.81%
50.20.2 44 10.05611 10.05611 0.000 1396076 23 1 12.68456 20.72% 14.39691 30.15%
50.20.3 44 10.54249 10.65703 0.060 1337178 23 1 14.34467 26.51% 15.43061 31.68%
50.20.4 46 10.66415 11.00082 0.187 1299549 24.1 1 12.78350 16.58% 14.61995 27.06%
50.30.1 40 15.81788 15.81788 0.000 1509428 24 1 19.87087 20.40% 23.01535 31.27%
50.30.2 39 15.01482 15.46361 0.473 1427745 22.5 1 20.04851 25.11% 20.32863 26.14%
50.30.3 43 16.76899 16.77134 0.003 1340989 24 1 21.10088 20.53% 23.73563 29.35%
50.30.4 40 18.28746 18.28746 0.000 1138204 21 1 22.09943 17.25% 22.33797 18.13%
50.40.1 46 20.37508 21.17709 0.551 1230243 24.1 1.3 25.11031 18.86% 28.17186 27.68%
50.40.2 41 20.62624 20.62624 0.000 1277543 21 1 23.10381 10.72% 28.65285 28.01%
50.40.3 42 22.64523 22.70534 0.190 1132225 21.1 1 27.08039 16.38% 30.03933 24.61%
50.40.4 41 22.33708 22.78912 0.195 1222262 22.5 1 28.07438 20.44% 27.71988 19.42%

100.10.1 89 6.85741 6.89015 0.027 202025.6 47.5 1 8.92083 23.13% 10.18307 32.66%
100.10.2 89 7.58505 7.67814 0.081 165090.6 44.9 1 9.23212 17.84% 10.21628 25.76%
100.10.3 91 7.18353 7.30551 0.092 184845.5 45.3 1 8.80568 18.42% 10.12143 29.03%
100.10.4 82 7.45675 7.54594 0.064 165521.3 42.2 1 8.98069 16.97% 9.58098 22.17%
100.20.1 90 13.60671 13.79462 0.114 123349.4 43.9 1 16.33884 16.72% 18.68459 27.18%
100.20.2 89 14.13399 14.53749 0.145 144851.9 45.7 1 17.14718 17.57% 19.21943 26.46%
100.20.3 87 13.70990 13.76722 0.065 169246.9 47.4 1 17.45722 21.47% 19.57115 29.95%
100.20.4 89 13.84944 14.19761 0.245 158024.7 46.9 1 18.50382 25.15% 20.59972 32.77%
100.30.1 84 22.58818 23.63641 0.546 288147.8 42.9 2 28.15762 19.78% 30.26120 25.36%
100.30.2 87 22.31432 22.38464 0.102 373620.6 45.1 2 26.18374 14.78% 29.15228 23.46%
100.30.3 91 23.71948 23.90941 0.114 327255.5 40.5 2 28.99190 18.19% 31.24545 24.09%
100.30.4 88 22.37011 22.65848 0.149 436002.3 43.1 2 26.60071 15.90% 29.45129 24.04%
100.40.1 85 29.13966 30.18073 1.109 517088.9 44.3 2 37.98380 23.28% 39.42798 26.09%
100.40.2 85 30.98999 31.20916 0.177 413419.1 45.2 2 39.43678 21.42% 41.23168 24.84%
100.40.3 89 29.02475 29.66526 0.309 448000.5 46.2 2 37.51525 22.63% 40.77274 28.81%
100.40.4 87 28.97348 29.20493 0.160 420257.9 41.7 2 37.16760 22.05% 40.03808 27.64%
150.10.1 125 8.79027 8.93509 0.057 57856.8 70.8 1 11.59840 24.21% 12.05540 27.08%
150.10.2 126 8.25905 8.41602 0.113 53928.8 70.2 1 10.76381 23.27% 11.59550 28.77%
150.10.3 141 8.49602 9.02065 0.215 47886.9 71.4 1 12.00592 29.23% 12.31929 31.03%
150.10.4 120 8.83734 9.03983 0.129 47691.9 62.4 1 11.24672 21.42% 11.93587 25.96%
150.20.1 132 17.31938 17.59636 0.372 65611.7 66 2 21.41857 19.14% 24.01554 27.88%
150.20.2 131 16.63405 17.45066 0.610 134442.8 68.7 2 23.71366 29.85% 24.19077 31.24%
150.20.3 128 17.40579 18.34468 0.512 108024.1 69.5 2 23.48900 25.90% 24.02131 27.54%
150.20.4 130 16.87516 17.47742 0.389 137595.5 70.7 2 23.60548 28.51% 24.48108 31.07%
150.30.1 130 25.98537 26.54882 0.333 126168.8 68.3 2 31.65118 17.90% 35.89031 27.60%
150.30.2 125 26.20552 26.74112 0.258 129856.2 67.8 2 33.74515 22.34% 35.38576 25.94%
150.30.3 130 25.31642 26.11368 0.456 133103.9 68 2 33.04898 23.40% 35.63752 28.96%
150.30.4 125 26.10274 27.29231 0.900 128121.4 63.7 2 32.40173 19.44% 35.03643 25.50%
150.40.1 137 34.01210 35.45338 1.059 125867 68.8 2.2 46.74029 27.23% 47.36621 28.19%
150.40.2 124 36.56164 38.29645 0.682 162347.4 66.1 2.3 47.78252 23.48% 49.99371 26.87%
150.40.3 125 36.65738 38.29545 0.896 162241.7 66.3 2.3 48.15427 23.88% 51.72573 29.13%
150.40.4 129 35.01556 36.06616 1.054 157272.4 67.7 2.2 46.55322 24.78% 48.88489 28.37%
200.10.1 173 10.09452 10.40499 0.163 24243.3 92.3 2 12.54765 19.55% 13.71736 26.41%

43



200.10.2 173 10.42260 10.61488 0.105 24545.7 90.4 2 13.59715 23.35% 13.92221 25.14%
200.10.3 177 9.79897 9.92350 0.057 75473.9 94 2 12.80248 23.46% 13.93832 29.70%
200.10.4 176 10.35528 10.63997 0.202 41038.9 89.8 2 13.26367 21.93% 13.90924 25.55%
200.20.1 178 21.21505 21.46013 0.259 55098.4 90.6 2 26.51774 20.00% 28.12148 24.56%
200.20.2 168 21.45845 22.04610 0.627 46691.8 87.4 2 26.92906 20.31% 27.98806 23.33%
200.20.3 176 20.85218 21.06040 0.131 49845.9 89.4 2 24.93983 16.39% 27.39656 23.89%
200.20.4 172 19.23495 20.18035 0.436 52022 87.8 2 25.65556 25.03% 26.62789 27.76%
200.30.1 171 30.36023 31.78264 0.764 82205.8 86.9 2.7 37.89680 19.89% 40.88607 25.74%
200.30.2 176 32.81279 33.21640 0.307 33974.5 87.7 2 38.32423 14.38% 41.67798 21.27%
200.30.3 171 32.25350 32.73727 0.358 29877.2 83.1 2 40.03489 19.44% 42.77400 24.60%
200.30.4 172 32.09314 32.76376 0.450 59024.9 90.9 2.5 40.50484 20.77% 42.47321 24.44%
200.40.1 172 41.49802 42.30479 0.556 95321.1 90.6 3 57.06515 27.28% 56.81091 26.95%
200.40.2 178 43.25021 44.22107 0.476 93067.4 89.6 3 55.14169 21.57% 55.84941 22.56%
200.40.3 165 43.33753 44.26132 0.642 100623 88.4 3 54.07578 19.86% 56.85219 23.77%
200.40.4 178 42.05785 43.33703 0.850 98119.2 89.8 3 53.38600 21.22% 55.68861 24.48%

B Clustered Instances

The previous experiments have been carried out assuming that the customers’ location
follow a uniform distribution around the distribution center. Although this is a fair as-
sumption, we would like to better simulate neighborhoods of delivery, where customers are
located in clusters, and test the performance of the algorithm. Therefore, we will generate a
new batch of 10 randomly generated clustered instances, named as n.m.c.t, where n is the
number of customers, m is the dimension of the grid, c is the cluster label of the instance
and t is the generic name of the scenario.

The instances have been generated in a grid of dimensions 30×30, where the central de-
pot is still considered to be located at coordinates (0, 0). For each instance, we will generate
θ focal points around the grid, where θ is a random number in the interval 1 to 5. Then, each
customer is randomly assigned to a focal point and the customer’s location is generated to
follow a normal distribution centered on the focal point and with a standard deviation of 2
miles. As an example, Figure 19 shows instance 150.30.c.10, where customers are located
in three clusters around the distribution center.

The ALNS metaheuristic has been applied 10 times to each clustered instance with a
time limit of exactly 5 minutes, and the results can be seen in Table 5. The table pro-
vides information of the best know value (z), the average and standard deviation of the
performance of the algorithm (µ and σ, respectively), the average number of iterations
(it). Moreover, the number of focal points (|θ|), the average number of routes (#V ), the
cardinality of the set of potential drone customers (|C ′|) and the average number of drone
customers in the solution (#C ′) can be observed. Finally, the savings with respect to the
initial solution zin and to the best known solution for the VRP zV RP are computed (SI and
SVRP, respectively). As in Section 5.2.2, zV RP was obtained using an updated version of
the ALNS metaheuristic described in Pisinger and Ropke (2007), the ALNS metaheuristic
was applied 10 times to each instance and the best objective value was kept.
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Figure 19: Instance 150.30.c.10, where customers
are located between three clusters around the distri-
bution center. The solid lines indicate the route of
the trucks, while the dashed lines indicate the trips
of the drones.

From the results in Table 19, it can
be observed that the algorithm seems
to show a similar performance as when
solving uniformly distributed instances,
hence we can draw similar conclusions
as discussed in Section 5.2.2. However, it
seems that the algorithm performs more
steadily in clustered instances, present-
ing moderately low standard deviation.
This may be due to the relative loca-
tion of the clusters. In some cases, the
clusters are totally separated from each
other, basically decomposing the prob-
lem into individual problems, where each
cluster is served by one vehicle. However,
if the clusters are relatively close to each
other, it may be advantageous to have
routes visiting several clusters. As shown
in the table, the average number of routes
does not coincide with the number of fo-
cal points in the instances. For example, the algorithm finds high-quality solutions for
instance 150.30.c.10 where customers from two clusters are combined into a single route.
Nonetheless, the algorithm can be improved by incorporating more specialized repair meth-
ods for clustered instances, which is an interesting subject for future work.

Table 5: Performance of the metaheuristics for clustered instances.

Scenario |θ| |C′| zALNS µALNS σALNS itALNS #C′ #V zin SI (%) zV RP SVRP (%)
150.30.c.01 1 134 7.2521 7.3515 0.2225 49574.8 69.7 1 9.92438 26.93% 11.4568 36.70 %
150.30.c.02 4 127 17.4822 17.6275 0.1085 114685.9 67.4 2 21.442 18.47% 22.4591 22.16 %
150.30.c.03 5 135 19.0905 19.2616 0.1044 134913.3 68 2 23.6677 19.34% 26.3510 27.55 %
150.30.c.04 3 134 17.4954 17.7494 0.1725 146067.7 70 2 21.7615 19.60% 24.1744 27.63 %
150.30.c.05 3 121 13.4906 13.5734 0.095 46701.4 65.4 2 15.8102 14.67% 18.7106 27.90 %
150.30.c.06 2 127 12.2798 13.1751 0.4578 98147.5 67.6 1.8 16.7385 26.64% 17.3142 29.08 %
150.30.c.07 2 131 10.3291 10.561 0.1591 32354.1 68 1 15.3784 32.83% 17.3957 40.62 %
150.30.c.08 5 134 16.0884 16.4721 0.2272 87546.3 68.8 2 20.8928 23.00% 22.2966 27.84 %
150.30.c.09 5 138 14.1275 14.5081 0.2074 66638.6 69.6 2 18.8961 25.24% 20.1679 29.95 %
150.30.c.10 3 127 17.8299 18.005 0.1424 114454.4 66.9 2 22.7758 21.72% 24.6002 27.52 %
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C Drone Savings as Function of Grid Size and Number of

Customers

The incorporation of drones in delivery operations brings significant savings in the oper-
ational cost, compared to the case of only using delivery trucks. Certainly, the savings
obtained from the collaboration of both vehicles vary according to the considered scenario.
In this section, we will present an analysis of the savings for different delivery scenarios.
The experiments are carried out for a collection of 375 randomly generated instances, cor-
responding to 15 scenarios, each represented by 25 instances.

Figure 20: Distribution of the saving obtained by serving the customers using a mixed truck/drone
approach compared to using a truck-only approach (SVRP) for different scenarios. The average
saving for each scenario is marked with a cross.

Figure 20 shows the distribution of the savings for the different scenarios, which are
grouped by grid size, and further grouped by number of customers. For this analysis, the
main configuration of parameters is considered, as presented in Section 3.3. From the figure,
it is seen that, for each value of the grid size, the curve that describes the saving as a
function of the number of customers has a bell-like shape, i.e. the curve first increases
until it reaches a peak from where it slowly declines as observed earlier. The figure clearly
visualizes that the variability for instances with few customers is much higher compared to
that of instances with many customers. This behaviour was already observed in the main
text (Section 5.2.2). In the 30x30 scenario, we see that the 50 customer case has a higher
average saving compared to the 100 customer case. This is unexpected with respect to the
bell-like saving curve “conjecture”. We see two possible explanations: 1) either the computed
average for the 50 customer case is far from the true average of the underlying distribution
due to the high variance of the data caused by the long endurance time, which raises the
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average saving for this scenario. In this case, we expect that an experiment with more
sample instances per scenario would make the shape of the curve approach to the expected
form. 2) Alternatively, it may be that average savings are actually higher for instances with
few customers such that the saving curve starts high at a low number of customers, then
dips, then rises again and peaks before it ultimately starts declining as more customers
are added. As already mentioned in the main text, there is some evidence for the latter
conjecture in the data presented in Figure 10. We leave to future work to decide which of
the two explanations, if any, is true.

From Figure 11, on the right, in Section 5.2.2, it is seen that, on average, the dispatched
drones do not use more than 50% of the total endurance time. Figure 21 shows the distri-
bution of the savings with respect to the truck-only case for the different scenarios when
halving the total endurance time. From the figure, it can be seen that the endurance time
has a significant impact on the savings. It is interesting to observe that for instances with
few customers the saving drops significantly as the grid size increases while the instances
with many customers are less sensitive to the grid size. Another observation is that the de-
creased endurance time causes the variance of the results to decrease significantly compared
to the results in Figure 20.

Figure 21: Distribution of the saving obtained by serving the customers using a mixed truck/drone
approach compared to using a truck-only approach (SVRP) for different scenarios, when considering
15 minutes of total endurance time. The average saving for each scenario is marked with a cross.
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