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An Adaptive Learning Particle Swarm Optimizer for Function

Optimization

Changhe Li and Shengxiang Yang

Abstract— Traditional particle swarm optimization (PSO)
suffers from the premature convergence problem, which usually
results in PSO being trapped in local optima. This paper
presents an adaptive learning PSO (ALPSO) based on a variant
PSO learning strategy. In ALPSO, the learning mechanism of
each particle is separated into three parts: its own historical
best position, the closest neighbor and the global best one.
By using this individual level adaptive technique, a particle
can well guide its behavior of exploration and exploitation.
A set of 21 test functions were used including un-rotated,
rotated and composition functions to test the performance of
ALPSO. From the comparison results over several variant PSO
algorithms, ALPSO shows an outstanding performance on most
test functions, especially the fast convergence characteristic.

I. INTRODUCTION

Particle Swarm Optimization (PSO) was first introduced

by Kennedy and Eberhart in [1], [2]. PSO is motivated from

the social behavior of organisms, such as bird flocking and

fish schooling. In PSO, a swarm of particles “fly” through

the search space. Each particle follows the previous best

position found by its neighbor particles and the previous

best position found by itself. In the past decade, PSO has

been actively studied and applied for many academic and real

world problems with promising results due to its property of

fast convergence [8].

Ever since PSO was first introduced, several major ver-

sions of the PSO algorithms have been developed [8]. Each

particle is represented by a position and a velocity, which

are updated as follows:

V ′d
i = ωV d

i + η1r1(pbestdi −Xd
i )+η2r2(gbestd−Xd

i ) (1)

X ′d
i = Xd

i + V ′d
i , (2)

where X ′d
i and Xd

i represent the current and previous posi-

tion of d−th dimension of particle i respectively, V ′
i and Vi

are the current and previous velocity of particle i respectively,

pbesti and gbest are the best position found by particle

i so far and the best position found by the whole swarm

so far respectively, ω ∈ (0, 1) is an inertia weight, which

determines how much the previous velocity is preserved, η1

and η2 are the acceleration constants, and r1 and r2 are

random numbers generated in the interval [0.0, 1.0].
There are two main models of the PSO algorithms, called

gbest (global best) and lbest (local best), which differ in

the way of defining the neighborhood of each particle. In
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the gbest model, the neighborhood of a particle consists of

the particles in the whole swarm, which share information

between each other. On the contrary, in the lbest model,

the neighborhood of a particle is defined by several fixed

particles. The two models give different optimization perfor-

mances on different problems. Kennedy and Eberhart [3] and

Poli et al. [8] pointed out that the gbest model has a faster

convergence speed with a higher chance of getting stuck in

local optima than lbest. On the contrary, the lbest model is

less vulnerable to the attraction of local optima but with a

slower convergence speed than the gbest model.

In order to improve PSO’s performance, we present an

adaptive learning PSO (ALPSO) that utilizes a new learning

strategy. In ALPSO, each particle can adjust its search

strategy according to the selection ratios of four learning

operators in different surrounding environments. The selec-

tion ratio of each operator is calculated in the same way as

in [4]. For the global best particle, we introduce a learning

method that can subtract the promising information from all

improved particles.

The rest of this paper is organized as follows. Section II

describes the adaptive learning PSO. The experimental study

is present in section III and finally conclusions are given in

section IV.

II. ADAPTIVE LEARNING PARTICLE SWARM OPTIMIZER

Although there are many improved versions of PSO, how

to balance the performance of the gbest and lbest models is

still an important issue, especially for multi-modal problems.

In the gbest model, all particles’ social behavior is strictly

constrained by learning information from the global best

particle. Hence, particles are easily attracted by gbest and

quickly converge on that region even it is not the global

optimum and gbest does not improve. In the lbest model,

attraction by the gbest is not too much but the slow conver-

gence speed is unbearable. In the origin PSO, each particle

learns from its pbest and the gbest simultaneously, which

might cause the above problems. Hence, we can separate the

cognition component and the social component to increase

diversity, but the proper moment for a particle to learn

from gbest or pbest is very hard to know. The following

sections will give an adaptive method to enable a particle

to automatically learn from the global or local information

from different particles.

A. Learning Strategy in ALPSO

In ALPSO, the information learnt by each particle comes

from four sources: the gbest, its own pbest, the pbest of

381978-1-4244-2959-2/09/$25.00 c© 2009 IEEE



the closest particle, and a random position around itself. The

learning equations are as follows:

a : V d
i = ωV d

i + η · rd
i · (pbestdi − Xd

i ) (3)

b : V d
i = ωV d

i + η · rd
i · (pbestdi nearest − Xd

i ) (4)

c : Xd
i = Xd

i + V d
avg · N(0, 1) (5)

d : V d
i = ωV d

i + η · rd
i · (gbestd − Xd

i ) (6)

where pbesti nearest is the pbest of the closest particle to

particle i, Vavg is the average velocity of all particles, and

N(0, 1) is a random number from the normal distribution

with mean 0 and variance 1.

Learning from the nearest neighbor enables a particle to

explore the region of local optima around itself. Particles

that are near a local optimum will get closer and closer to

that region because the pbest is replaced only when a better

position is found. Gradually, they will generate a local cluster

around that local optimum. Particles in one local cluster

are not influenced by those far away (other local clusters)

even they have very good fitness. This strategy can help

swarm find more local optima rather than one optimum as

the original PSO does, especially for multi-modal problems.

Once particles converge on a local optimum or there is a

more promising region nearby without particles covering it,

particles should have a probability to jump to that promising

region. Hence, learning from a random position around itself

is needed.

In ALPSO, each particle has four different choices to

adjust its behavior. The four choices enable each particle to

move to a promising position with a higher probability than

the original PSO. Here, which choice is the most suitable

depends on the around environment where a particle is.

However, we can not know what the around environment

looks like. Each particle should detect the shape of the

environment where it is by itself. Hence, we use the method

proposed in [4], which enables a particle to choose the most

suitable operator automatically. The method is described in

the following section.

B. The Adaptive Learning Mechanism

Borrowed the idea of probability matching[12], we intro-

duce an adaptive framework using the aforementioned four

learning operators, each of which is assigned a selection ra-

tio. The selection ratio of each operator is equally initialized

to 1/4 and is adaptively updated according to its relative

performance.

For each particle, one of the four learning operators is

selected according to their selection ratios and its offspring

fitness is evaluated. The operator that results in higher fitness

values of offspring will have its selection ratio increased.

The operator that results in lower fitness values of offspring

will have its selection ratio decreased. Gradually, the most

suitable operator will be chosen automatically and control the

leaning behavior of each particle in different environments.

Without lose of generality, we discuss the minimization

optimization problems in this paper. Based on our previous

work in [4], we extend the adaptive framework at the

population level into the individual level in this paper. The

selection ratios are updated every Uf generations, where Uf

is called the updating frequency. During the updating period

for each particle, the progress value and the reward value of

operator i are calculated as follows.

The progress value progi(t) of operator i at generation t
is defined as:

progi(t) =

Mi
∑

j=1

f(pi
j(t)) − min (f(pi

j(t)), f(ci
j(t))), (7)

where pi
j(t) and ci

j(t) denote a particle and its child produced

by operator i at generation t and Mi is the selection times

of operator i with the particle.

The reward value rewardi(t) of operator i at generation

t is defined as follows:

rewardi(t) = exp( progi(t)
P

N
j=1

progj(t)
α + si

Mi
(1 − α))

+cipi(t) − 1
(8)

where si is the counter that records the number of children

that are fitter than their parent particles by applying operator

i, pi(t) is the selection ratio of operator i at generation t, α
is a random weight between 0.0 and 1.0, N is the number

of operators, and ci is a penalty factor for operator i, which

is defined as follows:

ci =

{

0.9, if si = 0 and pi(t) = maxN
j=1 (pj(t))

1, otherwise
(9)

With the above definitions, the selection ratio of operator

i is updated every Uf generation according to the following

equation:

pi(t + 1) =
rewardi(t)

∑N

j=1 rewardj(t)
(1 − N ∗ γ) + γ, (10)

where γ is the minimum selection ratio for each operator,

which is set 0.01 for all the experiments in this paper.

C. Information Learning for gbest

In the original PSO, the gbest is updated only when

particles find a better position than the current gbest. Once

it is updated, the information of all dimensions of the gbest
is replaced with that of the better position. This updating

mechanism has a disadvantage that promising information of

some dimensions of one particle can not be kept due to bad

information in other dimensions that cause its low fitness.

This problem is called “Two step forward, one step back” in

[13]. If a particle gets better, information of some dimension

probably becomes more promising. Other particles should

learn some useful information from the improved one even

the particle’s fitness is very low. In ALPSO, the gbest learns

the useful information from those dimensions of a particle

that is improved. Once promising information is extract from

those improved dimensions of that particle, the information

of corresponding dimensions of the gbest is updated. The

updating happens only when particles are improved, which

is as shown in Algorithm 1.
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Algorithm 1 GbestUpdate(particle p)

1: for each dimension d of gbest do

2: Xt gbest := Xgbest, Xt gbest[d] := Xp[d]
3: if t gbest is better than gbest then

4: Xgbest[d] := Xt gbest[d]
5: end if

6: end for

Algorithm 2 The ALPSO Algorithm

1: Generate the initial particles by randomly generating the

position and velocity for each particle

2: Set the generation counter t := 0
3: while the stop criterion is not satisfied do

4: for each particle i do

5: Select one learning operator according to its selec-

tion ratio to update particle i
6: if the updated particle i is better than its pbest then

7: Update pbest
8: Perform GbestUpdate(i) for gbest
9: end if

10: if the updated particle i is better than gbest then

11: Update gbest
12: end if

13: if t%Uf == 0 then

14: Update the selection ratio for each learning op-

erator according to Eq. (10)

15: else

16: Calculate the accumulative reward value of each

operator

17: end if

18: end for

19: t := t + 1
20: end while

We can not apply this strategy to all particles because the

learning method is time comsuming. Hence, we choose the

gbest as the learner. The framework of the ALPSO algorithm

is given in Algorithm 2.

III. EXPERIMENTAL STUDY

A. Test Functions

In order to test the performance of ALPSO, we choose

three unimodal functions and 18 multimodal functions, which

are widely used as the test functions in the literature [5], [11],

[14]. The details of these test functions are given in Table I.

Function f16 is a composition function proposed by Jiang et

al. [5], which is composed of ten benchmark functions: two

rotated and shifted f1, f2, f3, f4, and f5. Functions f18 to

f21 are rotated functions, where the rotation matrix �M for

each function is obtained using the method in [9].

B. Experimental Setting

Experiments were conducted to compare five PSO algo-

rithms on the 21 test problems. The algorithms are listed as

follows:

• Standard PSO;

• CPSO-Hk [13];

• FIPS [7];

• CLPSO [6];

• ALPSO

For the standard PSO, the acceleration constants η1 and

η2 are both set to be 1.49618 and the inertia weight ω =
0.729844. Equations 1 and 2 are used for the velocity and

position update in the standard PSO. CPSO-Hk [13] is a

cooperative PSO model combined with standard PSO, the

same value of k = 6 in [13] is used. The fully informed PSO

(FIPS) [7] with a U-ring topology that achieved the highest

success rate is used. Comprehensive learning PSO (CLPSO)

[6] uses all other particles’ historical best information to

update a particle’s velocity. CLSPO is designed for solving

multimodal problems, and it presents a good performance in

[6] compared with eight other PSO algorithms. To achieve

better performance of ALPSO, we use particular settings by

experience for each problem due to different complexity of

different problems. In ALPSO, parameters are the same as

standard PSO and the updating frequency is present in Table

II. Each problem with 10 dimensions was independently run

30 times. The initial population is the same for all algorithms

on each test problem and the population size is given in

Table II. The maximal number of fitness evaluations is set

to 100000 for all algorithms on each test problem. The code

of the five algorithms is available online at the following

website:

www.cs.le.ac.uk/people/cl160/ALPSO.rar.

C. Experimental Results and Discussions

1) Experimental Results: Table III presents the results

of mean and variance values over 30 runs for the five

algorithms on all test problems. The best results of each

problem are shown in bold except function f6, on which all

five algorithms obtained the global optimum 0. Two-tailed T-

test with 58 degrees of freedom at a 0.05 level of significance

was conducted between ALPSO and the best results obtained

by one of the other four algorithms and the results are

also shown in Table III, where “***” means the result of

two algorithms is the same. The performance difference is

significant if the absolute value of the T-test result is greater

than 1.984. Figs. 1 and 2 describe the convergence speed of

the five PSOs on all test problems.

Form Table III, ALPSO shows an outstanding performance

on functions f1, f8, f12, and f13 over the other four algo-

rithms. Especially for functions f2, f3, f6, and f9, ALPSO

obtained the global optimum over all 30 runs. Comparing

ALPSO with CLPSO, though the performance of ALPSO is

worse than that of CLPSO on functions f4, f16, f20, and f21,

it is much better than that of CLPSO on functions f4, f12,

f13, and f17, and is similar to or the same as that of CLPSO

on the other functions.

For unimodal functions, ALSPO shows a fast conver-

gence speed to the global optima. For multimodal functions,

ALPSO and CLPSO present a much better performance than

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 383



TABLE I

THE TEST FUNCTIONS, WHERE n AND fmin ARE THE NUMBER OF DIMENSIONS AND THE MINIMUM VALUE OF A FUNCTION RESPECTIVELY AND

S ∈ Rn

Test Function n S fmin

f1(x) =
∑n

i=1 x2
i 10 [−100, 100] 0

f2(x) =
∑n

i=1 (x2
i − 10 cos(2πxi) + 10) 10 [-5.12, 5.12] 0

f3(x) =
n
∑

i=1

(
kmax
∑

k=0

[ak cos(2πbk(xi + 0.5))]) − n
kmax
∑

k=0

[ak cos(πbk)], 10 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20

f4(x) = 1
4000

∑n

i=1(xi − 100)2 −
∏n

i=1cos(xi−100√
i

) + 1 10 [-600, 600] 0

f5(x) = −20 exp(−0.2
√

1
n

∑n

i=1 x2
i ) − exp( 1

n

∑n

i=1 cos(2πxi)) + 20 + e 10 [-32, 32] 0

f6(x) =
∑n

i=1 (⌊xi + 0.5⌋)2 10 [-100,100] 0

f7(x) =
∑n

i=1 iẋ4
i + U(0, 1) 10 [-1.28, 1.28] 0

f8(x) =
∑n

i=1 100(x2
i+1 − xi)

2 + (xi − 1)2) 10 [-30, 30] 0

f9(x) =
∑n

i=1 −xi sin (
√

|xi|) 10 [-500, 500] -4189.829

f10(x) = 418.9829 · n +
∑n

i=1 −xi sin (
√

|xi|) 10 [-500, 500] 0

f11(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| 10 [-10, 10] 0

f12(x) =
∑n

i=1 (
∑i

j=1 xj)
2 10 [-100, 100] 0

f13(x) = maxn
i=1 |xi| 10 [-100, 100] 0

f14(x) = π
30{10 sin2 (πy1) +

∑n−1
i=1 (yi − 1)2 · [1 + 10 sin2 (πyi+1)]+ 10 [-50, 50] 0

(yn − 1)2} +
∑n

i=1 u(xi, 5, 100, 4), yi = 1 + (xi + 1)/4

f15(x) = 0.1{10 sin2 (3πx1) +
∑n−1

i=1 (xi − 1)2 · [1 + sin2 (3πxi+1)] 10 [-50, 50] 0

+(xn − 1)2[1 + sin2 (2πxn)]} +
∑n

i=1 u(xi, 5, 100, 4)

f16(x) = Composition function 5 (CF5) in [5] 10 [-5, 5] 0

f17(x) =
∑n

i=1 100(y2
i+1 − yi)

2 + (yi − 1)2), �y = �M ∗ �x 10 [-100, 100] 0

f18(x) = 1
4000

∑n

i=1(yi − 100)2 −
∏n

i=1cos(yi−100√
i

) + 1, �y = �M ∗ �x 10 [-600, 600] 0

f19(x) = −20 exp(−0.2
√

1
n

∑n

i=1 y2
i ) − exp( 1

n

∑n

i=1 cos(2πyi)) + 20 + e, 10 [-32, 32] 0

�y = �M ∗ �x

f20(x) =
∑n

i=1 (y2
i − 10 cos(2πyi) + 10), �y = �M ∗ �x 10 [-5, 5] 0

f21(x) =
n
∑

i=1

(
kmax
∑

k=0

[ak cos(2πbk(yi + 0.5))]) − n
kmax
∑

k=0

[ak cos(πbk)], 10 [-0.5,0.5] 0

a = 0.5, b = 3, kmax = 20, �y = �M ∗ �x

TABLE II

POPULATION SIZE AND UPDATING FREQUENCY, WHERE THE UPDATING

FREQUENCY IN SHOWN IN THE BRACKET

f1 f2 f3 f4 f5 f6 f7

5(5) 10(5) 10(5) 20(5) 10(5) 10(5) 20(5)

f8 f9 f10 f11 f12 f13 f14

10(1) 40(5) 40(5) 10(5) 5(5) 5(5) 10(5)

f15 f16 f17 f18 f19 f20 f21

10(5) 40(10) 10(5) 20(5) 30(10) 20(5) 20(15)

the other three algorithms. For example, on Schwefel’s func-

tions f9 and f10, all the other three algorithms are trapped

into local optimum that are far away from the glbal optimum.

However, ALPSO and CLPSO both successfully avoid falling

into the deep local optimum. For rotated functions, the two

algorithms also show a leading performance compared with

the other three algorithms.

Among the other three algorithms, CPSO-H6 presents a

comparatively better performance on most problems, and

it obtains the best results on problem f7, which is a little

better than the results got by ALPSO. The FIPS with the

U-ring model gives relatively better results compared with

the standard PSO. The standard PSO falls into local optima

on almost all multimodal problems.

From Figs. 1 and 2, one interesting observation is that

ALPSO presents the fastest convergence speed on all test

problems. The results obviously show that the learning strat-

egy for gbest is efficient to solve the “Two step forward, one

384 2009 IEEE Congress on Evolutionary Computation (CEC 2009)



TABLE III

COMPARISON RESULTS OF MEANS AND VARIANCES

Function f1 f2 f3 f4 f5 f6 f7

ALPSO 9.42e-163 0 0 0.0405 6.25e-15 0 0.000655

(±4.97e-162) (±0) (±0) (±0.0298) (±2.55e-15) (±0) (±0.000353)

CLSPO 3.81e-155 0 0 0.00411 4.12e-15 0 0.00106

(±2.09e-154) (±0) (±0) (±0.00615) (±6.49e-16) (±0) (±0.000422)

FIPS 5.16e-053 11.3 0 0.476 0.599 0 0.00599

(±2.83e-052) (±5.54) (±0) (±0.0884) (±3.28) (±0) (±0.00201)

CPSO-H6 1.23e-103 0.133 7.11e-16 0.0343 1.02e-14 0 0.000509

(±6.74e-103) (±0.344) (±2.17e-15) (±0.0166) (±4.27e-15) (±0) (±0.000305)

PSO 2.79e-027 17.7 1 0.0932 0.888 0 0.000891

(±1.53e-026) (±10.8) (±0.88) (±0.0505) (±1.24) (±0) (±0.000648)

T-test -1 *** *** 6.54293 4.43362 *** 1.71779

Function f8 f9 f10 f11 f12 f13 f14

ALPSO 0.173 -4.19e+03 0.000127 7.05e-51 3.81e-51 3.15e-68 1.57e-32

(±0.617 ) (±9.25e-13) (±2.76e-20) (±3.6e-50) (±2.08e-50) (±1.73e-67) (±5.57e-48)

CLSPO 0.934 -4.19e+03 0.000127 5.05e-52 3.2e-06 0.0371 1.57e-32

(±1.68 ) (±9.25e-13) (±2.76e-20) (±1.42e-51) (±1.14e-05) (±0.748) (±5.57e-48)

FIPS 8.09 -3.7e+03 488 3.47e-17 836 7.91e-14 5e-26

(±6.92 ) (±162) (±162) (±4.25e-17) (±1.9e+03) (±1.38e-13) (±1.82e-25)

CPSO-H6 5.42 -3.83e+03 355 1.38e-45 3.46e-14 5.51e-19 1.57e-32

(±6.87 ) (±189) (±189) (±7.54e-45) (±1.9e-13) (±2.44e-18) (±5.57e-48)

PSO 9.32e+03 -3.35e+03 841 1 3.67e+03 4.82e-045 2.82

(±2.74e+04) (±305) (±305) (±3.05) (±6.07e+03) (±2.55e-44) (±6.36)

T-test -1.865 *** *** 0.9954 -1.0 -1.03401 ***

Function f15 f16 f17 f18 f19 f20 f21

ALPSO 1.35e-032 120 2.63 0.101 1.75e-014 4.97 0.66

(±0) (±169) (±6.31) (±0.0458) (±7.19e-015) (±2.98) (±0.735)

CLSPO 1.35e-032 86.8 4.07 0.0175 1.51e-013 0.763 8.3e-006

(±0) (±36.1) (±3.35) (±0.0111) (±4e-013) (±0.675) (±1.68e-05)

FIPS 8.67 347 1.33e+07 0.522 0.00029 19.7 0.00129

(±47.5) (±179) (±7.28e+07) (±0.1) (±0.000126) (±4.24) (±0.000636)

CPSO-H6 1.35e-32 593 121 0.136 0.27 7.33 2.22

(±0) (±398) (±176) (±0.0676) (±0.497) (±3.91) (±1.78)

PSO 81.6 848 2.44e+5 0.139 0.0385 11.6 2.14

(±118) (±195) (±4.94e+5) (±0.0648) (±0.211) (±5.37) (±1.68)

T-test *** 1.05106 -1 9.65691 -1 7.55182 4.92042

step back” problem. It does help the gbest learn promising

information from those improved particles.

Fig 3 presents the selection ratio of each operator for some

test problems. From the results, we can see that the selection

ratio of each operator is quite different from problem to

problem. Even for a particular test problem, the selection

ratio of the best operator changes in different evolving

stages.It can be seen from the results of F2, F3, F5 and

F6 in Fig. 3, most particles quickly learn from the best

particle when the run starts, however, the selection ratio

of learning from particles’ private best position surpasses

the selection ratio of learning from the best particle when

the number of generations reaches 500. The results validate

our prediction that different learning strategies are needed in

different evolving stages.

2) Discussions: From the above results on the 21 test

problems, we can conclude that ALPSO performs much

better than the other three algorithms on all unimodal test

problems due to the learning strategy for gbest. Though

ALPSO does not perform the best on all multimodal test

problems, it presents competitive results compared with the

other three improved PSO algorithms. We can also conclude

that the adaptive learning mechanism enables particles to

have more chances to move to a more promising region,

especially for those particles being trapped into local optima

in multimodal problems.

IV. CONCLUSIONS

This paper presents an adaptive learning PSO which uses

an adaptive framework on the individual level to adapt four

leaning strategies for each particle in the swarm. A new
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Fig. 1. Evolution process of the average best fitness of PSO, CLPSO, CPSO-H6, FIPS, and ALPSO on functions f1 to f15.
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Fig. 2. Evolution process of the average best fitness of PSO, CLPSO, CPSO-H6, FIPS, and ALPSO on functions f16 to f21.

learning mechanism for gbest is introduced by extracting

useful information from those improved particles on all

dimensions.

The four learning strategies give each particle more

chances to search a larger space. A particle is not simply

influenced by its own previous best position and the global

best one, the nearest neighbor also can help it search in

a local region. The balance of local search and the global

search can be solved using the adaptive technique, which

enables each particle make its own choice according to

the environment around. The performance of ALPSO is

tested on 21 test problems in comparison with other three

improved PSOs and the standard PSO. The results show

that ALPSO gives the best performance on all test unimodal

problems and also presents the outstanding performance on

most multimodal problems.

Although ALPSO is not the best one for solving all

test multimodal problems, the adaptive framework can help

particles decide their own step direction. Especially for real

problems, we can not know the distribution of solution space.

However, we can design different strategies to deal with

different situations, and let particles choose the most suitable

strategy by themselves according to the adaptive technique.
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Fig. 3. The process of selection ratio of each operator for different problems
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