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Abstract

Stochastic variational inference finds good pos-

terior approximations of probabilistic models

with very large data sets. It optimizes the vari-

ational objective with stochastic optimization,

following noisy estimates of the natural gradi-

ent. Operationally, stochastic inference itera-

tively subsamples from the data, analyzes the

subsample, and updates parameters with a de-

creasing learning rate. However, the algorithm

is sensitive to that rate, which usually requires

hand-tuning to each application. We solve this

problem by developing an adaptive learning

rate for stochastic inference. Our method re-

quires no tuning and is easily implemented

with computations already made in the algo-

rithm. We demonstrate our approach with latent

Dirichlet allocation applied to three large text

corpora. Inference with the adaptive learning

rate converges faster and to a better approxima-

tion than the best settings of hand-tuned rates.

1 Introduction

Stochastic variational inference lets us use complex prob-

abilistic models to analyze massive data (Hoffman et al.,

to appear). It has been applied to topic models (Hoffman

et al., 2010), Bayesian nonparametric models (Wang et al.,
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2011; Paisley et al., 2012), and models of large social net-

works (Gopalan et al., 2012). In each of these settings,

stochastic variational inference finds as good posterior

approximations as traditional variational inference, but

scales to much larger data sets.

Variational inference tries to find the member of a simple

class of distributions that is close to the true posterior

(Bishop, 2006). The main idea behind stochastic varia-

tional inference is to maximize the variational objective

function with stochastic optimization (Robbins & Monro,

1951). At each iteration, we follow a noisy estimate of the

natural gradient (Amari, 1998) obtained by subsampling

from the data. Following these stochastic gradients with

a decreasing learning rate guarantees convergence to a

local optimum of the variational objective.

Traditional variational inference scales poorly because it

has to analyze the entire data set at each iteration. Stochas-

tic variational inference scales well because at each itera-

tion it needs only to analyze a subset. Further, computing

the stochastic gradient on the subset is just as easy as

running an iteration of traditional inference on data of

the subset’s size. Thus any implementation of traditional

inference is simple to adapt to stochastic inference.

However, stochastic variational inference is sensitive to

the learning rate, a nuisance that must be set in advance.

With a quickly decreasing learning rate it moves too cau-

tiously; with a slowly decreasing learning rate it makes

erratic and unreliable progress. In either case, conver-

gence is slow and performance suffers.

In this paper, we develop an adaptive learning rate for

stochastic variational inference. The step size decreases

when the variance of the noisy gradient is large, mitigat-

ing the risk of taking a large step in the wrong direction.
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Figure 1. The adaptive learning rate on a run of stochastic vari-

ational inference, compared to the best Robbins-Monro and

best constant learning rate. Here the data arrives non-uniformly,

changing its distribution every three hours. (The algorithms

do not know this.) The adaptive learning rate spikes when the

data distribution changes. This leads to better predictive perfor-

mance, as indicated by the held-out likelihood in the top right.

The step size increases when the norm of the expected

noisy gradient is large, indicating that the algorithm is far

away from the optimal point. With this approach, the user

need not set any learning-rate parameters to find a good

variational distribution, and it is implemented with compu-

tations already made within stochastic inference. Further,

we found it consistently led to improved convergence and

estimation over the best decreasing and constant rates.

Figure 1 displays three learning rates: a constant rate,

a rate that satisfies the conditions of Robbins & Monro

(1951), and our adaptive rate. These come from three fits

of latent Dirichlet allocation (LDA) (Blei et al., 2003) to

a corpus of 1.8M New York Times articles. At each itera-

tion, the algorithm subsamples a small set of documents

and updates its estimate of the posterior.

We can see that the adaptive learning rate exhibits a spe-

cial pattern. The reason is that in this example we sub-

sampled the documents in two-year increments. This en-

gineers the data stream to change at each epoch, and the

adaptive learning rate adjusts itself to those changes. The

held-out likelihood scores (in the top right) indicate that

the resulting variational distribution gave better predic-

tions than the two competitors. (We note that the adaptive

learning rate also gives better performance when the data

are sampled uniformly. See Figure 3.)

Stochastic variational inference assumes that data are sub-

sampled uniformly at each iteration and is sensitive to

the chosen learning rate (Hoffman et al., to appear). The

adaptive learning rate developed here solves these prob-

lems. It accommodates practical data streams, like the

chronological example of Figure 1, where it is difficult to

uniformly subsample the data; and it gives a robust way

zi xi

β

n

η

Figure 2. Graphical model for hierarchical Bayesian models

with global hidden variables ˇ, local hidden variables z1Wn,

and local observations x1Wn. The hyperparameter � is fixed.

to use stochastic inference without hand-tuning.

In the main paper, we review stochastic variational in-

ference, derive our algorithm for adaptively setting the

step sizes, and present an empirical study using LDA on

three large corpora. In the appendices, we present proofs

and a discussion of convergence. Our adaptive algorithm

requires no hand-tuning and performs better than the best

hand-tuned alternatives.

2 Stochastic Variational Inference

Variational inference performs approximate posterior in-

ference by solving an optimization problem. The idea is

to posit a family of distributions with free variational pa-

rameters, and then fit those parameters to find the member

of the family close (in KL divergence) to the posterior. In

this section, we review mean-field variational inference

for a large class of models. We first define the model

class, describe the variational objective function, and de-

fine the mean-field variational parameters. We then derive

both the “classical” coordinate ascent inference method

and stochastic variational inference, a scalable alternative

to coordinate ascent inference. In the next section, we

describe and derive our method for adapting the learning

rate in stochastic variational inference.

Model family. We consider the family of models in

Figure 2 (Hoffman et al., to appear). There are three types

of random variables. The observations are x1Wn, the local

hidden variables are z1Wn, and the global hidden variables

are ˇ. The model assumes that the observations and their

corresponding local hidden variables are conditionally

independent given the global hidden variables,

p.ˇ; x1Wn; z1Wn j �/ D p.ˇ j �/
Qn

iD1 p.zi ; xi j ˇ/: (1)

Further, these distributions are in the exponential family,

p.zi ; xi j ˇ/ D h.zi ; xi / exp
˚

ˇ>t .zi ; xi / � a.ˇ/
	

(2)

p.ˇ j �/ D h.ˇ/ exp
˚

�>t .ˇ/ � a.�/
	

; (3)
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where we overload notation for the base measures h.�/,

sufficient statistics t .�/, and log normalizers a.�/. The

term t .ˇ/ has the form t .ˇ/ D ŒˇI �a.ˇ/�.

Finally, the model satisfies conditional conjugacy. The

prior p.ˇ j �/ is conjugate to p.zi ; xi j ˇ/. This means

that the distribution of the global variables given the ob-

servations and local variables p.ˇ j z1Wn; x1Wn/ is in the

same family as the prior p.ˇ j �/. This differs from classi-

cal Bayesian conjugacy because of the local variables. In

this model class, the conditional distribution given only

the observations p.ˇ j x1Wn/ is not generally in the same

family as the prior.

This is a large class of models. It includes Bayesian

Gaussian mixtures, latent Dirichlet allocation (Blei et al.,

2003), probabilistic matrix factorization (Salakhutdinov

& Mnih, 2008), hierarchical linear regression (Gelman

& Hill, 2007), and many Bayesian nonparametric mod-

els (Hjort et al., 2010).

Note that in Eq. 1 and 2 we used the joint conditional

p.zi ; xi j ˇ/. This simplifies the set-up in Hoffman et al.

(to appear), who assume the local prior p.zi j ˇ/ is conju-

gate to p.xi j zi ; ˇ/. We also make this assumption, but

writing the joint conditional eases our derivation of the

adaptive learning-rate algorithm.

Variational objective and mean-field family. Our

goal is to approximate the posterior distribution

p.ˇ; z1Wn j x1Wn/ using variational inference. We approxi-

mate it by positing a variational family q.ˇ; z1Wn/ over the

hidden variables ˇ and z1Wn and then finding the member

of that family close in KL divergence to the posterior. This

optimization problem is equivalent to maximizing the ev-

idence lower bound (ELBO), a bound on the marginal

probability p.x1Wn/,

L.q/ D EqŒlog p.x1Wn; z1Wn; ˇ/� � EqŒlog q.z1Wn; ˇ/�:

To solve this problem, we must specify the form of the

variational distribution q.ˇ; z1Wn/. The simplest family is

the mean-field family, where each hidden variable is inde-

pendent and governed by its own variational parameter,

q.z1Wn; ˇ/ D q.ˇ j �/
Qn

iD1 q.zi j �i /: (4)

We assume that each variational distribution comes from

the same family as the conditional.

With the family defined, we now write the ELBO in terms

of the variational parameters

L.�; �1Wn/ D EqŒlog p.ˇ j �/� � EqŒlog q.ˇ j �/�

C
Pn

iD1

�

EqŒlog p.xi ; zi j ˇ/� � EqŒlog q.zi j �i /�
�

:

Mean-field variational inference optimizes this function.

Coordinate ascent variational inference. We focus

on optimizing the global variational parameter �. We

write the ELBO as a function of this parameter, implicitly

optimizing the local parameters �1Wn for each value of �,

L.�/ , max
�

L.�; �1Wn/: (5)

We call this the �-ELBO. It has the same optimum as the

full ELBO L.�; �1Wn/.

Define the �-optimal local variational parameters �� D

arg max� L.�; �/.1 Using the distributions in Eq. 2 and

Eq. 3, the �-ELBO is

L.�/ D a.�/Cr�a.�/>
�

�� C � C
Pn

iD1
Nt��

i

.xi /
�

Cc;

(6)

where Nt��

i

.xi / , Eq.zi j ��

i
/Œt .xi ; zi /� and c is a constant

that does not depend on �.

The natural gradient (Amari, 1998) of the �-ELBO is

QrL.�/ D �� C � C
Pn

iD1
Nt��

i

.xi /: (7)

We derive this in the appendix.

With this perspective, coordinate ascent variational infer-

ence can be interpreted as a fixed-point iteration. Define

��
t D � C

Pn
iD1

Nt
�

�t

i

.xi / (8)

This is the optimal value of � when �1Wn is fixed at the

optimal ��
1Wn for � D �t . Given the current estimate of the

global parameters �t , coordinate ascent iterates between

(a) computing the optimal local parameters for the current

setting of the global parameters �t and (b) using Eq. 8 to

update �tC1 D ��
t . Each setting of �t in this sequence

increases the ELBO.

Hoffman et al. (to appear) point out that this is inefficient.

At each iteration Eq. 8 requires analyzing all the data to

compute �
�t

1Wn, which is infeasible for large data sets. The

solution is to use stochastic optimization.

Stochastic variational inference. Stochastic inference

optimizes the ELBO by following noisy estimates of the

natural gradient, where the noise is induced by repeatedly

subsampling from the data.

Let i be a random data index, i � Unif.1; : : : ; n/. The

ELBO with respect to this index is

Li .�/ D a.�/ C r�a.�/>.�� C � C nNt��

i

.xi //: (9)

1The optimal ��
1Wn can be obtained with n local closed-form

optimizations through standard mean-field updates (Bishop,
2006). This takes the advantage of the model assumption that
the local prior p.zi j ˇ/ is conjugate to p.xi j zi ; ˇ/. We omit
the details here; see Hoffman et al. (to appear).
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The expectation of Li .�/, with respect to the random data

index, is equal to the �-ELBO in Eq. 6. Thus we can ob-

tain noisy estimates of the gradient of the ELBO by sam-

pling a data point index and taking the gradient of Li .�/.

We follow such estimates with a decreasing step-size �t .

This is a stochastic optimization algorithm (Robbins &

Monro, 1951) of the variational objective.

We now compute the natural gradient of Eq. 9. Notice that

Li .�/ is equal to the �-ELBO, but where xi is repeatedly

seen n times. So, we can use the natural gradient in Eq. 7

to compute the natural gradient of Li .�/,

QrLi .�/ D �� C � C nNt��

i

.xi /: (10)

Following noisy gradients with a decreasing step-size �t

gives us stochastic variational inference. At iteration t :

1. Sample a data point i � Unif.1; : : : ; n/.

2. Compute the optimal local parameter �
�t

i for the i th

data point given current global parameters �t .

3. Compute intermediate global parameters to be the

coordinate update for � under Li ,

O�t D � C nNt
�

�t

i

.xi /: (11)

4. Set the global parameters to be a weighted average

of the current setting and intermediate parameters,

�tC1 D .1 � �t /�t C �t
O�t : (12)

This is much more efficient than coordinate ascent infer-

ence. Rather than analyzing the whole data set before

updating the global parameters, we need only analyze a

single sampled data point.

As an example, and the focus of our empirical study, con-

sider probabilistic topic modeling (Blei et al., 2003). A

topic model is a probabilistic model of a text corpus. A

topic is a distribution over a vocabulary, and each docu-

ment exhibits the topics to different degree. Topic model-

ing analysis is a posterior inference problem: Given the

corpus, we compute the conditional distribution of the top-

ics and how each document exhibits them. This posterior

is frequently approximated with variational inference.

The global variables in a topic model are the topics, a

set of distributions over the vocabulary that is shared

across the entire collection. The local variables are the

topic proportions, hidden variables that encode how each

document exhibits the topics. Given the global topics,

these local variables are conditionally independent.

At any iteration of coordinate ascent variational inference,

we have a current estimate of the topics and we use them

to examine each document. With stochastic inference, we

need only to analyze a subsample of documents at each

iteration. Stochastic inference lets topic modelers analyze

massive collections of documents (Hoffman et al., 2010).

To assure convergence of the algorithm the step sizes �t

(used in Eq. 12) need to satisfy the conditions of Robbins

& Monro (1951),

P1
tD1 �t D 1;

P1
nD1 �2

t < 1: (13)

Choosing this sequence can be difficult and time-

consuming. A sequence that decays too quickly may

take a long time to converge; a sequence that decays too

slowly may cause the parameters to oscillate too much.

To address this, we propose a new method to adapt the

learning rate in stochastic variational inference.

3 An Adaptive Learning Rate for
Stochastic Variational Inference

Our method for setting the learning rate adapts to the sam-

pled data. It is designed to minimize the expected distance

between the stochastic update in Eq. 12 to the optimal

global variational parameter ��
t in Eq. 8, i.e., the setting

that guarantees the ELBO increases. The expectation of

the distance is taken with respect to the randomly sampled

data index. The adaptive learning rate is pulled by two

signals. It grows when the current setting is expected to

be far away from the coordinate optimal setting, but it

shrinks with our uncertainty about this distance.

In this section, we describe the objective function and

compute the adaptive learning rate. We then describe

how to estimate this rate, which depends on several un-

known quantities, by computing moving averages within

stochastic variational inference.

The adaptive learning rate. Our goal is to set the learn-

ing rate �t in Eq. 12. The expensive batch update ��
t in

Eq. 8 is the update we would make if we processed the en-

tire data set; the cheaper stochastic update �tC1 in Eq. 12

only requires processing one data point. We estimate the

learning rate that minimizes the expected error between

the stochastic update and batch update.

The squared norm of the error is

J.�t / , .�tC1 � ��
t />.�tC1 � ��

t /: (14)

Note this is a random variable because �tC1 depends on

a randomly sampled data point. We obtain the adaptive

learning rate ��
t by minimizing EnŒJ.�t /j�t �. This leads

to a stochastic update that is close in expectation to the
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batch update.2

The randomness in J.�t / from Eq. 14 comes from the

intermediate global parameter O�t in Eq. 11. Its mean and

covariance are

EnŒ O�t � D ��
t ;

CovnŒ O�t � D EnŒ. O�t � ��
t /. O�t � ��

t />� , ˙: (15)

Minimizing EnŒJ.�t /j�t � with respect to �t gives

��
t D

.��
t � �t /

>.��
t � �t /

.��
t � �t />.��

t � �t / C tr.˙/
: (16)

The derivation can be found in the appendix. The learn-

ing rate grows when the batch update ��
t is far from the

current parameter �t . The learning rate shrinks, through

the trace term, when the intermediate parameter has high

variance (i.e., uncertainty) around the batch update.

However, this learning rate depends on unknown

quantities—the batch update ��
t and the variance ˙ of

the intermediate parameters around it. We now describe

our algorithm for estimating the adaptive learning rate

within the stochastic variational inference algorithm.

Estimating the adaptive learning rate. In this section

we estimate the adaptive learning rate in Eq. 16 within

the stochastic variational inference algorithm. We do this

by expressing it in terms of expectations of the noisy

natural gradient of the ELBO—a quantity that is easily

computed within stochastic inference—and then approxi-

mating those expectations with moving averages.

Let gt be the sampled natural gradient defined in Eq. 10 at

iteration t . Given the current estimate of global variational

parameters �t , the expected value of gt is the difference

between the current parameter and batch update,

EnŒgt � D EnŒ��t C O�t � D ��t C ��
t : (17)

Its covariance is equal to the covariance of the intermedi-

ate parameters O�t

CovnŒgt � D CovnŒ O�t � D ˙:

We can now rewrite the denominator of the adaptive learn-

ing rate in Eq. 16,

EnŒg>
t gt � D EnŒgt �

>
EnŒgt � C tr.˙/

D .��t C ��
t />.��t C ��

t / C tr.˙/:

2We also considered a more general error function with a
metric to account for the non-Euclidean relationship between
parameters. For the variational family we studied in Section 4,
the Dirichlet, this did not make a difference. However, we
suspect a metric could play a role in variational families with
more curvature, such as the Gaussian.

Algorithm 1 Learning Rate Free Inference.

1: Initialize global variational parameter �1 randomly.
2: Initialize the window size �1. (See text for details.)

3: Initialize moving averages g0 and h0 given �1.
4: for t D 1; :::; 1 do
5: Sample a data point i .

6: Compute the optimal local parameter �
�t

i .

7: Set intermediate global parameters O�t D � C nNt
�

�t

i

.xi /.

8: Update moving averages gt and ht as in Eq. 19 and 20.

9: Set the estimate step size ��
t D

g>
t g t

ht

.

10: Update the window size �tC1 D �t .1 � ��
t / C 1.

11: Update global parameters �tC1 D .1 � ��
t /�t C ��

t
O�t .

12: end for
13: return �.

Using this expression and the expectation value of the

noisy natural gradient in Eq. 17, we rewrite the adaptive

learning rate as

��
t D

EnŒgt �
>
EnŒgt �

EnŒg>
t gt �

: (18)

Note that this transformation collapses estimating the

required matrix ˙ into the estimation of a scalar.

We could form a Monte Carlo estimate of these expecta-

tions by drawing multiple samples from the data at the

current time step t and repeatedly forming noisy natu-

ral gradients. Unfortunately, this reduces the computa-

tional benefits of using stochastic optimization. Instead

we adapt the method of Schaul et al. (2012), approximat-

ing the expectations within the stochastic algorithm with

exponential moving averages across iterations.

Let the moving averages for EŒgt � and EŒg>
t gt � be de-

noted by g t and ht respectively. Let �t be the window

size of the exponential moving average at time t . The

updates are

EŒgt � � g t D .1 � ��1
t /g t�1 C ��1

t gt (19)

EŒg>
t gt � � ht D .1 � ��1

t /ht�1 C ��1
t g>

t gt : (20)

Plugging these estimates into Eq. 18, we can approximate

the adaptive learning rate with

��
t �

g>
t g t

ht

:

The moving averages are less reliable after large steps, so

we update our memory size using the following rule

�tC1 D �t .1 � ��
t / C 1:

The full algorithm is in Algorithm 1.

We initialize the moving averages through Monte Carlo

estimates of the expectations at the initialization of the
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global parameters �1 and initialize �1 to be the number

of samples used in to construct the Monte Carlo estimate.

Finally, while we have described the algorithm with a

single sampled data point at each iteration, it generalizes

easily to mini-batches, i.e., when we sample a small subset

of data at each iteration.

Convergence. In Section 4 we found that our algorithm

converges in practice. However, proving convergence is

an open problem. As a step towards solving this problem,

we prove convergence of �t under a learning rate that

minimizes the error to an unspecified local optimum ��

rather than to the optimal batch update. (The complexity

with the optimal batch update is that it changes at each

iteration.) We call the resulting learning rate at the ide-

alized learning rate. The objective we minimize is the

expected value of

Q.at / , .�tC1 � ��/>.�tC1 � ��/:

The idealized optimal learning rate that minimizes Q is

a�
t D

.��
t � �t /

>.��
t � �t / C .��

t � �t /
>.�� � ��

t /

.��
t � �t />.��

t � �t / C t r.˙/
:

The appendix gives a proof of convergence to a local

optimum with learning rate a�
t . We cannot compute this

learning rate because it depends on �� and ��
t . Further,

�� is hard to estimate.

Compared to the adaptive learning rate in Eq. 16, the

idealized learning rate contains an additional term in the

numerator. If the batch update ��
t is close to the local

optimum �� then the learning rates are equivalent.

Related work. Schaul et al. (2012) describe the optimal

rate for a noisy quadratic objective by minimizing the

expected objective at each time step. They used their

rate to fit neural networks. A possible generalization

of their work to stochastic inference would be to take

the Taylor expansion of the ELBO around the current

parameter and maximize it with respect to the learning

rate. However, we found (empirically) that this approach

is inadequate. The Taylor approximation is poor when

the step size is large, and the Hessian of the ELBO is

not always negative definite. This led to unpredictable

behaviors in this algorithm.

Our algorithm is in the same spirit of the approach pro-

posed in Chien & Fu (1967). They studied the problem

of stochastically estimating the mean of a normal distri-

bution in a Bayesian setting. They derived an adaptive

learning rate by minimizing the squared error to the un-

known posterior mean. This has also been pursued for

tracking problems by George & Powell (2006). Our ap-

proach differs from theirs in that our objective is tailored

to variational inference and is defined in terms of the

per-iteration coordinate optima (rather than a global opti-

mum). Further, our estimators are based on the sampled

natural gradient.

4 Empirical Study

We evaluate our adaptive learning rate with latent Dirich-

let allocation (LDA). We consider stochastic inference in

two settings: where the data are subsampled uniformly

(i.e., where the theory holds) and where they are subsam-

pled in a non-stationary way. In both settings, adaptive

learning rates outperform the best hand-tuned alternatives.

Data sets. We analyzed three large corpora: Nature,

New York Times, and Wikipedia. The Nature corpus con-

tains 340K documents and a vocabulary of 4,500 terms;

the New York Times corpus contains 1.8M documents and

a vocabulary vocabulary of 8,000 terms; the Wikipedia

corpus contains 3.6M documents and a vocabulary of

7,700 terms.

Evaluation metric. To evaluate our models, we held

out 10,000 documents from each corpus and calculated its

predictive likelihood. We follow the metric used in recent

topic modeling literature (Asuncion et al., 2009; Wang

et al., 2011; Hoffman et al., to appear). For a document

wd in Dtest, we split it in into halves, wd D .wd1; wd2/,

and computed the predictive log likelihood of the words

in wd2 conditioned on wd1 and Dtrain. A better predictive

distribution given the first half should give higher like-

lihood to the second half. The per-word predictive log

likelihood is defined as

likelihoodpw ,

P

d2Dtest
log p.wd2jwd1;Dtrain/

P

d2Dtest
jwd2j

:

Here jwd2j is the number of tokens in wd2. This eval-

uation measures the quality of the estimated predictive

distribution. It lets us compare methods regardless of

whether they provide a bound. However, this quantity is

intractable in general and so we used the same strategy as

in Hoffman et al. (to appear) to approximate it.

Hyperparameters and alternative learning rates.

We set the mini-batch size to 100 documents. We used

100 topics and set the Dirichlet hyperparameter on the

topics to be 0.01. LDA also contains a Dirichlet prior over
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the topic proportions, i.e., how much each document ex-

hibits each topic. We set this to the uniform prior. These

are the same values used in Hoffman et al. (2010).

We compared the adaptive learning rate to two others.

Hoffman et al. (2010) use a learning rate of the form

�t D .t0 C t /�� ; (21)

where � 2 .0:5; 1�. This choice satisfies the Robbins-

Monro conditions Eq. 13. They used a grid search to find

the best parameters for this rate. Note that Snoek et al.

(2012) showed that Bayesian optimization can speed up

this search.

We also compared to a small constant learning rate (Col-

lobert et al., 2011; Nemirovski et al., 2009). We found

a best rate by searching over f0:1; 0:01; 0:001; 0:0001g.

We report our results against the best Robbins-Monro

learning rate and the best small constant learning rate.

Results. We compared the algorithms in two scenarios.

First, we ran stochastic inference as described above. At

each iteration, we subsample uniformly from the data,

analyze the subsample, and use the learning rate to update

the global variational parameters. We ran the algorithms

for 20 hours.

Figure 3 shows the results. On all three corpora, the adap-

tive learning rate outperformed the best Robbins-Monro

rate and constant rate.3 It converged faster and formed

better predictive distributions. Figure 4 shows how the

learning rate behaves. Without tuning any parameters, it

gave a similar shape to the Robbins-Monro rate.

Second, we ran stochastic inference where the data were

subsampled non-uniformly. The theory breaks down in

such a scenario, but this matches many applied situations

and illustrates some of the advantages of an adaptive

learning rate. We split the New York Times documents in

into 10 segments based their publication dates. We ran

the algorithm sequentially, sampling from each segment

and testing on the next. Each pair of sampled and test

segments form an epoch. We trained on each of these

5 epochs for three hours. Throughout the epochs we

maintained a single approximate posterior. We compared

the adaptive learning rate to the best Robbins-Monro and

constant learning rates from the previous experiment.

Figure 1 shows the results. The adaptive learning rate

spikes when the underlying sampling distribution changes.

(Note that the algorithm does not know when the epoch is

changing.) Further, it led to better predictive distributions.

3If we change the time budget, we usually find different best
Robbins-Monro and constant learning rates. However, in all the
cases we studied, the adaptive learning rate outperformed the
best alternative rates.

5 Conclusion

We developed and studied an algorithm to adapt the learn-

ing rate in stochastic variational inference. Our approach

is based on the minimization of the expected squared

norm of the error between the global variational parameter

and the coordinate optimum. It requires no hand-tuning

and uses computations already found inside stochastic

inference. It works well for both stationary and non-

stationary subsampled data. In our study of latent Dirich-

let allocation, it led to faster convergence and a better

optimum when compared to the best hand-tuned rates.
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Appendix

Natural gradient of the �-ELBO. We can compute

the natural gradient in Eq. 7 at � by first finding
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the corresponding optimal local parameters �� D

arg max� L.�; �/ and then computing the gradient of

L.�; ��/, i.e., the ELBO where we fix � D ��. These

are equivalent because

r�L.�/ D r�L.�; ��/ C .r���/>r�L.�; ��/

D r�L.�; ��/:

The notation r��� is the Jacobian of �� as a function of

�, and we use that r�L.�; �/ is zero at � D ��.

Derivation of the adaptive learning rate. To compute

the adaptive learning rate we minimize EnŒJ.�t /j�t � at

each time t. Expanding EnŒJ.�t /j�t �, we get

EnŒJ.�t /j�t � DEnŒ.�t C �t .�t � O�t / � ��
t />

.�t C �t .�t � O�t / � ��
t /�:

We can compute this expectation in terms of the moments

of the sample optimum in Eq. 15

EnŒJ.�t /j�t � D.1 � �t /
2.��

t � �t /
>.��

t � �t /

C �2
t t r.˙/:

Setting the derivative of EnŒJ.�t /j�t � with respect to �t

equal to 0 yields the optimal learning in Eq. 16.

Convergence of the idealized learning rate. We show

convergence of �t to a local optima with our ideal-

ized learning rate through martingale convergence. Let

MtC1 D Q.a�
t /, then Mt is a super-martingale with re-

spect to the natural filtration of the sequence �t ,

EŒMtC1j�t � D EŒQ.a�
t /j�t � � EŒQ.0/j�t � D Mt :

Since Mt is a non-negative supermartingale by the mar-

tingale convergence theorem, we know that a finite M1

exists and Mt ! M1 almost surely. Since the Mt con-

verge, the sequence of expected values EŒMt � converge

to EŒM1�. This means that the sequence of expected val-

ues form a Cauchy sequence, so the difference between

elements of the sequence goes to zero,

Dt , EŒMtC1� � EŒMt �

D EŒEŒMtC1j�t � � EŒMt j�t �� ! 0:

Substituting the idealized optimal learning rate into this

expression gives

Dt DEŒ�..��
t � �t /

>.��
t � �t / C .��

t � �t /
>.�� � ��

t //2

..��
t � �t /

>.��
t � �t / C t r.˙//�1�: (22)

Since the Dt ’s are a sequence of nonpositive random

variables whose expectation goes to zero and that the

variances are bounded (by assumption), the square portion

of Eq. 22 must go to zero almost surely. This quantity

going to zero implies that either �t ! �� or �t ! ��
t . If

�t D ��
t , then �t is a local optima under the assumption

that the two parameter (� and � for the ELBO) function

we are optimizing can be optimized via coordinate ascent.

Putting everything together gives us that �t goes to a local

optima almost surely.


