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AN ADAPTIVE LINEAR APPROXIMATION ALGORITHM FOR
COPOSITIVE PROGRAMS∗

STEFAN BUNDFUSS† AND MIRJAM DÜR‡

Abstract. We study linear optimization problems over the cone of copositive matrices. These
problems appear in nonconvex quadratic and binary optimization; for instance, the maximum clique
problem and other combinatorial problems can be reformulated as such problems. We present new
polyhedral inner and outer approximations of the copositive cone which we show to be exact in the
limit. In contrast to previous approximation schemes, our approximation is not necessarily uniform
for the whole cone but can be guided adaptively through the objective function, yielding a good
approximation in those parts of the cone that are relevant for the optimization and only a coarse
approximation in those parts that are not. Using these approximations, we derive an adaptive linear
approximation algorithm for copositive programs. Numerical experiments show that our algorithm
gives very good results for certain nonconvex quadratic problems.

Key words. copositive cone, copositive programming, quadratic programming, approximation
algorithms
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1. Introduction. In this paper we are concerned with the topic of conic formu-
lations and relaxations for binary and quadratic problems. Semidefinite relaxations
have been proposed as a strong method to obtain good bounds for many combinatorial
optimization problems. Quist et al. [21] suggested that one might get tighter relax-
ations by looking at cones other than the semidefinite one. Bomze et al. [3] were the
first to observe that certain combinatorial problems like the maximum clique problem
can equivalently be reformulated as a linear optimization problem over the cone of
so-called completely positive matrices. A matrix A is called completely positive if it
can be decomposed as A = BBT with an entrywise nonnegative matrix B. There is a
large amount of papers on complete positivity in the linear algebra literature (a good
survey is [1]), but the optimization community has only recently become aware of the
connections between the fields.

The completely positive cone C∗ is the dual cone of the cone C of copositive
matrices. Formally, these cones are defined as

C = {A ∈ S : xT Ax ≥ 0 for all x ∈ Rn
+}

(where S is the set of symmetric n× n matrices), and

C∗ =

{
k∑

i=1

viv
T
i : vi ∈ Rn

+ for all i = 1, . . . , k

}
.

Both C and C∗ are closed, convex, pointed, full dimensional, nonpolyhedral cones. It
can be shown that the interior of C is the set of strictly copositive matrices: int(C) =
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{A ∈ S : xT Ax > 0 for all x ∈ Rn
+ \ {0}}. The interior of C∗ has recently been

characterized in [10]. The extremal rays of C∗ are known to be the rank one matrices
vvT with v ≥ 0, while characterizing the extremal copositive matrices is an open
problem. Both cones are related to the cones N of nonnegative symmetric matrices
and S+ of symmetric positive semidefinite matrices, since

C ⊇ S+ +N and C∗ ⊆ S+ ∩ N .

Interestingly, for n× n-matrices of order n ≤ 4, equality holds in the above relations,
whereas for n ≥ 5, both inclusions are strict; see [1]. In contrast to N and S+, the
cones C and C∗ are not tractable: It is known that testing whether a given matrix is
in C is co-NP-complete (cf. [16]). Consequently, restating a problem as an optimiza-
tion problem over one of these cones does not resolve the difficulty of that problem.
However, we believe that getting a good understanding of the conic formulations will
help to improve the solution strategies for both binary and nonconvex quadratic prob-
lems. Moreover, in some cases copositive formulations motivate stronger semidefinite
relaxations.

Up to now, the list of problems known to have representations as completely
positive programs has grown to include standard quadratic problems [3], the stable set
problem [15, 9], the quadratic assignment problem [20], and certain graph-partitioning
problems [19]. Burer [6] showed the very general result that every quadratic problem
with linear and binary constraints can be rewritten as such a problem. More precisely,
he showed that a quadratic binary problem of the form

min xT Qx + 2cT x

s. t. aT
i x = bi, i = 1, . . . , m,

x ≥ 0,

xj ∈ {0, 1}, j ∈ B,

(with Q not necessarily positive semidefinite) can equivalently be written as the fol-
lowing linear problem over the cone of completely positive matrices:

min 〈Q, X〉+ 2cT x

s. t. aT
i x = bi, i = 1, . . . , m,

〈aia
T
i , X〉 = b2

i , i = 1, . . . , m,

xj = Xjj , j ∈ B,(
1 x
x X

)
∈ C∗.

This means that any nonconvex quadratic integer problem can equivalently be written
as a linear problem over a convex cone, i.e., a convex optimization problem which has
no nonglobal local optima. It is an open question whether problems with general
quadratic constraints can similarly be restated as completely positive problems.

In this paper we develop an algorithm to solve the dual problem, i.e., the opti-
mization problem over the copositive cone which can be stated in the form

(CP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ C
with C, Ai ∈ Rn×n, bi ∈ R.
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32 STEFAN BUNDFUSS AND MIRJAM DÜR

Our approach is based on new polyhedral inner and outer approximations of the
copositive cone which we show to be exact in the limit. In contrast to previous ap-
proximation schemes, our approximation is not necessarily uniform for the whole cone
but can be guided adaptively through the objective function, yielding a good approx-
imation in those parts of the cone that are relevant for the optimization and only a
coarse approximation in those parts that are not. Using these approximations, we
derive an adaptive linear approximation algorithm for copositive programs. We show
that our algorithm gives very good results for certain nonconvex quadratic problems.

Note that (CP) is related to the problem of testing whether a given matrix is
in C∗: From the fact that the cone C is the dual of C∗ we have

A /∈ C∗ ⇔ ∃X ∈ C : 〈A, X〉 < 0
⇔ ∃X ∈ C : 〈I + E, X〉 = 1, 〈A, X〉 < 0
⇔ min{〈A, X〉 : 〈I + E, X〉 = 1, X ∈ C} < 0.

(Here I denotes the identity and E the all ones matrix, and 〈I + E, X〉 = 1 serves as
a normalization constraint.) This minimization problem is of the form (CP), so an
algorithm to solve (CP) can be used to decide whether or not A ∈ C∗. It is an open
question how a matrix A known to be in C∗ can be factorized into A = BBT , cf. [2]
and [14] for attempts to answer this question.

1.1. Notation. Throughout the paper we use the following notation: The non-
negative orthant is denoted by Rn

+, and the unit vectors are denoted by ei. For a given
vector v or matrix M , the relations v ≥ 0 and M ≥ 0 will be understood entrywise.
We write S to denote the cone of symmetric matrices, N = {A ∈ S : A ≥ 0} to
denote the cone of (entrywise) nonnegative matrices, and S+ = {A ∈ S : A � 0} to
denote the cone of positive semidefinite matrices. Dimensions of the cones will always
be obvious from the context and therefore not stated explicitly. As usual, the inner
product in S is defined as 〈A, B〉 := trace(AB).

1.2. Relations to previous work. Since we will compare our algorithm to
existing approaches, we briefly summarize previous work on copositive programming.
Copositivity of a matrix is defined by positivity of a quadratic form, whence previous
approaches have used various conditions which ensure positivity of polynomials.

For a given matrix M ∈ S, consider the polynomial

PM (x) :=
n∑

i=1

n∑
j=1

Mijx
2
i x

2
j .

Clearly, M ∈ C if and only if PM (x) ≥ 0 for all x ∈ Rn. A sufficient condition for
this is that PM (x) has a representation as a sum of squares (sos) of polynomials.
Parrilo [17] showed that PM (x) allows a sum of squares decomposition if and only
if M ∈ S+ + N , yielding again the relation S+ + N ⊆ C. Using similar reasoning,
Parrilo [17] defined the following hierarchy of cones (cf. also [15] and [4]) for r ∈ N:

Kr :=

{
M ∈ S : PM (x)

(
n∑

i=1

x2
i

)r

has an sos decomposition

}
.

Parrilo showed S+ + N = K0 ⊂ K1 ⊂ . . . , and int(C) ⊆ ⋃
r∈N
Kr, so the cones

Kr approximate C from the interior. Since the sos condition can be written as a
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system of linear matrix inequalities (LMIs), optimizing over Kr amounts to solving a
semidefinite program (SDP).

Exploiting a different sufficient condition for nonnegativity of a polynomial, de
Klerk and Pasechnik [15], cf. also Bomze and de Klerk [4], define

Cr :=

{
M ∈ S : PM (x)

(
n∑

i=1

x2
i

)r

has nonnegative coefficients

}
.

de Klerk and Pasechnik showed that N = C0 ⊂ C1 ⊂ . . . , and int(C) ⊆ ⋃r∈N
Cr. Each

of these cones is polyhedral, so optimizing over one of them is solving an LP.
Refining these approaches, Peña et al. [18] derive yet another hierarchy of cones

approximating C. Adopting standard multiindex notation, where for a given multi-
index β ∈ Nn we have |β| := β1 + · · · + βn and xβ := xβ1

1 · · ·xβn
n , they define the

following set of polynomials

Er :=

⎧⎨⎩ ∑
β∈Nn,|β|=r

xβxT (Pβ + Nβ)x : Pβ ∈ S+, Nβ ∈ N
⎫⎬⎭ .

With this, they define the cones

Qr :=

{
M ∈ S : xT Mx

(
n∑

i=1

x2
i

)r

∈ Er

}
.

They show that Cr ⊆ Qr ⊆ Kr for all r ∈ N, with Qr = Kr for r = 0, 1. Similar
to Kr, the condition M ∈ Qr can be rewritten as a system of LMIs. Optimizing over
Qr is therefore again an SDP.

It is a common feature of all these approximation hierarchies that they approx-
imate C uniformly and do not take into account any information provided by the
objective function of the optimization problem. Moreover, in all these approaches the
system of LMIs (resp. linear inequalities) gets large quickly as r increases, meaning
that the dimension of the SDPs increases so quickly that current SDP-solvers can
only solve problems over those cones for small values of r, i.e., r ≤ 3 at most.

In contrast to this, in our approach the approximation of C can be guided through
the objective function in such a way that a fine approximation is reached in those
regions of C which are relevant for the optimization, and little computational effort
goes to approximating those regions of C which are not. The dimension (i.e., the
number of variables) of the linear subproblems in our algorithm is constant, though the
number of constraints grows. Moreover, solving a relaxation of a copositive program
over one of the cones introduced above provides in general just a relaxation and no
information on the quality of the corresponding bound (an exception is [4]). Our
approach works not only with inner approximations of C, but simultaneously with
outer approximations. Therefore, it provides exact information on the approximation
error and the accuracy of the solution.

We are not aware of comparable approximation schemes for the (dual) cone C∗.
A recent attempt to solve optimization problems over C∗ is a descent algorithm by
Jarre et al. [13]. We remark that another recent contribution to the field of copositive
programming is a unified theory of KKT type optimality conditions and duality by
Eichfelder and Jahn [11].
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1.3. Outline of the paper. We start in section 2 by reviewing criteria for
copositivity of a matrix. Based on these criteria, we develop inner and outer polyhe-
dral approximations of C in section 3. With these cones, we state our algorithm for
copositive programs and prove convergence (section 4). In section 5 we discuss how
the algorithm can be fine-tuned and which details make an implementation efficient.
Finally, we present numerical results in section 6.

2. Criteria for copositivity. In this section, we review some conditions for
copositivity that we developed in [5]. These conditions will be the basis for approx-
imations of the copositive cone C which we introduce in the next section. We start
with the following:

Observation. Let ‖ · ‖ denote any norm on Rn. We have
(a) A is copositive ⇔ xT Ax ≥ 0 for all x ∈ Rn

+ with ‖x‖ = 1,
(b) A is strictly copositive ⇔ xT Ax > 0 for all x ∈ Rn

+ with ‖x‖ = 1.
If we choose the 1-norm ‖ · ‖1, then the set ΔS := {x ∈ Rn

+ : ‖x‖1 = 1} is the
so-called standard simplex. The copositivity property then translates to

xT Ax ≥ 0 for all x ∈ ΔS ,

i.e., we search for conditions which ensure that the quadratic polynomial xT Ax is
nonnegative over a simplex. A convenient way to describe polynomials with respect
to a simplex is to use barycentric coordinates: Let Δ = conv{v1, . . . , vn} be a simplex
and

x =
n∑

i=1

λivi with 1 =
n∑

i=1

λi.

Then λ1, . . . , λn ∈ R are called the barycentric coordinates of x with respect to Δ.
The representation of the quadratic form in these coordinates reads

xT Ax =

(
n∑

i=1

λivi

)T

A

⎛⎝ n∑
j=1

λjvj

⎞⎠ =
n∑

i,j=1

vT
i Avjλiλj .

The polynomials λ2
1, . . . , λ

2
n and 2λiλj (i �= j) appearing in this representation are

called Bézier–Bernstein polynomials, and the coefficients vT
i Avj are the corresponding

Bézier–Bernstein coefficients. Since all λi are nonnegative on Δ, the next lemma is
immediate:

Lemma 2.1. Let Δ = conv{v1, . . . , vn} be a simplex. If vT
i Avj ≥ 0 for all

i, j ∈ {1, . . . , n}, then xT Ax ≥ 0 for all x ∈ Δ.
If Δ is the standard simplex ΔS = conv{e1, . . . , en}, then this lemma shows that

A is copositive if 0 ≤ eT
i Aej = aij for all i, j. This is the well-known property that

any (entrywise) nonnegative matrix is copositive. This condition can be refined by
looking at so-called simplicial partitions of ΔS :

Definition 2.2. Let Δ be a simplex in Rn. A family P = {Δ1, . . . , Δm} of
simplices satisfying

Δ =
m⋃

i=1

Δi and int Δi ∩ int Δj = ∅ for i �= j

is called a simplicial partition of Δ. For convenience, we denote by VP the set of all
vertices of simplices in P, and by EP the set of all edges of simplices in P.
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Simplicial partitions are a useful tool in many branches of applied mathematics.
A good survey on this topic including convergence results is [12].

It is easy to see that a simplicial partition can be generated through the following
“radial” subdivision of Δ = conv{v1, . . . , vn}: let w ∈ Δ \ {v1, . . . , vn}, which is
uniquely represented by

w =
n∑

i=1

λivi, with λi ≥ 0,

n∑
i=1

λi = 1.

For each index i with λi > 0, form the simplex Δi obtained from Δ by replacing
the vertex vi by w, i.e., Δi = conv{v1, . . . , vi−1, w, vi+1, . . . , vn}. The collection of all
those Δi is a simplicial partition of Δ. If w is a point on one of the longest edges
of Δ, the above procedure is called bisection of the simplex along the longest edge.
Generating a nested sequence of subsimplices of Δ through midpoint bisection along
the longest edge has the nice property that this sequence converges to a singleton.
This property is sometimes referred to as “exhaustiveness”. It can be generalized
from midpoint bisection to settings where the bisection point is an almost arbitrary
point on one of the longest edges; see [12] for a detailed discussion.

Using this concept, the following theorem gives sufficient conditions for coposi-
tivity which generalize the aforementioned relation that A is copositive if all aij ≥ 0:

Theorem 2.3. Let A ∈ S, let P be a simplicial partition of ΔS.
(a) If uT Av ≥ 0 for all {u, v} ∈ EP and vT Av ≥ 0 for all v ∈ VP , then A is

copositive.
(b) If uT Av > 0 for all {u, v} ∈ EP and vT Av > 0 for all v ∈ VP , then A is

strictly copositive.
Proof. To show (a), it is sufficient to prove nonnegativity of xT Ax for x ∈ ΔS .

So choose an arbitrary x ∈ ΔS . Then x ∈ Δ for some Δ ∈ P . By assumption,
uT Av ≥ 0 for all combinations of vertices of this simplex Δ which, by Lemma 2.1,
implies xT Ax ≥ 0. Part (b) is shown analogously.

We define the diameter δ(P) of a partition P to be

δ(P) := max
{u,v}∈EP

‖u− v‖.

Once a partition gets finer and finer, one will eventually capture more and more strictly
copositive matrices. In the limit we get a necessary condition for strict copositivity:

Theorem 2.4. Let A ∈ S be strictly copositive. Then there exists ε = ε(A) > 0
such that for all finite simplicial partitions P of ΔS with δ(P) ≤ ε we have

uT Av > 0 for all {u, v} ∈ EP and vT Av > 0 for all v ∈ VP .

Proof. The detailed proof can be found in [5]. It relies on strict positivity of
the bilinear form xT Ay on the diagonal of the compact set ΔS ×ΔS , followed by a
continuity argument.

Observe that the ε in Theorem 2.4 certainly depends on the matrix A, i.e., there
is not a single ε that works uniformly for all strictly copositive A. Indeed, the ε relates
to how “ill-conditioned” A is.

3. Polyhedral approximations. In this section, we present polyhedral inner
and outer approximations of the cone C.
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3.1. Inner approximation of C. We use the sufficient condition of Theorem 2.3
to define inner approximations of C. As before, consider a simplicial partition P =
{Δ1, . . . , Δm} of ΔS , and let VP denote the set of all vertices of simplices in P , and
EP the set of all edges of simplices in P . For a given partition P , define

IP := {A ∈ S : vT Av ≥ 0 for all v ∈ VP ,

uT Av ≥ 0 for all {u, v} ∈ EP}.
Note that given the vertices u,v, an expression of the form uT Av ≥ 0 is a linear
inequality for the entries of A. Therefore, IP is a polyhedral cone.

Obviously, IP depends on the partition P . If P1 and P2 are two simplicial parti-
tions of the same simplex, we call P2 a refinement of P1 if for all Δ ∈ P1 there exists
a subset PΔ ⊆ P2 which is a simplicial partition of Δ.

We have the following properties:
Lemma 3.1. Let P ,P1,P2 denote simplicial partitions of ΔS . Then
(a) IP is a closed convex polyhedral cone,
(b) IP ⊆ C, i.e., IP is an inner approximation of C,
(c) if P2 is a refinement of P1, then IP1 ⊆ IP2 .
Proof. (a) is obvious from the definition. (b) follows from Theorem 2.3. To

prove (c), let A ∈ IP1 , let Δ2 ∈ P2, and let u, v be two arbitrary vertices of Δ2

(possibly equal). We have to show uT Av ≥ 0. Since P2 is a refinement of P1, there
exists a simplex Δ1 ∈ P1 with Δ2 ⊆ Δ1. Therefore, u and v are convex combinations
of the vertices v1, . . . , vn of Δ1, i.e., u =

∑n
i=1 λivi and v =

∑n
i=1 μivi with λi, μi ≥ 0

for all i ∈ {1, . . . , n} and
∑n

i=1 λi = 1 =
∑n

i=1 μi. Since vT
i Avj ≥ 0 for all i, j due to

A ∈ IP1 , we have

uT Av =
n∑

i,j=1

λiμjv
T
i Avj ≥ 0.

Therefore, A ∈ IP2 .
Example 3.2. If P = {ΔS}, i.e., the partition consists only of the standard

simplex, then

IP = {A ∈ S : aij ≥ 0 for all i, j = 1, . . . , n} = N ,

i.e., I{ΔS} equals the cone N of nonnegative matrices.
Consider instead the partition P2 = {Δ1, Δ2} which is derived from P by bisecting

the edge {e1, e2} at the midpoint w := 1
2 (e1 + e2). We get Δ1 = conv{w, e2, . . . , en}

and Δ2 = conv{e1, w, e3, . . . , en}. For the definition of IP2 this means that the
inequality eT

1 Ae2 ≥ 0 (i.e., a12 ≥ 0) corresponding to the bisected edge is removed
and replaced by a number of new inequalities. More precisely,

IP2 = {A ∈ S : aij ≥ 0 for all {i, j} �= {1, 2},
ai1 + ai2 ≥ 0 for all i = 1, . . . , n,

a11 + 2a12 + a22 ≥ 0}.
This defines a larger cone, i.e., a better approximation to C. Observe that the system
defining IP2 is redundant. This property will cause some difficulty later in the paper,
cf. section 5.2. A reduced representation is

IP2 = {A ∈ S : aij ≥ 0 for all {i, j} �= {1, 2},
a11 + a12 ≥ 0,

a22 + a12 ≥ 0}.
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This is a reduction from n2 + n− 1 to n2 inequalities; i.e., already O(n) inequalities
are redundant after a single bisection step.

The next theorem shows that a sequence of simplicial partitions {P�} yields a
sequence of polyhedral inner approximations {IP�

} that will eventually approximate C
with arbitrary precision, provided that the diameter δ(P) of the simplicial partition
goes to zero.

Theorem 3.3. Let {P�} be a sequence of simplicial partitions of ΔS with δ(P�)→
0. Then we have

int C ⊆
⋃
�∈N

IP�
⊆ C, and consequently C =

⋃
�∈N

IP�
.

Proof. Take A ∈ int C, i.e., A strictly copositive. Then Theorem 2.4 implies
that there exists �0 ∈ N, such that A ∈ IP�0

. Therefore A ∈ ⋃�∈N
IP�

, and hence
int C ⊆ ⋃�∈N

IP�
. From Lemma 3.1, we have IP�

⊆ C for all � ∈ N, so
⋃

�∈N
IP�
⊆ C.

Finally, C =
⋃

�∈N
IP�

since C = int C.
This shows that our approach generates a sequence of approximating polyhedral

cones N = IP0 ⊂ IP1 ⊂ . . . ⊂ C in a similar way as the approaches described in
section 1.2. To compare our approximations to the hierarchy of polyhedral cones Cr

by Bomze and de Klerk [4], observe that C0 = N = I{ΔS}. For C1, it is shown in [4]
that A ∈ C1 if and only if

aii ≥ 0, i ∈ {1, . . . , n},
aii + 2aij ≥ 0, i �= j,

aij + ajk + aki ≥ 0, i < j < k.

To see the difference between the approaches, consider dimension n = 2 for simplicity,
in which case the above system describing C1 reduces to

(3.1) a11 ≥ 0, a22 ≥ 0, a11 + 2a12 ≥ 0, a22 + 2a12 ≥ 0.

Consider the partition P1 = {conv{e1, v}, conv{v, e2}} with v = 1
2 (e1 + e2). The

corresponding system of inequalities for IP1 is then

aii ≥ 0, i ∈ {1, 2},(3.2)
a11 + a12 ≥ 0,(3.3)
a22 + a12 ≥ 0,(3.4)

plus the redundant inequality vT Av ≥ 0. Obviously, system (3.2)–(3.4) is implied
by (3.1), and therefore IP1 ⊇ C1. As the matrix A =

(
1 −1
−1 1

)
fullfills (3.2)–(3.4)

but not (3.1), we have IP1 �= C1. It is easy to see that for v = λe1 + (1 − λ)e2 with
λ ∈ [13 , 2

3 ] we have IP1 � C1, whereas for the other values of λ we get IP1 �⊃ C1. These
arguments extend to higher dimensions, but get much more technical there.

Comparing our approximation with S++N , it is clear that there is no partition P
such that IP ⊃ S+ +N because in dimension n = 2 we have S+ +N = C, while IP
is a polyhedral subset of C. However, depending on the subdivision strategy it is
possible to construct partitions with IP �⊂ S+ +N .

3.2. Outer approximation of C. As before, consider a simplicial partition P
of ΔS , let VP denote the set of all vertices in P , and define

OP := {A ∈ S : vT Av ≥ 0 for all v ∈ VP}.
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It is easy to see that, similar to IP , the set OP is polyhedral, as well. In analogy to
Lemma 3.1, we have the following properties:

Lemma 3.4. Let P ,P1,P2 denote simplicial partitions of ΔS . Then
(a) OP is a closed convex polyhedral cone,
(b) OP ⊇ C, i.e., OP is an outer approximation of C,
(c) if P2 is a refinement of P1, then OP2 ⊆ OP1 .
Proof. (a) is obvious from the definition. (b) If A ∈ C, then xT Ax ≥ 0 for all

x ∈ ΔS . Since VP ⊂ ΔS , the statement follows. (c) We have VP1 ⊆ VP2 . Therefore,
the set of inequalities describing OP1 is a subset of the set of inequalities describing
OP2 , and hence OP2 ⊆ OP1 .

Example 3.5. If P consists only of the standard simplex, i.e., P = {ΔS}, then

OP = {A ∈ S : aii ≥ 0 for all i}.
This corresponds to the well-known fact that a copositive matrix necessarily has
nonnegative entries on the diagonal. Observe that O{ΔS} is not pointed.

Performing a midpoint bisection of the edge {e1, e2} gives the new vertex w :=
1
2 (e1 + e2) and the resulting partition P2 yields the set

OP2 = {A ∈ S : aii ≥ 0 for all i, a11 + 2a21 + a22 ≥ 0},
a smaller set and better approximation to C.

The sequence of outer approximations {OP�
} converges to the copositive cone as

the partitions P� get finer.
Theorem 3.6. Let {P�} be a sequence of simplicial partitions of ΔS with δ(P�)→

0. Then we have

C =
⋂
�∈N

OP�
.

Proof. Lemma 3.4(b) implies C ⊆ ⋂�∈N
OP�

. To see the reverse, take A /∈ C. Then
x̄T Ax̄ < 0 for some x̄ ∈ ΔS . From continuity it follows that there is an ε-neighborhood
Nε(x̄) of x̄ such that

(3.5) xT Ax < 0 for all x ∈ Nε(x̄).

Let P ∈ {P�} be some partition with δ(P) < ε. Then there is a simplex Δ ∈ P with
x̄ ∈ Δ, and hence a vertex v of Δ with ‖x̄− v‖ < ε, so v ∈ Nε(x̄). From (3.5), we see
that vT Av < 0, whence A /∈ OP . Therefore, A /∈ ⋂�∈N

OP�
.

3.3. Approximations of the dual cone C∗. Recall that the dual cone of C
is the cone C∗ of completely positive matrices. By duality, the dual cone of an inner
(resp. outer) approximation of C is an outer (resp. inner) approximation of C∗. Indeed,
it is not difficult to see that for any partition P of ΔS

I∗P =

⎧⎨⎩ ∑
{u,v}∈EP

λuv(uvT + vuT ) +
∑

v∈VP

λvvvT : λuv, λv ∈ R+

⎫⎬⎭ ⊇ C∗
is an outer approximation of C∗, and

O∗
P =

{∑
v∈VP

λvvvT : λv ∈ R+

}
⊆ C∗
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is an inner approximation of C∗. From Theorems 3.3 and 3.6 we immediately get
that if {P�} is a sequence of simplicial partitions of ΔS with δ(P�) → 0, then the
approximations converge, i.e.,

C∗ =
⋂
�∈N

I∗P�
and C∗ =

⋃
�∈N

O∗
P�

.

4. An adaptive approximation algorithm for copositive programs. We
now turn to the problem of solving an optimization problem over the copositive cone.
The difficulty of such a problem lies in the cone condition. If the copositive cone
is replaced by a linear inner or outer approximation, we get a linear program whose
optimal value is a lower, respectively upper, bound of the optimal value of the original
problem. We first state our algorithm and illustrate its behavior with a small example.
After that, we study convergence of the algorithm.

4.1. Algorithm framework. We state the algorithm for copositive programs
of the form

(CP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ C.
Given a solution accuracy ε > 0, Algorithm 1 computes an ε-optimal solution

of (CP), i.e., a feasible solution X with 〈C,Xopt〉−〈C,X〉
1+|〈C,Xopt〉|+|〈C,X〉| < ε. Note that the algo-

rithm also provides the valid lower (resp. upper) bounds 〈C, XI〉 (resp. 〈C, XO〉).

Algorithm 1 ε-approximation algorithm for (CP).

1: set P = {ΔS}
2: solve the inner LP

(ILP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ IP
let XI denote the solution of this problem

3: solve the outer LP

(OLP)
max 〈C, X〉
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m

X ∈ OP

let XO denote the solution of this problem

4: if 〈C,XO〉−〈C,XI〉
1+|〈C,XO〉|+|〈C,XI〉| < ε, then

5: STOP: XI is an ε-optimal solution of (CP)
6: end if
7: choose Δ ∈ P
8: bisect Δ = Δ1 ∪Δ2

9: set P ← P \ {Δ} ∪ {Δ1, Δ2}
10: go to 2.
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(a) Gap: ∞ (b) Gap: 1.0000 (c) Gap: 0.2143

(d) Gap: 0.0478 (e) Gap: 0.0118 (f) Gap: 0.0030

Fig. 4.1. Iterations for Example 4.1.

In this prototype algorithm it is not specified how a simplex is selected in Step 7
or how the bisection is performed in Step 8. Here lies some freedom which allows us
to guide the partitioning procedure adaptively in a way that is advantageous for the
optimization. The choice of the partitions also influences the convergence behavior
and finiteness of the algorithm.

We will discuss these points later in more detail in section 5. First, we illustrate
the behavior of this algorithm with a small example:

Example 4.1. Consider the problem

max
〈(

0 0
0 1

)
, X

〉
s. t.

〈(
2 1
1 2

)
, X

〉
= 2

X ∈ C.
The sequence of iterations is displayed in Figure 4.1. In this simple example, the

cone C of symmetric copositive matrices is a cone in R3. The feasible set is therefore a
two-dimensional set which is displayed with the curved line in the figure. The upward
arrow indicates the direction of the objective function. The solid line represents the
inner approximating cones IP , whereas the dashed lines represent the outer approxi-
mating cones OP . The symbols × and + indicate the subproblem optimal solutions
(computed by an interior point solver in this example). For the starting partition,
the outer approximation is unbounded, a consequence of the fact that O{ΔS} is not
pointed. “Gap” denotes the difference 〈C, XO〉 − 〈C, XI〉.

Observe that the feasible set is approximated with high accuracy in those parts
which are important for the optimization, whereas the irrelevant parts are not refined.
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4.2. Convergence. We proceed to investigate convergence of Algorithm 1. Con-
vergence of this algorithm relies on convergence of the approximating cones IP�

and OP�
as described in section 3. Therefore, we need the assumption that δ(P�)→ 0

as �→∞ for the partitions generated in the algorithm. Note that by construction of
Algorithm 1 we have the monotonicity IP�

⊂ IP�+1 and OP�+1 ⊂ OP�
.

Further, observe that feasibility of (CP) implies feasibility of (OLP), but not nec-
essarily feasibility of (ILP). Therefore, we need assumptions which imply that (ILP)
will eventually become feasible in the course of the iterations. This is done by assum-
ing that there exists a strictly feasible point by which we mean a solution X̂ of the
linear system 〈Ai, X̂〉 = bi for all i = 1, . . . , m with X̂ ∈ int(C).

Moreover, the feasible set of the outer approximation problem (OLP) may be
unbounded even if the feasible set of (CP) is compact; cf. Example 4.1. The next
theorem shows, however, that in this case the feasible set of the outer approximation
eventually becomes bounded as the algorithm progresses.

Theorem 4.2. Assume the feasible set of (CP) is bounded and contains a strictly
feasible point. Assume further that in every iteration of Algorithm 1 the selection of
Δ and the bisection into Δ = Δ1 ∪Δ2 is performed in such a way that the generated
sequence {P�} of partitions fulfills δ(P�)→ 0 as �→∞. Let (ILPP�

) (resp. (OLPP�
))

denote the inner (resp. outer) approximation LPs corresponding to partition {P�} in
Steps 2 and 3 of Algorithm 1, and let XI� (resp. XO�) denote the optimal solutions
of (ILPP�

) (resp. (OLPP�
)). Then

(a) there exists �0 ∈ N such that the feasible set of (ILPP�
) is nonempty and

bounded for any � ≥ �0; the corresponding optimal solution XI� is then feasible
for (CP);

(b) there exists �1 ∈ N such that the feasible set of (OLPP�
) is nonempty and

bounded for any � ≥ �1;
(c) both sequences {XI�} and {XO�} have accumulation points, and any accu-

mulation point of either sequence is optimal for (CP).
Proof. Let X∗ denote an optimal solution of (CP), and let X̂ be a strictly feasible

solution of (CP). Let A := {X ∈ S : 〈Ai, X〉 = bi for i = 1, . . . , m} denote the
subspace of points satisfying the linear constraints. We use the notation max(P ) to
denote the optimal value of a maximization problem (P ).

(a) Since IP�
⊆ C for any � ∈ N, the feasible sets of (ILPP�

) are all bounded.
As X̂ is a strictly copositive matrix, it follows from Theorem 3.3 that there
exists �0 ∈ N such that X̂ ∈ IP�0

. Since also X̂ ∈ A, the feasible set A∩IP�0

of (ILPP�0
) is nonempty, and so are the feasible sets of (ILPP�

) for all � ≥ �0.
Therefore, any such (ILPP�

) has an optimal solution XI� which, by IP�
⊆ C,

is feasible for (CP).
(b) Since (CP) is feasible, the feasible set A∩OP�

of any (OLPP�
) is nonempty,

as well. To show boundedness, assume by contradiction that A ∩ OP�
is

unbounded for all � ∈ N. Take an arbitrary X ∈ A∩C. Then by polyhedrality
of A∩OP�

, the set

D� := {D ∈ S : ‖D‖ = 1, X + αD ∈ A ∩ OP�
for all α ≥ 0}

is nonempty for any �. The monotonicity OP�
⊇ OP�+1 implies D� ⊇ D�+1

for all �. Moreover, closedness of A ∩ OP�
implies closedness of D�, whence

all D� are compact. Using a theorem of Cantor, we infer that the intersection
of all D� is nonempty, i.e., there exists D̂ ∈ ⋂�∈N

D�. But then {X + αD̂ :



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

42 STEFAN BUNDFUSS AND MIRJAM DÜR

α ≥ 0} ⊂ A ∩OP�
for all �, and therefore

{X + αD̂ : α ≥ 0} ⊂
⋂
�∈N

(A ∩OP�
) = A∩

⋂
�∈N

OP�
= A ∩ C.

This contradicts the assumption that A ∩ C is bounded, and consequently
there exists �1 ∈ N such that A∩OP�

is bounded for all � ≥ �1.
(c) We first show the statement for the sequence {XI�}. An accumulation point

exists because the sequence {XI�}�≥�0 is contained in the compact feasible
set of (CP). Let Xa denote an accumulation point of {XI�}. From the inner
approximation property, we have 〈C, XI�〉 ≤ max(CP) for all � ≥ �0, so the
same must hold for the accumulation point, i.e.,

(4.1) 〈C, Xa〉 ≤ max(CP).

To see the converse, consider points Zλ := λX∗ + (1 − λ)X̂ for λ ∈ (0, 1).
By construction, Zλ is strictly feasible for (CP), i.e., strictly copositive. By
Theorem 3.3, for each such λ there exists �λ ∈ N such that Zλ ∈ IP�

for all
� ≥ �λ. Therefore,

〈C, Xa〉 = sup
�∈N

max(ILPP�
) ≥ lim

λ↗1
〈C, Zλ〉 = 〈C, X∗〉 = max(CP).

Combined with (4.1), this proves that Xa is optimal for (CP).
Next, we show the statement for the sequence {XO�}. An accumulation point
exists because the sequence {XO�}�≥�1 is contained in the compact feasible
set of (OLPP�1

). Let XA denote an accumulation point of {XO�}. From the
outer approximation property we have 〈C, XO�〉 ≥ max(CP) for all �, so the
same must hold for the accumulation point, i.e.,

〈C, XA〉 ≥ max(CP).

The reverse inequality follows from XA ∈ ⋂�∈N
OP�

= C, which shows that
XA is an optimal solution of (CP).

If the assumptions of Theorem 4.2 are not fulfilled, the situation gets more in-
volved:

If the feasible set of (CP) is empty because A = ∅, then (OLP) is infeasible
in the very first iteration. If the feasible set of (CP) is empty because A does not
intersect C, then obviously all inner approximations (ILPP�

) are infeasible, as well, but
unfortunately infeasibility of (ILP) is no certificate of infeasibility of (CP). Detection
of infeasibility of (CP) is only possible if (OLP) is infeasible. We observed that in
numerical examples, infeasibility of (CP) was detected through infeasibility of an outer
approximation (OLPP�

) in the course of the iterations. In exceptional cases, however,
this may fail: If the set A is parallel to an face of C induced by the hyperplane
H := {X ∈ C : vT Xv = 0}, then the outer approximations remain feasible unless the
partitioning process eventually generates v as a vertex in VP by pure chance.

If (CP) is feasible but has no strictly feasible point, i.e., the feasible set is contained
in the boundary of C, then clearly all outer approximations are feasible, but the inner
approximations are most likely all infeasible, unless the inner approximation happens
to touch the boundary of C in the right portion.

If (CP) is unbounded, then in most practical cases the inner approximation will
also be unbounded in some finite iteration. In any case, we have the following:
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Theorem 4.3. Assume that (CP) has a strictly feasible solution. If (CP) is
unbounded, then

lim
�→∞

max(ILPP�
) =∞.

Proof. If (CP) is unbounded, then there exists a sequence {X̃n} of feasible solu-
tions such that limn→∞〈C, X̃n〉 = ∞. Let X̂ be a strictly feasible solution of (CP).
Then Xn := 1

2 X̂ + 1
2X̃n is strictly feasible for all n ∈ N, and

lim
n→∞〈C, Xn〉 =∞.

By Theorem 2.4, for each n ∈ N there exists an index �n such that Xn ∈ IP�n
. Now

the assertion follows.

5. Fine-tuning the algorithm. As mentioned, Algorithm 1 contains freedom
in Steps 7 and 8 where the partitioning process of ΔS is guided. In this section, we
discuss how the partitioning is performed in each iteration. Moreover, we consider the
problem of redundancies appearing in the subproblems, and we show how the starting
partition can be tuned given a known heuristic solution.

5.1. Selecting and subdividing Δ. Generating a sequence of partitions {P�}
of ΔS with δ(P�) → 0 results in a sequence of cones {IP�

} and {OP�
} that approx-

imate C uniformly arbitrarily well. For optimization purposes, however, this is not
efficient. We would rather like to obtain a high approximation accuracy in those parts
of the feasible set which are relevant for the optimization, and we would like to invest
as little computational effort as possible into uninteresting parts. Therefore, we use
information gained through the objective function.

First note that, once an edge {u, v} is chosen for bisection, it makes sense to
partition all simplices containing this edge at the same time. Otherwise, {u, v} would
remain an edge in EP , and the corresponding cone IP would not change. We bisect
all simplices at the new vertex w := λu + (1 − λ)v. Experiments with various values
of λ showed no big effects, whence we simply use λ = 1

2 , i.e., we perform midpoint
bisection throughout.

Furthermore, observe that, when an edge {u, v} ∈ EP is splitted, the correspond-
ing inequality uT Xv ≥ 0 is removed from the system describing IP and replaced
by several new inequalities (cf. Example 3.2). All other inequalities present before
the bisection step are also present after bisection. As the optimal value of an LP
does not change if an inactive constraint is removed, it makes sense to consider for
splitting only edges {u, v} ∈ EP corresponding to active constraints, i.e., edges with
uT XIv = 0 (where XI is the solution of (ILP) in Step 2 of the algorithm). Only in
this way can we hope to improve the solution of the inner approximation.

We call an edge {u, v} ∈ EP with uT XIv = 0 an active edge and choose in Step 7
of Algorithm 1, the longest of the edges active in XI for bisection. The next lemma
states that such an edge always exists:

Lemma 5.1. In Step 7 of Algorithm 1, there always exists {u, v} ∈ EP with
uT XIv = 0.

Proof. The proof relies on the fact that the optimal value of an LP does not
change if constraints which are inactive at the solution are omitted. The solution XI

of problem (ILP) clearly fulfills XI ∈ IP , i.e., uT XIv ≥ 0 for all {u, v} ∈ EP and
vT XIv ≥ 0 for all v ∈ VP . Assume by contradiction that all constraints uT Xv ≥ 0
with {u, v} ∈ EP are inactive. Then the solution of (ILP) does not change if those
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constraints are omitted. But this means that XI also solves (OLP), whence the
algorithm stops in Step 4 with a zero gap.

Selecting in Step 7 of Algorithm 1 one of the longest active edges may not result
in a sequence of partitions {P�} with δ(P�) → 0. Instead of δ(P�), we now have to
monitor the length α(P�) of the longest active edge in P�. If this quantity goes to
zero, then the algorithm converges:

Theorem 5.2. Assume that (CP) has a strictly feasible point and a bounded
feasible set. Let {P�} be a sequence of simplicial partitions generated from P0 = {ΔS}
by bisecting one of the respective longest active edges {u�, v�}. Assume further that
the length α(P�) of the respective longest edge in P� goes to zero as �→∞. Then

lim
�→∞

max(ILPP�
) = max (CP).

Proof. Convergence Theorem 4.2 cannot be directly applied since we do not
necessarily have δ(P�)→ 0 as �→∞. However, we show that there exists a sequence
{R�} of partitions which fulfills max(ILPP�

) = max(ILPR�
) for all � ∈ N, and δ(R�)→

0 as �→∞.
Consider P� for some � ∈ N, and let X� be the solution of the inner approximation

problem (ILPP�
). Since α(P�) denotes the length of the longest active edge in P�,

edges in P� with length greater than α(P�) are necessarily inactive.
We construct R� from P� by splitting all edges in P� which are longer than α(P�).

If necessary, we repeat this process until no edge of length greater than α(P�) remains.
All edges which are in P� but not inR� were splitted in the process of constructingR�.
Therefore, they had length greater than α(P�) and thus were inactive with respect
to the optimal solution of (ILPP�

). Let (AUX) be the linear program which has the
same constraints as (ILPP�

) except for those induced by an edge from EP�
\ ER�

.
Removing inactive constraints from an LP does not change the optimal value, so
max(ILPP�

) = max(AUX). Adding constraints cannot increase the optimal value, so
max(ILPR�

) ≤ max(AUX) = max(ILPP�
). On the other hand,R� is by construction a

refinement of P�, so we immediately get max(ILPP�
) ≤ max(ILPR�

) from Lemma 3.1.
Consequently, the two values are equal.

Observe that δ(R�) ≤ α(P�). Now the assumption α(P�)→ 0 implies δ(R�)→ 0
as �→∞, so {R�} fulfills the prerequisites of Theorem 4.2, and hence

lim
�→∞

max(ILPP�
) = lim

�→∞
max(ILPR�

) = max (CP),

and the proof is complete.
In practical implementations of our algorithm, it may happen that α(P�) �→ 0 such

that convergence is not guaranteed. However, we never observed nonconvergence in
our test instances (cf. section 6). If convergence does not occur, it may be necessary
to alternate between bisection of the longest edge and bisection of the longest active
edge to maintain convergence.

Observe that Theorem 5.2 ensures convergence of the inner approximations but
not of the outer approximations. Therefore, the adaptive algorithm which splits along
the longest active edges might have a positive gap. In our experiments, this seemed
unproblematic. However, if the outer approximations fail to converge, a remedy is
to use additional points for the outer approximation in such a way that these points
eventually become dense in ΔS .

5.2. Handling redundancies. Given a partition P , the description OP :=
{A ∈ S : vT Av ≥ 0 for all v ∈ VP} does not contain any redundant inequalities.
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v

s

u w

(a) The inequalities induced by

vertex v and edge {s, v} are re-
dundant.

v

s

u w

(b) The inequality induced by

edge {s, v} is redundant.

Fig. 5.1. Two situations where redundancies occur.

This follows from the fact that for any v ∈ VP and H := {X ∈ S : vT Xv = 0} the set
H ∩ OP is a facet of OP . Indeed, assume vT Xv = 0 does not define a facet of OP .
Then there exist vertices v1, . . . , vs ∈ VP different from v, and α ∈ Rs

+ such that

vvT =
s∑

i=1

αiviv
T
i .

But this contradicts the fact that vvT is an extremal ray of C∗.
Consequently, the description of OP contains no redundancies. Note that every

bisection step generates precisely one additional vertex. Therefore, a partition P
with m simplices has |VP | = n + m vertices. This means that the size of the linear
systems describing OP grows moderately during the iterations of our algorithm.

In contrast to this, the representation

IP := {A ∈ S : vT Av ≥ 0 for all v ∈ VP ,

uT Av ≥ 0 for all {u, v} ∈ EP}

contains a lot of redundancy, as has already been shown in Example 3.2. Redundancies
are generated in situations as the following:

Example 5.3.
(a) For some partition P , let s, u, v, w ∈ VP , and let v = λu + (1 − λ)w with

some λ ∈ (0, 1). Assume that {s, u}, {s, v}, {s, w}, {u, v}, {v, w} ∈ EP . See
Figure 5.1(a) for a picture of this setting.
Then the inequalities uT Av ≥ 0 and wT Av ≥ 0 imply

(λu + (1− λ)w)T Av ≥ 0 ⇔ vT Av ≥ 0,

whence the latter inequality is redundant. Likewise, uT As ≥ 0 and wT As ≥ 0
imply vT As ≥ 0, showing that this is a redundant inequality, too.

(b) The situation is similar if we have v = λs + μu + (1− λ− μ)w with λ, μ, (1−
λ− μ) > 0 (see Figure 5.1(b)).
As before, sT Av ≥ 0 is a convex combination of the inequalities sT As ≥ 0,
sT Au ≥ 0, and sT Aw ≥ 0, and is therefore redundant.
More complicated examples can be constructed analogously.
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v

u

(a) {u, v} ∈ I

v

u

p1(v) p2(v)

(b) {u, p1(v)}, {u, p2(v)} ∈ I

u

v

p1(u) p2(u)

(c) {v, p1(u)}, {v, p2(u)} ∈ I

Fig. 5.2. The three cases where e{u, v} is true. Edges which belong to the set I are drawn bold.

Observe that situations like in the example occur in abundance by construction
of the partition. In order to speed up our algorithm, it is therefore essential to find
a way to deal with these redundancies. Note that an n-dimensional simplex has
n + 1 vertices and

(
n+1

2

)
edges. Hence, for a partition P with m simplices, we have

|VP | + |EP | = 1
2m(n + 1)(n + 2), so the full system describing IP would have that

many constraints. This number grows too quickly, so we have to be careful to keep
the system irredundant.

Unfortunately, we can not simply eliminate redundant inequalities and forget
about them, since a redundant constraint may become irredundant in later iterations.
This happens if a redundant inequality is a convex combination of others, and an edge
corresponding to one of the “parent inequalities” is bisected in a later iteration. This
phenomenon makes it necessary to keep track of the history of all vertices and edges
in the partition. We do this by introducing suitable maps.

Definition 5.4. Assume that for all �, partition P�+1 is generated from P�

through bisection of an edge in EP�
. We call two vertices u, w ∈ VP parents of v, if

the edges {u, v} and {v, w} are edges of the partition P and there exists λ ∈ (0, 1)
such that v = λu + (1− λ)w. We call a map

p : VP → VP × VP

with the property that p(v) are parents of v a parent map.
For a given set I ⊂ EP and for {u, v} ∈ EP , we define the boolean function e as

e : {u, v} �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
true if {u, v} ∈ I

or {u, p1(v)}, {u, p2(v)} ∈ I

or {v, p1(u)}, {v, p2(u)} ∈ I

false else.

(See Figure 5.2 for an illustration). We write eI if it is necessary to emphasize that
e depends on the set I.

Note that for a partition P there may exist several parent maps. In what follows
it does not matter which one is used. The most natural one (which we use in our
implementation) is the “historical” parent map; i.e., if edge {u, v} is splitted at the
point w, we define p(w) = (u, v).

The next lemma states that if e{u, v} is true, then {u, v} is a redundant edge.
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Lemma 5.5. Let p be a parent map and let u, v ∈ VP . If e{u, v} = true, then
there exist {u1, v1}, {u2, v2} ∈ I and λ ∈ (0, 1) such that

uT Av = λuT
1 Av1 + (1− λ)uT

2 Av2 for all A ∈ S.

Proof. This follows immediately from the definitions.
Definition 5.6. Let {u, v} ∈ I. An edge {s, t} ∈ EP is said to depend on {u, v},

if eI(s, t) = true and eI\{{u,v}}(s, t) = false.
We use the set I to generate a less redundant description of IP . We start with

I = {{ei, ej} : i, j = 1, . . . , n}. If the partition is refined by splitting the edge
{u, w} ∈ I at the point v = λu + (1 − λ)w with some λ ∈ (0, 1), then the set I is
updated as follows:

• remove the edge {u, w} from I,
• insert the edges {u, v} and {v, w} into I,
• for all {s, t} ∈ EP : if {s, t} depends on {u, w}, then insert {s, t} into I.

The next lemma shows that the set I is indeed sufficient to describe the cone IP :
Lemma 5.7. If P is generated from the standard simplex by bisections and the

updating procedure for I described above is used, then

IP = II := {X ∈ S : uT Xv ≥ 0 for all {u, v} ∈ I}.
Proof. We have I ⊆ EP because the only edge leaving EP also leaves I, and every

edge inserted into I is an element of EP . Thus, II ⊇ IP .
Let {u, v} ∈ EP . Then {u, v} ∈ I or e{u, v} = true. Obviously the update

procedure maintains this property. Using Lemma 5.5, it follows that II ⊆ IP .
The third point of the update procedure requires knowledge of EP , whence we

have to store also this information. The set EP can also be updated efficiently:
Set E = {{ei, ej} : i, j = 1, . . . , n; i �= j}. Then obviously E = E{ΔS}. If an edge

{u, v} is bisected at a point w, the set E is updated as follows:
• remove the edge {u, v} from E,
• insert {u, w} and {w, v} into E,
• if {u, s} ∈ E and {v, s} ∈ E, then insert {w, s} into E.

The next lemma implies that this update procedure works, i.e., E = EP .
Lemma 5.8. Let {u, v}, {v, w}, {w, u} ∈ EP . Then there is a simplex Δ ∈ P such

that u, v, and w are vertices of Δ.
Proof. If u, v, w ∈ ΔS , then conv{u, v, w} ⊂ ΔS . Since P is a partition of ΔS ,

there exist Δ1, . . . , Δm ∈ P such that conv{u, v, w} ⊆ ⋃m
i=1 Δi. Let m be minimal in

the sense that conv{u, v, w} is not covered by any subset of {Δ1, . . . , Δm} and assume
m > 1. Then there exists a vertex s ∈ V{Δ1,...,Δm} \ {u, v, w} with s ∈ conv{u, v, w}.
Since P is constructed through bisections, there must be a vertex on one of the edges
{u, v}, {v, w}, {w, u}. This contradicts {u, v}, {v, w}, {w, u} ∈ EP .

5.3. Tuning the starting partition. Many interesting copositive programs
arise from dualization of a completely positive program of the form

(CP∗)
min 〈C, X〉
s. t. 〈Ai, X〉 = bi, i ∈ {1, . . . , m}

X ∈ C∗.
This holds in particular for many combinatorial problems. For example, the stability
number α(G) of a graph G = (VG, EG) fulfills (cf. [15])

1
α(G)

= min{〈Q, X〉 : 〈E, X〉 = 1, X ∈ C∗},
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where Q = (AG + I) and AG is the adjacency matrix of G. Often a good feasible
solution X of (CP∗) can be obtained through some heuristic procedure. For instance,
for any stable set S ⊂ VG take the vector x to be a suitably scaled version of the
characteristic vector of S, and take X to be xxT .

The dual of (CP∗) is a copositive program of the form

max
m∑

i=1

biyi

s. t. Z = C −
m∑

i=1

yiAi,

Z ∈ C, y ∈ Rm.

This form is equivalent to (CP); i.e., each copositive program can be transformed
from one form to the other.

By weak duality, for any feasible solution X of (CP∗) the value 〈C, X〉 is an upper
bound for the copositive problem, so it is desirable to initialize Algorithm 1 with an
outer approximation OP0 yielding a bound not worse than 〈C, X〉. The next lemma
states that this is always possible.

Lemma 5.9. Let X be feasible for (CP∗). Then there exists a simplicial partition
P such that the optimal value of the outer approximation (OLPP) is at most 〈C, X〉.

Proof. Since X ∈ C∗, it can be decomposed as X =
∑r

k=1 vkvT
k with v1, . . . , vr ∈

Rn
+. Set wk := vk

‖vk‖1
. Then wk ∈ ΔS , and therefore there exists a simplicial partition

P such that w1, . . . , wr ∈ VP . Let (Z, y) be an optimal (dual) solution of the outer
approximation, i.e., (C −∑m

i=1 yiAi) = Z ∈ OP . This implies

wT
k

(
C −

m∑
i=1

yiAi

)
wk ≥ 0 for all k ∈ {1, . . . , r}

⇔ ‖vk‖21wT
k

(
C −

m∑
i=1

yiAi

)
wk ≥ 0 for all k ∈ {1, . . . , r}

⇒
r∑

k=1

vT
k

(
C −

m∑
i=1

yiAi

)
vk ≥ 0

⇔ 〈C, X〉 −
m∑

i=1

yi〈Ai, X〉 ≥ 0

⇔ 〈C, X〉 ≥
m∑

i=1

yibi,

which was to be shown.
The partition P with w1, . . . , wr ∈ VP can be generated iteratively by performing

a radial subdivision as described in section 2 for each of the wi at a time. Observe
that in order to construct P it is necessary to have the decomposition X =

∑r
k=1 vkvT

k

(with vk ≥ 0 for all k) of the completely positive X . Determining this decomposition
for general X ∈ C∗ is a nontrivial task. However, in the combinatorial applications we
have in mind (max clique, QAP, 0/1-quadratic programming), every feasible solution
corresponds to a rank-one completely positive matrix X which can be utilized as
described above.
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6. Numerical results. We implemented our algorithm in C++ and tested our
implementation on a Pentium IV, 2.8GHz Linux machine with 1GB RAM. As a
solver for the linear subproblems we used COIN-OR Linear Program Solver (CLP,
Version 1.3.3).

We first report results obtained for some instances of the standard quadratic
optimization problem, i.e., the problem of minimizing a nonconvex quadratic form
over the standard simplex:

(6.1) min
x∈ΔS

xT Qx.

This is a well-studied problem which can be restated as the copositive program

max λ
s. t. Q− λE ∈ C,

λ ∈ R.

We first discuss the behavior of our algorithm on four examples taken from [4].
These authors solve the problems by using the LP-based approximations Cr and the
SDP-based approximations Kr discussed in section 1.2. As mentioned there, these
approaches provide only one-sided bounds on the optimum, without any information
on the solution quality. An exception is [4], where approximation estimates are given.
Those bounds, however, require knowledge or a good estimate of the range (maximum
minus minimum) of the quadratic form over ΔS .

The instances

Q1 =

⎛⎜⎜⎜⎜⎝
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

⎞⎟⎟⎟⎟⎠ and Q2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 1 0 1 1 1
0 0 1 1 1 0 1 0 1 0 1 1
0 1 0 1 1 0 1 1 0 1 0 1
0 1 1 0 0 1 1 1 1 0 0 1
1 0 0 1 1 1 1 0 0 1 1 0
1 0 1 0 1 1 0 1 1 0 1 0
1 1 0 1 0 1 0 1 1 1 0 0
1 1 1 0 1 0 1 0 1 1 0 0
1 1 1 1 0 0 1 1 0 0 1 0
1 1 1 1 1 1 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
are Examples 5.1 and 5.2 from [4] and correspond to the problem of determining the
clique number in a pentagon and an icosahedron, respectively. The optimal values
are 1

2 for Q1 and 1
3 for Q2, respectively. Our algorithm solves instance Q1 to optimality

(i.e., the gap between upper and lower bound is closed) in six iterations (0.01 sec) and
instance Q2 in 158 iterations (0.54 sec). In the latter instance we used the fact that
the reciprocal of the optimal value is integer such that both lower and upper bounds
could be rounded accordingly.

Using the approximating cones Cr and Kr , Bomze and de Klerk [4] obtain the
following results: for instance Q1, they get the bound 0 when using C0 and 1

3 when
using C1. The cones K0 and K1 yield the bounds 1√

5
and 1

2 , respectively. Hence, for
this instance K1 yields the exact solution.

For instance Q2, the respective numbers are 0 for the cone C1 and 0.309 for
the cone K1. In this case, the bound obtained by using K1 is not exact. To use
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higher order approximations Kr with r > 1 is difficult, since the dimension of those
problems is rapidly increasing. Bomze and de Klerk do not report a bound obtained
by using K2.

The next instance

Q3 =

⎛⎜⎜⎜⎜⎝
−14 −15 −16 0 0
−15 −14 −12.5 −22.5 −15
−16 −12.5 −10 −26.5 −16
0 −22.5 −26.5 0 0
0 −15 −16 0 −14

⎞⎟⎟⎟⎟⎠
is Example 5.3 from [4] and arises in a model in population genetics. Its optimal value
is −16 1

3 . Bomze and de Klerk report the bounds −21 for C1, while cone K1 gives the
exact result. Our algorithm takes 44 iterations (0.03 sec) to solve the problem with
an accuracy of 10−6.

Finally,

Q4 =

⎛⎜⎜⎜⎜⎝
0.9044 0.1054 0.5140 0.3322 0
0.1054 0.8715 0.7385 0.5866 0.9751
0.5140 0.7385 0.6936 0.5368 0.8086
0.3322 0.5866 0.5368 0.5633 0.7478

0 0.9751 0.8086 0.7478 1.2932

⎞⎟⎟⎟⎟⎠
corresponds to Example 5.3 from [4] after homogenization. This is an example coming
from portfolio optimization. The results reported in [4] are 0.3015 for C1 and 0.4839
for K1, which is optimal. Our algorithm takes 27 iterations (0.01 sec) to obtain an
accuracy of 10−6.

Next, we consider an example taken from Peña et al. [18]. For a graph with 17
vertices, they propose bounds on the clique number obtained by solving SDPs over the
cones Qr (cf. section 1.2). They state that using Q4 is beyond current computational
capabilities. This is indeed a hard instance: our algorithm solves this problem to
optimality in 14,411 iterations (20 hours, 18 min, and 5 sec). In this instance we
again used the fact that the reciprocal is integer to round the bounds appropriately.

We also tested some of the max-clique instances from the Second DIMACS Chal-
lenge ([8]). The smallest instance, Johnson 8-2-4, a graph with 28 vertices, was solved
to optimality in 946 iterations (1 min and 33 sec). We also solved the Hamming 6-4
instance, a graph with 64 vertices. This instance took 2,385 iterations (57 min and
52 sec). For all other instances from this library, our algorithm produced only poor
bounds within two hours of computation time (the best lower bound was usually 3,
and the upper bound stayed at +∞).

We also tried to solve other combinatorial problems like the quadratic assignment
problem using a formulation of Povh and Rendl [20]. However, for most of these
instances, our algorithm gave only trivial or weak bounds.

Finally, we generated random instances of the standard quadratic optimization
problem (6.1), where the entries of the symmetric matrix Q ∈ Rn×n were uniformly
distributed in [−n, n]. For each size, 100 instances where generated. The algorithm
was stopped when the relative gap between upper and lower bound was smaller than
10−6. The results are listed in Tables 6.1 and 6.2.

The first column in the tables denotes the problem dimension, i.e., the number
of variables. The 2nd and 3rd columns describe the average and maximal number of
iterations. Finally, the last four columns give information about the cpu-time.
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Table 6.1

Numerical results for randomly generated instances of the standard quadratic optimization prob-
lem, obtained on a Pentium IV, 2.8GHz Linux machine with 1GB RAM. All problems were solved
up to a relative tolerance of 10−6.

Iterations cpu-time (sec.)
n avg max init avg min max
10 4.25 38 0.0001 0.0034 0 0.04
30 3.26 26 0.0019 0.0056 0 0.05
50 3.78 40 0.0046 0.0124 0 0.11
100 3.32 34 0.0269 0.0557 0.01 0.68
200 2.97 35 0.1154 0.2202 0.04 3.02
500 3.17 27 0.5451 1.5483 0.38 14.26
750 2.92 23 1.9535 3.4373 0.88 30.24

1,000 3.14 29 2.5706 5.9362 1.48 59.89
1,500 4.33 75 5.9710 19.4610 3.51 366.35
2,000 2.85 24 11.4993 23.9875 6.26 225.21

Table 6.2

Numerical results for randomly generated instances of the standard quadratic optimization
problem, obtained on a 16 Dual-Core AMD OpteronTM 8220 machine with 2.8GHz frequency and
130GB RAM. Only one core was used in our computations. All problems were solved up to a relative
tolerance of 10−6.

Iterations cpu-time (sec.)
n avg max init avg min max

2,500 3.13 53 8.9037 30.3367 7.22 571.38
3,000 2.56 22 14.3911 34.5022 10.23 338.79
4,000 2.85 25 26.6361 70.8114 18.48 698.08
5,000 2.45 18 44.2364 101.155 31.18 872.96
7,000 2.45 23 91.2996 203.620 59.89 2,187.65
10,000 2.97 27 192.3010 477.258 116.08 5,184.74

The cpu-time was measured in two parts: The first part is the initialization time,
which is the time needed to set up the starting LP and feed it to the solver. The
initialization time is the same for all instances of the same size and is listed in the
column init. The second part is the actual solution time, which is the elapsed time
from solving the starting LP to termination of the algorithm. This time differs not
only with the size but also with the data of the instance. Therefore, the average,
minimum, and maximum solution times are stated in the respective columns.

As can be seen from Table 6.1, the solution times for these problems are not
bad. However, our algorithm requires a lot of memory, and for this reason higher
dimensional problems took more time on this computer due to memory swapping.
Therefore, we did some further experiments on a computer with larger memory: We
used a 16 Dual-Core AMD OpteronTM 8220 machine with 2.8GHz frequency and
130GB RAM. Our algorithm used only one of the CPUs. On this machine, we were
able to solve even higher dimensional problems in very reasonable time, as can be
seen in Table 6.2.

Observe that in all instances the number of iterations of our algorithm is very low
and comparable to interior point methods.

To provide some intuition on how difficult the problems in Tables 6.1 and 6.2 are
to solve to global optimality, we tried solving these problems with BARON [22] which
is available via the NEOS server. Obviously, it was impossible to solve 100 instances
for each dimension through the NEOS server. Therefore, we were only able to try a
few random instances, which admittedly only give a rough picture. Nonetheless, we
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believe that running 100 instances per dimension would not give an entirely different
pattern. Observe that on the NEOS server, each job is allotted a run time of 1,000
seconds only. NEOS currently uses version BARON 8.1.4.

We observed that for instances of size 10 the solution times of BARON were
similar to ours. With instances of size 30 and bigger, BARON did not succeed to
solve the problems to optimality within the given 1,000 seconds. For instances of size
250 we observed that BARON ran into memory problems and accordingly returned
an error message. So it seems that BARON cannot compete with our method for this
specific type of problems in large dimensions.

Bomze and de Klerk [4] also state some numerical results for randomly gener-
ated instances of the standard quadratic optimization problem. They did calculations
for the linear and semidefinite approximations resulting from the cones C1 and K1,
respectively. Compared with these results, our algorithm is much faster even in consid-
eration of the faster hardware, and is able to solve much bigger instances. Moreover,
we get a guaranteed solution accuracy of at least 10−6 for all instances.

7. Conclusions. We introduced new polyhedral inner and outer approximations
of the copositive cone and presented a solution algorithm for copositive programs
which uses this approximation scheme. The advantage of our algorithm is that it
does not approximate the copositive cone uniformly, but can be guided by the ob-
jective function. Numerical experiments show that the algorithm works very well for
quadratic programs over the simplex.

Open points of interest are:
• Can we use our method to solve other types of quadratic optimization prob-

lems? We tried to solve some box-constrained problems, but were unable to
solve even medium size instances.
• Can we tailor our method towards combinatorial problems like the quadratic

assignment problem, or can we find better copositive formulations of those
problems?

Our approach can easily be extended to optimization problems involving more
general notions of copositivity in the sense of [11]. Here one is concerned with matrices
which are copositive with respect to some general cone D, i.e., matrices that induce a
quadratic form nonnegative not over Rn

+ but over D. If D is polyhedral and pointed,
then it is easy to find a base B such that R+B = D. Instead of working with simplicial
partition of ΔS , one then has to work with partitions of B. The computational effort
of course increases if the structure of B is more complex. Also, we are not aware of
applications that necessitate optimization over D-copositive matrices, so we believe
the canonical setting is the most interesting, but see [7] for an application of the
problem of deciding D-copositivity of a matrix.

Acknowledgments. We are grateful to the referees for taking the time to pro-
vide detailed and highly valuable comments on this paper.
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