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Energy is an important consideration in the design and deployment of wireless sensor networks (WSNs) since sensor nodes are
typically powered by batteries with limited capacity. Since the communication unit on a wireless sensor node is the major power
consumer, data compression is one of possible techniques that can help reduce the amount of data exchanged between wireless
sensor nodes resulting in power saving. However, wireless sensor networks possess significant limitations in communication,
processing, storage, bandwidth, and power. Thus, any data compression scheme proposed for WSNs must be lightweight. In
this paper, we present an adaptive lossless data compression (ALDC) algorithm for wireless sensor networks. Our proposed
ALDC scheme performs compression losslessly using multiple code options. Adaptive compression schemes allow compression
to dynamically adjust to a changing source. The data sequence to be compressed is partitioned into blocks, and the optimal
compression scheme is applied for each block. Using various real-world sensor datasets we demonstrate the merits of our proposed
compression algorithm in comparison with other recently proposed lossless compression algorithms for WSNs.

1. Introduction

Wireless sensor networks (WSNs) are suitable for large
scale data gathering and they have become so increasingly
important for enabling continuous monitoring in many
fields. WSNs have find application in areas such as envi-
ronmental monitoring, industrial monitoring, health and
wellness monitoring, seismic and structural monitoring,
inventory location monitoring, surveillance, power mon-
itoring, factory and process automation, object tracking,
precision agriculture, disaster management, and equipment
diagnostics [1–5].

Sensor nodes in WSNs are generally self-organized and
they communicate with each other wirelessly to perform a
common task. The nodes are deployed in large number and
scattered randomly in an ad-hoc manner in the sensor field.

Each node is equipped with battery, wireless transceiver,
microprocessors, sensors, and memory. Once deployed, the
sensor nodes form a network through short-range wireless
communication. Data collected by each sensor node is
transferred wirelessly to the sink either directly or through
multihop communication.

Technological advances in microelectromechanical sys-
tems (MEMS) in the recent past have lead to the production
of very small size sensor nodes. The tiny size has placed
serious resource limitations on the nodes ranging from
a finite power supply, limited bandwidth for communi-
cation, limited processing speed, to limited memory and
storage space. Besides the size, other stringent sensor node
constraints include but are not limited to the following:
extremely low power consumption; ability to operate in
high density; must be cheap (low production cost) and be
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Table 1: Huffman coding Table A.

bi hi di
0 00 0

1 01 −1, +1

2 11 −3,−2, +2, +3

3 101 −7, . . . ,−4, +4, . . . , +7

4 1001 −15, . . . ,−8, +8, . . . , +15

5 10001 −31, . . . ,−16, +16, . . . , +31

6 100001 −63, . . . ,−32, +32, . . . , +63

7 1000001 −127, . . . ,−64, +64, . . . , +127

8 10000001 −255, . . . ,−128, +128, . . . , +255

9 1000000000 −511, . . . ,−256, +256, . . . , +511

10 10000000010 −1023, . . . ,−512, +512, . . . , +1023

11 10000000011 −2047, . . . ,−1024, +1024, . . . , +2047

12 10000000100 −4095, . . . ,−2048, +2048, . . . , +4095

13 10000000101 −8191, . . . ,−4096, +4096, . . . , +8191

14 10000000110 −16383, . . . ,−8192, +8192, . . . , +16383

Table 2: Huffman coding Table B.

bi hi di

0 1101111 0

1 11010 −1, +1

2 1100 −3,−2, +2, +3

3 011 −7, . . . ,−4, +4, . . . , +7

4 111 −15, . . . ,−8, +8, . . . , +15

5 10 −31, . . . ,−16, +16, . . . , +31

6 00 −63, . . . ,−32, +32, . . . , +63

7 010 −127, . . . ,−64, +64, . . . , +127

8 110110 −255, . . . ,−128, +128, . . . , +255

9 110111011 −511, . . . ,−256, +256, . . . , +511

10 110111001 −1023, . . . ,−512, +512, . . . , +1023

11 1101110101 −2047, . . . ,−1024, +1024, . . . , +2047

12 1101110100 −4095, . . . ,−2048, +2048, . . . , +4095

13 1101110000 −8191, . . . ,−4096, +4096, . . . , +8191

14 11011100011 −16383, . . . ,−8192, +8192, . . . , +16383

Table 3: Huffman coding Table C.

bi hi di
0 1001 0

1 101 −1, +1

2 00 −3,−2, +2, +3

3 01 −7, . . . ,−4, +4, . . . , +7

4 11 −15, . . . ,−8, +8, . . . , +15

5 10001 −31, . . . ,−16, +16, . . . , +31

6 100001 −63, . . . ,−32, +32, . . . , +63

7 1000001 −127, . . . ,−64, +64, . . . , +127

8 10000001 −255, . . . ,−128, +128, . . . , +255

9 1000000000 −511, . . . ,−256, +256, . . . , +511

10 10000000010 −1023, . . . ,−512, +512, . . . , +1023

11 10000000011 −2047, . . . ,−1024, +1024, . . . , +2047

12 10000000100 −4095, . . . ,−2048, +2048, . . . , +4095

13 10000000101 −8191, . . . ,−4096, +4096, . . . , +8191

14 10000000110 −16383, . . . ,−8192, +8192, . . . , +16383

Table 4: Decision regions for our proposed ALDC scheme.

F region Code option

F ≤ 3n 2-Huffman Table ALEC

3n < F ≤ 12n 3-Huffman Table ALEC

12n < F 2-Huffman Table ALEC

dispensable; be autonomous and operate unattended; and be
adaptive to the environment [6].

Due to the hardware constraints mentioned above, wire-
less sensor nodes can only be equipped with a limited power
source. In addition, the replacement of batteries for sensor
nodes is virtually impossible for most applications since
the nodes are often deployed in large numbers into harsh
and inaccessible environments. Thus, the lifetime of WSN
shows a strong dependence on battery lifetime. It is therefore
important to carefully manage the energy consumption of
each sensor node subunit in order to maximize the network
lifetime of WSN. Furthermore, wireless sensor nodes are also
constrained in terms of processing and memory. Therefore,
software designed for use in WSNs should be lightweight and
the computational requirements of the algorithms should be
low for efficient operation in WSNs.

Sensor nodes in WSN consume energy during sensing,
processing, and transmission. But typically, the energy spent
by a sensing node in the communication module for data
transmission and reception is more than the energy for
processing [1–4, 7–13]. One significant approach to conserve
energy and maximize network lifetime in WSN is through
the use of efficient data compression schemes [5, 8]. Data
compression schemes can be used to reduce the amount of
information being exchanged in a network resulting in a
saving of power. This savings due to compression directly
translate into lifetime extension for the network nodes [14].
Both the local single node that compresses the data as well as
the intermediate routing nodes benefits from handling less
data [15].

In order to use WSNs most effectively, efficient com-
pression schemes should be employed that not only reduce
the size of the streaming data but also require minimal
resources to perform the compression. Our aim in this
paper is to accomplish this for continuous data collection
applications in WSNs by exploiting temporal correlation
using a local data compression scheme which has been shown
to significantly improve WSN energy savings in real-world
deployments [15]. A careful study of local data compression
algorithms proposed in the literature for WSNs shows that
most of the algorithms cannot dynamically adjust to changes
in the source data statistics. Consequently, the compression
performance obtained by the algorithms is not optimal. We
therefore propose in this paper an adaptive lossless data
compression (ALDC) scheme for WSN. The algorithm has
the ability to adapt to changes in the source data statistics
to maximize performance. The proposed ALDC algorithm
compresses block of sampled data at a time using multiple
code options adaptively. Our proposed ALDC algorithm
operates in one pass and can be applied to multiple data
types.
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Table 5: Main characteristic of the datasets.

Deployment name Node ID Symbolic name Number of samples
Time interval

From day To day

LUCE 84 LU84 64913 23-Nov-06 17-Dec-06

HES-SO FishNet 101 FN101 12652 09-Aug-07 31-Aug-07

Le Génépi 20 LG20 21523 04-Sep-07 03-Oct-07

Table 6: Entropy of the original and residual data sets.

Data set H Hd

LU84 TEMP 10.07 4.05

FN101 TEMP 10.26 5.10

LG20 TEMP 10.25 6.82

LU84 RH 9.92 5.70

FN101 RH 9.61 5.73

LG20 RH 10.76 7.61

Seismic data 6.79 3.91

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 presents our proposed
ALDC algorithms. In Section 4, the proposed algorithm is
evaluated and compared with recent lossless compression
algorithms using real-world WSN data. Finally, we conclude
the paper in Section 5.

2. Related Work

Energy is typically more limited in WSNs than in other wire-
less networks because of the nature of the sensing devices and
the difficulties in recharging or changing their batteries. The
ability of data compression to provide energy efficiency rests
on the favourable trade off between computational energy
and transmission energy as recognized in the literature.
Any data compression scheme designed for use in WSNs
should be lightweight, and the computational requirements
of the algorithms should be low for efficient operation
due to WSNs constraints in terms of hardware, energy,
processing, and memory. For these reasons, researchers
have therefore designed and developed various compression
algorithms specifically for WSNs. There are two general
approaches for data compression in WSNs. One is the
distributed data compression approach and the other is
the local data compression approach. The distributed data
compression approach exploits the high spatial correlation
in data from fixed sensors node in dense networks. Some of
the main techniques under this approach include distributed
source coding (DSC) [16, 17], distributed transform coding
(DTC) [18, 19], distributed source modeling (DSM) [20,
21], and compressed sensing (CS) [22]. The distributed
compression approach however conserves energy at the
expense of information loss in the source data and for
this reason will not be considered. Instead the local data
compression approach that takes advantage of the temporal
correlation that exist in sampled sensor data to perform its
compression locally on each sensor node will be considered.

Some of the proposed local data compression algorithms
based on temporal correlation in WSNs include: lossy
algorithms (lightweight temporal compression (LTC) [14],
K-RLE [23], differential pulse code modulation-based opti-
mization (DPCM-Optimization) [24]; lossless algorithms
(sensor node LZW (S-LZW) [15], Lossless Entropy Com-
pression (LEC) [3], modified adaptive Huffman compres-
sion scheme [4], median-predictor-based data compression
(MPDC) [25], two-modal transmission (TMT) [26]). The
precision required by some application domains demands
sensor nodes with very high accuracy that cannot tolerate
measured data being corrupted by the compression process.
Thus, in this section, we will focus on lossless local data
compression algorithms.

The authors in [15] introduced a lossless compression
algorithm called S-LZW which is an adapted version of LZW
[27] designed specifically for resource constrained sensor
nodes. It uses adaptive dictionary techniques with dynamic
code length. The dictionary structure allows the algorithm
to adapt to changes in the input and to take advantage of
repetition in the sensed data. However, the algorithm suffers
from the growing dictionary problem and its compression
efficiency still needs to be improved.

In [3], the authors introduced Huffman coding into wire-
less sensor nodes. Their simple lossless entropy compression
(LEC) algorithm which was based on static Huffman coding
exploits the temporal correlation that exist in sensor data
to compute a compressed version using a small dictionary,
the size of the ADC resolution. The algorithm was par-
ticularly suitable for computational and memory resource
constrained sensor nodes. The algorithm is static. Hence,
the algorithm cannot adapt to changes in the source data
statistics. In the paper [4], the proposed algorithm was a
modified version of the classical adaptive Huffman coding.
The algorithm does not require prior knowledge of the
statistics of the source data and compression is performed
adaptively based on the temporal correlation that exists in
the source data. The drawback of this algorithm is that it
is computationally intensive. In [25], the authors propose a
compression algorithm that uses median predictor to decor-
relate the sensed data. The proposed algorithm is simple and
can be implemented in a few lines of code and uses the LEC
compression table. The algorithm has similar compression
complexity as LEC but lower compression efficiency. Since
the LEC algorithm outperforms it, the algorithm will not be
used for comparison with our algorithm.

In [26], the authors proposed a scheme called two-
modal transmission (TMT) for predictive coding. In the
first modal transmission, called compressed mode, the com-
pressed bits of error terms falling inside the interval [−R, R]
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Table 7: Compression performance comparison between ALDC with other recent lossless compression schemes.

Data set
Compression ratio (CR) %

LEC S-LZW ALDC with block size of 32 ALDC with block size of 48

LU84 TEMP 70.81 48.99 73.87 73.94

FN101 TEMP 65.39 30.35 67.44 67.48

LG20 TEMP 53.83 22.02 56.86 56.90

LU84 RH 62.86 31.24 65.50 65.54

FN101 RH 62.95 36.27 66.28 66.33

LG20 RH 48.67 21.93 52.80 52.87

Seismic data 69.72 43.33 73.41 73.38
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Figure 1: Functional block diagram of ALDC algorithm using the brute-force approach.

are transmitted. In the second modal transmission, called
noncompressed mode, the original raw data of error terms
falling outside the interval [−R, R] are transmitted instead
without compression. The modified predictive coding based
on the two-modal transmission approach solved the problem
of decreased coding efficiency due to the low performance of
large error terms prediction. A second-order linear predictor
was employed. The sink node was responsible for computing
the coefficient values of the linear predictor. Arithmetic
coding was chosen as the coding scheme. The authors
applied the optimal M-based alphabet. The drawback of
this compression algorithm is that it is computationally
intensive. As such, to implement the scheme in WSNs, the
sink node, which is not energy-limited, searches for the
optimal predictor’s coefficients, the optimal bound R and
the optimal M for M-based alphabet coding. These optimal
parameters are then transmitted to other sensor nodes to
enable them to perform predictive coding based on the two-
modal transmission algorithm.

The LEC algorithm is simple, and it requires low amount
of memory for its execution. It has low computational
complexity and gives the best lossless compression ratio
performance till date. But, the LEC algorithm cannot adapt
to changing correlation in sensor-measured data. Hence, the
compression ratio obtained and by extension the energy
saving obtainable is not optimal. This therefore gives room
for improvement. We in this paper, therefore propose a
new lossless data compression algorithm for WSNs called
Adaptive Lossless Data Compression (ALDC) algorithm.
Our proposed algorithm adapts to changes in the source

data statistics to maximize compression performance. Our
proposed ALDC algorithm operates in one pass using
multiple code options adaptively and can be applied to
multiple data types. With this improvement, our proposed
ALDC algorithm outperforms the LEC algorithm.

3. Adaptive Lossless Data Compression
Algorithm

In this section, we describe our proposed adaptive lossless
data compression (ALDC) algorithm. Adaptive compression
schemes allow compression to dynamically adjust to a
changing source. Our proposed ALDC Scheme performs
compression losslessly using two adaptive lossless entropy
compression (ALEC) code options adaptively. The two
ALEC code options, namely 2-Huffman Table ALEC and
3-Huffman Table ALEC, were originally presented in our
article titled “An Efficient Lossless Adaptive Compression
Algorithm for Wireless Sensor Networks.” The 2-Huffman
Table ALEC and the 3-Huffman Table ALEC are both
adaptive coding scheme that adaptively uses two Huffman
tables and three Huffman tables, respectively. The Huffman
tables used by the two ALEC code options are given in Tables
1, 2, and 3. The Huffman tables were designed and arrived
at after working with many real-world wireless sensor node
datasets with varied levels of correlation. While 2-Huffman
Table ALEC uses Huffman Coding Table A and Huffman
Coding Table B, 3-Huffman Table ALEC uses Huffman
Coding Table A, Huffman Coding Table B and Huffman
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Figure 2: Code Option Parameter versus Sum value of Block of 32 residual samples absolute values for (a) FN101 temperature data set, (b)
FN101 RH data set, (c) LU84 temperature data set, (d) LU84 RH data set, (e) LG20 temperature data set, and (f) LG20 RH data set.

Coding Table C. The two ALEC code options compresses
block of sampled data at a time. While the 2-Huffman
Table ALEC encodes block of sampled data in accordance
with the pseudocode in Algorithm 1, the 3-Huffman Table
ALEC encodes block of sampled data in accordance with the
pseudocode in Algorithm 2. The pseudocode of the encode
function called by both Algorithm 1 and Algorithm 2 is given

in Algorithm 3. The encode function encodes each di as a bit
sequence ci composed of two parts hi and li (i.e., ci = hi ∗ li):

li = (Index)|bi , (1)
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Figure 3: Code Option Parameter versus Sum value of Block of 48 residual samples absolute values for (a) FN101 temperature data set, (b)
FN101 RH data set, (c) LU84 temperature data set, (d) LU84 RH data set, (e) LG20 temperature data set, and (f) LG20 RH data set.

where

bi =
⌈

log2(|di|)
⌉

, (2)

Index =

⎧⎨
⎩
di di ≥ 0,(

2bi − 1
)

+ di di < 0.
(3)

Equation (3) returns the index position of each di within its
group. (Index)|bi denotes the binary representation of Index
over bi bits. bi is the category (group number) of di. It is
also the number of lower order bits needed to encode the
value of di. Note that if di = 0, li is not represented. Thus,
at that instance, ci = hi. Once ci is generated, it is appended
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Figure 4: Functional block diagram of ALDC algorithm using the decision regions approach.
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Figure 5: Frequency distribution plots of the raw test data sets: (a) LU84 temperature data set, (b) LU84 RH data set, (c) FN101 temperature
data set, (d) FN101 RH data set, (e) LG20 temperature data set, (f) LG20 RH data set, and (g) Seismic data set.
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Figure 6: Frequency distribution plots of the residue of the test data sets: (a) LU84 temperature data set (b) LU84 RH data set (c) FN101
temperature data set (d) FN101 RH data set (e) LG20 temperature data set (f) LG20 RH data set (g) Seismic data set.

to the bit stream which forms the compressed version of the
sequence of measures. Our proposed ALDC Scheme employs
the principle of predictive coding to better capture the
underlying temporal correlations that exist among sampled
data in continuous monitoring. In predictive coding, a linear
or nonlinear prediction models are used in the first stage,
while a number of coding schemes are used in the second
stage.

3.1. Prediction Model. The dynamic range of source symbols
is a key factor in achieving compression. For this reason,
we adopt a differential compression scheme to reduce the
dynamic range of the source symbols thereby increasing
its compressibility. The prediction approach adopted by us

uses a linear model that is limited to taking the differ-
ences between consecutive sampled data. For our intended
application which is the compression of environmental data
such as temperature, relative humidity and seismic data, this
prediction approach proves to be simple and efficient. In
addition, this also ensures that the computational complexity
of our compression scheme is as low as possible since sensor
nodes in WSNs have relatively low computational power.
Thus, the predicted sample x̂i is given by

x̂i = xi−1. (4)

That is, the predicted sample is equal to the last observed
sample. The residue (i.e., the error term) is then calculated
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Figure 8: CR versus block size achieved by the ALDC algorithm for
the FN101 temperature data set using the brute-force approach.

by subtracting the predicted sample from the current sample.
Hence, the residue di is the difference

di = xi − xi−1. (5)

In order to compute the first residue d1 we assume that

x0 = 2R−1, (6)

where R is the default measurement resolution of the
incoming data set (i.e., R is the dynamic range of the source
symbols under consideration). Note, each xi is a positive-
integer value in the range [0, 2R − 1] and it is represented
in binary on R bits. We choose x0 to be equal to the
central positive-integer value among the 2R possible positive-
integer values. In our intended application using the test
datasets, the default measurement resolution for the relative
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Figure 9: CR versus block size achieved by the ALDC algorithm for
the LG20 temperature data set using the brute-force approach.
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Figure 10: CR versus block size achieved by the ALDC algorithm
for the LU84 relative humidity data set using the brute-force
approach.

humidity and temperature datasets is 12 bits and 14 bits,
respectively. Therefore, for each application, x0 is known by
both the encoder and decoder. Consequently, the algorithm
is adaptable to different data sources since x0 is related to the
incoming data. The computed residue di is then used as input
to the entropy encoder. That is, di is used to losslessly encode
xi using the coding schemes described in Section 3.2.

3.2. Entropy Coding. In order to achieve maximal compres-
sion ratio and by extension maximal energy saving, we
propose to implement ALDC algorithm that compresses
blocks of sampled data at a time using two ALEC code
options adaptively. Our proposed ALDC algorithm operates
in one pass and can be applied to different data types. Our
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Figure 11: CR versus block size achieved by the ALDC algorithm
for the FN101 relative humidity data set using the brute-force
approach.
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Figure 12: CR versus block size achieved by the ALDC algorithm
for the LG20 relative humidity data set using the brute-force
approach.

entropy coding problem is how to efficiently encode block
of n integer-valued samples at a time using two ALEC code
options adaptively. Two different approaches to solve this
entropy coding problem will be discussed in this section. The
approaches are, namely, the brute-force approach and the
decision regions approach.

3.2.1. The Brute-Force Approach. Figure 1 shows the func-
tional block diagram of the implementation of the ALDC
algorithm using the brute-force approach. Code option 1
and code option 2 represents 2-Huffman Table ALEC and
3-Huffman Table ALEC, respectively. From Figure 1, the
block of n-samples xi is preprocessed by the simple unit-
delay predictor to obtain block of n-residues di. di is then
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Figure 13: CR versus block size achieved by the ALDC algorithm
for the Seismic data set using the brute-force approach.
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Figure 14: CR versus block size achieved by the ALDC algorithm
for the LU84 temperature data set using the decision regions
approach.

encoded (compressed) by the adaptive coder using both code
options. The sizes of the encoded bitstreams generated by
using the two code options are then compared. The code
option that yields the smallest encoded bitstream size (i.e.,
highest compression) is then selected. The encoded bitstream
generated by this code option is then appended to the code
option identifier (ID) and thereafter sent to the sink. The
decoder uses the ID to identify the code option used in
encoding di. Repeat the procedure until the end of the source
data is reached. The pseudocode of the compress function
using the brute-force approach is given in Algorithm 4. The
brute-force approach guarantees that optimal compression
ratio is attained for each data set since it is always the best
code option that is selected for each block of n samples.
However, the brute-force approach requires more memory
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Figure 15: CR versus block size achieved by the ALDC algorithm
for the FN101 temperature data set using the decision regions
approach.
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Figure 16: CR versus block size achieved by the ALDC algorithm
for the LG20 temperature data set using the decision regions
approach.

(for buffering the encoded bitstreams of both code options
for comparison) and it is also computational intensive (since
encoding is done by both code options for each block of n-
samples di).

3.2.2. The Decision Regions Approach. As stated in
Section 3.2.1, the brute-force approach requires more
memory (for buffering the encoded bitstreams of both
code options for comparison) and it is also computational
intensive (since encoding is done by both code options for
each block of n-samples di). However, the sensor node has
stringent constraint in terms of memory, computational
power and energy. We therefore turn our attention to the
issue of selecting a code option that efficiently encode block
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Figure 17: CR versus block size achieved by the ALDC algorithm
for the LU84 relative humidity data set using the decision regions
approach.
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Figure 18: CR versus block size achieved by the ALDC algorithm
for the FN101 relative humidity data set using the decision regions
approach.

of n-samples di without using the brute-force approach
since it has been shown that the approach is unnecessarily
complex. In [28], the authors introduced a high performance
adaptive coding module using the brute-force approach
in the selection of a code option. Because the brute-force
approach is computationally exhaustive and/or hardware
demanding, the authors later proposed a simpler alternative
to the brute-force approach that uses a table of decision
regions that is solely based on the length of the fundamental
sequence of n-standard source samples (nonnegative
integers). The length of the fundamental sequence of
n-standard source samples is essentially the sum of the
n-standard source samples in a block plus n (the block
size). The calculated sum is then used alongside the table of
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Figure 19: CR versus block size achieved by the ALDC algorithm
for the LG20 relative humidity data set using the decision regions
approach.
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Figure 20: CR versus block size achieved by the ALDC algorithm
for the Seismic data set using the decision regions approach.

decision regions to select the best code option for encoding.
Thus, under this new approach, only one code option was
used per block of n-standard source samples. This led to a
lot of savings in times of both computational requirements
and hardware. Motivated by the simplicity of this decision
regions approach, we set out to find out if for our proposed
ALDC we can use similar decision regions approach defined
solely by certain sum expression for best code option
selection using empirical method.

To this end, using the brute-force approach discussed in
Section 3.2.1 alongside its pseudocode in Algorithm 4, we
generate the pattern of code options usage while compressing
each data set by repeating the following procedures for each
block of n-residues di until the end of the data set is reached:
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Figure 21: Performance comparison between the brute-force
approach and the decision regions approach of ALDC for the Lu84
temperature data set.
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Figure 22: Performance comparison between the brute-force
approach and the decision regions approach of ALDC for the FN101
temperature data set.

(a) Compute the sum of the absolute value of each
residual sample in a block of n-residues di. Store the
computed sum in the SUM array.

(b) Encode (compress) the block of n-residues di using
both code options (namely, 2-Huffman Table ALEC
and 3-Huffman Table ALEC).

(c) Select the best code option that yields the smallest
encoded bitstream size for each block of n-residues
di. If 2-Huffman Table ALEC is the best code option
selected, then the code option identifier (ID) of 2 is
generated and stored in the ID array, otherwise the
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Figure 23: Performance comparison between the brute-force
approach and the decision regions approach of ALDC for the LG20
temperature data set.
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Figure 24: Performance comparison between the brute-force
approach and the decision regions approach of ALDC for the Lu84
relative humidity data set.

code option identifier (ID) of 3 is generated instead
and stored in ID array.

Procedures (a) to (c) are repeated for block sizes of 32
and 48 for different data sets. Thereafter, we plotted the
ID arrays against the corresponding SUM arrays using data
markers only for the different test data sets. These plots are
given in Figures 2 and 3 for block size of 32 and 48 samples,
respectively. Note that, some of the data points in the plots
are plotted several times. As seen from the plots (Figures
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Figure 25: Performance comparison between the brute-force
approach and the decision regions approach of ALDC for the FN101
relative humidity data set.
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Figure 26: Performance comparison between the brute-force
approach and the decision regions approach of ALDC for the LG20
relative humidity data set.

2 and 3), the compression performance of the two code
options overlaps at two regions. For the block size of 32, the
two regions are the sum values in the range [80, 112] and
[368, 400]. Similarly, for block size of 48, the two regions
within which the performance of the two code options
overlaps are the sum values in the range [120, 168] and
[552, 600]. Depending on the block size (32 or 48), any sum
value in these two regions can be used as decision regions
boundary sum value resulting in approximately the same
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Figure 27: Performance comparison between the brute-force
approach and the decision regions approach of ALDC for the
Seismic data set.

compression ratio. For simplicity, we define the decision
regions boundary sum value as that sum value in each range
that is a multiple of block size. Thus, for the block size of 32,
with [80, 112] and [368, 400] as the two overlapping regions,
the decision regions boundary sum values are taken to be 96
(3×32) and 384 (12×32), respectively. Similarly, for the block
size of 48 in which the overlapping regions are [120, 168]
and [552, 600], the decision regions boundary sum values
are taken to be 144 (3 × 48) and 576 (12 × 48), respectively.
We conclude therefore from the foregoing that given block
size n, the two decision regions boundary sum values can
be computed as 3n and 12n, respectively, thereby making
the two decision regions boundary sum values multiples
of n (block size). The two decision regions boundary sum
values are indicated in the plots (Figures 2 and 3) as “First
boundary” and “second boundary” respectively. Table 4 gives
the summary of the decision regions used by our proposed
ALDC algorithm. Using Table 4, the encoding procedure
using the decision regions approach then simplifies to the
following steps:

(1) Compute the sum

F =
n∑

i=1

|di|. (7)

(2) Check if F ≤ 3n. If this condition is satisfied, then 2-
Huffman Table ALEC code option is selected and its
code option identifier ID is generated. The encoded
bitsream from the 2-Huffman Table ALEC is then
concatenated to ID. Otherwise, move to the next step.

(3) Check if 3n < F ≤ 12n. If this condition is satisfied,
then 3-Huffman Table ALEC code option is selected
and its code option identifier ID is generated. The

encoded bitsream from the 3-Huffman Table ALEC
is then concatenated to ID. Otherwise, move to the
next step.

(4) Check if 12n < F. If this condition is satisfied, then 2-
Huffman Table ALEC code option is selected and its
code option identifier ID is generated. The encoded
bitsream from the 2-Huffman Table ALEC is then
concatenated to ID.

The functional block diagram of the implementation of
the ALDC algorithm using the decision regions approach
is given in Figure 4. As will be seen in Section 4, the
compression performance of the ALDC decision regions
approach is almost the same with those obtained using
the brute-force approach. This shows the correctness of the
decision regions in Table 4 that were arrived at through
empirical observations. Thus, we recommend that users of
the ALDC compression scheme should use the decision
regions approach. The performance of the ALDC brute-force
approach only serves as benchmark to users of the ALDC
compression scheme.

3.3. Numerical Example Using the Decision Region Approach.
In this section, we present a numerical example to show
the steps of the ALDC algorithm using the decision regions
approach. Suppose a block of incoming temperature samples
with ADC resolution of 14 is: xi = {x1, x2, x3, . . . , xn} =
{8202, 8202, 8202, 8201, 8202, 8202, 8202, 8208}

(1) We compute the residues di by applying (5) and (6).
Thus, we have

di = {d1,d2,d3, . . . ,dn} = {10, 0, 0,−1, 1, 0, 0, 6}. (8)

(2) Applying (7), we compute the sum of the absolute
value of the residues in the block of 8-residues di.
That is, we compute

F =
8∑

i=1

|di| = 10 + 0 + 0 + 1 + 1 + 0 + 0 + 6 = 18. (9)

(3) Next, we determine the boundaries that define the
decision regions in Table 4:

The first boundary = 3n = 3× 8 = 24,
The second boundary= 12n = 12× 8 = 96.

(4) Next, we determine the F region using Table 4. Since
F = 18 < 24, that means F falls within the first
decision region. Thus, the 2-Huffman Table ALEC
is selected as the best code option for encoding di
and its code option identifier ID is generated. Note
that, since we are only using two code options, the
code option identifier ID is either “0” (for 2-Huffman
Table ALEC) or “1” (for 3-Huffman Table ALEC).

(5) Next, we encode di using Algorithm 1 and append
the encoded bitstream to the ID generated in step 4
above. The final output of the encoded values is:
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2TableALECencoder(di,n, code)
// encode() is the encode function
// di is the current residue value
// n is the block size (the number of residue values to be encoded at a time)
// code is the encoded bitstream of n di
// ∗denotes concatenation

// encode block of n di using the first Huffman Table of the 2-Huffman Table ALEC Coder
CALL encode() with block of n di and Table A RETURNING ci
SET ciA To ci
// compute the size of the encoded bitstream ciA
SET size A TO length(ciA)
// encode the same block of n di using the second Huffman Table of the 2-Huffman Table ALEC Coder
CALL encode() with block of n di and Table B RETURNING ci
SET ciB To ci
// compute the size of the encoded bitstream ciB
SET size B TO length(ciB)
// compare size A and size B and select the encoded bitstream with the least compressed size
IF size A <= size B THEN

// generate the table identifier of Table A
SET ID TO “0”
// append encoded bitstream ciA to ID
SET code TO ID ∗ ciA

ELSE
// generate the table identifier of Table B
SET ID TO “1”
// append encoded bitstream ciB to ID
SET code TO ID ∗ ciB

ENDIF
RETURN code

Algorithm 1: Pseudo-code of 2-Huffman Table ALEC.

“0 0 1001 1010 00 00 01 0 01 1 00 00 101 110”

The output is colour coded and separated from each
other for explanation purpose. The red “0” is a code identifier
ID that tells the decoder that it was 2-Huffman Table ALEC
code option that was used to encode the block of 8 samples.
The green “0” is a table identifier ID that tells the decoder
that it was Huffman Coding Table A given in Table 1 that was
used by the 2-Huffman Table ALEC code option for encoding
the block of 8 samples. Thus, encoding is done in accordance
with Algorithm 3 using Table 1. Note that, the encoding
function in Algorithm 3 encodes each sample as two parts:
Huffman code for the group and binary code representation
of the index position of each di in the group using bi bits. If
di is zero, then bi is also zero and at that instance, the binary
code representation is not required. Thus, the blue “1001”
and the pink “1010” represent the group and binary code
of residual value 10, respectively. Next, the two blue “00”
represent the group code of two residual values 0 since the
binary code representation is not required. Following next
is the blue “01” and pink “0” that, respectively, represent
the group and binary code of residual value −1. Next,
is the blue “01” and pink “1” that, respectively, represent
the group and binary code of residual value 1. Next, is
the two blue “00” that represents the group code of two
residual values 0. Finally, the blue “101” and the pink “110”

represent the group and the binary code representation of
residual value 6. Putting all the codes together, the final
output of the encoded values that are sent to the decoder is
001001101000000100110000101110 which is made up of a
total of 30 bits against 112 bits if the original sample values
were to be transmitted uncompressed. Thus, for the given
block of 8 incoming temperature samples, the total savings
in terms of bits is 82 bits. This translates to energy savings for
the sensor node since it has to now transmit fewer numbers
of bits over its radio.

4. Simulations and Analysis

To verify the effectiveness of our proposed algorithm, we
tested it against various real-world environmental data sets
discussed in Section 4.1. We considered relative humidity
data sets, temperature data sets, and seismic data set.
The compression performance was calculated in terms of
compression ratio, computed by using the following formula:

CR = 100×

(
1−

comp

orig

)
%, (10)

where comp is the number of bits obtained after compression
and orig is the uncompressed data size. Each uncompressed
sample data is represented by 16-bit unsigned integers.
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3TableALECencoder(di,n, code)
// encode() is the encode function
// di is the current residue value
// n is the block size (the number of residue values to be encoded at a time)
// code is the encoded bitstream of n di
// ∗denotes concatenation

// encode block of n di using the first Huffman Table of the 3-Huffman Table ALEC Coder
CALL encode() with block of n di and Table A RETURNING ci
SET ciA To ci
// compute the size of the encoded bitstream ciA
SET size A TO length(ciA)
// encode the same block of n di using the second Huffman Table of the 3-Huffman Table ALEC Coder
CALL encode() with block of n di and Table B RETURNING ci
SET ciB To ci
// compute the size of the encoded bitstream ciB
SET size B TO length(ciB)
// encode the same block of n di using the third Huffman Table of the 3-Huffman Table ALEC Coder
CALL encode() with block of n di and Table C RETURNING ci
SET ciC To ci
// compute the size of the encoded bitstream ciC
SET size C TO length(ciC)
// compare size A, size B and size C and select the encoded bitstream with the least compressed size
IF size A <= min(size B, size C) THEN

// generate the table identifier of Table A
SET ID TO “10”
// append encoded bitstream ciA to ID
SET code TO ID ∗ ciA

ELSEIF size B <= min(size A, size C) THEN
// generate the table identifier of Table B
SET ID TO “11”
// append encoded bitstream ciB to ID
SET code TO ID ∗ ciB

ELSEIF size C <= min(size A, size B) THEN
// generate the table identifier of Table C
SET ID TO “0”
// append encoded bitstream ciC to ID
SET code TO ID ∗ ciC

ENDIF
RETURN code

Algorithm 2: Pseudo-code of 3-Huffman Table ALEC.

4.1. Data Sets. Real-world environmental monitoring WSN
datasets from SensorScope [29] were used in our simulations.
We used relative humidity and temperature measurements
from three SensorScope deployments: Le Gènèpi Deploy-
ment, HES-SO FishNet Deployment and LUCE Deployment.
Publicly accessible data sets were used to make the compar-
ison as fair as possible. These deployments use a TinyNode
node [30] which comprises of a TI MSP430 microcontroller,
a Xemics XE120,5 radio and a Sensirion SHT75 sensor
module [31]. Both the relative humidity and temperature
sensors are connected to a 14-bit analog-to-digital converter
(ADC). The default measurement resolution for raw relative
humidity (raw h) and raw temperature (raw t) is 12 bits and
14 bits respectively. Each ADC output raw h and raw t are
converted into measure h and t in percentage and degree
Celsius respectively as described in [31]. The data sets that
are published on SensorScope deployments correspond to

physical measures h and t. But the compression algorithms
work on raw h and raw t. Therefore, before applying the
compression algorithm, the physical measures h and t are
converted to raw h and raw t by using the inverted versions
of the conversion functions in [31]. Table 5 summarizes the
main characteristics of the datasets. See [3] for further details
regarding the characteristics of these data sets. In addition,
we also used a seismic data set collected by the OhioSeis
Digital Seismographic Station located in Bowling Green,
Ohio, for the time interval of 2:00 PM to 3:00 PM on 21
September 1999 (UT) [32]. We compute the information

entropy H = −
∑N

i=1 p(xi)· log2p(xi) of the original data sets,
where N is the number of possible values of xi (the output of
the ADC) and p(xi) is the probability mass function of xi.

In addition, the information entropy Hd = −
∑N

i=1 p(di) ·
log2p(di) of the residual signal was also computed. These are
all recorded in Table 6.
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encode(di, TABLE,ci)
// di is the current residue value
// TABLE is the variable length Huffman codes used in encoding
// bi is the category (group number) of di
// bi is also the number of lower order bits needed to encode the value of di
// ci is the encoded bitstream of di
// hi is the variable-length Huffman code that codifies the category (group) of di
// li is the variable-length integer code that codifies the index position of di
// within its group (category)
// ∗denotes concatenation
// (Index)| bi denotes the binary representation of index over bi bits

// compute di category
IF di = 0 THEN

SET bi TO 0
ELSE

SET bi TO ⌈log2 (|di|)⌉
ENDIF
// extract hi the variable length Huffman code from TABLE
SET hi TO TABLE [bi]
// build ci
IF bi = 0 THEN

// li is not needed
SET ci TO hi

ELSE
// build li
SET li TO (Index)| bi
// build ci
SET ci TO hi ∗ li

ENDIF
RETURN ci

Algorithm 3: Pseudo-code of the encode () function.

Figure 5 shows the distribution plots of the raw test
data sets and Figure 6 shows the distribution of differences
between consecutive sample data (residue) of the test data
sets. While there are differences in distributions in raw data
as seen in Figure 5, the residual distributions as seen in
Figure 6 are similar. Whenever the residues of any data sets
have lower mean and lower standard deviation, their entropy
will be low. Hence, if entropy compression algorithms (like
our proposed scheme) are applied to a low entropy data set,
the compression ratio achievable will be high. Our proposed
ALDC scheme operates only on residues. Thus, since the
residual distributions of many real-world continuous mon-
itoring data sets are similar, our proposed ALDC (using
either the Brute-Force Approach or the Decision Regions
Approach) algorithm can be applied to different types of data
sets and still yields satisfactory compression ratios.” This is as
a result of the adaptive use of different Huffman coding tables
that handles different levels of data correlation (entropy) by
the two code options.

4.2. Compression Performance. The compression perfor-
mance of our proposed ALDC algorithm will be computed
using (10) for different values of n (block size) and for
the seven real-world data sets discussed in Section 4.1. In
Section 3.2, we presented two different approaches for the

implementation of the ALDC algorithm. These approaches
are the brute-force approach and the decision regions
approach. The performance of our proposed ALDC algo-
rithm will be evaluated for each of these two different
approaches. For our simulations, n (block size) takes the
value 1, 2, 4, 8, 16, 32, 48, 64, 80, 96, . . . 320.

4.2.1. Compression Performance Using the Brute-Force
Approach. For each data set, using the brute-force approach,
the compression performance of ALDC is computed for
different value of n. Figures 7, 8, 9, 10, 11, 12, and 13 shows
the compression ratio versus block size achieved by the
ALDC algorithm for the seven real-world data sets using the
brute-force approach. As evident from Figures 7 to 13, the
compression performance of ALDC algorithm for each of
the seven data sets using the brute-force approach increases
with respect to the increase in the block size. For very small
values of n, lower compression performances were obtained
due to high ID overhead cost incurred that overweigh
the compression benefits. However, the compression
performances obtained were significantly higher for block
sizes in the range 4 ≤ n ≤ 48. This is due to low ID overhead
cost together with high adaptability to changes in the sensed
data statistics for such block sizes. Values of n (block size)
beyond 48 results in less improvement to the compression
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BruteForceCompress(xi,xi−1,n, y )
// xi is the current sensor reading(s)
// xi 1 is the immediate past sensor reading(s)
// n is the block size (the number of samples read each time)
// y is the final encoded bitstream
// 2TableALECencoder() is the 2-Huffman Table ALEC encode function
// 3TableALECencoder() is the 3-Huffman Table ALEC encode function

// compute the residue di
SET di TO xi – xi−1

// encode the residue di
// encode block of n di using the 2-Huffman Table ALEC encode function
CALL 2TablesALECencoder() with block of n di RETURNING code
SET codeA To code
// compute the size of the encoded bitstream codeA
SET size A TO length(codeA)
// encode the same block of n di using the 3-Huffman Table ALEC encode function
CALL 3TablesALECencoder() with the same block of n di RETURNING code
SET codeB To code
// compute the size of the encoded bitstream codeB
SET size B TO length(codeB)
// compare size A and size B and select the encoded bitstream with the least compressed size
IF size A <= size B THEN

// generate the code option identifier for the 2-Huffman Table ALEC encoder
SET ID TO “0”
// append encoded bitstream codeA to ID
SET strm TO ID ∗ codeA

ELSE
// generate the code option identifier for the 3-Huffman Table ALEC encoder
SET ID TO “1”
// append encoded bitstream codeB to ID
SET strm TO ID ∗ codeB

ENDIF
// append bitstream strm to y
SET y TO y ∗ strm
RETURN y

Algorithm 4: Pseudo-code of the compress function of the ALDC using the brute-force approach.

ratio and the compression performance even degrades after
a certain point as can be seen in some of the plots. Thus,
for optimum compression performance using the ALDC
algorithm, the value of n (block size) could be fixed at 48
(n = 48).

4.2.2. Compression Performance Using the Decision Regions
Approach. The compression performance of our proposed
ALDC is computed for different value of n and for each of
the seven data sets using the decision regions approach. The
results are plotted in Figures 14, 15, 16, 17, 18, 19, and 20.
Figures 14 to 20 has the same features and characteristics
with the corresponding plots in Figures 7 to 13. Note that,
the range of the compression ratio achievable by ALDC for
each of the seven data sets is a function of the entropy
Hd (see Table 6 for the entropy of the residual data sets)
of the residual signal fed into the encoder. Thus, data
sets with low entropy (e.g., LU84 temperature data set)
yields high compression ratio, while data sets with high
entropy (e.g., LG20 relative humidity data set) yields low

compression ratio. Thus, the data feature that affects more
the compression performance of our proposed algorithm is
the entropy Hd of the residual signal fed into the encoder.
This confirms that ALDC is actually an entropy encoder.

4.2.3. Performance Comparison between the Brute-Force
Approach and the Decision Regions Approach. To ascertain
the correctness and effectiveness of our proposed decision
region approach method of implementing ALDC, we in this
section compare its compression performances (Figure 14 to
Figure 20) with those (Figure 7 to Figure 13) obtained using
the brute-force approach. For ease of comparison, we plotted
the corresponding figures of all the seven data sets on the
same plot. These plots are shown in Figure 21, 22, 23, 24,
25, 26, and 27. From the plots (Figure 21 to Figure 27), it
can be seen that the compression ratio performance achieved
by the decision regions approach of ALDC algorithm for
the seven data sets in use is almost the same and for some
data sets same with those obtained using the brute-force
approach. The slight difference noticed at some points is due
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to the overlapping performance of the two code options at
and around the two boundary regions. Overall, we can say
that the performance of the decision regions approach is
equivalent to that obtained using the brute-force approach.
The decision regions approach is computationally more
lightweight than the brute-force approach and it require
less resources which makes it suitable for implementation in
WSNs. In view of this, we recommend to every user of our
proposed ALDC algorithm to implement only the decision
regions approach. Henceforth, any mention of the ALDC
algorithm in this article should be taken to mean its decision
regions approach.

4.3. Performance Comparison with Other Lossless Compression
Schemes. In this section, we present our simulation results
that demonstrate the lossless compression performance and
effectiveness of our proposed ALDC algorithm. The lossless
compression performance of our proposed ALDC algorithm
using the decision regions approach (with block size of
32 and 48) and that of other recently proposed lossless
compression algorithms like LEC and S-LZW are given in
Table 7 for all the seven real-world data sets. The compres-
sion performance that was achieved by the S-LZW algorithm
was adopted from [3] with the following fixed parameters:
MINI-CACHE ENTRIES = 32, MAX DICT ENTRIES = 512,
BLOCK SIZE = 528 bytes, and DICTIONARY STRATEGY
= Frozen [3, 15]. In addition, the lossless compression
performance achieved by the LEC algorithm and recorded
in Table 7 were the result of our simulations of the LEC
algorithm following the descriptions in the original papers
as closely as possible. It can therefore be seen from Table 7
that, our proposed ALDC algorithm outperforms all the
other recently proposed lossless compression schemes for
WSNs. In addition, a good look at Figure 10 to Figure 16
shows that the compression performance of ALDC for block
size of 1 (i.e., when n = 1) is quite high (just trailing
the performances of LEC) and better than that achieved by
the S-LZW algorithm for all the seven data sets. Similarly,
with block size as small as say 4 (i.e., n = 4), the lossless
compression performance achieved by our proposed ALDC
algorithm using the decision regions approach is better than
that achieved by all the other previously proposed lossless
compression algorithms for all the seven data sets.

Sensor nodes transmit data in packets and many systems
recommend packet size of not more than 90 bytes. For
example, the TinyOS operating systems have sets the default
packet payload to 29 bytes. We therefore took advantage of
this inherent sensor node transmission mode by collecting
source samples in a buffer. We encode the samples in
the buffer together. Using the right buffer size (and/or
block size), encoding can be done in real-time. Thus, our
proposed ALDC algorithm has significant advantages over
other lossless compression schemes. While other schemes can
only be applied in delay-tolerant applications (e.g., S-LZW)
or real-time (delay-intolerant) applications (e.g., LEC), our
proposed ALDC scheme can be applicable in both scenarios.
Our proposed scheme achieved compression performance
up to 74.02% for the real-world datasets.

In terms of algorithm complexity, our proposed ALDC
algorithm is simple. When compared to the LEC algorithm,
our proposed algorithm requires only slightly more memory.
When compared to the S-LZW, our proposed algorithm
requires much less memory.

5. Conclusion

In this paper, we have presented a lightweight adaptive
lossless data compression algorithm for wireless sensor
networks. Our proposed ALDC Scheme performs com-
pression losslessly using two code options. Our proposed
ALDC algorithm is efficient and simple, and is particularly
suitable for resource-constrained wireless sensor nodes. Our
proposed ALDC compression scheme allows compression
to dynamically adjust to a changing source. Our proposed
algorithm reduce the data amount for transmission which
contributes to the energy saving. Additionally, our proposed
algorithm can be used in monitoring systems that have
different types of data and still provide satisfactory com-
pression ratios. Furthermore, our proposed ALDC algorithm
took into account the different real-time requirements on
data compression. Thus, our algorithm is suitable for both
real-time and delay-tolerant transmission. Our proposed
scheme achieved compression performance up to 74.02%
using real-world data sets. We also report and analyze using
real-world data sets the performance comparisons between
our proposed ALDC and other recently proposed lossless
compression schemes for WSNs like LEC and S-LZW. We
showed that our proposed ALDC algorithm outperforms all
the other recently proposed lossless compression schemes.
In future, we intend to carry out a formal mathematical
modeling and analyses of the Decision Regions Approach of
our proposed ALDC algorithm.
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