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Abstract. In the linear quadratic regulator (LQR) problem, the generation of control force depends on the
components of the control weighting matrix R. The value of R is determined while designing the controller and
remains the same later. Amid a seismic event, the responses of the structure may change depending the quasi-
resonance occuring between the structure and the earthquake signal. In this situation, it is essential to update
the value of R for conventional LQR controller to get optimum control force to mitigate the vibrations due to the
earthquake. Further, the constant value of the weighting matrix R leads to the wastage of the resources using
larger force unnecessarily where the structural responses are smaller. Therefore, in the quest of utilizing the
resources wisely and to determine the optimized value of the control weighting matrix R for LQR controller in
real time, a maximum predominant period 7, and particle swarm optimization-based method is presented
here. This method comprises of four different algorithms: particle swarm optimization (PSO), maximum
predominant period approach t™#* to find the dominant frequency for each window, clipped control algorithm
(CO) and LQR controller. The modified Bouc-Wen phenomenological model is taken to recognize the
nonlinearities in the MR damper. The assessment of the advised method is done on a three-story structure
having a MR damper at ground floor subjected to three different near fault historical earthquake time histories.
The outcomes are equated with those of simple conventional LQR. The results establish that the advised
methodology is more effective than conventional LQR controllers in reducing inter-story drift, relative

displacement, and acceleration response.
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1 Introduction

The increasing need for measures against the vibration, use
of vibration dampers, and avoidance technologies became a
lucrative field for researchers and engineers worldwide.
They are working rigorously to make infrastructures safer
for the humans through various means. Structural
vibration control has proved very helpful for this purpose.
Generally, large intensity earthquakes may lead to more
perilous forces on the higher floors. For the safety of the
structure and its occupants, it is necessary to increase the
resistance of the normal structure against earthquake by
incorporating control mechanism. In 1972, Yao gave the
notion of structural control since then this field has
emerged by leaps and bounds [1].The vibrations in the
structure can be kept in control by altering its stiffness,
providing extra damping and applying appropriate
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passive, active or semi-active counterforce, however, its
dynamic properties ought to remain unaltered [2]. To date,
a few control strategies like active passive and semi-active
were employed commendably which offer the prospects of
developing applications, improving efficacy and provide
better acceptability. Out of these, the semi-active control
strategy is being considered as a promising choice for
structural control nowadays. Semi-active control scheme
generally uses the dampers which have rheological
properties e.g. magneto-rheological (MR) damper [3].
The rheological materials used in MR dampers are capable
of varying their physical appearance proactively using very
low power [4]. The MR dampers can only absorb energy
which is being produced due to vibrations in the structure
by responding to its motion. Therefore, bounded input
bounded output (BIBO) stability is assured [5]. A model to
exhibit the capacities of the MR damper in light of the
Bouc-Wen hysteresis hypothesis was introduced in 1997
and employed successfully in a number of studies on semi-
active control strategy [4,6,7]. Several experiments were
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Fig. 1. (a) The cross-section of the MR damper (b) The modified mechanical Bouc-Wen model [6].

conducted on a scaled three-story prototype structure
having a MR damper which established the fact that the
effectiveness of a controller very much relies on the
algorithm used [8-11]. Some very commonly controllers are
LQR controller, sliding mode controller, LQG /H, control-
ler, fuzzy logic controller etc. [7,12-19].

Here in this approach, the LQR controller is considered
due to its simplicity though it has some inherent issues
reported in the literature [6], [20,21]. Panariell et al. (1997)
[22] proposed an algorithm based on carrying up-to-date
weighting matrices for the gain of the LQR controller from a
database of documented earthquake excitations. The need
for an offline repository of known earthquakes was the
limitation in this study. Keeping this limitation in mind,
Basu et al. (2008) [23] introduced modified TVLQR method
by updating weighting matrices using a constant multiplier
on the basis of DWT analysis. The value of this constant
multiplier is decided by the energy content in the distinctive
frequency groups over a period window and lies in the range
of [0,1]. Although the weighting matrices vary at resonance
condition, the constant multiplier was chosen offline in this
method. Therefore, offline data were still a requirement
[23,24]. The effectiveness of the LQR controlled system
depends on many parameterse.g., the state weighting matrix
Q and the control weighting matrix R. Although, difficult
but the selection of these matrices is preceded by a lot of
experimentation during designing of the controller. Because
these parameters directly influence the effectiveness of the
LQR controller, to determine them correctly in real time is
essential for their application in structural control.

In this article, a modified LQR method is presented to
determine the optimized value of control weighting matrix
R for tracking down the optimal control force of MR
damper in real time using PSO and maximum dominant
period 7'**. Every optimized control weighting matrix is
governeg by a small group of frequency, therefore,
vulnerabilities in system parameters can’t influence them.
The controller thus obtained has low-frequency switching
prerequisites unlike conventional LQR because the updat-
ing of the gain occurs only after an interval of a time
window. The advantage of using maximum dominant

period T** makes the proposed controller inherently fast in
comparison to the controllers which employ time-frequen-
cy approaches like WVT, STFT, DWT etc. [24,25]. A
three-story structure integrated with a MR damper at
ground floor is chosen to validate the efficacy of the
suggested approach. The results are equated with those
obtained using conventional LQR controller. It establishes
the ability of the proposed method in reducing the
vibrations during the event of an earthquake. Moreover,
the modified LQR controller not only decreases the relative
displacement, inter-storey drift and acceleration responses
of structures considerably but also reduces the cumulative
energy demand.

2 Modeling of magnetorheological damper

MR damper force relies on the displacement of the
structure and is highly nonlinear in nature. Therefore, a
model is required to realize the nonlinearities in the MR
damper. In light of the Bouc-Wen hysteresis model (Wen,
1976) a phenomenological model was given by Spencer
et al. (1997) [4]. This model was henceforth used to
demonstrate the capacities of MR dampers [5-9].

Equations (1)—(7) represent this model shown in
Figure 1(b).
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Fig. 2. MR damper response to a 2.5 Hz sinusoidal excitation with an amplitude of 1.5cm (a) Simulated force history (b)Force-

displacement (c) Force —Velocity.

(7)

The variable k; shows the stiffness of the accumulator
and a very small accumulator force is represented by its
initial displacement x,. The dashpots ¢y and ¢; represent
the damping perceived at large and low velocities
respectively. The parameter kqj represents the stiffness at
large velocities. The variables «, B, vy and A are the
hysteresis parameters for the MR liquid. An evolutionary
parameter z expresses the mechanism of reliance of the
response on history. A first order filter is given in equation
(7) with its output effective voltage v and commanded
voltage v. This first order filter demonstrates the dynamics
involved in attaining the rheological equilibrium by the
MR damper [4,25]. The parameters of the commercial MR
damper are given in Dyke et al. [9] utilized as a part of the
present work. Simulation tests were conducted on the
damper applying different voltage levels to characterize its
mechanical attributes as shown in Figure 2a—

i =—n(u—v).

3 The proposed approach
3.1 The PSO algorithm

The PSO algorithm was discovered in the 1990s by Kennedy
and Eberhart. The PSO algorithm [26] begins with an
arbitrary populace (swarm) of people (particles) in the hunt
space and chips away at the social conduct of the particles in
the swarm. The position and the velocity of the kth particle
in the d-dimensional pursuit space can be symbolized as in
equations (8)—(9).

Qr = [q(mwq<k72>,q(k,3),q<k,4>, ~~~~~~~ q(m)}

Q= {Q(k,l),Q(k,2),éI(k,3),é](k,3),é](k,d),}> 9)
where @) and @ represent the position and velocity of the
particles. Every particle must have its own best position
related to individual best objective value attained by now
at time ¢ as in equation (14). The global best particle (Gpest)
characterizes the best particle found by this time in the
entire swarm at the same time t [19,27]. The updated
velocity of each particle is given as in equation (10).

qk]<t + 1) = 0q,w(t) + albl
+ by (Ghest () — Qk‘j(t))- (10)
Here, j is a real positive integer and can have value
j=1,2......d, where d is a natural number. Here, a; and as
are acceleration coefficients 0 is the inertia factor and b; and
b, are two independent arbitrary numbers unvaryingly
dispersed in the range of [0,1]. The position update of each
particle in each generation is given in equation (11).
@i (t+1) = g, () + @5 ;(t + 1). (11)
The objective function for the PSO algorithm for each
ground motion is dependent on the displacement of the
structure and is represented as in equation (12) in terms of
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Fig. 3. Flowchart representation of PSO algorithm.

the displacement x(¢) of the kth floor

t

Jpso = j;{mkﬂ(t) — zp(t) }2dt. (12)

The control weighting matrix R decreases when the
structure has higher displacement due to the earthquake.
This lessening of weighting matrix R sets off the reduction of
structural response without any loss. Therefore, the merit of
the advised modified LQR method is that the gain matrices
are ascertained adaptively by PSO algorithm, unlike time-
varying LQR case described by Basu et al. [23]. In PSO
algorithm, the solution obtained via meeting the stopping
criteria is considered the optimal solution. If the algorithm is
going to execute maximum iteration, it may not be the
optimal solution. Going for the maximum iteration means
that the algorithm did not find the best optimal solution yet.
To find the optimal solution now we need to vary the

parameter of the PSO algorithm and run the simulation
again in the quest for optimal solution via stopping criteria.
The flowchart of PSO algorithm is given in Figure 3.

The maximum predominant period based modified
LQR controller formulation

Earthquakes are a highly non-stationary signal having
many frequency components. The frequencies in the
earthquake excitation near to the natural frequency of
the structure cause quasi-resonance which further leads to
the higher structural response that requires higher control
force for effective structural control. Usually, in a LQR
problem, the control effort depends on the components of
the weighting matrix R. In the conventional LQR
algorithm, the state weighting matrix Q and control
weighting matrix R usually are determined only while
designing the controller. These matrices have global values
and are not updated when quasi-resonance causes high
structural response. Therefore, to mitigate the effect of
quasi-resonance, the conventional LQR must be amended
by determining the optimized weighting matrices in real
time. This will also enhance the performance of the
controller by saving the energy for non-resonant bands (i.e.
where quasi-resonance does not occur). The acceleration
response of the structure reflects properties like earthquake
excitation. So, entire duration of this response (0, t) is
divided further into smaller time windows, with the ith
window being (2 t;). Maximum predominant period 7,'**
is used to find the dominant frequency for each time
window. This keeps the system always in the time domain
and thus the controller becomes inherently fast. Originally,
the idea of the maximum predominant period 7, was first
introduced by Nakamura [28], to classify large and small
earthquake based on frequency content present in the
earthquake signal. The parameter 7,,; can be calculated
from the acceleration time series for each time step in real
time according to the following relation.

Vi
Ty =27 o (13)
Vi=aV; 1+ ’U?, (14)
dv\?
A; = ad;_ — . 1
it (dt)i, 1)

Here, v; is the recorded ground velocity,V; is the
smoothed ground velocity squared,A; is the smoothed
acceleration squared and a is the smoothing parameter
having a value in the range of 0-1 [28]. Maximum
predominant period 7, of a window is the value of 7,
for which the energy of the signal is maximum. Thus, the
maximum dominant frequency of a selected time window

can be obtained by

(16)
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Fig. 4. Flowchart of proposed modified LQR algorithm.

This dominant frequency determines the quasi-reso-
nance stances where the value of R is to be modified. Here,
the PSO algorithm is used to find the optimal value of R
that gives the optimum structural response with optimized
control effort. PSO algorithm helps to find the value of R
where the quasi-resonance occurs. The benefit of this
specific local optimal solution is that it can change the
estimation of matrix R on an odd frequency at which quasi-
resonance occurs, unlike the conventional LQR which has a
global value of R during an earthquake. The cost function
to be minimized for this modified LQR problem is
formulated by having state weighting matrix Q; and
control weighting matrix R; for #th window and is given in
equation (17)

t

Jilw,u) = [ (@7 Qu(t) + fTRf(1))dt.  (17)

O C—y

The result of this modified optimal control problem
with cost function J; leads to a control force for the ith
window given in equation (18)

(18)

The solution of Ricatti matrix differential equation [29)]
for every windowed interval gives the gain matrix [G)] and
the anticipated control force required to counter the effect
of quasi-resonance can be found by applying this force to
the ith window. The flowchart is shown in Figure 4 for the
advised algorithm that contains all steps in order.

4 Validation of the proposed approach
through a numerical example

To examine the practicality of the proposed approach, a
model of a three-story building configured with a single MR,
damper as shown in Figure 5 is considered. If the whole
system is in linear region, the equations of motion are given
as in equation (19)
Myi 4+ Cpx + Kpx = Af — MT'&,. (19)
M,,C, and K, are the mass, damping and stiffness
matrices of the structure respectively. #, is ground
acceleration in one direction and x is a vector of the
relative displacements, fis the control force, I" is a column
vector of ones, and the vector A is determined by MR
damper’s position in the structure. This three-story test
structure is well explored at the Structural Dynamics and
Control /Earthquake Engineering Laboratory at the Uni-
versity of Notre Dame [4,30,31]. The displacement of the
MR damper is equal to the first-floor relative displacement,
i.e. myr =2 because damper is mechanically connected
between ground and first floor.

983 0 0
M,=| 0 983 0 |kg (20)
0 0 983

175 —50 0
C,=|-50 100 —50 |Nsm ! (21)

0 —50 50

12 —684 0

K,=|-684 137 —6.84| x 106Nm™'. (22

0 —6.84 6.84

The structural measurements required for determina-
tion of apt control action are the absolute accelerations of
all three floors and the MR damper displacement (i.e.=
[Za1, Ta2, Tz, Tr))- The equation of motion can be written
in the state space from equations (23)—(24) by defining

i = Az + Bf + Ei,, (23)

y=Czx+Df+wv. (24)
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Fig. 5. A Three-story prototype structure integrated with MR
damper on ground floor.

Here x is the state vector, y is the vector of measured
outputs, and v is the measurement noise vector. System
matrix A, input matrix B, output matrix C and input-
output coupling matrix D are given as in equations (25)
and (26).

0 I 0
A= {—Mlep —Mplop] B= [—Mplr]’ (25)

C = _Mp_le _Mp_lcp
1 0 0 0 0O

po 7T £ [].

For excitation to this structure, three near-fault
earthquakes time histories are considered. These earth-
quake ground motions are named as (i) 1940 El Centro
earthquake USA (i) 1990 Chi-Chi earthquake Taiwan (iii)
1999 Gebze Turkey earthquake. The abrupt and impulsive
nature of the near-fault earthquakes makes structural
control more challenging.

(26)

5 Results and discussion

In this work, the effectiveness of the suggested modified
LQR controller is examined for a three DOF test structure
having single MR damper on the ground floor. The
cumulative energies contained in the top floor of the
uncontrolled and controlled structure have also been
computed and compared. It is an indicator of the shaking
capability of the signal. The cumulative energy W for a
signal 2(t) is given by the following equation (27)

t

W = [|a(t)dt.
0

(27)

The state weighting matrix () is the same as in the
conventional LQR [9] for every time window. The results of
first 5s for El-Centro and Gebze and 20s for Chi-Chi
earthquake time histories respectively have been shown for
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Fig. 6. Results of the top floor of the structure for the 1940 El-
Centro Valley earthquake (a) displacement response of the
uncontrolled structure (b) Comparison of the time history of the
displacement response due to clipped optimal LQR and modified
LQR (c) Variation of control weighting matrix R with time(d)
Comparison of the time history of the force of clipped optimal
LQR and modified LQR (e) Cumulative energies of the top floor of
the modified controller and clipped optimal LQR. controller.

better visibility. The time-histories of the response of the
structure for El-Centro earthquake, Chi-Chi earthquake
Gebze and earthquake are plotted in Figures 6-8.

First, the outcomes of numerical analysis for El-Centro
valley earthquake are discussed. The relative displacement
response of the uncontrolled structure is shown in Figure 6a.

The comparison of the controlled displacement time-
histories of third floor for the conventional clipped optimal
LQR and the proposed modified LQR algorithm is



Table 1. Peak responses of the structure due to 1940 El-Centro, 1999 Chi-Chi, and 1999 Gebze Turkey earthquake.
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represented in Figure 6b. This comparison clearly shows
that the proposed algorithm reduces the relative displace-
ment effectively during the earthquake.

The variation in the value of weighting matrix R is
shown in Figure 6¢. For conventional LQR controller, the
value of R remains the same during the earthquake while
for suggested approach, its value is optimized using PSO
algorithm according to the quasi-resonance between the
structure and the earthquake. The comparison of the time-
histories of control force due to the conventional clipped
optimal LQR and the proposed modified LQR algorithm is
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represented in Figure 6d. This comparison demonstrates
that the proposed algorithm requires lesser force to reduce
the vibrations than the conventional LQR controller
during the earthquake. The cumulative energies, contained
in controlled and uncontrolled signal of the third or top
floor is compared in Figure 6e. It shows that the shaking
capacity of the controlled signal is reduced significantly.
Table 1 enlists the peak values of relative displacement,
inter-story drift 44 (x;, 1 — 1) and the acceleration (Z,). The
values in parenthesis represent the percentage reduction in
the peak values with respect to the conventional LQR.

From Table 1, it is observed that the modified LQR
reduces the peak values of relative displacement of the first,
second and third floor by 23%, 19%, and 24%, respectively
in comparison to the conventional LQR controller.
Likewise, the inter-story drifts between third-second floors
and second- first floors are reduced by 33% and 15%,
respectively in comparison to conventional LQR controller.

It means that the occupants of the top floor are safer
and more comfortable using the modified controller. If the
accelerations of the first, second and third floors are
compared with the conventional LQR controller, these are
reduced by 44%, 14%, and 32%. To achieve these
reductions, the control force applied by the modified
controller is also 25% lesser than applied by conventional
LQR controller.

The same analysis is continued for Chi-Chi earthquake
and Gebze earthquakes to ensure the consistency of the
suggested modified controller. The outcomes of these
simulations follow the pattern of the results achieved due
to El-Centro Valley earthquake. It is observed from Table 1
that the proposed controller reduces the relative displace-
ment of the first, second, and third floor by 33%, 40%, and
34% for Chi-Chi earthquake and by 5%, 12%, and 17%,
respectively for Gebze earthquake in comparison to the
conventional LQR controller. The inter-story drift between
the third-second floor and the second-first floor is reduced by
9% and 50% for Chi-Chi earthquake whereas 22% and 43%
for Gebze earthquake, respectively as seen from Table 1.

Similarly, the reduction of the accelerations of first
second and third floors is respectively 6%, 6% and 5% for
Chi-Chi earthquake whereas 22%, 28%, and 28%, respec-
tively for Gebze earthquake. It is worth to note that these
performance gains are achieved by using suggested
approach that requires 15% lesser force than classical
LQR approach for Chi-Chi earthquake whereas 3% lesser
force for Gebze earthquake, respectively as seen from
Table 1. The time histories are shown in Figures 7 and 8
and validate the above facts graphically.

The relative displacement responses of the uncon-
trolled structure are shown in Figure 7a due to Chi-Chi
earthquake and in Figure 8a due to Gebze earthquake.
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The comparison of the relative displacement time histories
using conventional LQR and the modified LQR controller
are shown in Figure 7b for Chi-Chi earthquake and in
Figure 8b for Gebze earthquake, respectively. The graphs
in Figures 7c, 8c show the variation of R with time for Chi-
Chi and Gebze earthquake, respectively. The variation of
R for each time window is according to the quasi-
resonance between the domain frequency and first two
fundamental frequencies of the structure. The graphs
shown in Figures 7d, 8d show the control force time
history due to the suggested controller and conventional
LQR controller for Chi-Chi earthquake and Gebze
earthquake, respectively. Similarly, the graphs shown in
Figures 7e, 8e show the cumulative energy comparison of
the third floor of the controlled structure using the
suggested controller and conventional LQR controller for
Chi-Chi earthquake and Gebze earthquake, respectively.

6 Conclusion

A modified LQR controller based on maximum predominant
period approach is suggested and examined in this paper.
This controller is developed by modifying the ordinary LQR.
controller by altering the control weighting matrix R over
every small-time window as quasi-resonance occurred. The
controller generates the optimized control force to counter
larger structural response at quasi-resonance using the
updated value of matrix R during the earthquake. The
determination of the quasi-resonance instances is done in
time domain itself in this paper. It is a remarkable
improvement over the previous studies in which we need
to move in the frequency domain to obtain the dominant
frequency for each window. Therefore, the merit of the
advised method is that the gain matrices are ascertained
adaptively by PSO algorithm, unlike conventional LQR
controller. The results exhibit that the proposed controller
performs essentially superior to the conventional LQR
controller. The inalienable adaptability in the design of the
proposed controller to account for the quasi-resonance by the
modification of the conventional LQR controller makes it a
fascinating controller for the structural control.
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