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Abstract

A numerical framework for clustering of time series via a Markov chain

Monte Carlo (MCMC) method is presented. It combines concepts from

recently introduced variational time series analysis and regularized clus-

tering functional minimization (I. Horenko, SIAM SISC vol. 32(1):62-83 )

with MCMC. A conceptual advantage of the presented combined frame-

work is that it allows to address the two main problems of the existent

clustering methods, e.g., the non-convexity and the ill-posedness of the

respective functionals, in a unified way. Clustering of the time series and

minimization of the regularized clustering functional is based on genera-

tion of samples from an appropriately chosen Boltzmann distribution in

the space of cluster affiliation paths using simulated annealing and the

Metropolis algorithm. The presented method is applied to sets of generic

ill-posed clustering problems and the results are compared to the ones

obtained by the standard methods. As demonstrated in numerical ex-

amples, the presented MCMC formulation of the regularized clustering

problem allows to avoid the locality of the obtained minimizers, provides

good clustering results even for very ill-posed problems with overlapping

clusters and is the computational superior method for long time series.
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1 Introduction

Cluster modeling is widely used in many application areas like computational

and statistical physics [43, 15], climate/weather research [22, 23, 9, 12, 13, 46, 7]

and finance [21, 39, 49]. In context of time series analysis, the aim is usually

to detect a hidden process switching between different regimes of a system’s

behavior, which helps to predict a certain outcome of future events. In most

cases the only given information is observation data, which we can regard as a

time series. Then the determination of the model and the data-based description

of the regime behavior can be formulated as an optimization problem [2, 16].

The main issue thereby is to compute a hidden path, weighting the influence of

the data on the various possible cluster models, and, therefore, specifying the

transitions between the regimes.

This can be rather difficult since the underlying problem is (i) ill-posed,

due to the high number of unknowns in relation to the known parameters, and

(ii) the results obtained with a local minimization algorithm depend on the

initial parameters, since the corresponding optimization problem is in general

non-convex [2].

Therefore, standard formulations of existing cluster modeling methods such

as K-Means [26], fuzzy C-Means [2, 18] or Bayesian machine learning approaches

(e.g., Gaussian mixture models (GMMs) [34, 3] and hidden Markov models

(HMMs) [11, 5]) do not manage to provide distinguished hidden paths. The

negative effect of the ill-posedness on the cluster modeling results is particu-

larly pronounced for overlapping data clusters, i.e., the clusters where affili-

ations are too difficult to determine since data values can simultaneously be

assigned to different clusters [21]. This effect, together with the implicit a pri-

ory assumptions that are imposed on the analyzed data by the above-mentioned

methods (e.g., stationarity and Markovianity of the hidden/latent path and in-

dependence and Gaussianity assumption for the observed process in context of

HMMs/GMMs) may make the obtained results very much dependent on the

initialization of the respective numerical scheme (e.g., a choice of the initial

parameters in the Expectation-Maximization algorithm for HMMs/GMMs).

As was demonstrated recently, additional assumptions about certain gen-

eralized smoothness of the hidden process can be implemented in context of

Tikhonov regularizations [21] or time discrete bounded variational constrains

[24]. Both techniques in variational formulation (meaning a minimization of

an appropriate functional with respect to a function that is discretized) have

been introduced as a clustering framework based on the Finite Element Method

(FEM) [20, 21, 22, 24]. Compared to Bayesian mixture models like HMMs

and GMMs, the resulting FEM-based framework does not rely on the implicit
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probabilistic assumptions about the hidden and the observed processes, contains

the above standard clustering methods as special cases and can be robustly ap-

plied to a much wider class of data and models [36]. Since the Finite Element

Method has been deeply studied in the area of PDEs, the FEM-clustering

framework benefits from the existing theory and numerical PDE-solvers based

on finite element discretization in the context of time series analysis. Although

the FEM-clustering methods can be deployed to determine the persistent states

and the transitions of the process even when the data is overlapping, the solution

still suffers from the locality of the problem formulation.

Simulated annealing and additional runs with different initial values are com-

monly proposed in the literature [44, 42] to overcome the locality of an optimiza-

tion [45]. In the current manuscript we consider a Markov Chain Monte Carlo

(MCMC) approach to this problem applying the Metropolis algorithm and an

adaptive simulating annealing technique. An approach to generate samples from

the Boltzmann distribution of a suitable path integral is introduced. Conceptu-

ally, the FEM-cluster minimization framework becomes the mean field limit of

the MCMC method in the setting considered here. The major numerical advan-

tage of the presented method compared to the previously introduced Tikhonov-

regularized FEM-clustering method is that in the MCMC-framework it is not

necessary to solve a quadratic optimization problem in every iteration step of

the algorithm. The necessity to solve a quadratic minimization problem in

the H1-regularized FEM-clustering framework [21] represents one of the major

computational bottlenecks and slows down the respective numerical algorithm

for very long time series.

This paper has the following outline. In Section 2 a brief introduction into

cluster modeling theory is presented. In Section 3 the Monte Carlo framework

using the Metropolis algorithm is developed and an adaptive numerical anneal-

ing algorithm is introduced. The presented framework is illustrated by means

of the computational analysis of several generic model examples in Section 4.

Section 5 is devoted to the discussion of the obtained results and directions of

future investigations.

2 Regularized cluster modeling framework

In the following, we introduce a regularized clustering framework originally pro-

posed in [21]. The key idea is to regularize (e.g., Tikhonov regularization [47])

clustering problems to improve the posedness (in the sense of Hadamard [14])

of the problem formulation. Similar regularizations are frequently employed in

image processing [32, 53], statistics (e.g., non-linear regression analysis) [19] and

multivariate spline interpolation [51] but are not used in the context of standard
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clustering algorithms. In contrast to smooth interpolation problems (for exam-

ples see [51]), where the problem formulations are convex (due to the fact that

the interpolated quantity is explicitly given), standard clustering problems are

non-convex and ill-posed (since the interpolated affiliation quantity weighting

the different clusters is not explicitly available). In the context of the FEM-

clustering approaches [21, 36] the problem is regularized wrt. the persistency

of cluster affiliations of data points. Additional information on the regularized

clustering technique can also be found in [20, 22, 23, 24, 8].

2.1 Inverse Problem Formulation

Let X = {x(0), . . . , x(T )} be a time-discrete data series with x(t) ∈ R
n being

the indicated value at time t. The notation xt := x(t) is used. We assume

that the underlying dynamical system can be described by a certain class of

mathematical direct models

xt = f(θ(t)), (1)

defined by a model function f(·) and a set of (time-dependent) model parameters

θ(t) from some parameter space Ω. Further, it is possible to include a random

process in the expression of the model function, e.g.,

f(θ(t)) := θ(t) + ξt, (2)

whereas ξt is independent identically distributed and has E[ξt] = 0 for all t.

The random process ξt is often interpreted as measurement errors or implicit

influences effecting the system. Other examples of this and more general model

classes (i.e., classes allowing to describe dynamics with memory, e.g., Markov

process) are given in [36].

Solving the problem of finding a suitable time series xt for given model pa-

rameters θ(t) wrt. the model function f is referred to as direct mathematical

problem. In this manuscript we consider the opposite problem of finding param-

eters θ(t) that describe the dynamical process ’best’ by means of the available

time series xt. In order to define the meaning of ’best’ in relation to the given

data we introduce a model distance function:

g(xt, θ(t)) : R
n × Ω → R. (3)

A suitable model distance functional ’measures’ the distance between the model

and the observed time series, thus any metric d(·, ·) : R
n × R

n → R
+
0 can be
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used to induce an appropriate function g:

g(xt, θ(t)) :=
(

d(xt,E[f(θ(t))])
)2

, (4)

whereas the expected value E[f(θ(t))] is employed, since the model function f

expression is not necessarily deterministic and can include a random term (e.g,

see (2)). For the 2-norm (i.e., d(∆,Ψ) = ‖∆ − ψ‖2) and considering the model

function given in (2) functional g has the analytic expression:

g(xt, θ(t)) = ‖xt − θ(t)‖2
2. (5)

An approximation of an optimal (wrt. g(xt, θ(t))) parameter θ∗(t) can be ob-

tained solving the following inverse problem

L(θ(t)) =

T
∑

t=1

g(xt, θ(t)) → min
θ(t)

. (6)

2.2 Interpolation

Unfortunately, the problem formulation given in (6) is ill-posed due to the many

unknown parameters in relative relation to the known information. For example

the inverse problem

L(θ(t)) =

T
∑

t=1

‖xt − θ(t)‖2
2 → min

θ(t)
(7)

has the trivial but meaningless optimal solution θ∗(t) := xt. To avoid such a

meaningless parametrization and in order to directly address the ill-posednes of

(6) the regarded system is assumed to be locally stationary. Then the dynamics

can be characterized by time-dependent processes γi(t) describing transitions

between the different locally stationary models or clusters (characterized by

time-independent model parameters θi), i.e.,

L(Θ,Γ) =

T
∑

t=0

K
∑

i=1

γi(t)g(xt, θi) → min
Γ(t),Θ

. (8)

This assumption is not only reasonable but sensible due to the fact that many

real life processes evolve much slower than the discrete time steps of the obser-

vational data. The hidden process,

Γ(t) = (γ1(t), . . . , γK(t)), (9)
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weighting the clusters, is referred to as affiliation vector and is subject to the

following constraints
K
∑

i=1

γi(t) = 1 ∀ t ∈ [0, T ] (10)

and

γi(t) ≥ 0 ∀ t, i = 1, . . . ,K. (11)

2.3 Tikhonov-regularization

Although model parameter Γ was introduced assuming that the considered dy-

namical process, given by the data, changes slowly (i.e., is persistent), it can still

exhibit highly non-continuous behavior (i.e., is rapidly jumping between the K

different regimes). Consequently, it is still ill-posed in the sense of Hadamard

[14]. To improve the posedness of the problem and to increase the persistency of

the process up to a certain degree, we need to add some assumptions concerning

Γ. In particular, following [21] we assume, that γi(·) is weakly differentiable,

i.e., γi(·) is in a path space, embedded in the Sobolev space H1(0, T ). Using the

assumed prior information, we can write (8) in its regularized form:

Lǫ(Θ,Γ) =

K
∑

i=1

[

T
∑

t=0

γi(t)g(xt, θi) + ǫ2
T−1
∑

t=0

(γi(t+ 1) − γi(t))
2

]

→ min
Γ(t),Θ

. (12)

As was demonstrated in [21], this modification of the optimization problem

has a smoothing effect on regime transition behavior and ’filters out’ all the

non-persistent regimes first. For information about Tikhonov-regularization the

reader is referred to [47].

An alternative regularization, addressing the ill-posedness of (8), is proposed

in [24, 36]. The key idea is to add another constraint which restricts the possible

number of transitions. The approach can be motivated regarding functional (8)

for a fixed optimal parameter θ∗. Then the optimal process Γ∗ is given in form

of:

γ∗i (t) =







1 if i = argminj g(xt, θ
∗

j ),

0 otherwise.
(13)

In other words, it is possible to uniquely assign one of the local cluster models θ∗i
to each discrete time step t and to regard the number of jumps between them.
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Model parameter Γ is then considered to be subject to the additional constraint

||γi||BV =
T−1
∑

t=0

|γi(t+ 1) − γi(t)| 6 C, ∀i, (14)

i.e., the maximal number of transitions is bounded from above by variable C.

Both regularization approaches increase the persistency of the affiliation pro-

cess Γ. The main difference is that the Tikhonov ansatz leads to a quadratic

optimization problem (considering functional L(Θ,Γ) given in (12) for fixed pa-

rameter Θ), whereas the computation of an approximation of an optimal Γ∗

with the BV-regularization results in a linear optimization problem (details are

discussed in the next section).

A direct approach with MCMC techniques to the BV-regularized version

of the optimization problem (8) is hampered by the additional persistency con-

straint (14). Thus, for the Metropolis algorithm ansatz (see in Section 3), we

consider the regularized functional given in (12), i.e., the Tikhonov regulariza-

tion.

2.4 Numerical approach and computational complexity

Unfortunately, the inverse problem posed in (12) has no general analytic so-

lution and is not convex (i.e., optimization techniques like gradient descent or

Newton methods do not necessarily provide a global minimum). Along the lines

of [21], we will approach the problem of optimizing (12) employing an algo-

rithm with subspace iterations. The main idea is to exploit that it is possible

to determine a local minimum for Θ of Lǫ(Θ,Γ) provided that Γ is given and

that a local optimum Γ can be computed for a fixed model parameter Θ. In

other words, instead of simultaneously finding optimal parameters Γ∗ and Θ∗

of (12), the problem is split into two subproblems. Iterations over the subspace

optimizations ensure a convergence towards local minima Γ and Θ (see [21] for

a proof). Since we are interested in global solutions, the subspace algorithm

is repeated for different randomly initialized parameters Γ(0) and Θ(0). These

additional iterations are considered to be some form of simulated annealing

and are commonly used in the context of non-convex optimization problems.

[27, 28]. The details of the algorithm are given in the following pseudocode:

7



Algorithm 1: Subspace algorithm with annealing steps

input : Number of different regimes K, regularization factor ǫ (or for

the BV-regularization: transition limit C), number of simulated

annealing steps Nanneal and optimization tolerance value τol

(optional: number of finite element functions NFEM−functions)

output: Global optimizers Γ∗ and Θ∗

Lmin = 10000001

for r = 1 : Nanneal do2

Generate random initial Γ
[0]
r and compute Θ

[0]
r3

while |Lǫ(Θ
[s]
r ,Γ

[s]
r ) − L

ǫ(Θ
[s−1]
r ,Γ

[s−1]
r )| ≥ τol do4

Step 1:5

for j = 1 : NJ do6

Determine Γ
[s+1]
r = argmin L

ǫ(Γ,Θ
[s]
r ) subject to constraints7

(10) and (11), whereas Θ
[s−1]
r denotes the current fixed

approximation of the optimal Θ∗. Standard techniques for

quadratic (Tikhonov regularization) or linear

(BV-regularization) optimization problems can be applied,

e.g., simplex algorithm [52].

Step 2:8

Compute Θ
[s+1]
r = argmin Lǫ(Θ,Γ

[s+1]
r ) for fixed affiliations Γ.9

This sub-problem strongly depends on the model choice and its

computational complexity can range from a simple computation of

a deterministic analytic expression (e.g., geometric clustering

problem (5)) to quadratic optimization problems with linear

equality and inequality constraints (see [8] for examples).

s = s+ 110

if L
ǫ
min ≥ L

ǫ(Γ∗

r(t),Θ
∗

r) then11

L
ǫ
min = L

ǫ(Γ∗

r(t),Θ
∗

r)12

Γ∗ = Γ∗

r13

Θ∗ = Θ∗

r14

Return Γ∗ and Θ∗
15

To determine Γ in Step 1 (see lines 5-7) of the subspace algorithm with simulated

annealing iterations one needs to solve a quadratic optimization problem with

linear constraints. Such problems are known to be NP-complete [50] and are,

therefore, considerably expensive regarding the run time. It is possible, how-

ever, to reduce the dimension of Γ and, therefore, the computational complexity

by using ideas from the Finite Element Method (FEM). The key idea is to dis-

cretize the process Γ with a number of NFEM−functions finite element functions
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and to continue optimizing the reduced problem wrt. the discretized Γ̃. Then

the main advantage is that the run time of Step 1 (depending on the size of

the affiliation process) can be considerably decreased (especially for very persis-

tent dynamical systems where the number of required finite element functions

to obtain a qualitative solution is much smaller than the time dimension, i.e.,

NFEM−functions ≪ T ).We refer to the proposed framework as FEM-clustering

technique.

In case the BV-regularization is employed to create persistency in the time

interval, the problem to find an optimal Γ∗ subject to the additional constraint

(14) becomes a linear optimization problem with constraints. This problem is

also known to have exponential run time in the worst case (see simplex algorithm

[52]). We refer to this ansatz as FEM-BV-clustering framework.

An MCMC approach has only linear complexity, the details of which will

be discussed in the Section 3. A run time comparison (of the MCMC- and the

FEM-BV-clustering method) on the basis of synthetic high dimensional data

is considered in Section 4.

Step 2 (see lines 8-9) of the subspace algorithm on the other hand depends on

the choice of the underlying model class (1). In the following we will consider

the example model function (2) with model distance function (5). Then the

computation of optimal parameters θ∗i for fixed optimal affiliations Γ∗ conforms

to

θ∗i :=

∑T
t=0 γi(t)xt
∑T

t=0 γi(t)
. (15)

This deterministic analytic expression for a minimal θ∗ reduces the optimization

problem (12) to

L
ǫ
(Γ) =

K
∑

i=1

[

T
∑

t=0

γi(t)‖xt −

∑T
t=0 γi(t)xt
∑T

t=0 γi(t)
‖2
2 + ǫ2

T−1
∑

t=0

(γi(t+ 1) − γi(t))
2

]

→ min
Γ(t)

(16)

with the conditions (10) and (11).

2.5 Information criterion

The choice of an optimal K wrt. the system given by the data xt presents

another challenge. This problem has already been discussed in context of the

FEM-clustering framework and the interested reader is referred to [21] and

[23], where some ways of choosing an optimal K are presented. While aiming at

selecting the best possible model, we also want to avoid over-fitting. Thus, we

make use of an information criterion (e.g., Akaike [1] or Bayesian [48]) to find

an optimal K. The conceptual idea of an information criterion is to regard the
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balance of the quality and the complexity of a computed model. For example,

the structure of a standard Bayesian information criterion (BIC) can be adapted

to fit the proposed clustering problem (12):

BIC(K) = −2 log(L(K)) + |M(K)| log(T ). (17)

In detail this means that the log-likelihood function

L(K) =

T
∏

t=1

K
∑

i=1

γi(t)ρi

(

g(xt, θi); Λi

)

(18)

of functions ρi (which are fitted to the residual processes g(xt, θi) corresponding

to model parameters θi for K different local models) is weighed against the total

number of involved parameters |M(K)|. A detailed derivation of the likelihood

function is discussed in [36] in the context of a modified version of Akaike’s

information criterion (the only difference to the Bayesian information criterion is

that |M(K)| is not multiplied with the logarithm of the number of time steps T )

for the proposed clustering problem. Regarding the geometric model proposed

in (5), the total number of involved parameters is:

|Mgeometic(K)| :=

(

K−1
∑

i=1

T−1
∑

t=0

|γi(t+ 1) − γi(t)|

)

Kn (19)

with n being the dimension of model parameter vectors θi. In case the model

parameters are determined employing the FEM-BV-clustering framework the

likelihood does not only depend on the number of different regimes K but also

on the maximum number of transitions C.

3 Deploying MCMC methods

The main computational drawback concerning the average clustering function

proposed in (16) arises from the fact that L
ǫ
(Γ) is non-convex (note that Lǫ(Θ,Γ)

given in (12) in general is also non-convex). To evade the locality of the nu-

merical solution and directly obtain a global solution, a variational approach in

form of the following probabilistic formulation

π
L

ǫ
,β(Γ) =

1

Z
exp(−βL

ǫ
(Γ)) (20)

with

Z =

∫

Γ

exp(−βL
ǫ
(Γ)), (21)
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called the Boltzmann distribution, is considered. An optimal parameter Γ∗,

minimizing (16), can be approximated by sampling from the above distribution

(20). Whereas L
ǫ
(Γ) with fixed ǫ is referred to as energy function and β > 0 is

a real variable named inverse temperature parameter. The Boltzmann distribu-

tion has its origin in statistical physics, where it describes the probability of a

particle’s speed, depending on the temperature of a system. Z is a normalizing

constant, ensuring that
∫

Γ

π
L

ǫ
,β(Γ) = 1. Boltzmann distributed samples have the

property to be forced towards the minimal energy configuration as β is tending

to ∞, meaning that the probability to obtain samples that minimize L
ǫ
(·) grows

as β increases. Therefore, the solution of the optimization problem (16) can be

approximated by generating samples that are Boltzmann distributed. However,

computing a normalizing constant such as Z is difficult since it implies a nu-

merical calculation of the integral (21) for many dimensions. For problems like

that, the Metropolis algorithm [6, 17, 35] is a useful tool, due to the fact that

it does not require to determine the normalization constant Z.

The underlying principle of this MCMC framework is to generate a Markov

chain of samples, having a certain target distribution (e.g., π
L

ǫ
,β) as its unique

stationary distribution. The construction of the Markov chain requires to choose

a density q(·, ·), referred to as proposal density, which is used to propose the next

possible element of the chain. A proposed sample is either accepted to be an

element of the chain or not. The acceptance-rejection sampling takes place in

form of

α(Γ,Γ′) =







min
{

1,
π
L

ǫ,β(Γ′)q(Γ′,Γ)

π
L

ǫ,β(Γ)q(Γ,Γ′)

}

if π
L

ǫ
,β(Γ)q(Γ,Γ′) > 0.

1 otherwise
(22)

In the following we will consider a random walk family of densities q(·, ·), i.e.,

a new proposal depends only on a random noise η. Random Walk Metropo-

lis (RWM) has, contrary to other proposal density families (e.g., independent

sampling [31] which has the best performance for proposal densities similar to

the target distribution), the advantage not to require any additional knowledge

about the target distribution π
L

ǫ
,β . It is also possible to include gradient in-

formation for the proposal of a new potential sample of the Markov chain (e.g.,

Metropolis Adjusted Langevin Algorithm (MALA) [40, 38]) which is hampered

by the fact that the gradient might not exist for the proposed problem or that

the gradient may not be bounded (due to the constraints).
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In this manuscript the Gaussian proposal density

q(Γ,Γ′) = q(Γ′ − Γ) = q(η) =
1

(2π)
T
2 |Σ|

1

2

exp
(

−
1

2
(η − µ)⊤Σ−1(η − µ)

)

(23)

is employed to generate the noise η, which is added to the current element Γ to

obtain a new candidate

Γ′ = Γ + η (24)

with expected value µη = 0 and identity covariance matrix Ση. Wether a

proposed sample Γ′ is going to be accepted strongly depends on the variance

of the noise η. The energy L
ǫ
(Γ′) is likely to be similar to the energy of the

last element of the chain if the variance of η is small. On the other hand, it is

important to propose samples which differ from the previous chain member so

that the entire sample space is traversed. This, however, can be achieved when

the noise η has a relatively large variance. Concluding, it is necessary to gain

some control over η by adjusting its variance. Instead of directly changing the

covariance matrix Ση, a new variable ν is added to the random walk equation

(24)

Γ′ = Γ + νη (25)

which we will refer to as noise factor. Due to the underlying normal distribution

(23) the additional variable ν is adjusting the variance of η by a factor of ν2.

The proposed Metropolis algorithm, used for the clustering problem (16), is
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given in the following pseudocode.

Algorithm 2: MCMC-clustering approach
input : Number of different regimes K, regularization factor ǫ, length of

Markov chain NMC−length, ν to adjust variance of random walk

noise η and cooling schedule {β(0), . . . , β(NMC−length)} (optional:

number of finite element functions NFEM−functions)

output: Global optimizer Γ∗

Choose or generate an initial value Γ(0) (e.g., uniform initial distribution)1

for r = 1 : NMC−length do2

Generate η ∼ N (0,1) and u from U(0, 1), the uniform distribution3

and propose a new sample Γ′ = Γ(r−1) + νη (subject to the

constraints (10) and (11), details are discussed in the next section).

Calculate the acceptance rate α(Γ(r−1),Γ′) given in (22) with β(r)
4

if u 6 α(Γ(r−1),Γ′) then5

set Γ(r) = Γ′
6

else7

set Γ(r) = Γ(r−1)
8

Return Γ(NMC−length)
9

In order to sample a π
L

ǫ
,β distributed Markov chain Γ(0), . . . ,Γ(NMC−length),

another simulated annealing technique is employed. The concept of simulated

annealing in this context allows us to obtain samples Γ(s) with smaller energy

L
ǫ
(Γ(s)) by slowly reducing the current temperature β(s), hence the term anneal-

ing. Although this methods improves the results, the general disadvantages are

very slow convergence and the fact that it is not possible to determine whether an

optimal solution has been obtained. An adaptive simulated annealing scheme,

where the cooling schedule depends on convergence diagnostics [6, 41], is pro-

posed in Section 4. Various other techniques, approaching the drawbacks of

simulated annealing, have been introduced in recent years, the interested reader

is referred to methods such as simulated sinstering [30], simulated tempering

[33], and sequential Monte Carlo [37]. The Metropolis approach has a linear

computational complexity, i.e., O(K(NFEM−functions)NMC−length). A direct

complexity comparison of the Metropolis- and the FEM-clustering (which is a

NP-complete [50] numerical problem) framework, reveal that the MCMC ap-

proach has in general a smaller run time. An exemplary run time comparison

of the Metropolis algorithm and the FEM-BV-clustering, by means of a mul-

tidimensional synthetic time series, is displayed in Section 4.4.

The regarded clustering problem (16) has the advantage that the optimiza-

tion only depends on Γ due to the fact that optimal model parameters θ∗i can
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be uniquely determined for fixed affiliations Γ. In general, however, considering

arbitrary model functions f (for different examples see [36]), there is no analytic

expression for the parameters θi. Nevertheless, the Metropolis algorithm can

still be employed for the sub-problem (12) for fixed Θ (see Step 1 in pseudocode

in Section 2.4) and, depending on the model choice (1), it is also possible to de-

termine model parameters θi for fixed Γ (see Step 2 in pseudocode Section 2.4).

In other words, the subspace algorithm proposed in Section 2.4 can be used in

combination with the Metropolis algorithm to tackle other model function class

problems where the optimization can not be reduced to one model parameter.

3.1 Constraints on Γ

It is important to point out that Γ still has to satisfy the conditions (10) and

(11). In the special case K = 2, we sample the path γ1(·) with γ1(t) ∈ [0, 1]

(i.e., the proposed sample Γ′ is modified to suit the boundaries by setting the

entries of Γ′ greater than one to one and the negative values to zero) and by

means of (10) it is possible to obtain

γ2(·) = 1 − γ1(·). (26)

To generate an affiliation vector with an arbitrary number of relating cluster

models θi, i.e., not being limited to K = 2, one of the possibilities is to assume

γi(t) =
exp(ai(t))

∑

K

j=1 exp(aj(t))
(27)

and sample with respect to ai(t) ∈ R. The choice of this analytic expression

ensures that the constraints (10) and (11) are automatically fulfilled.

4 Numerical Examples

We presented an MCMC approach to regularized clustering optimization prob-

lems. Now we want to investigate the proposed method by applying it to several

sets of generic model data, which vary in size and type.

14



0 100 200 300 400 500 600 700 800 900 1000
10

0

10

x
1
(t
)

0 100 200 300 400 500 600 700 800 900 1000
10

0

10

x
2
(t
)

0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1
(t
)

Figure 1: The two-dimensional time series xt (upper and center panel) switches be-
tween two multivariate normal distributions with different expected values µi (28), and
identity covariance matrixes Σi. In the lower panel, the corresponding hidden process,
switching between the two distributions, is shown.

First, we apply the algorithm to the synthetic data, designed by means of

the predefined cluster switching process, shown in the lower panel of Figure 1.

The two local stationary models θ1 and θ2 are chosen to be multivariate normal

distributions, given by the expected values

µ1(t) =

(

3.5

5

)

, µ2(t) =

(

− 1.5

0.5

)

, (28)

and with the identity as covariance matrixes Σi (Figure 1 upper and center

panel). Before we can compare the FEM-clustering methodology [21, 20, 22, 23]

with the MCMC-clustering methods presented above, we have to consider the

cooling schedule and the noise factor ν utilized in the MCMC algorithm (see

pseudocode in Section 3).

4.1 Technique choices and parameter scaling

In this section an insight into the scaling, necessary to obtain good approxima-

tions of an argument Γ minimizing the energy function (16), is provided. As

already discussed above, a Random Walk Metropolis (RWM) algorithm with

Gaussian noise η ∼ N (0,1)1 is employed. It is possible to change the variance

of η with a factor ν (see (25)) to influence the acceptance-rejection-procedure

given in (22). Moreover, the cooling schedule is addressed. As was already

pointed out, a cooling schedule ensuring a high probability to approach a min-

imal argument of the energy function (16), is not practical due to very slow

1The required pseudorandom numbers are generated using the Mersenne Twister (see
http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html)
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convergence. Instead of this we will, depending on the relation between the

total number of accepted samples and those actually having a smaller energy

function value than the previous sample, gradually update the inverse temper-

ature parameter β. This choice gives us the option to influence the acceptance

process during the run of the MCMC algorithm and β is only increased when-

ever the energy of the samples in a certain time interval is jumping up too much

rather than going down.

Before the adaptive updated scheme is proposed for the variables ν and β,

we will discuss their particular influence on the acceptance rate and the energy.

Moreover, the impact of the regularization factor ǫ is considered. Results of dif-

ferent MCMC runs, each concentrating on one of the variables, are displayed

in Table 1. The Metropolis algorithm is applied to the time series given in

Figure 1 and produces Markov chains of length 100000. Further, the displayed

MCMC energy values and acceptance rate percentages are the means over 100

runs of the Metropolis algorithm. The parameters β and ν are fixed during the

run of the method, since, in this particular setting, it is easier to investigate

the effects of the different values. The corresponding results for the hidden pro-

cess, determined by the FEM-clustering method [20, 21, 22, 23], (specifications:

NFEM−functions = 100, Nanneal = 10 and τol = 0.0000001), and the energy of

the synthetic process (Figure 1, lower panel) are given.

The upper panel of Table 1 reveals the behavior of the energy with respect to

the changing parameter β. It becomes apparent that a higher value of β leads

to a setting, where a proposed element is only accepted if it has a similar or

lower energy than the current element of the Markov chain. This implies that

the acceptance rate decreases, since less movement within the system is per-

mitted, which hampers reducing the energy of the samples. This effect can be

seen best regarding the results of the Metropolis algorithm with β = 1000 and

β = 1.0E + 09. Nevertheless, the value for the inverse temperature should not

be chosen too small, as the acceptance rate of nearly 80% and the corresponding

high energy for β = 1 demonstrate. Consequently, it is difficult to achieve that

the entire sample space is traversed and at the same time permit a too high

acceptance rate.

The center panel of the Table 1 illustrates the smoothing effect influencing

the energy, caused by the regularization factor ǫ. A growing ǫ leads to higher

energy values, since in the energy function formula (16) the regularization sum-

mand of L
ǫ
(·) is multiplied with the square of ǫ. This fact can explain compara-

tively low energy values for small ǫ. On the other hand, a higher regularization

factor smoothes the transition process Γ, meaning that short transitions in the

process are evened out and the resulting cluster states become more persistent.

However, the parameter value should not be too large, since then the regular-
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β noise factor ǫ acceptance L
ǫ
(ΓMCMC) L

ǫ
(ΓFEM ) L

ǫ
(Γsyn)

rate

1 0.001 5 78.80 % 15356.0 11702.0 7832.9
10 0.001 5 35.82 % 7079.4 11702.0 7832.9

1000 0.001 5 29.14 % 7033.1 11702.0 7832.9
1000000 0.001 5 29.09 % 7089.0 11702.0 7832.9
1.00e+09 0.001 5 28.98 % 7107.4 11702.0 7832.9

ǫ β noise factor acceptance L
ǫ
(ΓMCMC) L

ǫ
(ΓFEM ) L

ǫ
(Γsyn)

rate

0 1.00e+09 0.001 21.24 % 6858.5 9078.4 5332.9
2 1.00e+09 0.001 25.48 % 6138.0 9472.8 5732.9
5 1.00e+09 0.001 28.98 % 7107.4 11702.0 7832.9
12 1.00e+09 0.001 13.78 % 15482.0 15498.0 19733.0

noise factor β ǫ acceptance L
ǫ
(ΓMCMC) L

ǫ
(ΓFEM ) L

ǫ
(Γsyn)

rate

0.1 1.00e+09 5 0.61 % 15554.0 11702.0 7832.9
0.01 1.00e+09 5 2.9 % 9178.9 11702.0 7832.9
0.001 1.00e+09 5 28.98 % 7107.4 11702.0 7832.9
0.0001 1.00e+09 5 49.74 % 15524.0 11702.0 7832.9

Table 1: The three panels display the data of the MCMC methodology runs by means
of the time series, shown in Figure 1, with different values for the parameters β and
ǫ and the noise factor ν. Instead of a cooling schedule, we fix β to sample from the
Boltzmann distribution and the possible elements of the Markov chain are proposed by
a normal density with a fixed noise factor. These measures are taken to motivate the
influences of the variables on the quality of the resulting approximation of the hidden
process, which is rated by its energy value, shown in the tables. Each of the results of
the MCMC method is the mean of 100 different runs. To create equal conditions for
the Metropolis algorithm runs, we set a uniformly distributed initial γ.
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ization factor is dominating the energy (see row with ǫ = 12). If, however, the

particular parameter is chosen carefully, it is possible to obtain a very good

approximation of a minimal Γ∗.

The noise factor ν influences the acceptance rate of the Metropolis algorithm

significantly, as shown in the lower panel of Table 1. The considerable differ-

ence between the acceptance rate for ν = 0.1 and ν = 0.0001 demonstrates

that the noise factor needs accurate adjustment. The best energy value can be

obtained for ν = 0.001 due to an acceptance rate of 28.98%, which is close to

the supposedly optimal percentage proposed in [6].

0 10 20 30 40 50 60 70 80 90 end

ν 0.1 0.085 0.03 0.005 0.002 0.001 6e-4 3e-4 2.4e-4 1.7e-4 1.3e-4

β 1 1 1.1 2.08 5.9 15.4 23.4 23.4 74.8 102.6 237.1

Table 2: The table shows the development of the parameter β and the noise factor ν

and their updates during the run of the Metropolis algorithm, applied to the data from
Figure 1. The algorithm is set with ǫ = 5, β = 1, initial noise factor ν = 0.1 and a
Markov chain of length 100000. The updates of the inverse temperature are made in
steps of 1000 and β is increased if the number of accepted samples with a higher energy
than the previous element of the chain is more than 10%. The lower row of the table
demonstrates the change that the noise factor ν undergoes during the adaption process
of the MCMC method. The adjustment of the parameter ν is done on the basis of the
data of the previous 500 iterations every 1000 steps of the method, however shifted (by
500 steps) to the one of β.

Concluding, the adjustable sampling parameters ν, β and ǫ have a consid-

erable effect on the performance of the MCMC methodology. Contrary to the

regularization factor ǫ, the variables ν and β require careful adjustment dur-

ing the run of the Metropolis algorithm, since different types of influences are

needed in the different stages of the method.

In the following we introduce the adaptive update scheme used to tune the

variables β and ν during the sampling process. The framework is motivated

by the reference value 23.4% which is theoretically verified to be the optimal

(concerning the results) acceptance rate [6, 41]. As already discussed, the inverse

temperature should be increased, however, not too fast, since otherwise samples

of a region in the sample space, different to the one of the current element of

the chain, are rarely going to be accepted. Therefore, β is updated after 1000

proposals of the run depending on the ratio between the number of accepted

samples with a lower energy than the previous element of the chain and the

total number of accepted samples (for details see pseudocode below).

The movement during one run of the MCMC method with an initial value

β = 1 is shown in Table 2. It is apparent that the inverse temperature value is

raised very slowly till the chain already has a length of 60000 and then rapidly

grows. A similar adaption process is used to optimize the noise factor develop-
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ment (Table 2).

The parameter ν is also adjusted every 1000 steps, however, shifted (by 500

steps) to the updates of β to avoid too extreme changes. The noise factor is

either increased or reduced, depending on the percentage of accepted samples,

which is supposed to be around 23.4%. The algorithm starts with an initial

value ν = 0.1 and the panel of Table 2 shows that the noise factor is decreasing

very fast, meaning that not enough proposed samples are accepted. In order to

summarize the proposed procedure, the pseudocode of the Metropolis algorithm

is considered again, concentrating only on the adaptive annealing scheme 2 for

2A cpp implementation of the algorithm with simulated annealing scheme is available on
http://www.dewiljes.de/dewiljes/Jana.html
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the inverse temperature β and the update of the variable ν.

Algorithm 3: Adaptive β and ν update
input : Number of different regimes K, value for regularization factor ǫ,

length of Markov chain NMC−length, initial values for the noise

factor ν and inverse temperature β (optional: number of finite

element functions NFEM−functions)

output: Global optimizer Γ∗

Choose or generate an initial Γ(0), β(0) and ν(0).1

for r = 1 : NMC−length do2

Propose new sample Γ′
3

Accept/Reject -procedure4

if accept then5

Naccept = Naccept + 16

if Lǫ(Γ
(r−1)) > Lǫ(Γ

′) then7

Naccept−lowerEnergy = Naccept−lowerEnergy + 18

if mod (r, 1000) = 0 then9

if Naccept < 90 then10

ν = ν · 0.8511

else if Naccept > 140 then12

ν = ν · 1.0513

else14

ν = ν15

Naccept = 016

Naccept−lowerEnergy = 017

if mod (r, 1000) = 500 then18

if Naccept −Naccept−lowerEnergy ≥ Naccept · 0.25 then19

β = β · 1.111;20

Naccept = 021

Naccept−lowerEnergy = 022

Return Γ(NMC−length)
23

For the update of the noise factor ν in lines 9-15 we regard the interval of

18% (see line 10: 0.18 = 90
500 ) to 28% (see line 12: 0.28 = 140

500 ) surrounding

the optimal 23.4% of the accepted samples in relation to the overall proposed

samples. If the number of accepted samples (only considering the past 500

steps) is outside the regarded interval of percentages, we adaptively change the

noise factor (see lines 11 and 13). The inverse temperature β is increased (see
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lines 18-20) if less than 75% of the accepted samples have lower energy, i.e.,

Naccept −Naccept−lowerEnergy

Naccept

≥ 0.25. (29)

These dynamic changes of the two parameters β and ν improve the quality of

the results of the Metropolis application immensely. In the following paragraph

we will continue to investigate the MCMC method and compare it to the

variational FEM-clustering approach [21].

4.2 Comparison of MCMC and FEM-applications

In the previous paragraph, an update function for the noise factor ν and an

adaptive method to increase the parameter β, which acts as an amended ver-

sion of simulated annealing, were proposed. These settings of the Metropolis

algorithm are used for all the test cases in this section. Firstly, we consider

the influence of the regularization factor ǫ again and demonstrate its smoothing

effect via the four graphic panels of Figure 2, each displaying an approximation

of the optimal Γ∗ calculated with different ǫ values. The impact of ǫ on the

results of the Metropolis algorithm is illustrated in Figure 2. It is apparent

that the cluster classification becomes more distinctive with a growing ǫ value.

However, if the ǫ value is too high, the graph approaches the middle line be-

tween the models (Figure 2, ǫ = 12), which makes it impossible to relate the

persistent states to the corresponding cluster. Besides establishing the influence

of the variable ǫ in Figure 2, we want to draw a comparison between the FEM-

clustering methodology and the MCMC application. Therefore, the graphs of

Figure 3 display approximations of the hidden process Γ∗, calculated with the

FEM-clustering algorithm for ǫ = 0, 2, 5, 12.
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Figure 2: The four graphic panels display approximations of the hidden process Γ∗,
obtained by the MCMC method on the basis of the time series of Figure 1. We
demonstrate the smoothing effect of four different regularization parameter values ǫ =
0,2,5,12.
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Figure 3: The four graphs serve as reference and comparison to the MCMC of Figure
2. Here the hidden paths for a selection of four regularization factor values (ǫ =
0,2,5,12), determined with the FEM-clustering algorithm (NFEM−functions = 100,
Nanneal = 10 and τol = 0.0000001), are shown.

Firstly, it is conspicuous that the sensitivity of the FEM-clustering results,

regarding the ǫ parameter, is different to the reaction of Metropolis algorithm

concerning the changes of the regularization factor. In other words, note that the

optimal ǫ value for the MCMC technique might lead to very bad results for the

FEM-methodology. However, both algorithms react strongly to a high regular-

ization factor (fourth panel of Figures 2 and 3). Moreover, selecting an optimal
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ǫ initial initial acceptance rate L
ǫ
(ΓMCMC) L

ǫ
(ΓFEM ) L

ǫ
(Γsyn)

ν β

0 0.1 1 16.35 % 8554.4 9078.4 5332.9
2 0.1 1 16.42 % 5376.1 9472.8 5732.9
5 0.1 1 16.65 % 6545.2 11702.0 7832.9
12 0.1 1 red18.69 % 15024.0 15498.0 19733.0

Table 3: The data, recorded in the table, corresponds to the graphic panels of Figures
2 and 3.

ǫ value does not only depend on the technique of choice, but also on the type

of the time series the algorithm is applied to. Then it is important to note that

the process, determined within the FEM-clustering framework, is more definite

than the one, obtained with the MCMC method. This can be explained with

the number of chosen finite element functions (NFEM−functions = 100), which

automatically leads to a more distinguished path. However, the energy values

of the results of the Metropolis algorithm are much smaller than the ones of the

FEM-clustering technique as can be seen in Table 3, which displays the corre-

sponding data of the graphs of Figure 2. The improvements made, concerning

the adaptive adjusting of β and ν, clearly are reflected in the energy values of

Table 3, which we were able to reduce significantly, regarding the former results

of Table 1. Furthermore, the acceptance rate displayed for ǫ = 5 supports the

conclusion drawn from the noise factor development (Table 2), where we stated

that the value for ν is decreasing, because the acceptance rate is below the value,

typically used in the literature [6, 41].

It is important to mention that a comparison in terms of the energy function

(16) represents one of the most conceptually adequate quality measures of the

performance of clustering methods. Most of the existing clustering approaches

can be formulated as optimization problems with respect to an appropriate

energy function. For example the K-Means method can be understood as an

iterative minimization of energy function (12) for ǫ = 0. Although the value

of the energy function is a good evaluation tool when it comes to choosing

optimal tuning parameters or comparing different techniques, the approximation

of the hidden process γi(t) relating to the smallest energy is not necessarily the

best model for the considered time series. In case of synthetic data we can

compare the θi with the expected values µi to investigate the quality of the

obtained models. We calculate the model parameters for the results of the

FEM-clustering technique and the MCMC method with ǫ = 5:

θMCMC

1 (t) =

(

3.5310

4.8928

)

, θMCMC

2 (t) =

(

− 1.4864

0.4391

)

(30)
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and

θFEM

1 (t) =

(

2.9619

4.3771

)

, θFEM

2 (t) =

(

− 0.8400

1.0237

)

. (31)

The values obtained from the MCMC-clustering approach differ only a little

from the mean values (given in (28)) used to generate the synthetic time series.

The model parameters determined with the FEM-clustering algorithm, how-

ever, show a larger deviation.

It is possible to evaluate the quality of the results by reproducing the time

series via the model parameters θi and the corresponding affiliation vectors

γi(·) and compare it with the actual data. Figure 4 displays histograms of the

difference between the reproduced and the real data for the MCMC method

and the FEM-clustering technique.
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Figure 4: The difference between the two-dimensional time series xt and the repro-
duced data is shown in form of a histogram for the FEM-clustering framework and the
MCMC algorithm. The MCMC deviation frequencies for the first and second coor-
dinate are displayed in the upper panels and the results relating to the FEM-clustering
in the lower panels of the figure.

The histograms, shown in the upper two panels of Figure 4, resemble nor-

mal distributions with standard deviation one and mean value zero. Meaning

that the approximated model parameters θi and the relating cluster weighting

functions γi(·), obtained with the MCMC-clustering framework, are a good

characterization of the regime corresponding to the data. The lower panels

display histograms with a larger variance but still of normal distributed nature.

The next paragraph will deal with the behavior of the introduced MCMC

method applied to overlapping time series.
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4.3 Robustness concerning overlapping distributions

In contrast to the data we have considered so far, where the transitions have

been clearly visible, we now want to examine the MCMC framework under the

conditions that the expected values of the distributions, the data is generated

from, are ’coming closer’ together. The following three figures demonstrate the

influence of overlapping data in form of a time series on the resulting affiliation

vector γi(t) given by the Metropolis algorithm.

Figure 5: The upper panel displays a synthetic time series generated with random values
of two normal distributions with a distance of 2 between the expected values µi (σi =
0.5). The paths identifying the switching between the possible two clusters, computed
with either the MCMC method (ǫ2 = 2, length of chain 100000, 100 runs) and the
FEM-clustering framework, are shown in the second panel from the top. Moreover,
the graph includes the synthetic process and the results of the 100 metropolis runs, used
to calculate the mean, are shown in form of grey dots. The process displayed in the
third panel of the figure is obtained with GMMs and the one in the fourth panel with
HMM. Both serve as a comparison.

We make use of two normal distributions with equal variances σi = 0.5

to create one-dimensional time series. Furthermore, we restrict the processes

to a number of five transitions so that the impact of overlapping data can

be demonstrated easier. The graphs include the hidden processes, calculated

with the version of the FEM-clustering algorithm (numerical specifications:

NFEM−functions = 100, Nanneal = 10, K = 2 and τol = 0.0000001) and those

determined with the MCMC framework. Additionally, the panels contain the

synthetic process, used to generate the respective time series, as a reference

value. Since the paths γi(t) resulting from the MCMC method are obtained by

calculating the mean of a hundred different runs of the Metropolis algorithm, the
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deviation from the displayed process is of interest. Therefore, the 100 different

single approximations of the optimal process Γ∗ are also shown in the graph.

We can regard the hidden path determined with the FEM as expected value for

the infinite number of MCMC-realizations. Then the outlines of the deviation

shown in the graphs of Figures 5, 6 and 7 can be considered as the confidence

intervals of the γ1(t) process calculated by the MCMC framework. The big

deflection, however, hints at the fact, that the statistics need to be even bigger

than 100 to obtain satisfying results.

Figure 6: The one-dimensional time series xt (upper panel) switches between two
normal distributions with expected values µ1 = −0.25 and µ1 = 0.25 and equal variance
values. In the second panel, the approximations of the optimal hidden process Γ∗,
determined with the MCMC framework and the FEM-methodology, describing the
transitions and the persistent states relating to the time series above, are shown. The
synthetic path and the 100 different approximations, calculated with the Metropolis
algorithm, are also included. The two lower panels display numerical solutions obtained
with GMMs and HMM.

The graph in the second panel of Figure 6 already illustrates that the accu-

racy of the results of the MCMC technique clearly depends on the data overlap.

Clustering quality decrease can be seen even more clearly in the plots of Figure

7. However, it is important to note that despite of the rapid decrease of quality

of the results displayed in Figures 6 and 7, the transitions and outlines of the

persistent states can still be identified, which should not be taken for granted

considering the small distances 0.5 and 0.25 between the clusters and significant

cluster variances. In contrast to other cluster analysis methods such as Gaussian

mixture Models (GMMs) or Hidden Markov Models (HMM), the presented

MCMC method or the FEM-clustering framework are able to provide good
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approximations of the underlying hidden process when applied to the ill-posed

clustering problems like in Figures 6 and 7.

Here GMMs are characterized by the underlying assumption that the dis-

tribution fx(t)(s,Θ), relating to the time series x(t) at time t, is a linear combi-

nation of K stationary Gaussian density functions fi(s, θi):

fx(t)(s,Θ) =

K
∑

i=1

pifi(s, θi), (32)

whereas pi are weights, which we identify with the probabilities pi = P [Bt = i|Θ]

with Bt = arg maxi(γi(t)). The expectation-maximization EM-algorithm [3] is

used to determine the unknown parameters θ1, p1, . . . , θK, pK. Moreover, it

is possible to obtain the conditional probabilities P [Bt = i|Θ, xt]. These are

generally used to calculate a Viterbi path assigning each time t to a cluster

parameter θi. The path, displayed in the lower panels of Figures 5, 6 and 7,

consists of the actual probabilities P [Bt = i|Θ, xt] due to the fact that it is

easier to detect the cluster affiliation than regarding the relating Viterbi path.

Although it is possible to determine the hidden path with GMMs for the least

overlapping time series from Figure 5, the algorithm clearly fails to detect tran-

sitions between the two clusters in the other two generic ill-posed cases. For

example the numerical solution of Figure 7 (third panel from the top) implies

that the data of the considered time series is normal distributed meaning that

the EM-algorithm falsely detects the univariate Gaussianity in this case. A

generalization of the GMMs in form of Hidden Markov Models (HMM) with

gaussian observations, however, provides qualitative results for the data with

the least overlap and even for the time series with a distance of 0.5 between the

mean values µi (see lower panel Figure 6 and 5). The cluster affiliation γi(t) cal-

culated with HMM corresponds to the Viterbi path characterizing the model.

The set of parameters used here to define the HMM also include the transition

probabilities φij(t) = P(γj(t)|γi(t − 1)) which can all be determined according

to the normal distributed time series xt [3]. The HMM performance, though

good for the small overlap, does not provide a definite assigning process γi(t)

for the data series with a distance of 0.25 of the mean values (see lower panel

of Figure 7). Moreover, a major drawback of Bayesian mixture models, here

represented by GMM and HMM, is that the quality of the solution crucially

depends on the initialization of the conditional probabilities in the first iteration

of the EM-algorithm. For example, in context of HMM identification via the

Expectation-Maximization algorithm (EM), setting the initial transition prob-

ability matrix to be diagonally dominant may result in the cluster affiliations

that are persistent, but it is clear that this type of ’implicit regularization’ via
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a particular choice of initial parameters is by no means robust since the overall

EM-algorithm has no control of regularity in it. For the overlapping exam-

ples of Figures 5, 6 and 7 we chose the Viterbi path of 50 different runs with

the lowest energy value. For both the GMM and HMM results, the above

described ’implicit regularization’ (via the setting of initial parameter values)

was performed and, as can be seen from Figure 7, both HMM and GMM

methods fail to recover the original persistent path for the most ill-posed sce-

nario with the maximum overlap between the two cluster states. In contrast,

both the MCMC and the FEM-clustering method, due to the build-in explicit

H1-regularization and lack of other implicit probabilistic assumptions, manage

to recover the original path with quite satisfactory robustness. Concluding, we

may say that it is sensible to apply methods such as the presented MCMC

method or the FEM-clustering instead of the comparatively poorly performing

HMM/GMMs techniques.

Applying a Lilliefors test [29], an adaptation of the Kolmogorov Smirnov test

[10], to the time series of Figure 7 also results in the wrong conclusion that the

data comes from a single Gaussian distribution, which can lead to a false conjec-

ture that the underlying process does not exhibit a regime-switching behavior.

Even for the more separated case of Figure 6 the Lilliefors test does not detect

that there are in fact two different normal distributions instead of just one.
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Figure 7: The figure shows artificially generated data (first panel) and the correspond-
ing resulting paths (second panel) after applying the MCMC framework and the FEM-
technique. The data given in form of a time series is alternating between values of two
normal distributions (µ1 = −0.125 and µ1 = 0.125, σi = 0.5, ǫ2 = 0.5). Also the
plot displays the synthetic hidden process and 100 paths calculated together with the
MCMC method with the black colored process being the mean of these results. In
the third and fourth panel of the figure the hidden paths determined with GMMs and
HMM are shown.

This point is especially important regarding the fact that these kinds of

Gaussianity and regime-behavior tests are commonly applied in computational

analysis of physical observation data. As the above results demonstrate, they

may fail to recover that there is underlying regime transition behavior in overlap-

ping ill-posed cases. To avoid this problem and to be able to identify the hidden

regimes in strongly overlapping data series, it is necessary to make use of anal-

ysis methods like the here proposed MCMC method or the FEM-clustering

framework.

4.4 Multidimensional observation data and performance

After we applied the proposed methods to different sets of synthetic time series,

we will now investigate its performance on observation data in form of a lattice

of daily temperature data 3 from the arctic circle consisting of 100 cells. Firstly,

we reduce the space dimension from a hundred to ten with PCA. Then we de-

termine the hidden process for different numbers of clusters with the MCMC

and FEM-clustering methods. After that, we find the optimal K using the

modified Bayesian information criterion defined in (17). Additionally, we apply

3Data is provided by http://data-portal.ecmwf.int/data/d/interim_daily/
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K-Means-clustering [26] to the data to have a comparison with standard tech-

niques. In fact the K-Means-clustering problem formulation is just a special

case of the proposed regularized clustering problem (12), i.e., for ǫ = 0, model

function (2) and model distance function (5).

The time series has a length of 1095 representing daily measurements from

January 2001 till December 2003. We obtain the optimal number of clusters

K = 3 (for test runs with K ∈ {1, 2, 3, 4}) with the BIC. The resulting hidden

processes can be seen in Figure 8.
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Figure 8: The figure displays γi(t) for i = 1, 2 obtained with three different techniques
(FEM, MCMC, K-Means). The Metropolis algorithm was set with a Markov chain
length of 100000 and ǫ = 4. The FEM-technique runs with NFEM−functions = 100
and ǫ = 4.

The transitions between the three clusters can be interpreted as the seasonal

changes. Persistency in cluster 1 describes the summer winter cycle and γ2(t)

characterizes the transition phases between summer and winter occurring in

April and October which can be regarded as the other seasons, fall and spring.

All three techniques provide similar approximations of the hidden process only

varying in the length of the persistent states. The histograms corresponding

to the difference between the observation data and the time series, reproduced

with Θ and Γ, display normal distributed behavior in the 2nd to 10th coor-

dinate for the FEM-clustering technique and the MCMC method. However,
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the first coordinate shows uniform distributed histograms for both clustering

frameworks. The most important observation is that the difference between the

actual data and the predicted time series has a deviation ranging from -50 to 50

in the MCMC case and for the FEM-clustering method from -110 to 60. This

large variance can be explained by looking at the time span, that we identified

as summer. In these particular intervals the values of the data vary from 55

to 120 which is a wide range to be described with one scalar model parameter

component. Nevertheless, the considered clustering frameworks all manage to

detect the main seasonal phases of the year and, therefore, provide a good but

basic description of the system of interest relating to the given observation data.

We now want to address the performance of the Metropolis algorithm in

comparison with the FEM-clustering technique applied to higher dimensional

data, in particular concerning the run time.

Considering the definition of the dimension of the time series, we distinguish

between the dimension of time, also referred to as the length of the time series,

and the dimension of space, referring to the dimension of x(t) at a fixed time

t. Obviously, both types of dimension effect the run time and the complexity

of the regarded frameworks. We assume that we can reduce the dimension of

space with dimension reduction techniques, such as PCA [25], and will only

concentrate on the effect of the time dimension.
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Figure 9: The panels displays the average computation time in seconds to determine the
model parameters γi for different numbers of finite elements, i.e., NFEM−functions =
100, . . . , 2000 in steps of 100. The considered synthetic one-dimensional time series
have a length of 10000 with 2000 transitions and are generated by sampling from a
normal distribution with µ1 = −3.5 and µ2 = 0 and variance σ1,2 = 0.5 for K = 2
(left panel) and mean values µ1 = −3.5, µ2 = 0 and µ3 = 3.5 again with variance
σ1,2,3 = 0.5 (right panel). The MCMC method generates 100000 samples and runs
with the following parameter settings: initial β = 1, initial ν = 0.1 and ǫ2 = 0.5
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Since the performance of the FEM method varies significantly for differ-

ent numbers of finite element functions, it is necessary to consider its run time

behavior as a function of NFEM−functions. To be able to compare the computa-

tion time of the two techniques, we made use of finite elements in the proposed

MCMC-clustering approach analogue to the FEM-clustering method, i.e.,

sample a discretization γ̃i of γi. Also we will consider the FEM-BV-clustering

approach due to the fact that our current implementation of the FEM-BV-

framework 4 is computationally less expensive than our implementation of the

FEM-clustering method (i.e., with Tikhonov-regularization) proposed in [21].

Since the run time of the FEM-BV-clustering is effected by the number

of annealing steps and iterations to obtain a good approximation of the global

minimum, we will only consider the computational time of one run of the linear

optimization problem to find an optimal Γ for a fixed Θ neglecting the usual

repetitions (such as annealing steps or iterations for error reduction). The con-

sidered synthetic one-dimensional time series have a length of 10000 with 2000

transitions and are generated by sampling from a normal distribution with mean

values µ1 = −3.5 and µ2 = 0 and variance σ1,2 = 0.5 for K = 2 and mean values

µ1 = −3.5, µ2 = 0 and µ3 = 3.5 again with variance σ1,2,3 = 0.5 for K = 3.

The finite element MCMC-clustering framework is run with 100000 iterations,

i.e., the length of the Markov chain is 100000. This number of iterations is

sufficiently large to obtain qualitative results even for NFEM−functions = 2000.

The adaptive simulated annealing is set as follows: initial β = 1, initial ν = 0.1

and ǫ2 = 0.5. While for small numbers of finite element functions the FEM-

BV method still provides solutions in less than a second, the computation time

scales badly with a growing number of finite element functions (as can be seen

in Figure 9). In contrast to the run time of the FEM-BV-clustering technique,

the run time of the MCMC increases moderately for larger numbers of finite el-

ement functions. Even for NFEM−functions = 10000, i.e., Γ is sampled without

additional discretization, the computational costs are reasonable (115 seconds

for K = 2 and 542 seconds for K = 3). Moreover, it is important to mention

that the computationally feasible number of finite elements is limited due to

memory capacity problems, i.e., there is a restriction to the level of accuracy

that can be provided with the FEM-clustering technique.

Note that the synthetic affiliation processes ΓK=2 and ΓK=3 used to generate

the data for Figures 9 each have 2000 regime switches, thus it is not possi-

ble to describe the underlying dynamics correctly for NFEM−functions < 2000.

However, the mean quality level of the results for NFEM−functions = 2000 is

4The framework with various model distance functions is available on
http://icsweb.inf.unisi.ch/cms/index.php/component/content/article/12-news/

77-2012-metstroem-summer-school-qmethods-of-data-analysis-for-fluid-mechanics-meteorology-and-climate-researchq.

html
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sufficient for K = 2:

∑

t

||x(t) − xFEM (t)||

T
≈ 1.5348 and

∑

t

||x(t) − xMCMC(t)||

T
≈ 1.5433 (33)

and for K = 3:

∑

t

||x(t) − xFEM (t)||

T
≈ 1.5718 and

∑

t

|
||x(t) − xMCMC(t)||

T
≈ 1.5860 (34)

for both the FEM-BV-clustering method (settings: τol = 0.0000001 and C =

2000) and the MCMC-clustering technique (settings: initial β = 1, initial

ν = 0.1, ǫ2 = 0.5 and a Markov chain of length 100000). Note that the FEM-

BV-framework has to be run for more than one (i.e., mean of 13) iteration to

obtain qualitative results.

Due to the rapidly growing run time of the FEM-BV method it is sensible

to apply the MCMC-clustering technique in cases where NFEM−functions is

considerably big. Usually it is necessary to run the algorithm with more finite

element functions as soon as the length of the time series increases but it might

also be prudent for data where the persistency of the states is low, i.e., where

the transitions between the cluster states are more frequent. Since it is difficult

to predict persistence behavior for observational data, it might also be necessary

to assume more finite elements to assure results of good quality. Though the

MCMC-clustering is a good option for applications with longer time series, it is

important to mention that with longer time series it might become necessary to

increase the number of samples, i.e., the length of the generated Markov chain

to gain good approximations. Moreover, the number of considered clusters K

effects the number of necessary MCMC samples. However, in such cases it is

possible to further reduce the numerical cost with parallel computing for the

Metropolis algorithm [4].

5 Conclusion

A Markov chain Monte Carlo approach to persistent cluster modeling with an

adaptive simulated annealing ansatz was presented and its performance was in-

vestigated by applying it to different sets of synthetic and observation data and

comparing it to standard methods such as GMM/HMM, K-Means and to the

FEM-clustering algorithm in terms of efficiency and accuracy. The conceptual

advantages of the proposed MCMC framework are firstly the good compu-

tational performance especially in comparison with the FEM-based clustering

technique for bigger numbers of finite elements. Moreover, the Metropolis al-

gorithm allows a much higher level of parallelism compared to the FEM-based
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technique. This opens promising perspectives for parallel high-performance im-

plementations of the method on modern supercomputer architectures. The pro-

posed MCMC is also computationally superior when it comes to the feasible

number of finite elements which in case of the FEM-based clustering is lim-

ited due to memory capacity problem. Another import advantage is that the

MCMC approach does not depend on the choice of the initial parameters, i.e.,

provides a global optimum of the clustering problem. Also, in contrast with

the earlier introduced FEM-based clustering methods, the MCMC framework

allows an uncertainty quantification of the resulting cluster affiliations. Both

the FEM-based clustering and the MCMC-based framework allow to identify

a hidden process even for very overlapping data, where standard approaches for

regime behavior (like GMMs and statistical Gaussianity tests [10, 29]) fail.

The drawback of the current implementation of the MCMC method is that it

can require careful tuning of three adjustable sampling parameters to obtain a

reliable numerical solutions to the problem. In contrast, the FEM-clustering

technique [20, 21, 22, 24] has only one externally adjustable tolerance param-

eter. Also, the determination of the optimal length of the underlying Markov

chain is a source of uncertainty for the presented MCMC-clustering method.

Concluding, the MCMC approach provides a good alternative to the existing

FEM-clustering algorithm for ill-posed clustering problem, i.e. problems with

a significant overlap between the clusters. Furthermore the two techniques com-

plement one another regarding run time and quality when applied to a variety

of data.
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