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This paper introduces an environmental representation for autonomous mobile robots that continuously adapts over time. The
presented approach is inspired by human memory information processing and stores the current as well as past knowledge of
the environment. In this paper, the memory model is applied to time-variant information about obstacles and driveable routes
in the workspace of the autonomous robot and used for solving the navigation cycle of the robot. This includes localization and
path planning as well as vehicle control. The presented approach is evaluated in a real-world experiment within changing indoor
environment. The results show that the environmental representation is stable, improves its quality over time, and adapts to

changes.

1. Introduction

The ability to navigate in the environment is one of the
most important requirements for an autonomous mobile
robot. In general, this navigation task can be defined as
the combination of three basic competences: localization,
path planning, and vehicle control. Localization denotes the
robot’s ability to determine its own position and orientation
(referred to as pose) within a global reference frame. Path
planning defines the calculation of an adequate sequence of
motion commands to reach a desired destination from the
current robot position. Due to its planning component, path
planning is typically executed before motion. The planned
path is followed by the robot using motion control and
reactive obstacle avoidance. In case an obstacle is reactively
unavoidable, global path replanning is performed.

In order to solve the navigation task, previous knowledge
about the environment is required. This knowledge includes
landmark features which may be used for localization,
geometric and semantic information about routes which
may be applied to path planning, and obstacle configurations
which must be circumvented safely. Within the robotic
community, the environmental knowledge is typically given
in advance [1] or built up from scratch before operation by
using SLAM approaches [2].

In this case, it is supposed that the world can be assumed
as static or that the robot is operated only for a limited
period of time. However, future service robots are required
to run autonomously from several weeks up to years. During
this long-term operation, these robots are expected to share
their workspace with people and to interact with humans as
well as with manually and autonomously operated vehicles.
Typically, these environments change over time and cannot
be assumed as static any longer.

Changes in the environment may appear gradually or in
an abrupt way when they occur outside the sensory range of
the robot. In general, we differentiate three types of objects:
dynamic, semistatic, and static objects. Objects like cars or
people moving with a certain velocity in a defined direction
are called dynamic. Within the sensory range of the robot,
the velocity and movement direction can be estimated by
considering subsequent sensory measurements. Objects that
change their pose or physical dimensions without a direct
movement are called semistatic, such as growing trees and
parking cars as well as changes that occur outside the sensory
range of the robot. On the other side, objects which are
invariant to changes are denoted as static. Furthermore,
changes may not be permanent: a door may have been
opened, a package may have been left in the corridor for



a while, and so forth. In general, it is unknown to the
autonomous robot when, where, and for how long these
changes will occur. For a secure and safe long-term operation
in these environments, mobile robots will have to adapt to
these changes. Moreover, in giving robots the ability to store
the current state and to memorize the past appearances of
the environment as well, they will have the ability to learn
from the past. These demands require new concepts for the
environmental representation of mobile systems.

In this paper, an adaptive environmental model for long-
term navigation of autonomous mobile robots is presented.
Following the concept of human memory, this representa-
tion consists of three basic stores: sensory memory, short-
term memory, and long-term memory. The sensory memory
contains raw data from the sensors while the short-term
memory is used to store environmental data that is of vital
importance for the robot. Within the short-term memory,
relevant data is identified and then transferred to the long-
term memory. By using temporal parallel stores, the pre-
sented memory approach allows a spatial and temporal mod-
elling of time-variant environmental data. In this paper, the
memory model is applied to obstacles and routes in the envi-
ronment and used for object tracking, localization, and path
planning as well as obstacle avoidance. Therefore, the adap-
tive memory model forms the basis for solving the navigation
task of the autonomous robot during long-term operation.

The rest of the paper is structured as follows. Section 2
discusses previous work on navigation approaches in chang-
ing environments. Section 3 introduces the adaptive memory
model this work is based on. Section 4 presents the update
of the obstacle representation and Section 5 the update of
the route data in the memory model. In Section 6 the data
included in the memory model is used for autonomous
robot navigation. Real-world experimental results in indoor
environments are given in Section 7. Finally, the conclusion
and discussion for future work are presented in Section 8.

2. Related Work

Most of the existing navigation approaches assume the world
to be static. To deal with changing environments, some
approaches suppose that a specific part of the sensory data is
static and invariant to changes over time. For example Soika
etal. [3] and Wulf et al. [4] extract ceiling features from a 3D
point cloud. Within the scan points, these ceiling features are
assumed to be time invariant and robust against occlusion by
moving objects. The extracted features are used as landmark
measurements for localization in industrial halls based on an
a priori given map.

Other approaches attempt to explicitly discriminate
dynamic from static measurements and detect and filter out
moving objects. For example, Fox et al. [5] use an entropy
filter to identify measurements caused by dynamic objects.
Thrun et al. [6] developed for the well-known Minerva
tour guide robot a distance filter to separate sensor readings
corresponding to known objects from readings caused by
dynamic obstacles. Therefore a preinstalled map of all known
objects was used. In SLAM approaches, Wang et al. [7]
employ a feature-based heuristic to identify and filter out
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dynamic objects in range measurements. Hahnel et al. [8]
use a probabilistic method for tracking people and filter
out the corresponding measurements to improve the map
building process. Although these filtering approaches have
been proven to be robust in highly dynamic environments,
they are unable to detect semistatic objects.

In recent years, few authors started to research in long-
term localization and explicitly model the changes in the
environment. Biber and Duckett [9] propose a spatio-
temporal map where the environment is represented at
multiple timescales simultaneously. By replenishing parts of
the map with new sensor measurements by a timescale-
specific learning rate, the dynamic map adapts continuously
over time. The representation is used for localization by
selecting the timescale of the map which best fits to the
current sensor data. Stachniss and Burgard [10] introduced
an approach of modelling typical configurations of dynamic
environments like open and closed doors. In areas where
changes are detected, this approach creates local grid-based
maps (patch maps) and estimates for each sub-map clusters
of possible configurations in the environment. These patch
maps are integrated into a Monte-Carlo localization. This
work is extended by Meyer-Delios et al. [11] by using local
temporary maps to improve the localization in semistatic
environments like a parking lot. Dayoub and Duckett [12]
presented an approach for long-term topological localization
based on omnidirectional camera vision. Local features
are extracted from panoramic images to represent the
appearance of a node in the topological map. By adopting
concepts of short-term and long-term memory, the pre-
sented approach updates the group of feature points for the
reference image of a particular place.

However, all existing approaches for long-term operation
of mobile robots focus on the localization part. So far,
the complete cycle of autonomous navigation, consisting
of localization, path planning, and vehicle control is not
considered.

3. The Adaptive Memory Model

In this paper all knowledge about the environment is
supposed to be a function of time. Assuming a planar world,
the configuration space of the environment in spatial as well
as in temporal domain tends in long-term operation towards
infinity. To represent present as well as past knowledge
about the environment of an autonomous mobile robot with
limited memory capacities, an adaptive memory model is
introduced (see Figure 1). The memory model is based on
the multistore model of human memory proposed in 1968
by Atkinson and Shiffrin [13]. This model, which forms the
basis of modern memory theories, divides human memory
into the three basic stores: sensory memory (SM), short-term
memory (STM), and long-term memory (LTM).

According to Atkinson and Shiffrin, the sensory memory
contains all raw data perceived by the senses. While encoding
the data in SM, elementary identification processes are
performed. As the amount of data is huge, the stored data
decays in SM after a period of approximately 2 seconds.
The short-term or working memory forms the basis of
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FIGURE 1: Proposed memory model.

mental information processing. Selective attention mech-
anisms determine which data is moved from the sensory
memory to STM. As the capacity of the short-term memory
is limited, further abstraction is performed while storing the
data. The data in STM can be recalled for a period of several
seconds to a minute before being forgotten. Through the
process of rehearsal, data in STM can be transferred to the
long-term memory to be retained for longer periods of time.
During the storage process in LTM, further abstraction and
interpretation as well as combination with encoded data are
performed. In return, the knowledge stored in LTM affects
the perception and influences the data attended to in the
environment. In general, when new data moves from SM via
STM to LTM, the amount of data is condensed with previous
data and the level of abstraction arises.

In this paper we are applying this human memory
concept to autonomous mobile robots. For this, we make two
assumptions. Firstly, each store of the memory (SM, STM,
and LTM) is divided into substores ¢ to represent different
kinds of data (e.g., obstacle and route data). Secondly, each
substore ¢ is divided in temporal domain into A slots of equal
length At. Within the time At the data is assumed to be valid.
For this, each substore is able to memorize a period of time of
A-At. The temporal representation is assumed to be a circular

buffer, overwriting the first entries for an operation time of
more than A - At. With a current time given by ¢, the index
7 of the current temporal slot in substore ¢ is computed by
applying the modulus operation as follows:

= (t_ts)
N

where t; denotes the starting time of operation. The number
of A temporal slots per store is predefined and depends on the
kind of data stored. In general, the time At for each temporal
slot increases from SM over STM to LTM resulting in an
increasing memory span of A - At.

In the following sections, we will present how we
integrate obstacles as well as route knowledge in this memory
concept and use the memorized information to improve
robot navigation in changing environments (see Figure 2 for
an overview).

(1)

mod A,

4. Obstacle Representation

4.1. Sensory Memory. For environmental perception, 2d and
3d range sensors are supposed. Using only 2d approaches for
navigation, the relevant 3d sensor data is reduced to the 2d
plane by applying the technique of virtual 2d scans [14]. Each
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F1Gure 2: Dataflow of the long-term navigation approach. Solid white rectangles denote subslots in the memory model, and dotted rectangles

represent algorithms for data processing.

single 2d sensor measurement s5™, named scan point below,
is defined as follows:

sSM = (a,r,d)"  witha,r € R, d €D, 2)
where « denotes the polar angle and r the range of the
measurement in the robot-centred polar coordinate system
CSg. The element d represents an estimate of the dynamic
class of the scan point, being an element of the following
possible set:

= {dynamic, semistatic, static, unknown}. (3)

Following the definition in Section 1, dynamic indicates that
the scan point belongs to a moving object whereas semistatic
represents an object which changes without moving and
static indicates objects time invariant to changes. Unknown
denotes that there is no dynamics classification available.
Since common range sensors are unable to classify the
dynamics of the scan points, d is initially set to unknown for
$M,

Since the polar angle « and the range  of the scan point
are measured with a real sensor, they are limited in their
precision. For modelling the errors, we assume for each s$M a
normal distributed error with the following covariance:

SM 2
o (oa 0,20,)' "

7,5 Oqr Oy

Note that we are neglecting systematic measurement errors
and model only the randomized errors of @ and r. For further
simplification, we suppose the dynamic classification d to be
“correct.”

Finally, a full 2d scan representing the local environment
around the robot is defined as follows:

sM
SM _ | sM
Sr =54 ’Z . (5)
i) =1 M
The scan S consists of n$M scan points s} and the

associated covariance matrices Zmi. Each 2d scan is related
to a discrete time step 7. In case where multiple sensors are

used, an additional transformation applies transforming the
sensor data into the robot coordinate system CSg.

Assuming a ground-based vehicle, the pose of the robot
is defined at every time step 7 as follows:

M= (x,y, go)T with x, y,¢ € R, (6)

where x and y represent the position and ¢ represents the
orientation of the robot (to be more precise, the pose of
the robot coordinate system CSg). The pose pM is given
in the world-centered Cartesian coordinate system CSy and
is the result of the localization approach (see Section 6.1).
Depending on the input data and the localization approach,
the pose is estimated with a certain amount of uncertainty.

Assuming a normal distributed error in position as well
as orientation, the related covariance matrix is defined at
every time step 7 as follows:

2
07 Oyx Opx

M
2
D=0y 05 gpy . (7)
Tp
Oxp Oyg Ug%

4.2. Short-Term Memory. In short-term memory, an abstract
object representation is created from the 2d scan SSM. For
this, the scan is segmented and scan points which are related
together in spatial domain are grouped by a bounding box
05™ . Each bounding box is defined as follows:

o™ = (x, y,0,Lw,v,d)", (8)

where x and y represent the position and ¢ represents the
orientation of the centre point of the bounding box in
Cartesian coordinates given in the robot coordinate system
CSg. I and w are the length and width of the box with [
pointing towards ¢. The absolute velocity in direction ¢ is
denoted by v and the dynamic classification of the object
defined by d € D. Within each 2d scan $$M, n$™ bounding
box representations are included and given by the following
set OF ™:

STM _ ) ,STM
OT - {OT,j }jzl‘_'ngTM' (9)
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The bounding box representation is used to estimate
the movement of objects in the environment. Therefore, the
poses of all objects belonging to O™ are tracked in time.
For this, a common Kalman-Filter approach is applied as
described in [7]. By predicting the object motion according
to a linear motion model and using the nearest neighbor
criteria, the tracking approach associates to each object oi)TjM
at time 7 a corresponding object of?}/fk at the previous time
7 — 1. Between these time steps, the ego motion of the robot
is measured and compensated using wheel odometry. From
the change in object position between subsequent time steps,
the absolute velocity v as well as the moving direction ¢
at the current time step 7 is estimated. Next, the estimated
velocity is used to classify the dynamics of the tracked objects
following the straightforward metric:

dynamic  if v; = Vinres
d] = { static if Vj < Vthres» (10)
unknown else object not tracked.

In case the velocity v; is equal to or exceeds the threshold
Vihres> the object is assumed as being dynamic. Otherwise, the
object is classified as static. If no data association between
the current and the previous objects is possible, the object’s
dynamics is assumed as unknown.

Next, the tracked objects are used to classify the dynamics
of the scan points in short-term memory. For this, each scan
point sy € S3M is checked if an object 03'™ € OS™ exists

7,j
that includes the scan point. In case s} is included in an

object, the dynamics of the object is used. Otherwise, the
dynamics is assumed as unknown:

d; if sSM is inside oiTjM,

d; = ’ ’ (11)

1
unknown else.

In short-term memory, the result is stored in a 2d scan
SS™ which corresponds to the scan S$M with the dynamic of
each scan point classified by the tracking approach.

4.3. Long-Term Memory. The obstacle representation MF™
in long-term memory is assumed as an occupancy grid
map. The occupancy grid is a 2d tessellation of space into
discrete cells, where each cell stores a probabilistic estimate
of its state. Following the work by Elfes [15], the state s(C)
associated with each cell C € MMM is defined as a discrete
random variable with the two states occupied (OCC) and
empty (EMP). As both states are exclusive, and exhaustive
the probability follows the rule P[s(C) = OCC] + P[s(C) =
EMP] = 1.

The update step of the long-term memory MX™ is based
upon the scan representation S3™ in short-term memory
and the current robot pose p3™. For deciding which scan
points ;M € S$™ to be transferred from short-term to
long-term memory, an update rule inspired by the work of
Biber and Duckett [9] is used. Depending on an update rate
0 < u < 1, the scan points for the update process of LTM are
selected randomly by performing the following steps for each
new 2d scan in STM:

(i) choose all n$TM scan points with d = static in the

current 2d scan S$™;

(ii) select u - n31¥ randomly chosen scan points from the

static scan points in S$™;

(iii) Add the u - n§1} scan points to the temporary set S'.

For each new 2d scan in STM, the set S’ is initially defined as
S =0.

As defined in Section 4.1, the scan is originated in
robot coordinates CSg. For updating the obstacle repre-
sentation MF™ in world coordinates CSy, a coordinate
transformation F(s,;, p?M) for the coordinates as well as
the uncertainties of each scan point applies. With the pose
pSM of the robot, the scan point s;; in world coordinates is
calculated as follows:

Xty cos(goT + cx’r,,-)

s = (s, pM) = (12)

yrtrre sin((pT + oc'T,i)
According to (4) and (7), the scan point as well as the pose of
the robot is affected by uncertainty. Therefore, the resulting
covariance matrix of the scan point in world coordinates is
calculated as follows:

Z - VF(s;’,,-)iVF (s0)" (13)

Here, VE(s;;) is the Jacobian matrix linearized at the
position of the transformed scan point and 3. ;; defines the
combined covariance matrix of the pose and the scan points:

. (20

Tp
T,Zs,i_ 0 Z

T,8,0

(14)

With the scan point s;; and the covariance matrix Y.
in global coordinates, the resulting probability distribution
for each scan point is defined as follows:

1
(27)" det (37

pri(x) =

(15)

1 e rr T”il - rr
< exp (_2 (F-o)"S (5~ ))
This probability distribution is used for updating the
obstacle representation as described by Elfes [15] using the
Bayesian reasoning.

4.4. Semistatic Classification. Following the update step of
the long-term obstacle representation, MY™ is used for
classifying the semistatic obstacles in short-term memory.
Therefore, for each scan point $$™ in short-term memory,
the obstacle representation ME™ is checked if an obstacle
is within the uncertainty of the scan point. In case no
equivalent to the scan point is found in the map, the
dynamics is set to semistatic. The classified scan point is

stored within the set ™ in short-term memory.



5. Route Representation

The routes which may be used for autonomous navigation
are defined by a set R of n possible routes:

R={ri}ic1 (16)

Each single route r; consists of a directed set of m;
waypoints w; ;:

T
R P { (o i i st 5 }

>
j=l.m;

(17)

where (x; j, y; ;) is the waypoint location in global Cartesian
coordinates and v;; defines the maximum velocity for
approaching the waypoint. The width of the route corridor
between two subsequent waypoints w; ;1 and w; ; is defined
by l;; which is the perpendicular distance from the route
centre line to the boundary edge. At;; denotes the required
travel time between the subsequent waypoints w; ;1 and w; j,
and t;; represents the last update time of any parameter of
this route.

The update process of the route representation is based
on our former work. For more details, please refer to [16].

5.1. Short-Term Memory. In short-term memory, the route
segment which the robot is currently on is estimated.
Therefore the pose p3™ of the robot relative to the route
representation R\™ in long-term memory is computed. This
is done by calculating the pose relative to all available routes
in RI™ and selecting the pose where the lateral distance to
the route is minimal. In case the relative pose is within the
boundaries of the route, p??;M is stored within the short-term

memory.

5.2. Long-Term Memory. The relative pose is used for updat-
ing the route representation RI™ in long-term memory.
Here we differentiate two cases. If the pose pS™ is within a
given route corridor, the waypoints of the route are updated.
Next to the coordinates (x; j, y; ;) of the waypoints, the travel
time At;; and the time f;; are updated once the route
segment is passed by the robot. In case the pose p3™ is
outside the existing route representation, a new route is
added to RM™, For this, a new waypoint is added to the
representation whenever the distance Ad or the angular
difference A¢ to the last waypoint exceeds a predefined
threshold. In addition, in every update step of the long-
term memory, the age of the route knowledge is considered.
Whenever a route representation in long-term memory is
older than a certain threshold without being updated by the
robot, the route is removed from the long-term memory and
forgotten.

6. Long-Term Navigation

The memory model presented in this paper is used for solv-
ing the navigation task of the robot. Therefore, the spatio-
temporal representation is integrated into localization, path
planning, and vehicle control of the autonomous system.
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6.1. Localization. For localization, a Monte-Carlo localiza-
tion is used as presented in [17]. Sensory input of the
localization is the 2d scan $™ of all scan points at time 7.
Within this scan, only the scan points which are classified
as static are regarded for localization. As reference map
for localization, the static obstacle map M!™ in long-
term memory at time 7; is used. To maintain MX™, all
obstacle maps in LTM are searched for the map that fits
best to the current sensory input §§TM. This is achieved by
calculating for each obstacle map in LTM the expected range
measurements and selecting that map whose overall mean
square error between the measured and the expected range
measurements is minimal.

6.2. Path Planning. For path planning, an optimal path
from the current robot pose p to the given destination is
searched. Considering the route data stored in LTM, the
actual route representation R\™ is used for path planning.
Within the representation of all admissible ways at time 7,
path planning is performed using the well-known A* search
algorithm. This algorithm computes a least-cost path from
the starting pose to the given destination minimizing the
overall travel time along the way. Estimating the travel costs
along each route, the travel times stored in LTM and a
heuristic estimate of the remaining costs to the destination
are used. The heuristic estimate is based on the travel time
from the straight-line distance divided by the maximum
robot velocity.

The result path of the planning algorithm is a set P of m
waypoints w:

P={wlici.m (18)

These waypoints define the base trajectory of the resul-
tant path as well as the corridor width along the path.

6.3. Vehicle Control. Following the preplanned path P is
achieved by a hybrid feedback controller introduced by
Hentschel et al. in [18]. This controller enables precise
tracking of the planned path as well as obstacle avoidance.
The obstacle avoidance consists of two parts, reactive
obstacle avoidance based on the current sensory data SS™
and global path replanning. Reactive obstacle avoidance is
achieved by adjusting the lateral offset of the robot with
respect to the base trajectory of the path. For each path
segment, the lateral displacement is upper bounded by the
lateral boundary of the path corridor I. Next to obstacle
avoidance, the vehicle speed is reduced in dependence of
the distance to the perceived obstacles. In addition, global
path replanning is performed to circumvent obstacles which
cannot be avoided reactively. For global path replanning, the
current obstacle map ML™ is considered. Within the known
obstacle configuration, the optimal combination of motion
commands is searched which circumvents the obstacles and
returns as fast as possible behind the obstacle to the path P.
This motion search is done as well in obstacle map by A*
algorithm.



Journal of Robotics

Sick S300

F1GURE 3: Roomba vacuum cleaner used in the experimental results.

7. Experimental Results

7.1. Experimental Setup. To demonstrate the applicability of
the presented memory model for long-term navigation of
autonomous mobile robots, a real-world indoor experiment
is performed. For this, an iRobot Roomba SE vacuum
cleaner (see Figure 3) is used as robotic platform. Odometry
measurements of the differential drive are received and
movement commands are sent at a rate of 10 Hz via the open
Roomba Serial Command Interface (SCI). For environmental
perception, the robot is equipped with a Hokuyo URG-04LX
2d laser range scanner with a field of view of 240° at a
maximum range of 4m and an update rate of 10 Hz. All
required algorithms for navigation as well as data acquisition
are computed in real-time using an AMD Geode LX800
embedded pc with Linux/Xenomai real time operating system
on board of the robot. For evaluation purpose all sensory
data is logged as well.

The experiment is conducted in an apartment style envi-
ronment with the dimensions of 8 m by 10 m. The workspace
includes typical apartment furniture like cupboards, tables,
sofas, and flower tubs. For the robot, initial knowledge about
the environment is given in advance (see Figure 4). This
knowledge includes the position of the walls within the
environment as well as one desired route.

Obstacles in the environment are unknown in advance
and must be learned automatically by the adaptive memory
model.

In this environment, the robot is operated four weeks
(28 days) fully autonomously with one run per day. In the
first week, the environment is completely static while in the
second week various changes are inserted. This includes new
obstacles as well as changing obstacle configurations. For
the third week, two persons are entering the environment,
affecting and traversing the path of the robot. In the last week
of the experiment, the environment remains static, but on
day 22 parts of the path are fully blocked by an obstacle.

In this experiment, the memory model is parameterized
as follows: AtM = 0.1s, ASM = 10, At5™ = .15, ASTM =
100, At"™ = 86405, and A'™ = 10. For the grid size of
the obstacle map in long-term memory, 50 mm by 50 mm

:K_ [ = B start/end
P——

FIGURE 4: Initial environmental knowledge given to the robot.
The black line indicates the landmarks for localization, the blue
represents the route for path planning, and the red squares indicate
the position of the reflector markers for ground truth. Arrows
represent the direction of motion.

is chosen. The update rate of the long-term memory is set
to u = 0.05. By this means, 5 percent of the static 2d scan
points in short-term memory are used to update the LTM.
During the experiment the top speed of the robot is 0.2 m/s.
The threshold for detecting dynamic obstacles is defined as
Vihres = 0.3 m/s.

7.2. Ground Truth. To evaluate the localization result over
time, ground truth data for the robot pose is required. As we
are considering the full navigation cycle of an autonomous
robot, ground truth data must be available during motion
while the path of the robot may vary over time.

For this, 15 artificial reflector markers with a squared
size of 25 mm by 25 mm are used. The markers are located
at regular distances on the centre line of the ideal path and
are surveyed manually in their location. During motion, the
reflectors are detected by an additional Sick S300 2d laser
scanner scanning towards ground in front of the robot (see
Figure 3). Within a lateral distance of 0.5m, the reflector
position is measured in robot coordinates. With the pose
of the robot localization, the global reflector position is
calculated and compared with the ground truth reflector
positions for evaluation.

7.3. Results. During this experiment, the robot traveled a
total distance of 1225m fully autonomously and acquired
37800 2d scans. Starting with the initial representation in
Figure 4, new obstacles are learned and added to the long-
term representation. Figure 5 represents the LTM after day
seven.

Within the short-term memory, the scan points which
do not belong to dynamic objects and are not included
in the long-term map are classified as semistatic. As the
obstacle knowledge condenses over time, the average number
of semistatic scan points included in the 2d scan drops from
23% on day one to 3% on day seven (see Figure 6). During
the second week, the obstacle configuration is changed every
day. As a consequence, the percentage of semistatic points



FiGure 5: Environmental representation after day seven. The initial
knowledge is condensed by the perceived obstacles.
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FIGURE 6: Dynamic classification of the 2d scans using the adaptive
memory model.

included in the 2d scan increases to an average of 9.5%.
Due to the dynamic objects, the number of dynamic scan
points rises from an average of 0.5% to 9.2% in the third
week. As the environment remains static in the last week,
the percentage of dynamic and semistatic scan points is fairly
similar to the end of week one.

By the cumulative knowledge about the environment in
the LTM, the mean error in position with respect to ground
truth decreases from 0.14m on day one to 0.09m on day
seven (see Figure 7). As there are no equivalent obstacle
representations in LTM, the changing obstacle configurations
in the second week cause an increasing position error.
Especially at day nine the maximum position error increases
up to 0.48 m. On this day, a large obstacle was inserted at
point A (see Figure 5) which occluded most of the known
obstacles. During the experiment, the average position error
was 0.11 m.

To demonstrate the benefits of our presented approach,
the position errors are compared to a common static Monte-
Carlo localization approach. This is done via post-processing
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FiGure 7: Variation of the position error over time using the
adaptive localization and in comparison to a static localization.

Figure 8: Environmental representation after day 22. The route
representation is adapted to avoid the obstacle blocking the initial
path.

using the logged sensory data and the initial knowledge from
Figure 4 as the environmental representation.

Using the static MCL, the position error is noticed
to be higher than when using our adaptive approach.
Furthermore, on the days 8, 9, 10, and 11, the static
localization is unable to calculate a pose estimate due to the
obstacle configuration which occluded most of the walls in
the environment.

During the day 22, the route is blocked by an obstacle
(see Figure 8). By using global path replanning and the
obstacle representation in LTM, the robot circumvents the
obstacle and follows the initial route, adapting the route
representation in LTM.

8. Conclusion

In this paper, an adaptive memory model for long-term
navigation of autonomous mobile robots in changing
environment is presented. The proposed memory model
consists of the three basic stores: sensory memory, short-
term memory, and long-term memory. By using temporal
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parallel stores, the memory approach allows a spatial and
temporal representation of time-variant environmental data.
In this paper, obstacles as well as route data are integrated in
the memory. By analyzing the stored information over time,
the knowledge about the environment is condensed and used
for solving the navigation task of autonomous mobile robots.

Future efforts will concentrate on intensifying the exper-
iments regarding long-term operation and to extend our
activities to outdoor environment. In addition, more of the
environmental information, for example, object representa-
tion, should be stored in the memory model.
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