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Most binaural speech source localization models perform poorly in unprecedentedly noisy and reverberant situations. Here, this
issue is approached by modelling a multiscale dilated convolutional neural network (CNN). +e time-related crosscorrelation
function (CCF) and energy-related interaural level differences (ILD) are preprocessed in separate branches of dilated con-
volutional network. +e multiscale dilated CNN can encode discriminative representations for CCF and ILD, respectively. After
encoding, the individual interaural representations are fused to map source direction. Furthermore, in order to improve the
parameter adaptation, a novel semiadaptive entropy is proposed to train the network under directional constraints. Experimental
results show the proposed method can adaptively locate speech sources in simulated noisy and reverberant environments.

1. Introduction

Speech source localization (SSL) attracts growing attention
in the past decades. It is widely applied in human-robot
interaction systems and video conference systems. Binaural
speech source localization is a subtask of speech source
localization, aiming at estimating the direction of arrival
(DOA) of a speech source utilizing audio signals recorded by
binaural microphones mounted in artificial ears of a dummy
head [1]. +e pipeline of binaural speech source localization
contains two steps. Firstly, extracting interaural cues, i.e.,
interaural time differences (ITD) and interaural level dif-
ferences (ILD) from received binaural signals [2–4]. With
the inclusion of the dummy head, the frequency-dependent
characteristics of spatial cues can be captured by the head-
related transfer function (HRTF) [5, 6]. +is frequency
dependency motivates the use of time-frequency represen-
tations for binaural signals. A typical time-frequency rep-
resentation for binaural signals is based on Gammatone
filters which are usually used to simulate the peripheral
processing of human auditory system [7–9].+e second step
for DOA estimation is to apply geometric analysis technique
[1] or off-line models [4, 7] to map interaural cues to sound

source DOA. Over years, most methods were proposed to
improve the performance of binaural SSL from two aspects:
estimating robust interaural cues and improving the gen-
eralization of learning-based models.

Interaural time difference is the time delay corre-
sponding to the maximum value of the crosscorrelation
function of the left and right microphone signals. Interaural
level difference is the logarithmic difference of the power
energy between left and right microphone signals. However,
in the noisy and reverberant environments, there would be
additional peaks in the crosscorrelation function and power
energy loss of the target speech source. +e additional peaks
and energy loss would lead to unreliable interaural cues
estimation. In order to refine these unreliable interaural
cues, the time-delay compensation method was proposed to
align ILD and ITD [10], reverberation weightingmethod was
proposed to suppress early and late reverberation [11], and
echo-free onsets detection method was proposed to detect
direct-path signals [12]. Since ITD is more robust at low
frequencies (lower than 1.5 kHz) and ILD is more reliable at
high frequencies [13], the Gammatone filters are usually
used to filter the low and high frequencies. Karthik and
Ghosh used Gammatone filters to preprocess the binaural
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signals and mapped the frequency-dependent ITD to azi-
muths using ITD-azimuth templates [14]. May et al.
modeled the ITD and ILD in sub-bands for every source
direction using Gaussian mixture models (GMMs) [7]. In
the scene with multiple activate speech sources, the time-
frequency (TF) representation of binaural signal is also able
to distinguish noise and speech source in different frag-
ments. Christensen et al. investigated different TF weight
estimation approaches for interaural cues [15]. Recently,
deep neural network has shown significant performance of
speech source localization against noise and reverberation,
including time-frequency masking estimation [16] and
multi-source localization [17]. Convolutional neural net-
work (CNN) can be used to estimate broadband direction of
arrival (DOA) of speech source using phase components
[17] and to jointly locate and classify multiple speech sources
[18]. Frequency-dependent deep neural network (DNN) and
head movements can be exploited to detect multiple DOAs
and identify front-back confusions [19]. However, training
such a robust and well-generalized model requires a large
number of various acoustic conditions. +ere are few studies
that are proposed to improve the adaptability of a model to
previously unseen conditions. Takeda and Komatani pro-
posed a training scheme for unsupervised adaptation of
DNNs’ parameters using self-entropy and parameter se-
lection [20], and Wang et al. proposed a data-efficient
method based on DNN and clustering to improve binaural
localization performance in the mismatched HRTF condi-
tion [21], but the localization performance still stays poor. In
order to solve the off-grid problem, an off-grid BSSL method
based on an off-grid wideband sparse Bayesian learning
algorithm is proposed, which is only better than the state-of-
the-art HRTF-based BSSL methods [22]. It remains chal-
lenging how to generalize the learning-based model and
make it adaptively locate binaural signals in previously
unseen and adverse acoustic conditions.

Here, we propose a multiscale dilated CNN-based
method to further disentangle these issues. +e cross-
correlation function (CCF) and interaural level difference
(ILD) are extracted from binaural signals as input features.
In order to preserve the detailed spatial information, the
CCF and ILD are separately preprocessed in different dilated
CNNs with specific dilation factors. Afterwards, both
encoded interaural representations of CCF and ILD are
fused to learn crossdomain information. +e crossdomain
information encoded by multiscale dilated CNNs provides
trade-off between small and large receptive fields for CCF
and ILD features to better generalize the network in diverse
acoustic conditions. In this network, a remaining problem is
how to adapt network parameters to unseen acoustic con-
ditions. Drawing on the research of unsupervised adaptation
of network parameters [20], we also propose a semiadaptive
entropy as the objective function. Different from self-en-
tropy, the semiadaptive entropy includes the crossentropy
part to improve the localization performance. Besides, a
learning factor is used to weight the attention of cross-
entropy and self-entropy.

In summary, our contributions are as follows:

(i) We propose a multiscale dilated CNN framework for
binaural speech source localization, which effectively
encodes crosscorrelation function and interaural
level difference features from different dilation
factors.

(ii) We propose a semiadaptive entropy for CNN’s
parameter adaptation. Experimental results dem-
onstrate that multiscale dilated CNN trained with
semiadaptive entropy achieves significant improve-
ments over regular DNN and CNN in noisy and
reverberant acoustic environments.

2. Multiscale Dilated CNN

Suppose that there is only one target speaker, the received
binaural signals can be formulated by convolving speech
signal and head-related impulse responses (HRIR) in the
time domain as

ym(n) � s(n)⊗ hm(n) + vm(n), m ∈ l, r{ }, (1)

where the symbol ⊗ represents convolution operation, m
represents the binaural microphone index, l and r refer to
the left and right microphones, n is the index of time frame,
s(n) denotes the speech signal, and hm(n) denotes the head-
related impulse response. In order to resemble the frequency
selectivity of the human cochlea, binaural signals are
decomposed into 32 auditory channels using a fourth-order
Gammatone filter bank [23]. +e centre frequencies of
Gammatone filters are logarithmically equally spaced on the
equivalent rectangular bandwidth scale between 80Hz and
8 kHz. After filtering binaural signals, the crosscorrelation
function is computed between the left and right signals in
each frequency sub-band independently. +e CCF is further
normalized by the autocorrelation of the left and right
signals. +e CCF is formulated as a function of time delay τ:

ccfn, k(τ) �
Rlr(n, k, τ)�������������������

Rll(n, k, 0)Rrr(n, k, 0)
√ , (2)

where Rlr(n, k, τ) denotes the crosscorrelation between left
and right signals and k is the index of frequency sub-band.
Rll(n, k, 0) and Rll(n, k, 0) denote the autocorrelation of
left and right signals at τ � 0, respectively. Generally, the
diameter of artificial ears of the dummy head is about
15–17 cm. According to the sound propagation speed, the
arrival time difference between two ears can be estimated
within ±1.1ms. In the realistic conditions, considering the
head shadowing effect, the maximum time delay is set to
2ms. For example, the crosscorrelation function of binaural
signals sampled at 16 kHz within a range of centre delays
±2ms forms a matrix CCF with size of 32× 65. +e other
interaural cue ILD is energy difference in logarithmic be-
tween binaural signals, which is formulated as follows:

ildn, k � 10 log10
∑t∈S n{ }y

2
r(n, k, t)∑t∈S n{ }y
2
l (n, k, t)

, (3)
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where S n{ } denotes the set of a series of sample indexes t in
the nth frame. Since the binaural signals are framed into
short and stable speech signals, there would be nonenergy
frames. +ese nonenergy frames would be disregarded. +e
interaural level difference of binaural signals forms a vector
ILD with size of 32×1 in all frequency sub-bands.

2.1. Network Architecture. SSL can be regarded as a direction
classification task based on CNN. By dilating dense con-
volutional kernels with zeros, dilated CNN can operate on a
coarser receptive field and show robust performance for voice
activity detection in noisy environments [24]. +erefore, the
dilated CNN is considered in our network to encode robust
interaural features. +e schematic diagram of the proposed
multiscale dilated CNN is depicted in Figure 1. Two examples
of dilated kernels with kernel size of 3 are shown in the upper
right side of Figure 1. +e number of zero cells between
adjacent cells depends on the dilation factor (DF). Black
blocks denote the parameter of convolutional kernels to
activate corresponding input cells, while white blocks denote
zeros to keep input cells inactivated. +e number of zeros
between two activated cells is DF–1.

In binaural speech source localization, the CCF and ILD
reflect time-related and energy-related physical information,
respectively. In our method, separated branches of multiscale
dilated CNN are designed to better capture independent
interaural characteristics according to their physical meanings.
+e branch for CCF consists of two parallel dilated CNNs, one
of which stacks two dilated CNN layers with DF� 2 (i.e., di-
lation-2 CNN) and the other branch stacks two dilated CNN
layers with DF� 5 (i.e., dilation-5 CNN). +is multiscale di-
latedCNN is designed to locate the azimuths of binaural signals
in the frontal hemifield with range of [− 90°, 90°]. Taking 37
azimuths spaced at a step of 5° as examples, 65 samples of time
delays of CCF are exactly twice the number of DOAs.+eDOA
of a signal is estimated by considering the maximum of
crosscorrelation and the surrounding values of this maximum
in a kernel. In reality, adjacent DOAs within some angular
distances are also considered. With this in mind, we implicitly
include the tolerance errors of 5° and 10° by setting dilation
factors to 2 and 5. +e kernels with dilation factors 2 and 5
describe the tolerances ranging in [0°, 10°]. Here, dilation factor
4 is not included since it can be obtained by moving kernels
with dilation factor 2 twice. +e other branch for ILD consists
of only one layer of dilated CNN with dilation factor 2. All
CNN layers employ 64 kernels to double expand frequency
bands and are activated by rectified linear unit activation
function and a dropout probability 0.5.+emax-pooling layers
are added after each dilation-2 CNN to reduce parameters but
are excluded in dilation-5 CNN to preserve details. Finally, all
interaural representations are fused in a fully connected layer
with 128 neurons and followed by an output layer with Softmax
activation function. +e aforementioned parameters are suf-
ficiently evaluated in experiments.

2.2. Semiadaptive Entropy. As mentioned before, adjacent
azimuths within some tolerances can be considered correct.
Additionally, due to the intermittence of speech, weak-

speech frames are inevitably dominated by noise. In this
section, we propose a semiadaptive entropy to train mul-
tiscale dilated CNN. In most regression tasks, the Kull-
back–Leibler divergence (KLD) is widely used to measure
the similarity between two probability distributions. In this
paper, the probability distributions refer to the true DOA
and the estimated DOA in binaural speech source locali-
zation. +e KLD can be formulated as a sum of the “truth”
entropy and the soft crossentropy:

DKL(q ||p) �∑
i

qi · log qi − qi · logpi( ), (4)

where qi and pi denote the probabilities of the true DOA
and the estimated ith azimuth, respectively. +e DOA
probability of a silent or noise-dominant frame is assumed to
be uniformly distributed on I azimuths. With this as-
sumption, the “truth” entropy of KLD is substituted by a
uniform entropy. Besides, a learning factor λ is applied to
balance the crossentropy and the uniform entropy:

J � − (1 − λ)E ∑
i

qi logpi  − λE ∑
i

1

I
logpi , (5)

where E[·] means averaging over training samples. Under
directional constraint (λ≠ 1), the network is able to fine-
tune parameters under diverse acoustic conditions. +e
ADADELTA [25] algorithm is used to minimize the loss
function. Training process would be stopped if no lower
error appears on the validation set within last 3 epochs. +e
azimuth probability P(θ) of a received signal block con-
sisting of contextual frames is produced by averaging frame-
level azimuth probabilities. +e target DOA is estimated by
maximizing P (θ).

3. Experiments and Discussion

3.1. Experimental Setup. +e proposed method is evaluated
using a binaural setup in simulated acoustic conditions,
including signal-to-noise ratio (SNR), noise types, and re-
verberation time. Acoustic conditions are summarized in
Table 1. Speaking sources are positioned in the frontal plane
between − 90° and 90° with a step of 5°, i.e., 37 directions, and
their elevations are the same as the receiver’s. Based on the
binaural signal formulation, the head-related impulse re-
sponse (HRIR) from the KEMAR dataset [26] are convolved
with speech recordings fromTIMITdataset [27]. To simulate
the noisy conditions, six kinds of common noises from the
NOISEX-92 dataset [28] are properly truncated and added to
each microphone signal based on the same SNR. Each noise
is processed as diffuse noise by summing all the directional
noises generated by convolving the noise and HRIR at 37
uncorrelated directions. To simulate the reverberant con-
ditions, an enclosure of (10 × 6 × 3) m is simulated using the
Roomsim toolbox [29] based on the image method [30]. All
surfaces in this room are equally reverberant. A dummy
head indexed by Subject_021 from the CIPIC dataset [31] is
placed at the centre position. +e source-to-sensor distance
is 1.5m. +e binaural room impulse responses yielded by
this reverberant setup are convolved with testing speech
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recordings to generate a reverberant data set. All binaural
speech mixtures are sampled at 16 kHz and framed by a
Hamming window of 512 samples with a shift of 256
samples. A signal block contains 20 contextual frames,
equivalent to a segment with 336ms duration. +e locali-
zation performance is measured in terms of the localization
accuracy, which considers an estimated DOA is correct if the
estimated DOA is within 5° away from the true DOA.

3.2. Influence of Learning Factor. +e adaptability of our
network is influenced by the learning factor so that the value
of λ needs to be evaluated to maximize the adaptability. Note
that the semiadaptive entropy lacks directional information
when λ � 1; hence, the maximum value of λ is set to 0.999.
+e minimum value of λ is set to 0; thus, the semiadaptive
entropy becomes crossentropy. In experiments, our network
is trained with different learning factors ranging from 0 to
0.999 and λ is determined by evaluating the localization
accuracy on the validation set under noisy conditions with
− 20 dB SNR. Figure 2(a) shows the localization performance
with different λ. +ere are three local maxima in Figure 2(a)
with different learning factors λ � 0.5, 0.9 and 0.99, re-
spectively. During the ADADELTA [25] updating algo-
rithm, the learning rate is automatically updated using
accumulated gradient:

E Δx2[ ]
t
� ρE Δx2[ ]

t− 1
+(1 − ρ)Δx2t . (6)

+e formulation of our semiadaptive entropy also looks
like the form of this accumulated gradient. +e gradient of
each term of the semiadaptive entropy can be calculated
separately and the accumulated gradient becomes

E g2[ ]
t
�(1 − λ)ρE g21[ ]

t− 1
+(1 − λ)(1 − ρ)g21t + λρE g22[ ]

t− 1

+ λ(1 − ρ)g22t,

(7)
where g1t and g2t represent the gradient of the crossentropy
and the uniform entropy, respectively. Here, λ is also a
hyperparameter and serves as a momentum factor to control
the learning rate. +erefore, the model could fall into dif-
ferent local maxima or saddle points during updating it-
eration. +rough sufficient validation, the λ is set to 0.9 with
the best performance, indicating relatively high adaptability
of this network in noisy environments. A DOA probability
of a binaural signal in -10 dB SNR condition is depicted in
Figure 2(b). +e real DOA of the signal is 60°, but it gets
wrong DOA of 65° when the network is trained with λ� 0.
Red curve shows the wrong DOA probability is reduced
when training network with λ� 0.9. In addition, due to the
effect of the uniform entropy, the azimuths far away from the
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Figure 1: Schematic diagram of the multiscale dilated CNN.

Table 1: Configuration of training and testing sets.

Training set Testing set

KEMAR HRIRs Anechoic HRIRs Anechoic HRIRs with headphone AKGK271MK II
TIMIT speech recordings 10 males and 10 females Other 3 males and 3 females
Source-to-sensor distance 0.5m, 1m, 2m, 3m 1m, 1.5m
Noise types Babble, destroyerops and factory1 White, m109 and f16
SNRs − 20 dB: 15 : 25 dB − 10 dB: 10 : 30 dB
Reverberation time RT60 None 0.1 s, 0.3 s, 0.5 s
Direct-to-reverberant ratio
(DRR)

None − 1.44 dB, − 2.02 dB, − 2.58 dB

Number of binaural mixtures
52369 noise-free and noisy signals and 5819 for

validation set
936 for each kind of noise and SNR, and 1221

reverberant signals
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true DOA may have nonzero probabilities. It is demon-
strated that semiadaptive entropy can effectively improve the
adaptability of the network.

3.3. Evaluation of Binaural SSL. Our method is compared
with two baseline network-based methods, i.e., multilayer
perceptron (MLP) [8] and frequency-dependent DNN [19],
and the network architecture is also evaluated in ablation
studies:

Regular CNN: the regular CNN is used in our archi-
tecture instead of dilated CNN

Dilation-2 CNN: the CCF and ILD are fed into separate
branches of dilated CNN as in the proposed archi-
tecture, but the CCF branch only stacks two layers of
dilation-2 CNN

Dilation-5 CNN: the CCF and ILD are fed into separate
branches of dilated CNN as in the proposed archi-
tecture, but the CCF branch only stacks two layers of
dilation-5 CNN

Cascaded DCNN: the dilation-2 CNN and dilation-5
CNN are cascaded in the CCF branch rather than
parallel.

Localization accuracies of these methods are shown in
Table 2 (in noisy scenes) and Table 3 (in noisy and rever-
berant scenes). In Table 3, the symbol “-/-” means no ad-
ditive noise. In noisy conditions, MLP outperforms the
frequency-dependent DNN in low-SNR conditions, which is
because the ITD and ILD are estimated on the whole signal
block rather than short frames. Compared with the results of
DNN, the CNN-based methods improve the average ac-
curacy by 2% to 6%. +e reason is that adjacent frequency
bands can provide mutual information for each other rather
than independent frequency bands. In reverberant

conditions, the dilation-5 CNN outperforms the others since
the remote information is equally important to the mutual
information in cross sub-bands, where the remote infor-
mation includes the interaural features in direct path, early
and late reverberation. +e dilated CNN with relatively
larger receptive fields can capture more remote information
at a time. Due to the complementarity of different dilated
kernels, the multiscale dilated CNN trained with λ � 0.9
performs well in noisy conditions but slightly worse than
dilation-5 CNN in reverberant conditions. It makes sense
the fusion of multiscale dilated CNN learns an automatic
trade-off between small and large dilated kernels in noisy
and reverberant conditions. Furthermore, we also demon-
strate the importance of the semiadaptive entropy. Com-
pared with crossentropy, the network trained with
semiadaptive entropy improves the localization accuracy by
nearly 10% in strong noisy scenes and 4.62% on average in
reverberant scenes.

4. Conclusions

In this work, we proposed an adaptive binaural SSL method
based on multiscale dilated CNN. +e separate dilated CNN
can encode discriminative representations of CCF and ILD
features. By synchronously operating on the inputs, the
dilation-2 CNN and dilation-5 CNN complemented each
other in noisy and reverberant conditions. Additionally, we
derived a semiadaptive entropy from the Kullback–Leibler
divergence to adaptively train the network under directional
constraints. Training with a high value of the learning factor,
the multiscale dilated CNN can generalize well in previously
unseen scenes. Experimental results have demonstrated the
superiority of this method when compared with other
baseline methods and single-scale networks in adverse
scenarios.
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