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Abstract

Mating scheme is the way of selecting two parents to make offspring. It

takes effect on the performance of genetic algorithms. In this thesis, we

investigate mating schemes using the Hungarian method. The schemes in-

clude i) minimizing the sum of matching distances, ii) maximizing the sum,

and iii) random matching for comparison. We apply the schemes to well-

known combinatorial optimization problems, the traveling salesman prob-

lem and the graph bisection problem, and analyze how the quality of the

best individual changes over generations. Based on the analysis, we suggest

a simple hybrid mating scheme. The suggested hybrid scheme showed better

performance than the non-hybrid schemes.

we also propose our main method, an adaptive mating method combin-

ing mating schemes. Our adaptive mating method selects one of the Hungar-

ian schemes with voting. Every matched pair of individuals has the right to
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vote for the mating scheme of the next generation. Its preference is closely

related to the ratio of distance between parents over distance between par-

ent and offspring. The proposed Hungarian adaptive method showed better

performance than any single Hungarian mating scheme, the non-adaptive

hybrid scheme, traditional roulette-wheel selection, and the other distance-

based mating methods. The proposed Hungarian adaptive method selected

a proper mating scheme with a periodic influx and local-optimization. We

replaced the Hungarian schemes with finding local maximization or min-

imization. Our replaced adaptive mating scheme also outperformed single

scheme finding local maximization or minimization.

Keywords : genetic algorithm, selection operator, mating schemes, Hun-

garian method, combinatorial optimization, treveling salesman problem, graph

partition
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Chapter 1

Introduction

Genetic Algorithms (GAs) are inspired from natural evolution, and

therefore, their main operators resemble the natural phenomena. Mating or

marriage is important for each individual. There are various mating schemes,

depending on the culture or species. Some studies suggest that people ex-

hibit assortative mating, preferring partners with similar religion, habits,

age, and other characteristics [HF11][Mil99]. However mating of two ex-

tremely similar individuals, such as in incest or inbreeding, is known to

cause genetic disorders [Kin89].

Selection, crossover, and mutation are the key operators in GA. Most

operations in GAs are closely related to the performance. These operations

interact on each other. Selection or mating scheme is the way of selecting

two parents to make offspring. A small change of a key operation may cause

a dramatic change in result. Ochoa et al. [OMKRJ05] presented that an as-

sortative mating is a good choice when the mutation rate is high while a

disassortative mating is a good choice when that is low.

1.1 Motivation

Every space search algorithm needs to balance exploration and ex-

ploitation [HL99][ČLM13]. Exploration is the process of visiting wide re-
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gions of a search space, whereas exploitation is the process of visiting the

regions already known to have high fitness. The GA hyperparameters in-

clude the population size, crossover rate, and mutation rate. These hyperpa-

rameters and the genetic operators interact with each other. The choice of

crossover and mutation operator changes the proper values of hyperparam-

eters.

Most of the selection algorithms select the parents based on their fit-

ness values. The higher their fitness value, the higher the chance of being

selected. The selection pressure is defined as the degree to which the better

individuals are favored. A higher selection pressure leads to a the faster con-

vergence and may cause premature convergence. We can adjust the selection

pressure in order to balance exploration and exploitation. Finding a proper

selection pressure is difficult and ineffective. In this thesis, we propose mat-

ing schemes, which are the extreme cases of exploration and exploitation. In

addition, we propose a combined method of our mating schemes. Our new

method selects the best adaptive scheme in each generation.

1.2 Related Work

In GAs, mating scheme means the way of selecting two solutions to

crossover. In mating or selection stage, the methods of mating are classified

into three groups. The first one gives preference to similar solutions [Boo85][FF93].

It can be realized by a restriction. Restricted mating has been suggested

in [Gol89].

This method assumes that dissimilar parents make worse offspring. It
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has the characteristic of using good schemata already discovered. That is, it

focuses on exploitation.

The second one is dissimilar mating. Goh et al. [GLR03] adopted the

concept of gender. They allowed only pairs of different genders. Some other

concepts were used in gender-based GAs. Garcia-Marinez and Lozano [GML05]

selected female solutions widely first, and then they selected male solutions

dissimilar with their corresponding female ones. This method focuses on ex-

ploration, and it tries to evade a premature converge and a fast diversity con-

sumption of similar mating. It is realized mostly by a restriction. Ramezani

and Lotfi [RL11] restricted a mating between family solutions such as par-

ent and offspring. They banned ancestor-child or sibling crossover. It is an

expansion of incest prevention [Mic96]. They solved function optimization

problems and obtained good results. Fernandes et al. [FTMR01] compared

positive assortative mating with negative one. They applied their GA to vec-

tor quantization problems, and got better results with negative assortative

mating than a simple GA or positive assortative mating.

The last group tries to find a better mating scheme by combining two

or more mating schemes. Ishibuchi et al. [INTN08][IS04] adjusted diver-

sity and convergence with the control of selecting parents and the number

of candidates. The first parent determined considering with how major(or

extreme) solution would be selected. It is controlled by parameter δ. The

second parent was selected to be a similar(or dissimilar) solution to the first

one. It is controlled by parameter ω. They solved multi-objective knapsack

problems. They adjusted parameters δ and ω by the method changing their

strategy at a half of process. They showed the results were nearer to Pareto-

3



optimal solutions than a single strategy. They showed that the results were

nearer to Pareto-optimal solutions than those by a single strategy.

Galán et al. [GMP13] proposed a mating scheme that each individual

has its mating preference value to balance exploitation and exploration. The

mating preference can be from one to the number of population minus one.

A low value of mating preference makes a match between solutions close to

each other while a high mating preference makes a match between solutions

far from each other. The preference is inherited or mutated like a normal

gene. They tested their scheme in various environments of function opti-

mization. They showed that their scheme outperformed a random mating or

a scheme with a fixed preference value.

1.3 Contribution

This thesis has two main contributions.

• We propose and observe Hungarian mating schemes. The schemes

are the upper and lower bound of the sum of distances, and represent

exploration and exploitation. We observe and compare the behaviors

of our schemes.

• We propose an adaptive hybrid scheme of Hungarian mating schemes.

This scheme dynamically selects a proper scheme in each generation.

Our new scheme statistically outperforms single schemes and a sim-

ple hybrid scheme.
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(a) pr152

(b) U1000.05

Figure 1: Main comparison results

Figure 1 shows the comparison result of two different problems. The

label ‘adaptive’ denotes the distribution of the solution qualities of our adap-

tive method. It is described in Section 4.2.2. The label ‘single best’ part is

the collection of best single Hungarian schemes. The ‘simple hybrid’ part

is described in Section 4.1. Galán’s and Ishibuchi’s methods are distance-

based mating schemes. The description and comparison results are reported

in Section 4.2.8. Our adaptive algorithm shows significantly better results

5



than all other methods in almost all instances.

1.4 Organization

This thesis is organized in six chapters. In the next chapter, we review

the Hungarian method, the properties of geometric crossover, the testing

problems, and the distance metric. In Chapter 3, we explain our Hungarian

mating schemes, and the primary approach of this thesis. In Chapter 4, we

propose a simple hybrid method and an adaptive mating scheme for combi-

natorial optimization problems and present experimental results. We tested

our adaptive mating scheme in various environments including a hybrid GA.

We discuss the results in Chapter 5. The revised version of our adaptive mat-

ing scheme is tested in Chapter 6. Finally, we make conclusions in Chap-

ter 7.
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Chapter 2

Preliminary

2.1 Hungarian Method

Consider a weighted complete bipartite graph with bipartition (X ,Y ),

where X = x1,x2, ...,xn/2, Y = y1,y2, ...,yn/2, and each edge (xi,y j) ∈ X ×

Y has its weight wi j . The optimal assignment problem is the problem of

finding a maximum(or minimum) weight perfect matching in this weighted

graph as follows:

max
σ∈

∑
n/2





n/2
∑

i=1

wiσ(i)



 or min
σ∈

∑
n/2





n/2
∑

i=1

wiσ(i)



 ,

where σ is a permutation of size n/2.

The assignment problem can be represented as an N x N matrix. The

matrix contains edge weights. In each row and column, we should select

only one weight. Figure 2(a) shows the cost matrix of Figure 2(b). The

marked position of the cost matrix is the optimal (minimum) assignment

of the instance. Corresponding costs are represented as thick lines in Fig-

ure 2(b).

n! ways of assigning n Xs and n Ys exist. n! is intractable as n grows.

With the use of Hungarian method, we can compute the optimal assignment

in O(n3). The Hungarian method uses the following property: If a number
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(a) Cost matrix (b) Bipartite graph and op-

timal assignment

Figure 2: An instance of the optimal assignment problem

is added to or subtracted from all the entries of any one row or column of

the matrix, then the optimal assignment for the resulting cost matrix does

not change. The Hungarian method consists of five steps. In step one, the

smallest entry in each row is subtracted from all the entries of its row. In

step two, the smallest entry in each column is subtracted from all the entries

of its column. Step three covers all the zeros of the matrix with the minimum

number of horizontal or vertical lines. Step four is the checking step. If the

sum of horizontal lines and vertical lines is less than n, then step five is

performed. Otherwise, the zeros indicate the optimal assignment and the

method terminates. In step five, the method subtracts the smallest entry in

the uncovered entries from each uncovered entry. Then the method returns

to step three.

Figure 3 shows a 4x4 matrix as an instance of the Hungarian method.

Figure 3(a) is the given cost matrix, and Figure 3(b) is the result of step one.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4 (e) Optimal assignment

Figure 3: Example of the Hungarian method

In each row, two, two, three and four are subtracted. Figure 3(c) is the result

of step two. In the first, second, and third columns, zero is subtracted. In the

fourth column, five is subtracted. Figure 3(c) shows two vertical lines and

one horizontal line to cover all the zeros. The number of lines is less than

four, and then the method proceeds to the next step. In Step 5, the smallest

cost in the uncovered number is six. Thus, the method subtracts six from

the following entries: 7, 15, 39, 6, 7, and 30. The result is illustrated in

Figure 3(d). The method then returns to step three. We need four lines to

cover all the zeros. Figure 3(e) is the optimal assignment of the given cost

matrix. Optimal matching is marked with a star(*) in Figure 3(e).

The Hungarian method [Kuh55] gives an optimum assignment, and it

can be implemented in O(n3) time [PS82]. Avis [Avi83] has provided an ef-
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ficient approximation. It can be implemented in O(n2) time. The Hungarian

method has been used in various studies [HGH98][MKYM07][YKM08][YKMM12].

2.2 Geometric Operators

Geometric crossover and mutation are representation-independent search

operators. Geometric crossover is defined as the offspring in the line seg-

ment between the parents for a certain distance. Moraglio [Mor07] proposed

geometric crossover and mutation. He generalized pre-existing search op-

erators used in GA and other evolutionary algorithms. He showed that all

mask-based crossovers such as one-point, n-point crossovers, and uniform

crossover [Sys89] for binary strings to any representation are geometric

crossovers [AR06]. He showed that partially matched crossover [GL85],

cycle crossover, and merge crossover are also geometric crossovers.

2.2.1 Formal Definitions

The formal definition of geometric crossover is as follows [Mor07]:

Definition: The image set Im[OP] of a genetic operator OP is the set

of all possible offspring produced by OP with non-zero probability.

IM[OP(p1, p2, ..., pg)] = {c ∈ S| fop(c|p1, p2, ..., pg)> 0}

Definition: A binary operator is a geometric crossover under the metric

d if all offspring are in the segment between its parents.

Definition: A unary operator M is a topological e-mutation operator if

IM[M(p)]⊆ B(p;e). B(x;y) = {y ∈ S|d(x,y)≤ r}, where r is a positive real

number. r is the radius of the ball.
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The definition is based on the notion of metric segment. The definition

is independent with the representation of an individual. It is associated with

the search space and a distance metric d. For example, in the 2D Euclidean

space, the area with the function B makes a circle. Otherwise, in the Manhat-

tan space, the area with the function B makes a diamond shape. The shape

of a line segment is also dependent on the metric d. For example, in the 2D

Euclidean space, the shape of a line segment forms a line. Otherwise, in the

Manhattan space, the shape of a line segment forms a rectangle.

In the later parts of this thesis, all the crossovers we used are the geo-

metric crossovers, and the mutations we used are geometric mutations.

2.3 Exploration Versus Exploitation Trade-off

All search algorithms have two sides of property. Exploration is the

process of searching wide new regions, whereas exploitation involves vis-

iting the regions already known to have high fitness. If a search algorithm

is focused too much on exploration, then the algorithm may use too much

time in low-fitness regions. Otherwise, if a search algorithm is focused too

much on exploitation, it may find the local best solution in a small region.

The local best solution can be worse than the global best solution. A good

search algorithm balances well between exploration and exploitation.

In GAs, almost all parts of the GA affect the balance between explo-

ration and exploitation. The parts are listed below:

• The structure of GA: steady-state GA changes one individual in one

generation. It focuses on exploitation, whereas generational GA changes

11



more individuals in one generation. If steady-state GA finds a better

solution than other individuals, the solution has high chance to be se-

lected and the offspring may have a high chance to survive. Thus, the

solution and their offspring may occupy whole individuals.

• Encoding: the encoding scheme affects most operators in GA, and the

scheme changes the landscape of fitness.

• Selection operator and its parameters: this is the operator we are mainly

concerned about. The selection or mating schemes can adjust the bal-

ance between exploration and exploitation.

• Crossover operator: the crossover operator is highly correlated with

the problem to be solved. The crossover operator can also adjust the

balance between exploration and exploitation. For example, one-point

crossover leans on exploitation than five-point crossover does [DJS92].

• Mutation operator: the mutation operator is also highly correlated

with the problem and their encoding. It disturbs the solution. The mu-

tation operator can also adjust the balance between exploration and

exploitation. For example, no mutation operator is an extreme case of

exploitation and highly disturbing mutation focuses on exploration.

• Replacement operator: the replacement operator directly affects the

convergence speed. Replacement the worst solution is more highly

focused on exploitation than replacement with the parent solutions or

the most similar solution.
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• Hyperparameter: they include the number of individuals and mutation

rate. A small number of individuals and low mutation rate lean more

toward exploitation.

If a GA is highly focused on exploitation, then most individuals resemble

each other in the early stage of GA; this situation called premature conver-

gence. Controlling convergence speed is important to obtain a better solu-

tion.

2.4 Test Problems and Distance Metric

Combinatorial optimization problem is a set of optimization problems

where one tries to find the best solution in a discrete solution space. Famous

NP-hard problems related to combinatorial optimization include the trav-

eling salesman problem(TSP) [HPR13], knapsack problems [BCM03], job

scheduling [GdMMR05], and the graph partitioning problem, and so on.

The solution spaces of these NP-hard problems are usually very complex

requiring us to resort to heuristics such as evolutionary algorithms. There

have been many attempts to solve combinatorial optimization problems us-

ing GAs [TB91][JB91][Lev93]. Some have successfully replaced the best-

known solutions [KM04][MF00][SM02].

We considered TSP and the graph bisection problem as test problems.

For the TSP, we are given a complete undirected graph G that has a nonneg-

ative integer cost associated with each edge. TSP requires to find a Hamil-

tonian cycle (a tour that passes through all the vertices) of G with minimum

cost.
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Let G = (V,E) be an unweighted undirected graph, where V is the set

of vertices and E is the set of edges. K-way partition is a partitioning of

the vertex set V into K disjoint subsets C1,C2, ...,CK . A K-way partition is

said to be balanced if the difference of cardinalities between the largest and

the smallest subsets is at most one. The cut size of a partition is defined to

be the number of edges with endpoints in different subsets of the partition.

The K-way partitioning problem is the problem of finding a K-way balanced

partition with minimum cut size. In this study, we made experiments on the

case that K is equal to two. We call this problem “graph bisection” in this

paper.

We used the quotient swap distance [YKMM12] for the phenotype dis-

tance metric in TSP. The quotient swap distance of between X and Y is

defined by the the nearest one among swap distances (between X and ev-

ery shifted Y ), where the swap distance between X and Y is the minimum

number of swaps to make X be equal to Y .

We used the quotient Hamming distance [YKMM12] for the phenotype

distance metric in graph bisection. In a similar way, the quotient Hamming

distance is defined by the nearest one of Hamming distances (between X

and Y , and between X and Y ). The Hamming distance between two strings

is the number of different positions at which the corresponding symbols are

different.
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Chapter 3

Hungarian Mating Scheme

3.1 Proposed Scheme

Our GA has a population of size n. We use the concept of gender as

in [GML05][GLR03][RL11]. Population is divided into n/2 male solutions

and n/2 female ones. We made a mating scheme that all female solutions

matches all different male ones in a generation. We calculated distances

between each pair of male and female solutions, using the proper distance

metric defined for each problem (see Section 2.4).

The tested mating schemes are illustrated in Figure 4. Figure 4(a) illus-

trates the distribution of a population. The individuals (x,y)s are distributed

in a real square domain. The distance metric used in this illustration is the

Euclidean distance. Thirty individuals are shown, where filled circles denote

male individuals, and plus symbols denote female individuals. Figure 4(b)

represents the scheme that matches randomly. It has only one rule that every

individual should match with one of opposite gender (one-to-one matching).

We used this scheme to compare with other schemes. We call this scheme

“RAND”. Figure 4(c) shows the result optimized using the following for-

15



(a) Population (b) RAND mating

(c) NEAR mating (d) FAR mating

Figure 4: Mating schemes

mula with the Hungarian method:

min
σ∈

∑
n/2

n/2
∑

i=1

d
(

mi, fσ(i)

)

,

where mis are male solutions, fσ(i)s are their corresponding female ones,

and d is a distance metric. Some individuals may have nearer points than

the ones in the figure. But note that the minimization is considered glob-

ally. We name this scheme “NEAR”. Figure 4(d) shows the result using the

16



Hungarian method to optimize:

max
σ∈

∑
n/2

n/2
∑

i=1

d
(

mi, fσ(i)

)

.

It also considers the maximization globally. This scheme is called “FAR”.

The maximized(or minimized) sum of pairs matched by the Hungar-

ian method is presented as a notable feature. NEAR method guarantees

the minimum sum of distances in one-to-one matching. And it uses a de-

terministic method. So we can guess the characteristic of mating. NEAR

method can be considered as an extreme strategy of decreasing diversity

in one-to-one matching. Similarly, FAR method can be considered as an

extreme method of preserving diversity in one-to-one matching. In other

words, NEAR method is an extreme case of exploitation, and FAR method

is an extreme case of exploration.

Table 1: Genetic parameter settings

Traveling salesman problem

Encoding Order-based encoding

Crossover Partially matched crossover [GL85]

Mutation Double bridge kick move [MSWO91] (50%)

Repair -

Stop condition 1,000 generations

Graph bisection problem

Encoding Assignment of one gene for each vertex (zero or one)

Crossover One-point crossover

Mutation Random swap of some pairs of genes (50%)

Repair Random repair until partition is balanced

Stop condition 500 generations

17



3.2 Tested GA

We implemented a generational GA. All male individuals are one-to-

one matched with all female ones. A pair of individuals produces two off-

spring. An offspring nearer to father than the other offspring is set to be a

male individual. The remaining offspring is considered as a female individ-

ual.

As population size, we used 50 male individuals and 50 female ones.

As replacement, we used elitism [DJ75] in both genders. Among new 50

offspring and previous 50 individuals, we chose 50 best ones for the next

generation.

The other genetic parameters are described in Table 1. In order-based

encoding of TSP, a permutation of city numbers means a travel path itself.

In the graph bisection problem, each position of genes denotes each vertex.

Vertices valued with zero form a partition, and vertices valued with one are

grouped together in the other partition.

3.3 Observation

3.3.1 Traveling Salesman Problem

We selected four Euclidean instances from TSPLib [Rei91]. They are

berlin52, kroA100, bier127, and pr152. The numbers in the instance name

mean the number of cities of the instance.

Figure 5 shows the fitness of the best individual according to gener-

ation. The plotted results are the average value over 1,000 runs. Table 2

18



(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 5: Fitness of mating schemes in TSP (the smaller, the better)

gives the average best fitness and the standard deviation per m generation.

m means the number of cities of each instance. Figure 6 shows the diversity

of a population. The diversity is measured by the average distance within a

population. The diversity lines of RAND and NEAR are quite similar. But

the line of FAR drops very slowly, especially in pr152. It means that there

are many types of low-order schemata in a solution pool. At the end of run-

ning, the diversity of FAR drops near NEAR and RAND, and its quality

exceeds NEAR.

In all instances, we observed a superiority of NEAR in early stage,

19



(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 6: Average population distance of mating schemes in TSP

and RAND in later stage. RAND outpaced NEAR after generation 2m in all

cases. As the size of the solution space grows, the time that crosses RAND

and NEAR was delayed. When we consider the cases that FAR performed

worse than RAND or NEAR, not only the period but also fitness difference

increased. Our results show that NEAR scheme is a good strategy in suf-

ficiently large instances of TSP. In the case of relatively small instances,

FAR produced better results than RAND at the end. If a sufficient time is al-

lowed to solve TSP, we can guess that FAR scheme has a potential to exceed

RAND.
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Table 3 shows the significance of results of Table 2 statistically. We

used Welch’s t-test[Wel47]. The t-value of A−B in Table 3 is computed as

follows:

t =
XA−XB

√

S2
A/nA +S2

B/nB

,

where XA is the average of A, SA is the standard deviation of A, and nA is the

number of runs of A. The lower p-value means the more significant result.

We computed p-value with the absolute value of difference between two

mating schemes. In most cases, p-values are very close to zero. It means

FAR and NEAR schemes showed significant different results.

3.3.2 Graph Bisection Problem

We tested on four popular instances with 1,000 vertices [KM04]. They

have different ratios of edge size. The number of the right part of point in

each instance name means the average degree of each vertex.

Figure 7 shows the fitness of the best individual according to gener-

ation. The plotted results are the average value over 1,000 runs as in TSP.

The difference between graph bisection instances is smaller than that of TSP.

As a reason, we supposed that the solution space sizes of graph bisection in-

stances are the same. On the other hand, the solution spaces of TSP instances

increase faster as m increases.

One of the common features in graph bisection is a goodness of FAR. In

all graph bisection instances, FAR performed better than RAND and NEAR

after the 300-th generation. NEAR performed worse than RAND and FAR

in all instances. Figure 8 gives an explanation on the bad quality of NEAR. It
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(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 7: Fitness of mating schemes in graph bisection (the smaller, the

better)

describes the diversity of each instance. The diversity is measured by the av-

erage distance within a population. Every scheme suffers losing its diversity

fast. But NEAR falls rapidly and almost zero near the 300-th generation.

Table 5 shows t-values and p-values of results in Table 4 with the same

way as used in TSP. Different mating schemes made significant differences.

The p-values are almost zero. The values of graph bisection problem shows

larger difference than those of TSP.
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(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 8: Average population distance of mating schemes in graph bisection
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Chapter 4

Hybrid and Adaptive Scheme

4.1 Simple Hybrid Scheme

In our observation with RAND, NEAR, and FAR, we can check charac-

teristics of each mating scheme. FAR is good with sufficient time resource.

But it would not be a good choice with short time budget in TSP. NEAR

decreases diversity relatively fast and shows premature convergence. But

with a short period, it can be a good strategy. With this observation, we

combined generation-best strategies in each problem. In TSP, we made a

scheme changing from NEAR to RAND scheme. In the graph bisection

problem, we made a scheme changing from RAND to FAR scheme. But,

we decided the switching generation to be a half of the crossed generation1

in our observation. Because we thought that the actual point of performance

reversing would be before the crossing point. In graph bisection, our new

mating scheme changes in the 100-th generation because they crosses near

the 200-th generation. In TSP, the crossing point is depend on the number

of cities m. We decided mating scheme to change at the m-th generation.

Because Figure 5 shows crossing lines near the 2m-th generation.

Figures 9 and 10 show comparison with the best scheme given in Sec-

1It is in Figures 5 and 7
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(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 9: Improvement over the best single scheme by generation in TSP

tion 3.3. Improvement is measured as follows:

Improvement(%) = 100×
fbest − fnew

fbest

,

where fbest = min( fRAND, fNEAR, fFAR) and f means fitness. In five among

eight instances, our new scheme scored better at the end of running. After

about 20% of generations, our new scheme performed better than the sin-

gle best strategy in most generations. Improvement is notable at near our

switching generations (m or 100). NEAR focuses on exploitation than FAR

and RAND. FAR concentrates on exploration more than NEAR and RAND.
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(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 10: Improvement over the best single scheme by generation in graph

bisection problem

Our hybrid mating schemes are balanced in the view of exploration and ex-

ploitation, and we guess that they create a synergy effect.

4.2 Adaptive Scheme

4.2.1 Significance of Adaptive Scheme

In Chapter 3, we reported that the best Hungarian mating scheme varies

according to problems and their sizes. In the previous section, we predeter-

mined the switching time before running their GAs. So it is hard to apply
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the hybrid method to new problems or instances.

Galán et al. [GMP13] reported that a self-adaptive mating scheme can

be better than traditional random mating, and their best-first and best-last

mating. In the best-first mating, each solution pairs up with its nearest one

in the order from the best solution to the worst one. In the contrast, in the

best-last mating, each solution pairs up with their farthest one in the order

from the best solution to the worst one. The best-first mating resembles

NEAR method as the best-last mating resembles FAR method. NEAR and

FAR are extreme cases of mating. The ideal mating scheme may exist in

some middle point of NEAR and FAR as Galán et al. [GMP13] showed in

function optimization.

Our new goal is to design a new adaptive method of the mating schemes.

We want that: i) our new scheme works in various instances or problems, ii)

it is adaptive, and iii) it outperforms any non-adaptive mating scheme. We

will propose a new scheme satisfying these characteristics.

4.2.2 Proposed Method

4.2.2.1 Voting Rules

We assume the same number of male and female solutions as Goh et

al. did in [GLR03]. In each generation, our method selects FAR, RAND, or

NEAR for the next generation. Our method does not simulate three schemes

as they are. Instead, the appropriate scheme is adaptively adopted. For that,

a Hungarian mating scheme for the next generation is selected with voting.
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Algorithm 1 Voting rules

// input: two parents and two offspring

// output: FAR, NEAR, or RAND

// d(x,y): distance function between x and y

Function vote(p1, p2,o1,o2)

{
if d(p1, p2) = 0, d(p1,o1) = 0, or d(o2, p2) = 0 then

return FAR;

end if

ratio← d(p1, p2) / (d(p1,o1)+d(o2, p2));
if ratio < α then

return FAR;

end if

if α≤ ratio < β then

return RAND;

end if

if ratio≥ β then

return NEAR;

end if

}

Every pair of individuals has the right to vote. Our crossover operator gen-

erates two offspring, and their gender is randomly assigned. The voting is

carried out after mutation. So our voting algorithm compares two parents

and two offspring after mutation. Algorithm 1 describes the rules of voting.

If one of the offspring is the same as one of the parents, this family votes

to FAR. Otherwise, a ratio of distance between parents over the sum of the

father-son distance and the mother-daughter distance is considered. If the

ratio value is below α, this family votes to FAR. If the ratio is not less than

α and below β, this family votes to RAND. The last case, in which the ra-

tio is not less than β, this family votes to NEAR. After voting, the strategy

which gets the most votes is set for the next generation.
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(a) pr152 (b) G1000.2.5

Figure 11: Median of ratio values according to generation

4.2.2.2 Parameter Setting

We set α and β as 0.5 and 1, respectively. Figure 11 shows the median

of the ratio values according to generation, for an instance of each test prob-

lem. The X-axis represents generation and the Y -axis represents our ratio

values.

We call the median of the ratio values after crossover (before muta-

tion) (thin line) BM. The median of our ratio values after mutation (thick

points) is called AM. After crossover (before mutation), most of BM values

are close to 1. BM does not change much while the diversity of population

decreases. On the other hand, AM drops slowly as the diversity decreases.

A mutation operator moves an individual to nearby space. The dis-

tribution of moving distance by a mutation is independent of the distance

between parents. The expected value of BM is one when we use a geomet-

ric crossover [MP04]. It will be proved in the next subsection. AM values

over 1 appear frequently when the distance between parents is long enough.
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It means that we have sufficient diversity to consume. So a family votes

to NEAR. Besides, the lower bound of BM is 0.5 when we use a geometric

crossover. It will also be proved in the next subsection. AM values below 0.5

appear by mutation effect. It is shown when the distance between parents is

very close to 0. So a family votes to FAR. In other words, an influence of the

mutation is estimated by the distance between parents. High influence of the

mutation, or a low AM value means that the matched parents are too close

to each other to produce new solutions while low influence of the mutation,

or a high AM value means that the parents are far from each other so we can

match nearer solutions.

4.2.3 Theoretical Support

A binary crossover operator is geometric if all offspring are in a con-

vex segment between parents. So d(p1, p2) = d(p1,o) + d(o, p2), where

d(p1, p2) is a distance between p1 and p2, pis are parents, and o is an

offspring. Let D be the distance between both parents. We assume that

D = d(p1, p2) ̸= 0, crossover is geometric [MP04], p1 ̸= p2, p1 ̸= o1, and

p2 ̸= o2. We remind that our ratio value is defined as

d(p1, p2)

d(p1,o1)+d(o2, p2)
,

where o1 and o2 are offspring obtained from a geometric crossover between

p1 and p2.

Proposition 1. Under these assumptions, the expected value of our ra-

34



tio is 1. That is,

E

[

d(p1, p2)

d(p1,o1)+d(o2, p2)

]

= 1.

Proof. It is enough to show that

E[d(p1,o1)+d(o2, p2)] = D.

E[d(p1,o1)+d(o2, p2)]

= E[d(p1,o1)]+E[d(o2, p2)] (∵ E[·] is linear)

= E[d(p1,o1)]+E[d(p1, p2)−d(p1,o2)]

(∵ Crossover is geometric)

= E[d(p1,o1)]+E[D−d(p1,o2)]

= E[d(p1,o1)]+D−E[d(p1,o2)] (∵ E[·] is linear)

= D (∵ E[d(p1,o1)] = E[d(p1,o2)])

Proposition 2. Under the same assumptions, the lower bound of our

ratio value is 0.5. That is,

d(p1, p2)

d(p1,o1)+d(o2, p2)
≥

1

2
.

Proof. By the assumption of geometric crossover,

d(p1, p2)≥ d(p1,o1) and d(p1, p2)≥ d(o2, p2).

By summing the above inequalities, 2d(p1, p2)≥ d(p1,o1)+d(o2, p2). Hence,
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we obtain

d(p1, p2)

d(p1,o1)+d(o2, p2)
≥

1

2
.

4.2.4 Experiments

4.2.4.1 Tested GA

We use a generational GA. All male individuals are one-to-one matched

with all female ones. A pair of individuals produces two offspring. One is

male offspring, and the other is female one. The genders are assigned ran-

domly. We used 50 male individuals and 50 female ones. As a replacement

strategy, we used elitism [DJ75] in both genders. Among new 50 offspring

and previous 50 individuals, we chose 50 best ones for the next generation.

The other genetic parameters are same as in Section 3.2.

4.2.5 Traveling Salesman Problem

We selected four Euclidean instances from TSPLib [Rei91] as in chap-

ter 3. They are berlin52, kroA100, bier127, and pr152. Each number in the

instance name means the number of cities in the instance.

Figure 12 shows the fitness of the best individual according to gen-

eration. The plotted results are the average value over 1,000 runs. Table 6

gives the average best fitness and the standard deviation per 200 genera-

tions. ‘single best’ denotes the best single Hungarian mating scheme among

three schemes (FAR, RAND, and NEAR). ‘simple hybrid’ is the strategy

introduced in Section 4.1.
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(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 12: Fitness of mating schemes in TSP (the smaller, the better)

In early stages of each run, the simple hybrid method showed the best

fitness. But at the end of each run, our method outperformed the others in

all instances.

Table 7 shows the significance of results of Table 6 statistically. We

used Welch’s t-test [Wel47]. The t-value of A−B in Table 7 is computed as

follows:

t =
XA−XB

√

S2
A/nA +S2

B/nB

,

where XA is the average of A, SA is the standard deviation of A, and nA is

37



(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 13: Voting rates of schemes in TSP

the number of A. The lower p-value means the more significant result. In

most cases, p-values are very close to zero. A plus mark (+) means that it

has passed t-test under significance level 0.01. Our method are significantly

superior to the others.

Figure 13 shows the average voting rate of three schemes. In the early

stage, RAND and NEAR gets higher chance to be elected. The graph shows

the average over 1,000 runs. So NEAR is rarely selected in the early stage.

As the diversity decreases, supporters of FAR increase. At the end of each

run, almost all families vote to FAR. When we compare four instances in
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Figure 13, we could observe that our method is adaptive. Consuming a di-

versity in a small space was faster than that in a large space. So our algo-

rithm changes the mating scheme from RAND (or rarely NEAR) to FAR.

The speed of changing scheme in instance pr152 was slower than that in

instance berlin52.

(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 14: Fitness of mating schemes in graph bisection (the smaller, the

better)
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(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 15: Voting rates of schemes in graph bisection

4.2.6 Graph Bisection Problem

We tested on four popular instances with 1,000 vertices [KM04]. They

have different edge densities. The number of the right part of each name

means the average vertex degree.

Figure 14 shows the fitness of the best individual over generation. The

plotted results are the average over 1,000 runs as in TSP. Table 8 gives the

average best fitness and the standard deviation per 100 generations. ‘single

best’ and ‘simple hybrid’ are the same as in TSP. In almost all generations

of all the instances, our method outperformed the others. Table 9 shows t-
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test for the results in Table 8 with the same way as used in TSP. Our scheme

significantly outperformed the others except one instance.

Figure 15 shows the average voting rate of three schemes. While TSP

showed different speeds of changing schemes for each instance, the figures

of four graph bisection instances are almost the same. The size of problem

space may one of the most important factors to control population. Four in-

stances of graph bisection have the same size of problem space. We reported

that NEAR showed very poor results in this problem in Chapter 3. With this

method, NEAR is almost abandoned because FAR increases very fast.

4.2.7 Comparison with Traditional Method

We compared our method with traditional roulette-wheel selection [Gol89].

The roulette-wheel selection provides higher chance to better individual.

The probability to select an individual is defined as follows:

pi =
fi

∑N
j=1 f j

.

In the maximization problem, fi can be the fitness value of each individual.

In the minimization problem, a proper fi value should be calculated.

In our experiment, the fi value is calculated as following function: fi =

exp(−zi/zmax), where zi is value of a cost function of an individual i and

zmax is the maximum value of a cost function in the all individuals. We

implemented a variant of traditional roulette-wheel selection. The variant

select a male solution and a female solution using roulette-wheel selection.

It is repeated until all solutions are one-to-one matched.

41



Table 10 shows the solution qualities and t-test results. Our method

shows better performance in all instances. And our method was significantly

better in six instances.

4.2.8 Comparison with Distance-based Methods

We compared our method with existing distance-based mating ones.

We implemented variants of Ishibuchi et al.’s [IS03] and Galán et al.’s [GMP13]

methods with two same-sized genders. Ishibuchi et al.’s method [IS03] se-

lects one parent that is the farthest individual from the average among the re-

sults of repeated tournament selections of α times. Their method selects the

other parent that is the nearest individual from the first parent among the re-

sults of repeated tournament selections of β times. We set α and β to be 9 as

in [IS03]. The transformed variant selects the first parent from the female so-

lutions, and selects the second parent from the male solutions. It is repeated

until all solutions are one-to-one matched. Galán et al.’s method [GMP13]

selects one parent that is the best. As the other parent, their method selects

the (γ−1)-th nearest individual, where γ is the mating preference of the first

parent. The mating preference is inherited in crossover, and it increases by

1 with probability 0.25 or decreases by 1 with probability 0.25, in mutation.

The same as the variant of Ishibuchi et al.’s [IS03], we made this method

select the first parent from the female solutions and the second parent from

the male solutions. It is repeated until all solutions are one-to-one matched.

All the conditions and settings excluding mating are the same as those in the

experiments of the previous sections.

Table 11 compares the solution qualities of these two existing methods
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and ours. For all instances of two test problems, our method significantly

outperformed the others. Table 12 compares the computation time with re-

spect to mating. Each value in Table 12 except mating proportion is mea-

sured in seconds. Our method took more time than Galán’s method. But

our method was faster than Ishibuchi’s. Galán’s method repeats finding the

(γ−1)-th nearest individual whereas our method maximizes(or minimizes)

the sum of distances. For graph bisection problem, computation times of in-

stances of our method are similar to each other because the instances have

the same number of nodes. In TSP, as the solution space grows, the pro-

portion of mating time decreases, because the mating time of our method is

mainly bounded by population size. As distance scale grows, mating time

increases. It can be resolved by approximating the scale of distance values.

Our mating method did not overburden the entire GA, and we also expect to

reduce time burden through some improved implementation.

43



T
ab

le
6
:

R
es

u
lt

s
o
f

T
S

P

In
st

an
ce

M
et

h
o
d

G
en

er
at

io
n

2
0
0

G
en

er
at

io
n

4
0
0

G
en

er
at

io
n

6
0
0

G
en

er
at

io
n

8
0
0

F
in

al
(=

1
0
0
0
)

A
v
e(

S
D

)
A

v
e(

S
D

)
A

v
e(

S
D

)
A

v
e(

S
D

)
A

v
e(

S
D

)

si
n
g
le

b
es

t
1
.1

1
e4

(5
.5

9
e2

)
9
.7

1
e3

(4
.2

3
e2

)
9
.3

4
e3

(3
.2

6
e2

)
9
.7

1
e3

(2
.8

5
e2

)
9
.0

7
e3

(3
.0

8
e2

)

b
er

li
n
5
2

si
m

p
le

h
y
b
ri

d
1
.0

8
e4

(4
.3

4
e2

)
9
.7

2
e3

(3
.7

5
e2

)
9
.3

9
e3

(3
.4

8
e2

)
9
.2

2
e3

(3
.3

7
e2

)
9
.1

0
e3

(3
.1

8
e2

)

n
ew

m
et

h
o
d

1
.0

7
e4

(4
.6

8
e2

)
9
.6

3
e3

(3
.6

9
e2

)
9
.3

0
e4

(3
.4

5
e2

)
9
.1

3
e3

(3
.2

3
e2

)
9
.0

2
e3

(3
.0

9
e2

)

si
n
g
le

b
es

t
6
.8

7
e4

(4
.1

0
e3

)
4
.8

4
e4

(2
.5

0
e3

)
4
.1

3
e4

(1
.7

1
e3

)
3
.8

5
e4

(1
.8

0
e3

)
3
.6

5
e4

(9
.0

3
e2

)

k
ro

A
1
0
0

si
m

p
le

h
y
b
ri

d
6
.6

2
e4

(3
.2

0
e3

)
4
.7

6
e4

(2
.2

2
e3

)
4
.1

0
e4

(1
.7

4
e3

)
3
.7

8
e4

(1
.5

8
e3

)
3
.6

0
e4

(1
.4

1
e3

)

n
ew

m
et

h
o
d

6
.7

8
e4

(4
.0

9
e3

)
4
.7

9
e4

(2
.4

0
e3

)
4
.0

4
e4

(1
.7

6
e3

)
3
.7

1
e4

(1
.5

6
e3

)
3
.5

1
e4

(1
.4

8
e3

)

si
n
g
le

b
es

t
3
.3

6
e5

(9
.0

9
e3

)
2
.5

2
e5

(9
.4

4
e3

)
2
.1

8
e5

(7
.0

3
e3

)
2
.0

0
e5

(6
.7

6
e3

)
1
.9

0
e5

(2
.2

5
e3

)

b
ie

r1
2
7

si
m

p
le

h
y
b
ri

d
3
.2

7
e5

(1
.0

9
e4

)
2
.4

9
e5

(9
.0

6
e3

)
2
.1

6
e5

(7
.2

2
e3

)
1
.9

9
e5

(6
.7

0
e3

)
1
.8

9
e5

(6
.5

3
e3

)

n
ew

m
et

h
o
d

3
.3

8
e5

(1
.3

8
e4

)
2
.5

2
e5

(9
.7

9
e3

)
2
.5

7
e5

(7
.8

3
e3

)
1
.9

7
e5

(6
.8

0
e3

)
1
.8

7
e5

(6
.2

0
e3

)

si
n
g
le

b
es

t
5
.0

7
e5

(1
.6

6
e4

)
3
.2

8
e5

(3
.9

0
e4

)
2
.4

7
e5

(1
.3

6
e4

)
2
.0

5
e5

(1
.1

3
e4

)
1
.8

1
e5

(8
.3

6
e3

)

p
r1

5
2

si
m

p
le

h
y
b
ri

d
4
.7

8
e5

(1
.7

5
e4

)
3
.1

4
e5

(1
.5

9
e4

)
2
.4

0
e5

(1
.3

2
e4

)
2
.0

1
e5

(1
.1

2
e4

)
1
.7

9
e5

(9
.3

9
e3

)

n
ew

m
et

h
o
d

5
.0

9
e5

(2
.6

5
e4

)
3
.3

0
e5

(2
.2

1
e4

)
2
.4

5
e5

(1
.6

0
e4

)
2
.0

1
e5

(1
.2

3
e4

)
1
.7

6
e5

(1
.0

0
e4

)

C
P

U
:

In
te

l
X

eo
n

E
5
5
3
0

2
.4

0
G

H
z.

A
v
er

ag
e

fr
o
m

1
,0

0
0

ru
n
s.

A
v
e:

av
er

ag
e

(t
h
e

sm
al

le
r,

th
e

b
et

te
r)

/
S

D
:

st
an

d
ar

d
d
ev

ia
ti

o
n
.

44



Table 7: Statistical test of TSP

Instance Compared method t-test t-value p-value

berlin52 single best + 3.01 1.33e-03

simple hybrid + 5.75 5.71e-09

kroA100 single best + 24.38 1.0e-103

simple hybrid + 14.00 4.01e-42

bier127 single best + 14.24 2.41e-42

simple hybrid + 8.65 9.72e-18

pr152 single best + 10.79 4.46e-26

simple hybrid + 6.31 2.01e-10

t-value: the bigger, the larger difference.

p-value: the smaller, the more significant.

+: significantly better under level 0.01.
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Table 9: Statistical test of graph bisection

Instance Compared method t-test t-value p-value

G1000.2.5 single best + 6.15 5.66e-10

simple hybrid + 2.82 2.44e-03

G1000.20 single best + 5.48 2.69e-08

simple hybrid + 2.55 5.30e-03

U1000.05 single best + 8.25 2.42e-16

simple hybrid + 5.18 1.32e-07

U1000.40 single best ∼ 1.54 6.23e-02

simple hybrid + 3.47 2.62e-04

t-value: the bigger, the larger difference.

p-value: the smaller, the more significant.

+: significantly better under level 0.01.

∼: not significantly different under level 0.01.

Table 10: Comparison of results on two test problems

Problem

instance

Our method Roulette-wheel selection

Avg Std Avg Std t-test p-value

berlin52 9.02e3 3.09e2 9.04e3 3.13e2 ∼ 4.3e-01

kroA100 3.51e4 1.48e3 3.58e4 1.52e3 + 2.5e-05

bier127 1.87e5 6.20e3 1.87e5 7.07e3 ∼ 3.9e-01

pr152 1.76e5 1.00e4 1.79e5 9.53e3 + 2.5e-03

G1000.2.5 2.54e2 8.68e0 2.64e2 8.84e1 + 2.2e-25

G1000.20 3.95e3 2.61e1 3.98e3 2.35e1 + 8.3e-30

U1000.05 3.71e2 2.20e1 4.04e2 2.17e1 + 3.7e-43

U1000.40 4.14e3 2.65e2 4.53e3 2.56e2 + 1.6e-43

CPU: Intel Xeon E5530 2.40GHz.

Avg: average (the smaller, the better) / Std: standard deviation.

p-value: the smaller, the more significant.

+: significantly better under level 1.00e-02.

∼: not significantly different under level 0.01.
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Chapter 5

Tests in Various Environments

5.1 Hybrid GA

A hybrid GA, or a memetic genetic algorithm [HKS05] uses both ge-

netic operators and a local optimization algorithm. In a hybrid GA environ-

ment, the GA parts relatively concentrate more on exploration. Otherwise,

the local optimization parts are highly concentrated on exploitation [RN99].

Even if we use a simple local optimization, the hybrid GA may leans too

much toward exploitation because a local optimization algorithm is pow-

erful. Thus, a hybrid GA, especially local optimization with a steady-state

GA, has a high chance to be premature converge. The GA operators in hy-

brid GA should focus exploration to obtain better solutions.

Local optimization algorithms consume almost(over 99.9%) of the run-

ning time in a hybrid GA. An effective implementation of local optimization

needs to be determined.

5.1.1 Experiment Settings

We tested our adaptive mating scheme with hybrid GA. The FAR,

RAND, and NEAR schemes are also tested for comparison. We used 2-opt

algorithm as a local optimization algorithm. An individual after a mutation

operator is the input of the 2-opt algorithm. The 2-opt algorithm swaps a
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possible pair of genes and calculates the gain. The gain is defined in each

problem specification. If the gain is more than zero, then the algorithm fixes

swapped genes and finds another possible pair. The algorithm iterates these

operations until no pair with a gain over zero remains to be swapped. The

other operations and settings of the experiments are the same as in those in

Chapter 4.

5.1.2 Results and Discussions

Table 13 compares the solution qualities of our adaptive method and

the three Hungarian methods. Table 14 displays the t-test results. In a hy-

brid GA environment, local optimization is highly focused on exploitation.

The NEAR method is an extreme case of exploitation. Thus, the solution

quality of the NEAR method is worse than that of the other methods except

berlin52. The FAR method has an advantageous position in the environ-

ment. The RAND method shows almost the same performance in TSP, but

it shows statistically significant worse performance than the FAR method in

the graph bisection problem. Our method shows slightly worse performance

than the FAR method in some instances of TSP. However, the differences are

not statistically significant at 0.01. Our method shows better performance in

the graph bisection problem than in TSP. In the two instances of the graph

bisection problem, our adaptive method shows a statistically significant bet-

ter result than any other single Hungarian method.

Figure 16 shows the average voting rate of three schemes in TSP. The

overall shapes of the voting rate are similar with those shown in Figure 13.

As problem spaces grow, the speed of changing scheme is slower. However
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the decreasing speed of voting to RAND and NEAR methods is faster than

that in previous experiments because the local optimization consumes diver-

sity rapidly. In this environment, the FAR method may be an optimal method

in the Hungarian mating schemes. Our method selects the FAR method in

the early stage of hybrid GA.

Figure 17 shows the average voting rate of the three schemes in graph

bisection problem; the result is very similar to that shown in Figure 15. Com-

pared with TSP, the local optimization method does not consume diversity

rapidly possibly because of problem characteristics. The partial swap in TSP

may directly cause to better solution qualities. However, in the graph bisec-

tion problem, the particular swap of two nodes affects the whole nodes and

edges. Thus, it has difficulty in directly finding a better solution with the

2-opt local algorithm.

5.2 GA with New Individuals

The environments of the previous experiments do not produce new

schema. A geometric crossover produces the offspring within the line seg-

ment. Exploration is left with the mutation operator. The FAR method may

have an advantage in these environments. In this section, we tested our

method in an environment with a periodic influx of new individuals.

5.2.1 Experiment Settings

We tested our adaptive mating scheme with a periodic influx of new

individuals. For each 10 generations, 20% of the male and female solutions
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(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 16: Voting rates of schemes in TSP with local optimization.

are dropped, and new random solutions replace them. The FAR, RAND, and

NEAR schemes are also tested for comparison with our method in the same

environment. The other operations and settings of experiments are the same

as those in Chapter 4.

5.2.2 Results and Discussions

Table 15 compares the solution qualities of our adaptive method and

the three Hungarian methods. In TSP, the FAR method shows the best per-

formance among the single Hungarian methods in one instance and NEAR
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(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 17: Voting rates of schemes in graph bisection with local optimiza-

tion.

is the best in three instances. The performance of our adaptive method is

statistically similar to that of the best single Hungarian method as shown in

Table 16. In the graph bisection problem, our adaptive method shows statis-

tically better performance than the three Hungarian methods.

Figure 18 shows the average voting rate of the three schemes in TSP.

Figure 19 shows the average voting rate of the three schemes in graph bi-

section problem. The overall changes of voting rates are similar to those in

previous experiments. However, in both figures show that, the voting rate to

the RAND method increases periodically because of the periodic influx of

54



new individuals. Almost all the families of randomly generated new indi-

viduals vote with the RAND method. Our method shows the reaction of an

unexpected event.

Our adaptive method reacts well in the two new environments. The

method not only shows good performances in solution qualities but also

changes into a proper mating method in each generation. Within the hybrid

GA, local optimization highly concentrates on exploitation. Thus, our adap-

tive method selects the FAR method in the early stage. With an influx of

new individuals, the method has a high chance to select the RAND method

periodically.
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(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 18: Voting rates of schemes in TSP with an influx
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Table 14: Statistical test results on two test problems with local-opt

Problem

instance

vs. FAR method vs. RAND method vs. NEAR method

p-value t-test p-value t-test p-value t-test

berlin52 8.54e-02 ∼ 1.93e-01 ∼ 2.61e-01 ∼

kroA100 2.71e-02 ∼ 4.26e-01 ∼ 2.48e-02 ∼

bier127 2.21e-01 ∼ 4.58e-01 ∼ 2.12e-03 +

pr152 1.63e-02 ∼ 1.04e-01 ∼ 2.79e-03 +

G1000.2.5 4.91e-04 + 4.57e-12 + 8.18e-102 +

G1000.20 3.13e-02 ∼ 1.59e-12 + 7.95e-101 +

U1000.05 1.36e-03 + 1.94e-19 + 1.98e-109 +

U1000.40 4.33e-01 ∼ 2.10e-12 + 2.44e-97 +

CPU: Intel Xeon E5530 2.40GHz. Average from 100 runs.

Avg: average (the smaller, the better) / Std: standard deviation.

+: the adaptive method is significantly better under level 0.01.

∼: not significantly different under level 0.01.
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Table 16: Statistical test results on two test problems with local-opt

Problem

instance

vs. FAR method vs. RAND method vs. NEAR method

p-value t-test p-value t-test p-value t-test

berlin52 1.44e-02 ∼ 1.12e-03 + 2.24e-104 +

kroA100 8.68e-27 + 2.93e-01 ∼ 9.37e-208 +

bier127 2.50e-148 + 2.78e-01 ∼ 3.59e-198 +

pr152 1.10e-241 + 2.17e-01 ∼ 5.67e-77 +

G1000.2.5 8.11e-21 + 3.72e-91 + 0* +

G1000.20 1.52e-22 + 4.89e-69 + 0* +

U1000.05 4.93e-04 + 3.72e-122 + 0* +

U1000.40 5.90e-04 + 6.82e-56 + 0* +

CPU: Intel Xeon E5530 2.40GHz. Average from 1,000 runs.

Avg: average (the smaller, the better) / Std: standard deviation.

+: the adaptive method is significantly better under level 0.01.

∼: not significantly different under level 0.01.

*: it means that this value is less than 1.0e-300.
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(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 19: Voting rates of schemes in graph bisection with an influx
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Chapter 6

A Revised Version of Adaptive Method

6.1 Hungarian Mating Scheme

Our adaptive scheme uses the Hungarian mating schemes to get a bet-

ter solutions. Our adaptive scheme has advantages and disadvantages. The

advantages are mentioned in previous chapters. The disadvantages are as

follows: i) the Hungarian mating scheme consumes O(n3) time where n is

population size ii) FAR and NEAR method is the extreme case of explo-

ration and exploitation.

To overcome these disadvantages, we designed an approximated ver-

sion of FAR and NEAR methods. The methods are named SEMI-FAR and

SEMI-NEAR. The SEMI-FAR matches a female solution with the farthest

male solution and the SEMI-NEAR matches a female solution with the near-

est male solution. The unmatched male solutions are only considered to

match. The new methods are faster than NEAR and FAR methods because

the new methods does not consider the optimal sum.

6.2 Experiment Settings

Figure 2 shows the revised version of our adaptive mating scheme.

The scheme uses SEMI-FAR method instead of FAR method. And the new
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Algorithm 2 Voting rules

// input: two parents and two offspring

// output: SEMI-FAR, SEMI-NEAR, or RAND

// d(x,y): distance function between x and y

Function vote(p1, p2,o1,o2)

{
if d(p1, p2) = 0, d(p1,o1) = 0, or d(o2, p2) = 0 then

return SEMI-FAR;

end if

ratio← d(p1, p2) / (d(p1,o1)+d(o2, p2));
if ratio < α then

return SEMI-FAR;

end if

if α≤ ratio < β then

return RAND;

end if

if ratio≥ β then

return SEMI-NEAR;

end if

}

scheme uses SEMI-NEAR method instate of NEAR method. The remain-

ing parts of the method is same with Algorithm 1. We compared this mat-

ing scheme with SEMI-FAR and SEMI-NEAR and our Hungarian adaptive

mating scheme in Chapter 4.

6.3 Results and Discussions

Table 17 compares the solution qualities of our adaptive methods and

the SEMI-FAR and SEMI-NEAR methods. Table 18 shows the results of

t-test. In TSP, SEMI-FAR and SEMI-NEAR shows worse results in all of

four instances. Our new adaptive method shows significantly better results

than SEMI-NEAR and SEMI-FAR in all TSP instances. Our new adaptive
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method shows better result in berlin52, but the difference is not statisti-

cally significant. In graph bisection problem, SEMI-FAR outperforms our

old adaptive method. And our new adaptive method is statistically better

than SEMI-FAR.

We reported that the best mating scheme is different with each prob-

lem. In TSP, the best scheme is the hybrid of NEAR and RAND. In graph

bisection, the best scheme is RAND and FAR. SEMI-FAR shows good re-

sults in graph bisection problem. And our new adaptive scheme shows better

results than SEMI-NEAR and SEMI-FAR in all instances of two problems.
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Chapter 7

Conclusion

7.1 Summary

Our study showed that mating scheme can be a very important part of

genetic algorithm. We analyzed the effect of mating schemes in TSP and

graph bisection problem. The problems themselves and the sizes of their

solution spaces may take effect on performance. But we could observe the

characteristics of mating schemes. Without an artificial influx of a new in-

dividual, NEAR mating causes losing diversity rapidly. But within large so-

lution space or short time budget, NEAR mating can be a good choice.

The comparisons of solution qualities are displayed in Figure 20 and

Figure 21. Our adaptive mating scheme shows better distribution than any

other compared methods. Our adaptive mating scheme assesses the matched

distance of individuals with their offspring. The NEAR scheme focuses on

exploitation while FAR scheme focuses on exploitation. Our scheme tries

to find a balanced point between exploration and exploitation in each gener-

ation. In various environments such with local-optimization or an influx of

individuals, our adaptive scheme selects the proper schemes. Our adaptive

scheme acts properly not only with the Hungarian schemes, but also with

greedy methods.
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(a) berlin52 (b) kroA100

(c) bier127 (d) pr152

Figure 20: TSP comparison results

7.2 Future Work

We set the threshold parameters as 0.5 and 1.0 with some observation

and theoretically justified them. But we expect that the method of dynam-

ically adjusting these values may produce better results. Real-coded prob-

lems [DSKM09] [DBD03] [CC98] may have different characteristics from

combinatorial optimization. More various problems such as function opti-

mization [HJK95] can be tested with our scheme. There is room for further

improvement and we will study the presented scheme with various opera-
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(a) G1000.2.5 (b) G1000.20

(c) U1000.05 (d) U1000.40

Figure 21: Graph bisection comparison results

tions such as crossover, mutation rates, replacement, and local-optimization

for future work.
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국문초록

짝짓기제도는자식해를만들기위하여두부모를선택하는방법을

말한다. 이는 유전 알고리즘의 동작 전반에 영향을 끼친다. 본 논문에서

는,헝가리안방법을사용한짝짓기제도에대해연구하였다.그제도들은

대응되는거리의합을최소화하는방법,최대화하는방법,그리고비교를

위해 랜덤하게 대응시키는 방법들을 가리킨다. 본 논문에서는 이 제도들

을잘알려진문제인순회판매원문제와그래프분할문제에적용하였다.

또한세대별로가장좋은해가어떻게변화하는지분석하였다.이러한분

석에기초하여,본논문에서는간단히결합된짝짓기제도를제안하였다.

제안된제도는결합되지않은제도에비해더좋은결과를보였다.

본논문에서는또한,본논문의핵심방법인짝짓기제도를결합하는

방법을 제안한다. 본 논문의 적응적인 짝짓기 방법은 세 헝가리안 제도

중하나를선택한다.모든짝지어진쌍은다음세대를위한짝짓기방법을

결정할 투표권을 갖게 된다. 각각의 선호도는 부모해간 거리와 부모해와

자식해의거리의비율을통해결정된다.제안된적응적방법은모든단일

헝가리안짝짓기제도,비적응적으로결합된방법,전통적인룰렛휠선택,

기존의다른거리기준방법들보다좋은결과를보였다.제안된적응적방

법은정기적인해집단의유입과지역최적화와결합된환경에서도적절한

제도를선택했다.본논문에서는헝가리안방법을최대혹은최소의지역

최적점을찾는방법으로교체했다.이방식역시지역최적점을찾는단일

방법들보다좋은결과를보였다.

77


	I. Introduction
	1.1 Motivation 
	1.2 Related Work 
	1.3 Contribution
	1.4 Organization

	II. Preliminary
	2.1 Hungarian Method 
	2.2 Geometric Operators 
	2.2.1 Formal Definitions

	2.3 Exploration Versus Exploitation Trade-off
	2.4 Test Problems and Distance Metric

	III. Hungarian Mating Scheme
	3.1 Proposed Scheme 
	3.2 Tested GA 
	3.3 Observation
	3.3.1 Traveling Salesman Problem
	3.3.2 Graph Bisection Problem


	IV. Hybrid and Adaptive Scheme 
	4.1 Simple Hybrid Scheme 
	4.2 Adaptive Scheme
	4.2.1 Significance of Adaptive Scheme
	4.2.2 Proposed Method
	4.2.3 Theoretical Support
	4.2.4 Experiments
	4.2.5 Traveling Salesman Problem
	4.2.6 Graph Bisection Problem 
	4.2.7 Comparison with Traditional Method
	4.2.8 Comparison with Distance-based Methods


	V. Tests in Various Environments
	5.1 Hybrid GA
	5.1.1 Experiment Settings 
	5.1.2 Results and Discussions 

	5.2 GA with New Individuals 
	5.2.1 Experiment Settings 
	5.2.2 Results and Discussions


	VI. A Revised Version of Adaptive Method
	6.1 Hungarian Mating Scheme
	6.2 Experiment Settings
	6.3 Results and Discussions

	VII. Conclusion
	7.1 Summary 
	7.2 Future Work 


