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An adaptive microbiome 
α-diversity-based association 
analysis method
Hyunwook Koh  

To relate microbial diversity with various host traits of interest (e.g., phenotypes, clinical interventions, 

environmental factors) is a critical step for generic assessments about the disparity in human 

microbiota among different populations. The performance of the current item-by-item α-diversity-

based association tests is sensitive to the choice of α-diversity metric and unpredictable due to the 

unknown nature of the true association. The approach of cherry-picking a test for the smallest p-value 

or the largest effect size among multiple item-by-item analyses is not even statistically valid due to 
the inherent multiplicity issue. Investigators have recently introduced microbial community-level 

association tests while blustering statistical power increase of their proposed methods. However, 

they are purely a test for significance which does not provide any estimation facilities on the effect 
direction and size of a microbial community; hence, they are not in practical use. Here, I introduce a 
novel microbial diversity association test, namely, adaptive microbiome α-diversity-based association 

analysis (aMiAD). aMiAD simultaneously tests the significance and estimates the effect score of the 
microbial diversity on a host trait, while robustly maintaining high statistical power and accurate 

estimation with no issues in validity.

�e human microbiome studies have been accelerated by the recent advances in high-throughput sequencing 
technologies1–3 which enabled an unbiased characterization of all microbes from di�erent organs (e.g., gut, 
mouth, skin, vagina, etc.) of the human body. One of the most fundamental steps in microbiome studies is to sur-
vey the disparity in microbial diversity among di�erent populations (e.g., case vs. control, treatment vs. placebo, 
or smoking vs. non-smoking). For instance, reduced microbial diversity has been found to be associated with 
various host phenotypes, such as obesity4, fatty liver disease4, type II diabetes5, in�ammatory bowel diseases6 and 
additional disorders7,8. Clinical interventions (e.g., antibiotic use) and environmental factors (e.g., diet, smoking, 
delivery mode) have also been found to shi� up or down the microbial diversity9,10. For such microbial diversity 
association analyses, the most commonly used approach is to relate α-diversity (within-sample microbial diver-
sity) with a host trait of interest based on traditional statistical methods (e.g., �tting a linear regression model for 
the association between α-diversity and a continuous trait (e.g., body mass index (BMI)) or a logistic regression 
model for the association between α-diversity and a binary trait (e.g., disease/treatment status) with or without 
covariate adjustments). Such α-diversity-based association analysis o�ers systematic statistical inference facilities 
including the e�ect estimates of microbial diversity on a host trait (e.g., regression coe�cient estimates) as well as 
hypothesis testing tools (e.g., p-values). As a result, we can comprehensively assess which population has higher 
or lower microbial diversity with the extent of the disparity as well as whether it is statistically signi�cant or not.

However, many of the recent microbial community-level association tests continued to ignore some of the 
fundamental elements of statistical inference. For example, MiRKAT11, MiSPU12 and OMiAT13 produce only 
p-values without any e�ect estimation facilities (i.e., purely a test for signi�cance). Although they boast about 
statistical power increase, it is di�cult to lead to any novel clinical interventions or public health promotion 
programs based solely on p-values. To explain, suppose that we found a signi�cant di�erence in a microbial com-
munity (e.g., bacterial kingdom) between diseased and healthy populations using MiRKAT, MiSPU or OMiAT. 
However, here, the only available conclusion is that the two populations are simply di�erent in microbial com-
munity composition with no further understanding about how the di�erence exists. Instead, α-diversity-based 
association analysis provides e�ect estimation on the disparity in direction and size of the microbial diversity 
among di�erent populations (e.g., the diseased population is considerably lower in microbial diversity) which are 
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essential to better understand microbial communities (e.g., lower microbial diversity may indicate higher mor-
bidity) and make plans (e.g., plans to recover microbial diversity to normality). In ecology, α-diversity has also 
been widely used as a guideline for community ecologists and conservation biologists to make plans to preserve 
natural ecosystems or restore perturbed communities14–16.

Notably, a variety of α-diversity metrics can be considered in the analysis. Di�erent α-diversity metrics 
re�ect di�erent views on the true diversity and they perform di�erently. For example, Richness (also known 
as Observed), Shannon17 and Simpson18 indices are non-phylogenetic metrics (i.e., based solely on abundance 
information) which weight relatively rare, mid-abundant and abundant species, respectively. Accordingly, they 
are suitable when associated species are rare, mid-abundant and abundant species, respectively. In contrast, phy-
logenetic diversity (PD)19, phylogenetic entropy (PE)20 and phylogenetic quadratic entropy (PQE)21,22 are phy-
logenetic metrics (i.e., based on both abundance and phylogenetic information) which weight relatively rare, 
mid-abundant and abundant species, respectively. �e phylogenetic metrics are suitable when associated species 
have disparity in both abundance and phylogeny, where PD, PE and PQE are suitable when associated species are 
rare, mid-abundant and abundant species, respectively. In reality, associated species can be rare or abundant, or 
they can have disparity in phylogeny rather than abundance or vice versa. However, it is highly di�cult to predict 
which situation among such various possible association patterns is the one for our study and to choose a single 
optimal α-diversity metric to use. �is is because of the unknown nature of the true association. �e approach of 
cherry-picking a test which has the smallest p-value or the largest e�ect size a�er running multiple item-by-item 
α-diversity-based association analyses is not statistically valid (e.g., do not correctly control type I error) because 
the multiplicity (i.e., multiple testing) issue is not properly accounted for23. �erefore, a valid statistical method 
which robustly suits various unknown association patterns is needed.

In this paper, I introduce a novel adaptive microbial diversity association test, namely, adaptive microbiome 
α-diversity-based association analysis (aMiAD), which robustly maintains high statistical power and accurate 
microbial diversity e�ect score estimation throughout various association patterns while satisfying the requisite 
validity issue. aMiAD employs the minimum p-value from multiple candidate item-by-item α-diversity-based 
association analyses as its test statistic and estimate its own p-value and microbial diversity e�ect score based on 
a residual-based permutation method. �e use of minimum p-value statistic is to adaptively approach the high-
est power and the most accurate microbial diversity e�ect score estimation among multiple candidate analyses, 
while the residual-based permutation method based on the minimum p-value statistic is to robustly satisfy the 
validity issue (e.g., correctly controlling type I error) with no distributional assumption to be satis�ed. �ree 
non-phylogenetic metrics, Richness, Shannon, Simpson indices and three phylogenetic metrics, PD, PE and PQE 
are selected as the candidate α-diversity metrics for aMiAD because of their distinguished features which prop-
erly modulate abundance and phylogenetic information.

�e rest of the paper is organized as follows. �e methodological details for aMiAD can be found in the 
following Methods section. �en, extensive simulations and real data applications are addressed in the Results 
section. I �nally discuss possible extensions for the use of aMiAD in the Discussion section.

Methods
I �rst organize related notations and models. �en, I address details on the six candidate α-diversity metrics, 
Richness, Shannon17, Simpson18, PD19, PE20 and PQE21,22. Finally, I delineate the test statistic and microbial diver-
sity e�ect score of aMiAD and the residual permutation-based computational algorithm. While the application of 
aMiAD can be much broader (e.g., extendable to generalized linear models), I describe aMiAD to relate microbial 
diversity with a continuous (e.g., BMI) or a binary (e.g., disease/treatment status) trait.

Here, I notify that the α-diversity referred in this paper considers di�erent types of operational taxonomic 
units (OTUs) in the bacterial kingdom per biological sample (e.g., human, mouse), indicating within-sample 
diversity of OTUs in the bacterial kingdom. However, in practice, any subunits (e.g., species or other lower-level 
microbial taxa) in a di�erent microbial assemblage (e.g., kingdom of archaea, fungi, protists or viruses, phylum of 
�rmicutes or bacteroidetes) can be considered.

Models and notations. Suppose that there are n samples, p OTUs in a microbial community (e.g., bacterial 
kingdom) and q covariates (e.g., age, gender). Let Yi denote a continuous (e.g., BMI) or a binary (e.g., disease/
treatment status) trait, Zij denote OTUs, and Xik denote covariates for i = 1, …, n, j = 1, …, p and k = 1, …, q. To 
relate OTUs in a community with a host trait while adjusting for covariate e�ects, I consider a multiple linear 
regression model equation (1) for a continuous trait and a multiple logistic regression model equation (2) for a 
binary trait.

∑β α= + + +
=

Y X h(Z ) ,
(1)

i 0
k 1

q

ik k i i

∑β α= = + +
=

logit P(Y 1) X h(Z ),
(2)

i 0
k 1

q

ik k i

where β0 is a regression coe�cient for the intercept, αk’s are regression coe�cients for the e�ect of q covariates 
(e.g., age, gender), h (Zi) is a function which characterizes the relationship between OTUs and a host trait, and ∈i 
is an error term which is independently and identically distributed with a mean zero and a variance of σ2. Here, 
we are particularly interested in testing the null hypothesis, H0: h (Zi) = 0; that is, no association between OTUs 
and a host trait.
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Notably, we can �exibly specify h (Zi) to re�ect di�erent patterns of the relationship. For example, the linear 
relationship between OTUs and a host trait can be surveyed by setting h (Zi) = ∑ β= Zj 1

p
j ij, while diverse non-linear 

relationships can be surveyed by the use of non-linear transformations of OTUs (e.g., polynomials or splines)24,25. 
Furthermore, any positive semi-de�nite kernel function can be used for h (Zi), where MiRKAT11 has especially 
been credited with establishing a kernel machine regression framework for distance-based community-level asso-
ciation analysis. Among diverse alternatives, I formulate h (Zi) as a function of α-diversity metric equation (3) for 
the ultimate goal of inferring the e�ect of microbial diversity on a host trait.

= βγ γ γh(Z ) D , (3)i ( ) ( ) ( )i

where γ is an index for a chosen α-diversity metric (e.g., Richness, Shannon, Simpson, PD, PE, PQE), β(γ) is a 
regression coe�cient for the α-diversity metric and D(γ) i’s are the values of the α-diversity metric for i = 1, …, n.

α-diversity indices. α-diversity is an intuitive and natural index which summarizes the extent of micro-
bial diversity in a community. A variety of α-diversity metrics have been proposed, and they are classi�ed into 
non-phylogenetic and phylogenetic metrics. �e non-phylogenetic metrics are constructed based solely on 
microbial abundance information, while the phylogenetic metrics further utilize phylogenetic tree information. I 
here survey three non-phylogenetic metrics, Richness, Shannon17 and Simpson18 indices, and three phylogenetic 
metrics, PD19, PE20 and PQE21,22.

To begin with non-phylogenetic metrics, Richness, Shannon and Simpson indices are weighted variants based 
on the generalized diversity framework, known as the e�ective number of types (or Hill number), which quan-
ti�es how many e�ective types of interest exist in a community26–28. Here, the e�ective number of types (Dw) 
equation (4) is de�ned as the inverse of the mean weighted proportional abundance26,27.

∑=
∑

=

=
− =

−

−

D
1

r r
( r ) ,

(4)
w
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j j
w 1 j 1

p
j
w 1/(1 w)

w 1

where p is the total number of OTU types present in a community, rj is the relative abundance (i.e., proportion) 
of the j-th OTU for j = 1, …, p and w ( ∈ ) is the weight for the proportions (also known as the order of the diver-
sity) which needs to be pre-speci�ed.

Notably, with di�erent pre-speci�cations for the order of the diversity (w) equation (4), di�erent α-diversity 
metrics can be derived. In particular, when w = 0, D0 equals to p (i.e., the total number of OTU types present in a 
community) which is known as Richness (DRichness) equation (5).

= =D D p, (5)Richness 0

where p is the total number of OTU types present in a community. When w = 1, D1 cannot be de�ned; hence, the 
mathematical limit of = −∑→ =lim D exp( r ln r )w 1 w j 1

p
j j

26,27 which is the weighted geometric mean proportional 
abundance is alternatively employed. �en, Shannon index (DShannon) equation (6) is derived by taking the loga-
rithm to →lim Dw 1 w

17.

∑= = −→ =
D log(lim D ) r ln r , (6)Shannon w 1 w j 1

p
j j

where p is the total number of OTU types present in a community and rj is the proportion of the j-th OTU for 
j = 1, …, p. When w = 2, D2 equals to ∑ =

−( r )j 1
p

j
2 1, which is the weighted arithmetic mean proportional abundance 

known as Inverse Simpson index26,27. �en, Simpson index (DSimpson) equation (7) is derived by taking the minus 
of the inverse of D2, −D2

−1 18.

∑= − = −−

=

D D r ,
(7)

Simpson 2
1

j 1

p

j
2

where p is the total number of OTU types present in a community and rj is the proportion of the j-th OTU for 
j = 1, …, p.

Importantly, by the formula equation (4), we can infer that as the value of w increases, relatively abundant 
OTUs are weighted, but it is vice versa as the value of w decreases27. �erefore, Richness, Shannon and Simpson 
indices weight relatively rare, mid-abundant and abundant OTUs, respectively; hence, they are also suitable when 
associated OTUs are rare, mid-abundant and abundant, respectively.

In contrast, the phylogenetic metric, PD19, utilizes phylogenetic tree information while considering only the 
incidence (i.e., presence/absence) information of OTUs. Speci�cally, PD (DPD) is de�ned as the sum of the lengths 
of the branches for the OTUs present in a community equation (8).

∑= =
D l , (8)PD j 1

p
j

where p is the total number of OTU types present in a community and 1j is the length of all the branches that 
belong to the j-th OTU for j = 1, …, p. �erefore, PD is suitable when associated OTUs have high disparity in 
phylogeny rather than in abundance. Given that prevalent OTUs are likely to be present in all samples, PD is also 
suitable especially for rare OTUs which have high disparity in the classi�cation of presence/absence.
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PE20 equation (9) and PQE21,22 equation (10) are phylogenetic generalizations of the Shannon and Simpson 
indices, which incorporate all di�ering microbial abundance information (i.e., beyond the incidence (presence/
absence) information for PD) while weighting relatively mid-abundant and abundant OTUs.

∑= −
=

D l r lnr ,
(9)

PE
j 1

p

j j j

∑= −
=

D l r , (10)PQE j 1

p
j j

2

where p is the total number of OTU types present in a community, 1j is the length of all the branches that belong 
to the j-th OTU and rj is the proportion of the j-th OTU for j = 1, …, p. �erefore, PE and PQE are suitable 
when associated OTUs have high disparity in phylogeny, where they are relatively mid-abundant and abundant, 
respectively.

�e above α-diversity metrics are the most fundamental and widely used, and they were su�cient in my 
simulations and real data analyses. Yet, the potential extension to other α-diversity metrics is addressed later in 
Discussion.

aMiAD. aMiAD is constructed based on the score test29 of the linear equation (1) or logistic equation (2) 
regression model, which surveys the association between each of the α-diversity metrics and a host trait while 
adjusting for covariates. Here, the unstandardized score statistic (U(γ)) is formulated with equation (11).

∑= − µγ = γˆU (Y )D (11)( ) i 1

n
i i,0 ( )i

where γ is an index for a chosen α-diversity metric (e.g., Richness, Shannon, Simpson, PD, PE, PQE) and µ̂
i,0

 is 

the �tted value under the null hypothesis, which is estimated as �� X0 k 1
q

ik kβ′ + ∑ α′
=

 for the linear regression model 

equation (1) or β′ + ∑ α′−

=
��( )logit X1

0 k 1
q

ik k  for the logistic regression model equation (2), where β′0 and α′k  are 

maximum likelihood estimates (MLEs) under the null hypothesis. �is unstandardized score statistic (U(γ)) is 
su�cient to estimate the p-value (P(γ)) based on my residual permutation-based method (see Computational 
algorithm) because its mean and standard error are evaluated under the null hypothesis equivalently for both the 
observed and null (i.e., permuted) statistic values resulting in no change in their relative comparison25. Yet, the 
mean and standard error under the null hypothesis are also estimated to derive the standardized score statistic 
( γ

⁎U( )). �e standardized score statistic ( γ
⁎U( )) is asymptotically related to the regression coe�cient (β(γ)) equation 

(3) and tells e�ect direction and size of a chosen α-diversity metric29,30. I denote γ
⁎U( ) as MiDivES(γ) and use it as 

the e�ect score of a chosen α-diversity metric.
Here, the score test equation (11) with its resulting p-value (P(γ)) and effect score (MiDivES(γ)) handles 

α-diversity metrics one-by-one. Yet, as described above, the performance di�ers according to the choice of 
α-diversity metric and the true underlying association pattern. Because of the unknown nature of the true associ-
ation pattern, we cannot predict which α-diversity index is the optimal choice to our study in advance. �erefore, 
in order to robustly suit various association patterns, I propose a data-driven adaptive test, aMiAD. �e test 
statistic of aMiAD (TaMiAD) is the minimum p-value from multiple item-by-item α-diversity-based association 
analyses equation (12).

= γ γΓT min P , (12)aMiAD ( )

where γ is an index for a metric in a set of multiple candidate α-diversity metrics (Γ), where Γ = {Richness, 
Shannon, Simpson, PD, PE, PQE}, and P(γ) is the estimated p-value for the use of each α-diversity metric (γ ∈ Γ). 
Here again, TaMiAD equation (12) is the test statistic of aMiAD, and this minimum p-value (i.e., 

= γ γΓT min PaMiAD ( )  equation (12)) itself is not the p-value I report for aMiAD. �e approach of cherry-picking 
the minimum p-value among multiple candidate analyses (i.e., = γ γΓT min PaMiAD ( )  equation (12)) and reporting 
it (i.e., = γ γΓT min PaMiAD ( )  equation (12)) as it is cannot correctly control type I error rates because of the inher-
ent multiplicity (i.e., multiple testing) issue23. I use a residual permutation-based method (see Computational 
algorithm) based on the minimum p-value statistic equation (12) to estimate the p-value for aMiAD (denoted as 
PaMiAD).

�e estimated microbial diversity e�ect score of aMiAD, namely, adaptive microbial diversity e�ect score 
(aMiDivES) equation (13), is the standardized score statistic value based on the α-diversity metric which results 
in the minimum p-value among multiple candidate analyses, which is then further standardized by its mean and 
standard error under the null hypothesis.

=
−γ γ

γ

aMiDivES
MiDivES E(MiDivES )

SE(MiDivES )
,

(13)

( ) ( ),0

( ),0

m m

m

where γm is an index of the metric which results in the minimum p-value in a set of multiple candidate α-diversity 
metrics (Γ), where Γ = {Richness, Shannon, Simpson, PD, PE, PQE}, MiDivES(γm) is an estimated microbial 
diversity e�ect score for the α-diversity metric which results in the minimum p-value, E(MiDivES(γm), 0) and 
SE(MiDivES(γm), 0)) are the mean and standard error of MiDivES(γm) under the null hypothesis. Here again, aMi-
DivES is the E(MiDivES(γm) which is further standardized by its mean (E(MiDivES(γm), 0)) and standard error 
(SE(MiDivES(γm), 0)) under the null hypothesis equation (13), and the genuine microbial diversity e�ect score 
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of the test reaching the minimum p-value (i.e., MiDivES(γm)) is not the microbial diversity e�ect score I report 
for aMiAD. I use a residual permutation-based method (see Computational algorithm) to estimate the mean 
(E(MiDivES(γm), 0)) and standard error (SE(MiDivES(γm), 0)).

Computational algorithm. �e computational algorithm to estimate the p-value (PaMiAD) and the e�ect 
score (aMiDivES) of aMiAD is based on a residual-based permutation method which randomly shu�es the resid-
uals estimated from the null model, which re�ects the null situation of no association. It is constructed based on 
the score statistic equation (11) and its derivatives equations (12) and (13) which do not require MLE; hence, we 
can avoid heavy computation and no convergence error in the iterative algorithm for MLE. It is non-parametric; 
hence, the outcomes are robustly valid with no underlying distributional assumption to be satis�ed. �e approach 
based on the minimum p-value statistic and a residual-based permutation method has also been widely used 
in prior studies11–13,25,31, where the validity issue was robustly satis�ed. Detailed procedures can be found in 
(Supplementary S1 Text).

Ethics approval and consent to participate. Not applicable. �is study involves only secondary anal-
yses. All utilized microbiome datasets are publicly and freely available which do not require any ethics approval 
and consent to participate.

Results
Simulations. I conducted simulation experiments under a wide range of scenarios in order to evaluate and 
compare item-by-item α-diversity-based association tests and aMiAD in terms of hypothesis testing (i.e., type I 
error and power) and e�ect score estimation (i.e., central tendency, dispersion and accuracy). I also evaluate the 
approach of cherry-picking a test which has the smallest p-value (denote it as Minimum P) or the largest e�ect 
size (i.e., the largest deviation from zero e�ect) (denote it as Largest ES) among multiple item-by-item α-diversi-
ty-based association analyses in terms of the validity issues of properly controlled type I error and the central ten-
dency and dispersion of microbial diversity e�ect scores under the null hypothesis. I also evaluate other existing 
adaptive community-level association tests (i.e., Optimal MiRKAT (OMiRKAT)11, adaptive MiSPU (aMiSPU)12 
and OMiAT13) in terms of hypothesis testing only (i.e., type I error and power) as they do not provide any e�ect 
estimation facilities. I applied default settings for the implementation of their so�ware package (aMiAD ver. 1.0, 
MiRKAT ver. 1.0.1, MiSPU ver. 1.0, and OMiAT ver. 5.3), as suggested.

Simulation design. I simulated microbiome data according to prior studies11,13,25 which re�ect real OTUs’ 
proportions and dispersion on the basis of the Dirichlet-multinomial distribution32. In particular, I used real 
gut microbiome data33 from 35 fecal samples (collected from non-obese diabetic (NOD) mice at 6 weeks of age 
in the control group with no antibiotic treatment) for 353 OTUs (a�er removing OTUs with proportional mean 
abundance ≤10−4) to estimate the proportions and dispersion parameter. �en, simulation data were iteratively 
generated from the Dirichlet-multinomial distribution with the pre-speci�ed values of the estimated proportions 
and dispersion parameter and the total reads per sample of 1,000 for small (n = 50) and large (n = 100) sample 
sizes, respectively11,13,25. �en, binary outcomes were generated based on the logistic regression model equation 
(14)11,13.

∑β= = . + + ∗∗ ∗

∈Λ
logit P(y 1) 0 5 scale(X X ) w scale(Z ), (14)i 1i 2i j i ij

where X1i and X2i are two covariates (e.g., age and gender) simulated from the normal distribution with mean 50 
and standard deviation (SD) 5 and the Bernoulli distribution with success probability 0.5, respectively, β is a scalar 
value ( ∈ ) which determines the e�ect direction and size of the associated OTUs in a set Λ, where Zij is an OTU 
count and wi is a weight for the phylogenetic disparity de�ned as the sum of the branch lengths for present OTUs 
divided by the sum of the branch lengths for absent OTUs, and ‘scale’ is the standardization function to have 
mean 0 and SD 111,13,25. To estimate empirical type I error rate and the mean (as a measure of central tendency) 
and variance (as a measure of dispersion) of microbial diversity e�ect scores under the null hypothesis, I set β = 0. 
To estimate statistical power and the accuracy of e�ect scores, I set β from the uniform distribution between −3 
and 3 (i.e., Unif(−3, 3)). Here, the R2 value between β values randomly generated from Unif(−3, 3) and microbial 
diversity e�ect scores estimated from each method was used as a measure of estimation accuracy. �e set of asso-
ciated OTUs in the community (Λ) was selected with four di�erent scenarios: (1) Λ = {OTUs in bottom 20% in 
abundance}, (2) Λ = {A random 20% of OTUs}, (3) Λ = {OTUs in top 20% in abundance}, (4) Λ = {OTUs in a 
cluster among 7 clusters partitioned by partitioning-around-medoids (PAM) algorithm}, respectively. �e �rst 
three scenarios mimic the situations when rare, mid-abundant and abundant OTUs, respectively, are associated. 
For the fourth scenario, I used PAM algorithm34 to partition all OTUs in the community into 7 clusters based on 
their cophenetic distances. Here, the number of clusters, 7, was selected by maximizing the average silhouette 
width from 5 to 10 candidate numbers of clusters35,36. I randomized the choice of an associated cluster among the 
7 clusters to avoid arbitrary choice13,25, whereas the outcomes for each of the 7 clusters can be found in Supporting 
Information (Fig. S1). The fourth scenario mimics the situation when phylogenetically close OTUs are 
associated.

Simulation results. Type I error. I estimate that the empirical type I error rates are well-controlled at the 
signi�cance level of 0.05 for aMiAD, as well as all item-by-item α-diversity-based association tests and adaptive 
community-level association tests (OMiRKAT, aMiSPU and OMiAT), for both small (n = 50) and large (n = 100) 
sample sizes (Table 1). However, the cherry-picking approaches (i.e., Minimum P and Largest ES) show overly 
in�ated empirical type I error rates for both small (n = 50) and large (n = 100) sample sizes (Table 1), indicating 
the violation of the requisite validity issue in hypothesis testing.
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Central tendency and dispersion of e�ect scores under the null hypothesis. I estimate that the means of micro-
bial diversity e�ect scores under the null hypothesis are around zero, indicating no bias in the estimation, for 
all surveyed tests and for both small (n = 50) and large (n = 100) sample sizes (Table 2). I also estimate that the 
variances of microbial diversity e�ect scores under the null hypothesis are around one for aMiAD, as well as all 
the item-by-item α-diversity-based association tests, for both small (n = 50) and large (n = 100) sample sizes 
(Table 2). However, the cherry-picking approaches (i.e., Minimum P and Largest ES) show overly in�ated vari-
ance estimates for both small (n = 50) and large (n = 100) sample sizes (Table 2), indicating over-estimation of 
e�ect size.

Power and estimation accuracy. To begin with comparing the performance of α-diversity-based association 
tests, Richness estimates the greatest power and R2 values when rare OTUs are associated for both small (n = 50) 
(Figs 1A,C and (S1)) and large (n = 100) (Figs 1B,D and (S1)) sample sizes, while the Shannon index estimates 
the greatest power and R2 values when mid-abundant OTUs are associated for both small (n = 50) (Figs 1A,C 
and (S2)) and large (n = 100) (Figs 1B,D and (S2)) and the Simpson index estimates the greatest power and R2 
values when abundant OTUs are associated for both small (n = 50) (Figs 1A,C and (S3)) and large (n = 100) 
(Figs 1B,D and (S3)), which are explained by their abundance weighting schemes. When phylogenetically close 
OTUs are associated (i.e., OTUs in a random cluster among the 7 clusters partitioned by the PAM algorithm 
are associated), the phylogenetic metrics (i.e., PD, PE and PQE) estimates greater power and R2 values than the 
non-phylogenetic metrics (i.e., Richness, Shannon and Simpson) for both small (n = 50) (Figs 1A,C and (S4)) 
and large (n = 100) (Figs 1B,D and (S4)) sample sizes, where PE estimates the greatest power and R2 values. �is 
is because the phylogenetic metrics further incorporate phylogenetic information, while the non-phylogenetic 
metrics are based only on abundance information. To be more detailed, the performance also varies by which 
cluster among the 7 clusters partitioned by PAM algorithm is selected (see Supporting Information (Fig. S1)). 
�at is, the Shannon index estimates the greatest power and R2 values when OTUs in the �rst cluster are associ-
ated (Fig. S1A–D(C1)), PE estimates the greatest power and R2 values when OTUs in the second, third, ��h and 

Category Method n = 50 n = 100

Item-by-item α-diversity-based association tests

Richness 4.920 5.001

Shannon 4.977 4.938

Simpson 4.991 4.913

PD 4.969 4.967

PE 4.994 4.949

PQE 4.995 4.935

Adaptive α-diversity-based association test aMiAD 4.983 4.913

Community-level association tests

OMiRKAT 5.012 5.024

aMiSPU 5.021 5.016

OMiAT 5.001 5.024

Cherry-picking approaches
Minimum P 16.880 16.838

Largest ES 16.874 16.824

Table 1. Estimated empirical type I error rates (Unit: %). Minimum P and Largest ES represent the cherry-
picking approaches for the smallest p-value and the largest e�ect size, respectively, among multiple item-by-
item α-diversity-based association analyses.

Category Method

n = 50 n = 100

Mean Variance Mean Variance

Item-by-item α-diversity-based 
association tests

Richness −0.004 1.008 0.000 1.004

Shannon −0.001 1.007 −0.003 1.004

Simpson −0.001 1.007 −0.002 1.003

PD −0.002 1.004 0.000 0.997

PE −0.002 1.005 −0.003 0.996

PQE −0.001 1.010 −0.003 0.998

Adaptive α-diversity-based 
association test

aMiAD −0.002 1.004 −0.001 1.001

Cherry-picking approaches
Minimum P −0.006 2.285 −0.001 2.285

Largest ES −0.002 2.287 0.000 2.287

Table 2. Estimated means and variances of microbial diversity e�ect scores under the null hypothesis (Unit: 
%). Minimum P and Largest ES represent the cherry-picking approaches for the smallest p-value and the largest 
e�ect size, respectively, among multiple item-by-item α-diversity-based association analyses.
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Figure 1. Estimated powers and R2 values. (A) Estimated powers for the α-diversity-based association tests 
for the scenarios, where rare (S1), mid-abundant (S2), abundant (S3) and phylogenetically close (S4) OTUs are 
associated (n = 50). (B) Estimated powers for the α-diversity-based association tests for the scenarios, where 
rare (S1), mid-abundant (S2), abundant (S3) and phylogenetically close (S4) OTUs are associated (n = 100). 
(C) Estimated powers for the adaptive association tests for the scenarios, where rare (S1), mid-abundant 
(S2), abundant (S3) and phylogenetically close (S4) OTUs are associated (n = 50). (D) Estimated powers 
for the adaptive association tests for the scenarios, where rare (S1), mid-abundant (S2), abundant (S3) and 
phylogenetically close (S4) OTUs are associated (n = 100). (E) Estimated R2 values for the α-diversity-based 
association tests for the scenarios, where rare (S1), mid-abundant (S2), abundant (S3) and phylogenetically 
close (S4) OTUs are associated (n = 50). (F) Estimated R2 values for the α-diversity-based association tests 
for the scenarios, where rare (S1), mid-abundant (S2), abundant (S3) and phylogenetically close (S4) OTUs 
are associated (n = 100). **S1. Λ = {OTUs in bottom 20% in abundance}; S2. Λ = {A random 20% of OTUs}; 
S3. Λ = {OTUs in top 20% in abundance}; S4. Λ = {OTUs in a random cluster (average) among the 7 clusters 
partitioned by PAM}.
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sixth clusters are associated (Fig. S1A–D(C2, C3, C5, C6)), and PQE estimates the greatest power and R2 values 
when OTUs in the fourth cluster are associated (Fig. S1A–D(C4, C7)).

Although it may not be feasible to re�ect all possible true association patterns in the natural world to our 
simulations, the most meaningful observation here is that aMiAD adaptively approaches the greatest power and 
R2 values among di�erent item-by-item analyses throughout all surveyed scenarios (Figs 1A–D and S1A–D), 
while the performance for each α-diversity metric considerably �uctuates (Figs 1A–D and S1A–D). In reality, the 
true association scenario is mostly unknown, while a variety of scenarios are also likely to exist. �us, aMiAD is 
attractive due to its high adaptivity and robustness to better cope with the unknown nature.

To compare aMiAD with the three adaptive community-level association tests (OMiRKAT, aMiSPU and 
OMiAT) (Figs 1E,F and S1E,F), OMiAT estimates the greatest power values for most of the scenarios except 
that aMiAD estimates the greatest power values for small sample size (n = 50) when abundant OTUs (Figs 1E 
and (S3)) and OTUs in the second cluster among the 7 clusters partitioned by the PAM algorithm are associated 
(Fig. S1E(C2)), aMiSPU estimates the greatest power values when OTUs in the fourth cluster are associated for 
both small (n = 50) (Fig. S1E(C4)) and large (n = 100) (Fig. S1F(C4)) sample sizes and OMiRKAT estimates the 
greatest power values when OTUs in the seventh cluster are associated for both small (n = 50) (Fig. S1E(C7)) 
and large (n = 100) (Fig. S1F(C7)) sample sizes. To summarize, we may conclude that OMiAT is most robustly 
powerful. However, once again, OMiAT, as well as OMiRKAT and aMiSPU, does not provide any e�ect estimation 
facilities; hence, its interpretability and usability are limited.

Real data applications. The disparity in microbial diversity between control and antibiotic treatment 
groups. Cox et al. (2013) performed microbiota-pro�ling studies to survey if the gut microbiota a�ected during 
maturity by antibiotic treatment leads to continued metabolic consequences37. To demonstrate the use of aMiAD, 
I analyzed a part of the original data, which surveys the e�ect of antibiotic treatment with low-dose penicillin 
(LDP) on microbial diversity of the gut microbiota. In particular, I compared microbial diversity of the bacterial 
kingdom between two groups of mice, 8 control and 7 antibiotic treatment mice. To summarize the sampling and 
pro�ling procedures while details are found in the original literature37, the 8 control mice are 8 germ-free mice 
to whom cecal microbiota from mice with no treatment were transferred and the 7 antibiotic treatment mice are 
7 germ-free mice to whom cecal microbiota from LDP-treated mice were transferred. Fecal samples from the 8 
control and 7 antibiotic treatment mice were collected a�er 23 days of the transfer, and the V4 region of the bac-
terial 16S rRNA gene was targeted in the amplicon sequencing with barcoded fusion primers38. �en, the QIIME 
pipeline2 was used to quantify OTUs and construct their phylogenetic tree. �e OTUs were rare�ed using the 
so�ware package, phyloseq39 due to the varying total reads per sample40. 59 OTUs were included in the analysis 
a�er removing OTUs which are not present in any sample a�er random subsampling of the rarefaction39. Here, 
only a few OTUs (i.e., 59 OTUs), which may not represent the entire ecosystem, were analyzed because of some 
data quality issues (e.g., small sample size, low sequencing depth and the antibiotic treatment e�ect which can 
substantially reduce microbial abundance/diversity).

We can �rst visually observe in the box-plots (Fig. 2A) that all the α-diversity metrics are lower for the 
antibiotic treatment group than the control group, while PD and then Richness show the greatest disparity. 
Correspondingly, we can observe negative estimated e�ect scores for all α-diversity metrics, indicating microbial 
diversity is lower for the antibiotic treatment group than the control group, where the disparity is especially signif-
icant for PD (p-value: <0.001) and Richness (p-value: <0.001) indices (Fig. 2B). aMiAD estimates that microbial 
diversity is signi�cantly di�erent between the two groups (p-value: 0.001), where the microbial diversity is lower 
for the antibiotic treatment group than the control group (aMiDivES: −2.028 < 0) (Fig. 2B).

�e disparity in microbial diversity between non-diseased and diseased groups. Environmental exposures (e.g., 
antibiotic use) during maturation have been associated with immunological and metabolic development through 
the mechanisms involved in the interaction between microbiota and host41. Type 1 diabetes (T1D) is one of the 
most common autoimmune diseases, which is caused by pancreatic β-cell destruction. T1D o�en appears in the 
pediatric age, and its incidence rate is globally increasing42. Livanos et al., (2016) performed microbiota-pro�ling 
studies to survey if the gut microbiota mediates the e�ect of antibiotic treatment on T1D onset33. To demonstrate 
the use of aMiAD, I analyzed a part of the original data, which surveys if the microbial diversity of gut microbiota 
altered by antibiotic treatment is di�erential by T1D status. To summarize the sampling and pro�ling proce-
dures33, 19 NOD mice were exposed to the antibiotic (speci�cally, therapeutic-dose pulsed antibiotic) treatment, 
then, their fecal samples were collected a�er 6 weeks of the exposure. �e V4 region of the bacterial 16S rRNA 
gene was targeted in the amplicon sequencing with barcoded fusion primers38 and the QIIME pipeline2 was used 
to quantify OTUs and construct their phylogenetic tree. �e OTUs were rare�ed using the so�ware package, phy-
loseq39 due to the varying total reads per sample40. 390 OTUs were included in the analysis a�er removing OTUs 
which are not present in any sample a�er random subsampling of the rarefaction39.

We can �rst visually observe in the box-plots (Fig. 3A) that the phylogenetic metrics (PD, PE and PQE) show 
a greater disparity than the non-phylogenetic metrics (Richness, Shannon and Simpson), where PQE and then 
PE show the greatest disparity. Here, we can also observe that the microbial diversity is lower for the T1D group 
than the non-diseased group for all α-diversity metrics but the Shannon index (Fig. 3A). Correspondingly, PQE 
(p-value: 0.012) and PE (p-value: 0.015) estimate signi�cant p-values with negative e�ect direction (Fig. 3B). 
�e Shannon index is the only metric which estimates positive e�ect direction (Fig. 3B). �is indicates that 
item-by-item analyses are substantially sensitive to (e.g., the decision on signi�cance and/or e�ect direction can 
even be reversed by) the choice of α-diversity metric. aMiAD estimates that microbial diversity is signi�cantly 
di�erent between the two groups (p-value: 0.048), where the microbial diversity is lower for the T1D group than 
the non-diseased group (aMiDivES: −1.619 < 0) (Fig. 3B).
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Discussion
�e recent microbial community-level association tests might be more powerful, where we, especially, observed 
in Simulations that OMiAT is most robustly powerful (Figs 1E,F and S1E,F). However, they do not provide any 
e�ect estimation facilities; hence, any further information about the disparity in microbial community compo-
sition is not accessible. Instead, aMiAD additionally estimates microbial diversity e�ect score, which can further 
enhance the interpretability. Here, I brie�y discuss that other ANOVA-based methods (e.g., mvabund43) can-
not directly adjust potential confounding e�ects (e.g., age, gender), while the regression-based methods (e.g., 
MiRKAT, MiSPU, OMiAT, aMiAD) can easily adjust them.

I chose the six α-diversity metrics, Richness, Shannon17, Simpson18, PD19, PE20 and PQE21,22, as the candidate 
α-diversity metrics for aMiAD because of their distinguished features44. However, we are not restricted to these 
metrics, and other α-diversity metrics might be considered. For example, Chao145 and ACE46, can be used to 
further modulate the extent of the rarity of association OTUs. Chao1 and ACE utilize abundance information as 
“≥2 or <2 reads” and “≥10 or <10 reads”, respectively, while Richness utilizes it as presence (i.e., ≥1 reads) or 
absence (i.e., 0 read). �us, we may expect that Chao1 might be suitable when the extent of the rarity is relatively 
lower than the one for Richness, but relatively higher than the one for ACE. �e Inverse Simpson index can also 
be considered by replacing the original Simpson index. Yet, I heuristically determined to use the original Simpson 
index as the Inverse Simpson index did not show any better performance. Notably, novel statistical estimates 
for α-diversity have still been proposed while further addressing the issues of missing species, sampling noise, 
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Figure 2. �e comparison between the control (Con) and antibiotic treatment (Ant) groups. (A) �e box-plots 
for each α-diversity metric (i.e., Richness, Shannon, Simpson, PD, PE, PQE). (B) �e outcomes for the item-by-
item (i.e., Richness, Shannon, Simpson, PD, PE, PQE) and adaptive (i.e., aMiAD) α-diversity-based association 
tests.
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experimental noise and so forth47–52. Any α-diversity metrics can be easily employed in my so�ware package, 
aMiAD, through user options.

In this paper, I introduced aMiAD which adaptively approaches to the highest power and the most accurate 
microbial diversity e�ect score estimation among multiple item-by-item α-diversity-based association analy-
ses. aMiAD also robustly satis�es the requisite validity issues in hypothesis testing and e�ect score estimation. 
Although I proposed aMiAD to relate microbial diversity with a continuous (e.g., BMI) or binary (e.g., disease/
treatment status) trait of interest, it would be extendable to di�erent types of trait (e.g., survival, multinomial 
trait)25,53–55. Moreover, an extension to the linear mixed e�ect model56/generalized linear mixed e�ect model57 is 
needed for correlated (e.g., family-based or longitudinal) study designs.

Data Availability
�e utilized microbiome data are publicly available at the European Bioinformatics Institute (EBI) database 
(https://www.ebi.ac.uk, accession code: ERP016357)33 and the Sequence Read Archive (SRA) repository (https://
www.ncbi.nlm.nih.gov/sra, accession code: SRP042293)37. �e so�ware package, aMiAD, is freely available at 
https://github.com/hk1785/aMiAD.
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