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ABSTRACT Finite control set model predictive control (MPC) is a model-based control method that

can include multi-objective optimization, constrained control, adaptive control, and online auto-tuning of

weighting factors all in a single controller that exhibits fast dynamic tracking. This paper utilizes the

model-based framework of MPC to develop a sensorless current maximum power point tracking (MPPT)

algorithm. Eliminating the current sensor can reduce the cost and improve the reliability of the photovoltaic

system. This paper also utilizes constrained control and online auto-tuning of MPC to develop an adaptive

perturbation MPPT to reduce steady-state oscillation and improve dynamic performance. This paper builds in

a single framework the different layers of the MPPT problem: control, estimation, and MPPT. The proposed

adaptive perturbation sensorless current mode MPPT (ASC-MPPT) technique performance is compared to

the well-known incremental conductance (InCon) MPPT technique. The EN50530 European industrial test

standards were used to demonstrate performance.

INDEX TERMS Photovoltaics, maximum power point tracking, model predictive control, sensorless current

mode, dc/dc converters.

NOMENCLATURE

TS Sampling time

k Discrete sample time step

m The number of possible switching states

σ Switching configuration number, σ ǫ [1, .., m]

n The number of objective (cost) functions

λ Cost function weighting factor

gσ∈{1:m} Cost function for state σ , where σ ǫ [1, .., m]

u(k) Input signals in discrete-time

y(k) Output variables in discrete-time

x(k) State variables in discrete-time

x̃(k) Estimated state variable

A State transition matrix

B Input matrix

C Output matrix

ic Flyback converter output capacitor current

vo Flyback converter output voltage

R Load resistance

Co Flyback converter output capacitor

iD Flyback converter diode current

Lm Flyback converter magnetizing inductance

iLm Flyback converter magnetizing inductor current

vLm Flyback converter magnetizing inductor voltage

n Flyback converter transformer turns ratio

vPV Photovoltaic voltage – Flyback converter input

voltage

V ∗
PV Reference photovoltaic voltage based on the

maximum power point tracking algorithm

ṽ
σ
PV (k + 1) Estimated photovoltaic voltage based on fly-

back converter model equations at time (k+1)

for state σ , where σ ǫ [0, 1]

ṽpv,ave The average predicted voltage over the period

of the switching action: 1
2

(ṽσ=0
PV + ṽ

σ=1
PV )

iPV Photovoltaic current – Flyback converter input

current

ĩPV Estimated photovoltaic current based on the

surrogate model– Estimated flyback converter

input current

iCin Flyback converter input capacitor current
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Cin Flyback converter input capacitor

Q f Flyback converter main switch

D Flyback converter duty ratio, D = tσ=1/TS

p − value The best probability of obtaining test results

using Fisher’s test assuming the null hypothesis

is correct

I. INTRODUCTION

Solar photovoltaic energy systems (PV) have had a consis-

tently increasing market penetration over the past seven years,

with a total global installed capacity of over 500 GW [1]. A

PV installation must harvest the maximum possible electrical

energy at the lowest cost to be economically justifiable [2],

[3]. This presents many engineering challenges and opportu-

nities within power electronics [4] amongst which are low-

cost power converter implementation [5], high reliability [6],

grid-friendly integration [6], fast dynamic response to track

the stochastic nature of the solar resource [7], and distur-

bance rejection to grid transient [8] and partial shading [9].

Maximum power point tracking (MPPT) is needed to achieve

high-efficiency PV systems [10].

The MPPT subject has been well studied for PV applica-

tions, and many control algorithms are known [11]. These

include perturb and observe (P&O), incremental conductance

(InCon), and fractional open circuit [12]. P&O and InCon at-

tempt to track the maximum power point (MPP) by increment-

ing a reference signal (voltage or current) until the system

reaches the MPP [13]. These techniques may exhibit large

output power oscillations around the MPP and slow settling

time in response to step changes [14].

A challenge with some well-known MPPT techniques is

their dependency on accurate PV current measurements [15].

Specifications for temperature drift and aging-related drift

in shunt-resistor sensor and current transducer measurements

can be found in the respective datasheets [16], [17]. Accuracy

of the current measurement using a hall-effect sensor is influ-

enced by the position of the conductor within the sensor [18].

Hall effect-based sensor measurements may be compromised

due to magnetic core offset [19] and magnetic interference

from the surrounding environment [18], [20]. Merits of other

contactless current sensor technologies such as anisotropic

magnetoresistive effect based sensors and tunnel magnetore-

sistive effect based sensors are discussed [19], [20].

Sensorless current mode control (SCM) in power converters

is a way to eliminate the challenges of the current sensor [21].

An observer-based model approach to SCM as a surrogate to

the current measurement is discussed [21]. Estimation of the

current using capacitor voltage ripple is discussed [22]. So-

lutions involving the use of the transcendental relations of the

PV cell to attain MPP, using a voltage sensor are demonstrated

[23]. The observer-based SCM approach shows sizeable bene-

fits on noise performance and load range [24] when compared

to other known current-mode techniques [21]. Eliminating

the current sensor, a fundamental component of the circuit,

can reduce the cost and improves the reliability of the PV

system, especially when the system involves a cascaded or a

multi-level topology [25].

Finite control set model predictive control (MPC) is a

model-based [26] control method that can include multi-

objective optimization [27], constrained control [28], adaptive

control [29] and online auto-tuning of weighting factors [30]

all in a single controller that exhibits fast dynamic tracking

[31]. This paper utilizes the model-based framework of MPC

to develop an MPPT algorithm that eliminates the input-side

current sensor in PV applications. The implementation of

MPC realizes the observer-based SCM being fundamentally

model-based design, expressed within the cost function. This

paper also utilizes constrained control and online auto-tuning

of MPC to develop an adaptive perturbation MPPT to reduce

steady-state oscillation and improve dynamic performance.

The contribution of this paper is proposing a single framework

within MPC that performs the different layers of the MPPT

problem: current model estimation, variable step-size MPPT,

and converter control.

The proposed adaptive perturbation sensorless current

mode MPPT (ASC-MPPT) technique performance is com-

pared to InCon MPPT. The formulation of the proposed

ASC-MPPT, applied to a flyback converter, is explained and

demonstrated experimentally on a PV system using actual

meteorological data. However, the technique can be applied

to other converter topologies by merely modifying the MPC

equations. The EN50530 European industrial test standards

were used to demonstrate performance.

II. THEORETICAL FOUNDATIONS

An overview of the proposed ASC-MPPT for the flyback

converter is demonstrated in Fig. 1. The flyback converter is

presented in this paper for illustration as it provides electrical

isolation, making it suitable for local-area dc micro-grid use

[32]. Also, the low component count and low cost supple-

mented with a high voltage gain make it ideal for PV module-

integrated topologies [33].

The controller relies on measurements of two voltage sen-

sors: the PV input voltage (vPV ) and the MPPT converter out-

put voltage (vo), as shown in Fig. 1. Measuring the output volt-

age does not require additional sensors as the output voltage is

already monitored in many applications, including microgrids

[34], battery charge controllers [35], grid-connected inverters

[36], and load monitoring [37]. Without loss of generality,

the load shown in Fig. 1 is the model-based formulation of

whatever is connected to the MPPT converter output [38].

The integrated MPC function estimates the PV current (iPV )

based on the voltage measurements. The input voltage vPV at

the next step is also estimated at the different states of the

system (switch on and switch off). These signals are then

used within the MPC cost function to determine the reference

MPPT voltage and the MPPT perturbation size. The switching

state that minimizes the cost function g (in Fig. 1) is applied

to the flyback dc-dc converter. Without loss of generality

and a slight modification in the system model, the proposed
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FIG. 1. The flyback converter (a) the flyback converter topology with
snubber circuit for PV application. (b) The flyback converter configuration
when Qf is turned on, σ = 1. (c) The flyback converter configuration when
Qf is turned off, σ = 0.

technique could be applied to other converter topologies, and

supply power to a dc-bus of an inverter or a dc microgrid.

A. REVIEW OF MPC

Finite set MPC controllers have shown potential in power

electronics control applications [27]. The controller uses past

and present measurements of the state variables X (k), to es-

timate the model behavior of those state variables, X̃ (k + N )

(the tilde denotes an estimated value and N denotes the length

of the prediction horizon) [39]. This estimate, X̃ (k + N ), is

compared to a desired set reference X ∗(k + N ) (the star de-

notes a reference value) to determine the control actuation

vector u(k + N ) that minimizes a pre-defined cost function in

the form:

g = f (x (k) , u (k) , . . . , u (k + N − 1)) (1)

The control actuation vector u(k + N ) in power electronics

is comprised of the switching state for each switching device:

either 0 or 1. The time horizon is shifted by one-step, and

another optimization is applied. This process is based on the

moving horizon estimation principle (MHE) [39].

A cost function may have multiple objectives, and each

objective could be assigned a specific weight factor, λ, de-

pending on the application. This cost function is also bounded

by the constraints of the model equations and user-defined

limitations. The general form of such cost function can be

formulated as

mingσ∈{1:m} = λ1

∣

∣X̃ σ
1 (k + 1) − X ∗

1 (k + 1)
∣

∣

+ · · · + λn

∣

∣X̃ σ
n (k + 1) − X ∗

n (k + 1)
∣

∣

subject to x̃ (k + 1) = Ax (k) + Bu (k)

y (k) = Cx (k)

|y (k)| ≤ yboundary (2)

where σ denotes the state number in the control vector u(k),

m denotes the number of possible states, n denotes the number

of objective functions, and λ is the weight factor for each

objective.

Among the inherent challenges of finite control set MPC

controllers are the variable switching frequency, which ne-

cessitates careful consideration for the sizing of passive com-

ponents [40] and could cause high input current ripple [41],

which adversely affects PV system performance [42]. Fixed

frequency MPC addresses this issue by incorporating some el-

ements of the PWM modulator [26], [43]–[45]. For example,

[44] propose the use of triangular carriers to adjust the size

of the MPC generated pulse width. The approach presented

in [45] uses the converter model to estimate a discrete-time

formulation for duty ratio that is dependent on system mea-

surements and uses pulse width modulation. The approach

presented in [26] and employed in this paper uses the mean

value of the generated MPC signals to obtain a duty ratio to

be applied to a high-frequency PWM modulator.

B. THE FLYBACK CONVERTER DISCRETE-TIME RELATIONS

Consider the flyback converter in Fig. 1. Discontinuous con-

duction mode (DCM) maximizes the ripple PV current; hence,

the flyback converter is analyzed in continuous conduction

mode (CCM). The state equations are derived based on the

switching of the converter: when the switch is closed (σ = 1)

and when the switch is open (σ = 0).

iσ=1
c (t ) = Co

dvo

dt
= −io (t ) =

−vo (t )

R
(3)

iσ=0
c (t ) = Co

dvo

dt
= iD − io =

iLm (t )

n
−

vo (t )

R
(4)

v
σ=1
Lm (t ) = Lm

diLm

dt
= vPV (t ) (5)

v
σ=0
Lm (t ) = Lm

diLm

dt
=

−vo (t )

n
(6)

The discrete-time estimation of (3)–(6) in steady-state is

found using the Euler forward method for discretization.

ṽ
σ=1
o (k + 1) =

(

1 −
Ts

RCo

)

vo (k) (7)

ṽ
σ=0
o (k + 1) =

(

1 −
Ts

RCo

)

vo (k) +
Ts

nCo

iLm (k) (8)

ĩσ=1
Lm (k + 1) =

Ts

Lm

vPV (k) + iLm (k) (9)

ĩσ=0
Lm (k + 1) =

−Ts

nLm

vo (k) + iLm (k) (10)

The magnetizing current can be expressed in terms of PV

voltage and output voltage.

iσ=1
Lm (t ) = iPV (t ) − iCin (t ) = iPV (t ) − Cin

dvPV

dt
(11)

VOLUME 1, 2020 447



METRY ET AL.: ADAPTIVE MODEL PREDICTIVE CONTROLLER FOR CURRENT SENSORLESS MPPT IN PV SYSTEMS

iσ=0
Lm (t ) = niD (t ) = n (io (t ) − iC (t )) =

n

R
vo (t ) − nCo

dvo

dt
(12)

The discrete-time estimation of (11)–(12) in steady-state is

found using the Euler backward method for discretization.

iσ=1
Lm (k) = iPV (k) −

Cin

Ts

(vPV (k) − vPV (k − 1)) (13)

iσ=0
Lm (k) =

n

R
vo (k) −

nCo

Ts

(vo (k) − vo (k − 1)) (14)

Using equations (3) to (14) directly for MPPT implemen-

tation would require multiple sensors for the PV voltage, PV

current, and the output voltage. Without loss of generality, the

load R in the expressions (3)–(14) could represent a model-

based expression for any load-side connected component, as

discussed in [38].

C. STEADY-STATE AVERAGING

Assuming steady-state operation, the output voltage is related

to the PV voltage.

Vo = VPV

nD

1 − D
, where D =

tσ=1

TS

(15)

The magnetizing current is related to the diode current by the

transformer’s turns ratio. Hence, the expression of average iLM

is

ILm =
n Vo

R (1 − D)
(16)

Relations (15) and (16) are applied to (7) and (8) to estimate

the PV voltage at the next step, assuming that the PV voltage

remains constant throughout the sampling period Ts.

ṽ
σ=1
PV (k + 1) =

(

1 − D

nD

)[

1 −
TS

RCo

]

vo (k) (17)

ṽ
σ=0
PV (k + 1) =

(

1 − D

nD

)[

1 −
TS

RCo

+
TS

RCo (1 − D)

]

vo (k)

(18)

The proposed ASC-MPPT algorithm uses an observer

model as a surrogate for the sensor measurement of current.

Hence, the surrogate model is an estimated variable in the

form x̃(k) and can be written as ĩPV (k). This estimate is used

along with the measurements: vPV (k) and vo(k) to estimate

the PV voltage state variable, ṽPV (k + 1), at the next sampling

time. The optimization process determines the appropriate

actuation that will minimize the cost function in (19).

min gσ∈{0,1} =
∣

∣

ṽ
σ
PV (k + 1) − V ∗

PV (k)
∣

∣

subject to ṽ
σ=1
PV (k + 1) =

(

1 − D

nD

)[

1 −
TS

RCo

]

vo (k)

ṽ
σ=0
PV (k + 1) =

(

1 − D

nD

)[

1 −
TS

RCo

+
TS

RCo(1−D)

]

vo (k)

(19)

III. PROPOSED CONTROL SCHEME

A. MPC-BASED MPPT

Previously published work on MPC-MPPT relied on a parallel

InCon or P&O algorithm to determine V ∗
PV (k) in (19). Hav-

ing a second loop for a parallel algorithm MPPT algorithm

worsens the performance of the MPC. The contribution of this

subsection is to illustrate that MPPT can be presented within

the MPC framework within a single control loop. The sign of

the expression �iPV /�vPV is used to determine the reference

value V ∗
PV (k) as is shown in (20).

v
∗

PV (k) =
{

vPV (k) − |�ṽ| , µ < 0

vPV (k) + |�ṽ| , µ > 0

for µ =
vPV (k) ĩPV (k) − vPV (k − 1) ĩPV (k − 1)

vPV (k) − vPV (k − 1)
(20)

where |�ṽ| is the perturbation size of the MPPT algorithm.

Based on (20) the MPPT can be expressed within the MPC

cost function as illustrated in (21).

mingσ∈{0,1} =
∣

∣

ṽ
σ
PV (k + 1) − V ∗

PV (k)
∣

∣

subject to ṽ
σ=1
PV (k + 1) =

(

1 − D

nD

)[

1 −
TS

RC

]

vo(k)

ṽ
σ=0
PV (k + 1) =

(

1−D

nD

)[

1 −
TS

RC
+

TS

RC(1−D)

]

vo(k)

where, V ∗
PV (k) =

{

vPV (k) − |�ṽ| , µ < 0

vPV (k) + |�ṽ| , µ > 0

for µ =
vPV (k) ĩPV (k) − vPV (k − 1) ĩPV (k − 1)

vPV (k) − vPV (k − 1)
(21)

where V ∗
PV (k) is the MPPT reference. For this case, since there

is only one penalty function in the MPC cost function, the

weight factor λ = 1.

B. CURRENT STATE ESTIMATION

An observer model for the PV current can be obtained by

analyzing the converter (Fig. 1(a)) in continuous conduction

mode during the two switching states σ ∈ {0, 1}. Using Kirch-

hoff’s current law when the primary switch is closed (σ =
1), shown in Fig. 1(b), the input capacitor current iCin(t ) can

be written as

iCin (t ) = iPV (t ) − isw (t ) (22)

As the primary switch is closed, the snubber switch is open.

Hence, isw(t ) = iLM (t ). Then iPV (t ) can be written as

iCin (t ) =
dvPV (t )

dt
= iPV (t ) − iLM (t ) (23)

When the primary switch is open (σ = 0), the snubber switch

is closed to provide a freewheeling path for the magnetizing

current. Hence, isw = 0 and iCin(t ) can be written as

iCin (t ) =
dvPV (t )

dt
= iPV (t ) (24)
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The PV current can be written as a function of the switching

state σ ∈ {0, 1} as

iPV (t ) =
dvPV (t )

dt
+ σ iLM (t ) (25)

As the change in PV current is relatively slower than the sam-

pling time of the MPC sampling time, the expression σ iLM (t )

can be approximated as

σ iLM (t ) ≈ DILM (26)

Substituting (16) and (26) into (25), an expression for the PV

current is

iPV (t ) =
nD

(1 − D) R
Vo + CIN

dvPV (t )

dt
(27)

The discrete-time estimation of (27) in steady-state is found

using the Euler backward method for discretization

ĩPV (k) =
nD

(1 − D) R
vo (k) +

CIN

TS

(vPV (k) − vPV (k − 1))

(28)

where Ts is the sampling period of the MPC; hence, (28) is

used as an observer model for PV current to eliminate the

current sensor. SCM is shown to be based on the model-based

design principle, which integrates within the MPC framework

as in (29).

min gσ∈{0,1} =
∣

∣

ṽ
σ
PV (k + 1) − V ∗

PV (k)
∣

∣

subject to ṽ
σ=1
PV (k + 1) =

(

1 − D

nD

) [

1 −
TS

RCo

]

vo (k)

ṽ
σ=0
PV (k + 1) =

(

1−D

nD

)[

1 −
TS

RCo

+
TS

RCo (1−D)

]

vo(k)

ĩPV (k) =
nD

(1−D)R
vo(k) +

CIN

TS

(vPV (k) − vPV (k − 1))

where, V ∗
PV (k) =

{

vPV (k) − |�ṽ| , µ < 0

vPV (k) + |�ṽ| , µ > 0

for µ =
vPV (k) ĩPV (k) − vPV (k − 1) ĩPV (k − 1)

vPV (k) − vPV (k − 1)
(29)

C. ADAPTIVE MPC COST FUNCTION

Predictive control based MPPT methods have shown dynamic

performance improvement by reducing rising and settling

times using ahead of time next step predictions. These im-

provements, however, were achieved using fixed step pertur-

bation, which could be a hindrance to the performance of any

MPPT method, including the predictive control-based meth-

ods. Such problems include over-stepping during steady-state,

causing a high ripple, and under-stepping during a transient

leading to a slower rising time. While the status of the system,

transient or steady-state, is primarily dependent on ambient

conditions, obtaining a measurement of irradiance is not feasi-

ble and is costly. Hence, the MPPT perturbation size estimate

needs to be determined without resorting to irradiance sensors.

This section demonstrates the feasibility of implementing an

adaptive perturbation MPPT using the MPC cost function.

To appropriately obtain an estimate of the MPPT step size,

the average PV voltage value ṽpv,ave(k + 1), which is the av-

erage predicted voltage over the whole period of the switching

action when the switch is on and when in its off, is compared

with the present time PV voltage vpv (k). The logic here is that

the difference between the predicted PV voltages at k + 1 and

the voltage at k is indicative of the step size needed to reach

this predicted voltage.

|�ṽ| =
∣

∣

ṽPV,ave (k + 1) − vPV (k)
∣

∣

where, ṽPV,ave (k + 1) =
1

2

(

ṽ
σ=0
PV (k + 1) + ṽ

σ=1
PV (k + 1)

)

(30)

The sign of the expression �iPV /�vPV is used to determine

the reference value v
∗
PV,re f (k) in (29), as is shown in (31).

v
∗

PV.re f (k) =
{

vPV (k) − |�ṽ| , µ < 0

vPV (k) + |�ṽ| , µ > 0

for µ =
vPV (k) ĩPV (k) − vPV (k − 1) ĩPV (k − 1)

vPV (k) − vPV (k − 1)
(31)

Combining equations (29), (30) and (31) along with the

knowledge of cost function weighting factors in MPC, as

mentioned in (2), an adaptive MPC cost function is formulated

in (32).

gσ∈{0,1} =λ1

∣

∣

ṽ
σ
PV (k+1)−vPV (k)+

∣

∣

ṽPV,ave(k+1)−vPV (k)
∣

∣

∣

∣

+ λ2

∣

∣

ṽ
σ
PV (k + 1) − vPV (k) −

∣

∣

ṽPV,ave (k + 1) − vPV (k)
∣

∣

∣

∣

where, {λ1, λ2} =
{

{1, 0} , µ < 0

{0, 1} , µ > 0

for µ =
vPV (k) ĩPV (k) − vPV (k − 1) ĩPV (k − 1)

vPV (k) − vPV (k − 1)
(32)

The overall cost function encompasses the sensorless cur-

rent mode, converter discrete-time modeling, adaptive pertur-

bation, and MPPT functionalities within one integrated objec-

tive function, as shown in (33). The detailed control imple-

mentation is detailed in the flowchart Fig. 2.

min gσ∈{0,1}

= λ1

∣

∣

ṽ
σ
PV (k + 1) − vPV (k) +

∣

∣

ṽPV,ave(k + 1) − vPV (k)

+ λ2

∣

∣

ṽ
σ
PV (k + 1) − vPV (k) −

∣

∣

ṽPV,ave(k+1) − vPV (k)
∣

∣

∣

∣

subject to ṽ
σ=1
PV (k + 1) =

(

1 − D

nD

)[

1 −
TS

RCo

]

vo (k)

ṽ
σ=0
PV (k+1) =

(

1−D

nD

) [

1 −
TS

RCo

+
TS

RCo(1−D)

]

vo(k)

ĩPV (k) =
nD

(1−D)R
vo(k) +

CIN

TS

(vPV (k) − vPV (k−1))
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FIG. 2. A flowchart of the proposed ASC-MPPT algorithm showing the
control sequence of the proposed integrated MPC cost function.

where, {λ1, λ2} =
{

{1, 0} , µ < 0

{0, 1} , µ > 0

for µ =
vPV (k) ĩPV (k) − vPV (k − 1) ĩPV (k − 1)

vPV (k) − vPV (k − 1)
(33)

Fig. 2 illustrates the different layers of the proposed al-

gorithm: estimation, control, and MPPT. Generally, MPC

schemes have a prediction stage and an optimization stage.

The proposed ASC-MPPT is not more complex than standard

MPC controllers. The additional current estimation and the

MPP reference calculation are part of the prediction stage of

MPC, all encompassed in a single MPC control loop, as shown

in Fig. 2.

IV. RESULTS

The PV module characteristics used in the experimental setup

are given in Table I at STC (Standard Test Condition: so-

lar irradiance = 1 kW/m2, cell temperature = 25 ◦C). The

PV module was modeled using two SL600-2.5 Magna-Power

supplies in parallel and configured in solar array simulation

(SAS) mode according to the manufacturer’s recommenda-

tion. The SAS PC interface was used to implement EN50530

irradiance and temperature profiles. Sampling time of 20 µs

was used in the implementation of the control algorithm on

a 32-bit 200-MHz TI C2000 TMS320F28379D launchpad.

Using C2000 chips for implementation provides experimental

verification using an industry-standard microcontroller. The

power converter hardware is a flyback converter assembled by

Texas Instruments as an evaluation board for their C2000 mi-

crocontroller. The board model is TMDSSOLARUNIVKIT.

To illustrate the functionality of the proposed ASC-MPPT

TABLE I Details of the Experimental Setup

FIG. 3. A photograph of the experimental setup while running the
EN50530 standardized test on the proposed ASC-MPPT algorithm.

FIG. 4. The EN 50530 test sequence used in this experiment is composed
of two parts: 1- Medium to high solar irradiance level (black solid line) and
2- Low to medium solar irradiance level (blue dashed line).

algorithm, the built-in TI controller board TMS320F28035

was bypassed, and the flyback converter is fully controlled

by the C2000 TMS320F28379D launchpad. The details of the

experimental setup are as shown in Table I. A photograph of

the full experimental setup used to verify the functionality of

the proposed algorithm is shown in Fig. 3.

The dynamic EN50530 test procedure agreed upon in the

European Union has gained wide acceptance as a standardized

test for photovoltaic systems’ MPPT accuracy and conversion

efficiency [46]. The test sequence principle is demonstrated in

Fig. 4. Ramp slopes ζn are gradually increased by a factor of
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FIG. 5. Portion of the EN 50530 standardized test applied to the experimental setup using TI C2000. (a) Oscilloscope waveforms of the experimental
setup running the proposed ASC-MPPT algorithm for an hour and ten minutes long portion of the EN50530 standardized test. PV voltage, PV current and
Load voltage do show the tracking throughout the timeframe of the test. (b) Actual circuit operation power waveform calculated for the experimental
setup running the proposed ASC-MPPT algorithm and compared to the theoretical MPP. (c) Control efficacy of the proposed algorithm throughout the
portion of the test. Upper and lower boundaries are calculated by accounting for instrumentation precision.

ε. Over the period of the test, the ramps are repeated n times.

The EN 50530 irradiance profile of Fig. 4 is used to assess the

performance of the flyback converter PV system controlled

using the proposed ASC-MPPT algorithm.

The slopes presented in Fig. 5 are ζ = 3.3 W/m2/s and

ζ = 6.7 W/m2/s, with 30 minutes for each slope. Fig. 5(a)

shows oscilloscope waveforms of the experimental setup run-

ning the proposed ASC-MPPT algorithm for an hour and

ten minutes long portion of the EN50530 standardized test.

PV voltage, PV current, and load voltage do show the track-

ing throughout the timeframe of the test. The actual circuit

operation power waveform calculated for the experimental

setup running the proposed ASC-MPPT algorithm is shown in

Fig. 5(b) and is compared to the theoretical MPP curve. The

resulting control efficacy of the proposed algorithm through-

out the portion of the test is shown in Fig. 5(c). Upper and

lower boundaries are calculated by accounting for instrumen-

tation precision.

V. DISCUSSION

Results shown, in general, indicate lower controller efficacy

at lower insolation operation points. The total energy captured

over a whole year arranged by insolation ranges is illustrated

in Fig. 6. Each point on the curve represents a bin of 20 W/m2

irradiance range. The insolation and temperature data used

were based on the 2018 NREL data for the State of Arizona

[47]. The captured energy in kWh is based on theoretical MPP

for the setup used in this paper. The top lines show a cumu-

lative distribution function of the percentage of energy cap-

tured over specific ranges of insolation values throughout the

year. The total amount of available energy captured is 23.5%

for irradiance values less than 500 W/m2. Hence, achieving

high overall system effectiveness is plausible even with more

FIG. 6. The insolation and temperature data used were based on the 2018
NREL data for the State of Arizona. The captured energy in kWh is based
on theoretical MPP for the setup used in this paper. (a) Total energy
captured throughout a year binned by solar irradiance of 20 W/m2. (b)
Cumulative distribution function showing the amount of available energy
captured over the solar irradiance bins. The total amount of available
energy captured is 23.5% for irradiance values less than 500 W/m2.

reduced system performance at low insolation profiles. The

rate of change per minute in the recorded NREL data varies

between 0–800 W/m2 per minute or 0–13.3 W/m2/s. The

slopes, in Fig. 5, represent over 99.8% of all the recorded

transients in the NREL data.

To further understand the performance of the proposed

ASC-MPPT, a 10-minute portion that is shown in Fig. 7(a)
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FIG. 7. An experimental comparison based on hardware tests for the proposed ASC-MPPT in comparison to Incremental Conductance (InCon) MPPT
based on portion of the EN50530 testing sequence from irradiance 500 W/m2 to 1000 W/m2. (a) Power waveform for the experimental setup running the
proposed ASC-MPPT algorithm. (b) Power waveform calculated from a ten-minute portion of the test measurements for the experimental setup running
Incremental conductance MPPT. Waveform in (a) shows similar efficacy like (b), but with significantly less oscillations.

is evaluated in detail. The insolation range used is between

500 and 1000 W/m2, which has been shown to encompass

83% of the overall energy captured (Fig. 6). A comparative

study is utilized using the built-in InCon MPPT on the TI

evaluation board as an illustrative reference to evaluate per-

formance. Fig. 7(b) shows the power waveform calculated

from a ten-minute portion of the test measurements for the

experimental setup running InCon MPPT. Waveforms show

very high oscillations around the MPP. The overall efficacy

of the built-in InCon MPPT was found to be in the range

of 94.8–95.6% when accounting for measurement precision.

Reported fully-tuned InCon MPPT performance within the

literature is shown to be in the range of 95–98% [48]. The

proposed ASC-MPPT power waveforms shown in Fig. 7(c),

demonstrate an overall MPPT efficacy in the range of 95.5–

96.2%. These efficacy results are illustrative and could be

improved by improving the fidelity of the model. The model

presented in this paper solely considers first-order circuit ef-

fects. Aside from the measurement precision accounted for

in calculating the efficacy range, sources of imperfection in

the results include MPC model fidelity and current surrogate

model parity. Without the sources of imperfection in the MPC

model, the simulation results of the system were found to have

a tracking efficacy of 99.4%.

Model fidelity of MPC has been studied with a detailed

parameter mismatch study [49]. The study in [49] consid-

ers the effect of mismatch or deviations in load (R), output

capacitor (Co), and output capacitor ESR models from their

actual values which could be caused by aging, temperature

effects or load variations. Results from load mismatch show

that the control efficacy of the algorithm is maintained above

99% for load size variation from −20% to 40% of the nominal

load value. A two-way analysis of variances (ANOVA) study

indicate that the p-value for Co is 0.922, and the p-value of

ESR is 0.0376, with an assumed p-value of 0.05 to differ-

entiate significance. Variations of Co from −50% to 50% of

the nominal value have been found to not be significant in

affecting the control efficacy. Variations in ESR from −100%

to 100% of the nominal value were found to be significant.

Detailed results of the parameter mismatch study and the

ANOVA study are presented in [49]. The model parity of

the proposed sensorless current algorithm is also studied in

detail to assess the fidelity of the current observer model in

comparison to the actual current sensor measurement [24]. It

has been shown that an error compensation to the surrogate

model can reduce the MPPT tracking error by 26.5% [24].

The results, illustrated in Fig. 7, compare the performance

of the proposed algorithm with InCon MPPT. Fig. 7(a) and

(b) generally show similarly effective performance results. In

InCon MPPT, Fig. 7(b) detail D, the measured power exhibits

high oscillations that have peaks closer to the theoretical MPP

when compared to Fig. 7(a) detail A. The mean InCon MPPT

efficacy at 500 W/m2 is 90.7%, while the mean efficacy for

ASC-MPPT is 88.8% at 500 W/m2. InCon MPPT shows

higher oscillation than ASC-MPPT, which is an inherent fea-

ture of any extremum seeking algorithm. Step response results

from Fig. 8 show step changes of 250 W/m2/s which is much

larger than the fastest recorded transient (13.3 W/m2/s) in

the NREL data. ASC-MPPT shows better settling time in

comparison to InCon MPPT in response to step changes, as is

evident at the points: Fig. 8(a) detail A and Fig. 8(b) detail D.

Fig. 7(b) detail F and Fig. 8(b) detail E show that InCon MPPT

exhibits vigorous oscillations at 1000 W/m2 when compared

to the ASC-MPPT (Fig. 8(a) detail B). Mean efficacy of InCon

MPPT at 1000 W/m2 is 97.1%, and is 97.5% for ASC-MPPT.

Fig. 7(b) detail G and Fig. 8(b) detail F also shows a very

long settling time, and an undershoot in the InCon MPPT.

While there is some undershoot in the ASC-MPPT, such as

in Fig. 8(a) detail C, it is not as pronounced.

The impact temperature changes have on the module P − V

characteristics occurs over a longer time interval when com-

pared to irradiance changes. Fig. 9 is a contour plot show-

ing control effectiveness results for the proposed ASC-MPPT

corresponding to different temperatures and insolation data

as independent variables. According to Fig. 9, the proposed

algorithm shows a broad region of high efficacy operating

conditions when considering data in Fig. 6.

Overall the proposed ASC-MPPT has shown similar per-

formance to InCon MPPT while achieving additional benefits.

First, ASC-MPPT does not have the oscillations that are inher-

ent to the InCon MPPT algorithm due to the adaptive pertur-

bation feature. ASC-MPPT settles faster due to the predictive

nature of MPC. The benefit of current sensorless MPPT is of

particular interest in hot environments as higher temperature
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FIG. 8. An experimental comparing hardware implementation of the proposed ASC-MPPT versus InCon MPPT based on a step change test from
irradiance 500 W/m2.to 750 W/m2 to 1000 W/m2 and back to 750 W/m2.then 500 W/m2 over a period of 3.5 minutes. (a) Power waveform for the
experimental setup running the proposed ASC-MPPT algorithm. (b) Power waveform calculated from a ten-minute portion of the test measurements for
the experimental setup running Incremental conductance MPPT. The waveform in (a) shows lower settling time, lower steady-steady error and less
oscillations than (b).

TABLE II Major Characteristics Comparison of ASC-MPPT With Other Well-Known MPPT Techniques and a Few More Advanced Algorithms

aComponent pricing based on digikey.com pricing for 500 items.
bClosed-loop hall effect transducers considered.

FIG. 9. A contour plot showing control effectiveness results for the
proposed ASC-MPPT corresponding to different temperature and
insolation data.

environments do impact the sensor measurements, tempera-

ture drift [16, 17], which reduces the efficacy and reliability of

the whole system in low-power applications based on a shunt

resistor and an operational amplifier for sensing. Hall-effect

sensors are less prone to temperature effects, but are generally

more expensive and are prone to magnetic interference, and

are generally used in higher power applications [19]. Con-

sider the comparison demonstrated in Table II of measurement

and control costs for different system sizes for MPPT string

and central inverter systems based on component prices from

Digikey. Table III indicates that eliminating a current sensor

can result in a cost reduction of up to 33% for the measure-

ment and control of a 200 kW PV system. While the cost

reduction in lower power module converters is smaller for a

single module, the benefit of eliminating the current sensor

becomes significant for modular systems. The significance of

a current sensorless algorithm is eliminating a fundamental

hardware component of the MPPT converter. Microcontrollers

generally follow Moore’s law and are faster to depreciate

in price compared to a hall-effect current sensor. The pro-

posed ASC-MPPT was implemented in this paper using a

$17 industry-standard C2000 chip. The results can easily be

performed in a $5 piccolo microcontroller with floating-point

unit (FPU) and control law accelerator (CLA). Further devel-

opment time for a dedicated controller, foreseeably reduces

the control cost further.

ASC-MPPT is compared to some well-known techniques

and other advanced methods, as presented in Table II. The

comparison in Table II is one quantitative method of compar-

ing MPPT techniques based on the reported information in

the corresponding reference for illustrative purposes. The nor-

malized convergence speed (τ0) is based on the tracking time

(τ0) with respect to the resonance frequency of the converter,

since converters are dependent on the size of the converter

as presented in [55]. The proposed ASC-MPPT relies on an

industrial standard C2000 microcontroller, has a single MPC

control loop, has relatively fast convergence, and has high

tracking efficacy in simulation.

As PV integration and PV power plants are becoming more

popular, PV systems need to comply with more grid regulation

standards, codes, and operational conditions [56]. Meeting
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TABLE III Cost of MPPT Measurement and Control for Different Scale Converters Ranging From String to Central Inverters

a Based on reported settling time in the simulation results in the corresponding reference, to eliminate experimental setup variations from different labs.
b The tracking time is normalized to the converter resonance frequency as presented in [55] τ0 = τ0/(2π

√
CoL), where τ0 is the settling time in seconds.

c Based on the reported controller used in the corresponding reference.
d Based on reported tracking efficacy in the simulation results of the corresponding reference.

grid standards requires special considerations in the design of

PV systems as in [57]. Many times PV systems are oversized

to meet load demand better and counteract the effects of low

insolation, high temperature, pollution, and age degradation

on the system [58]. Hence, operating at the MPP, as presented

in this paper, may not be a priority during portions of the solar

day. Different flexible power point techniques are employed

to increase the functionality of the PV system as surveyed in

[59]. The presented adaptive MPC framework can accommo-

date different operation modes by adjusting the cost function

(33) to include more objectives such as power curtailment and

low voltage ride-through.

VI. CONCLUSION

This paper presented an adaptive MPC cost function that uses

the characteristics of MPC to implement an adaptive pertur-

bation, sensorless current MPPT algorithm. Various aspects

of the adaptive sensorless current MPC controller have been

published separately; this paper presents a conclusive frame-

work. The European standardized test EN50530 was used to

evaluate the performance of the proposed MPPT technique.

Experimental results and a comparative study to incremental

conductance were presented.
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