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An adaptive Monte Carlo algorithm for computing
mixed logit estimators

Fabian Bastin
�
, Cinzia Cirillo

�
, Philippe L. Toint

�
Abstract

Researchers and analysts are increasingly using mixed logit models for
estimating responses to forecast demand and to determine the factors that
affect individual choices. However the numerical cost associated to their
evaluation can be prohibitive, the inherent probability choices being repre-
sented by multidimensional integrals. This cost remains high even if Monte
Carlo or quasi-Monte Carlo techniques are used to estimate those integrals.
This paper describes a new algorithm that uses Monte Carlo approximations
in the context of modern trust-region techniques, but also exploits accuracy
and bias estimators to considerably increase its computational efficiency. Nu-
merical experiments underline the importance of the choice of an appropriate
optimisation technique and indicate that the proposed algorithm allows sub-
stantial gains in time while delivering more information to the practitioner.

Keywords: Maximum simulated likelihood estimation; Trust-region algo-
rithms; Monte Carlo samplings; Mixed logit models

Submitted for publication to Computational Management Science

1 Introduction

Discrete choice analysis is an econometric technique for estimating disaggregate
demand models. In particular, the multinomial logit and its extensions (see Bhat
and Koppelman [9] for a review in the context of travel demand) are widely used,
but the more powerful mixed logit models are gaining acceptance among prac-
titioners and researchers. Its main strengths are the possibility to estimate taste
variations, to take into account state dependence across observations and to avoid
the problem of restricted substitution patterns in standard logit models. However,�
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these models are more difficult to interpret and the numerical cost associated with
their evaluation is significant. In particular the inherent choice probabilities are
represented by multidimensional integrals which can only be calculated, in real
applications, by simulation techniques. The computed estimators are, under rea-
sonable assumptions, asymptotically consistent and efficient (see Gouriéroux and
Monfort [20] and Hajivassiliou and McFadden [22]). Bastin, Cirillo and Toint [5]
also show that, for a fixed population size, the Monte Carlo procedure gives solu-
tions converging almost surely towards true maximum likelihood estimators, cov-
ering both unconstrained and constrained cases. Unfortunately, the evaluation costs
can still be prohibitive due the required sample sizes, as mentioned for instance by
Hensher and Greene [24]. These authors however underline the need for speed in
practice, in order to allow the exploration of alternative model specifications. As
a consequence, current research has turned to the cheaper quasi-Monte Carlo ap-
proaches, based on low discrepancy sequences, which have been shown to produce
more accurate integration approximations when the number of draws is fixed, for
instance in the study of physics problem (Morokoff and Caflish [27]). Bhat [8] and
Train [39] for instance advocate using Halton sequences (Halton [23]) for mixed
logit models and find they perform much better than pure random draws in simu-
lation estimation. Garrido [18] explores the use of Sobol sequences, while Sándor
and Train [33] compare randomised Halton draws and �����
	��
��� -nets.

This trend is not without drawbacks. For instance, Bhat [8] points out that the
coverage of the integration domain by Halton sequences rapidly deteriorates for
high integration dimensions and consequently proposes a heuristic based on the
use of scrambled Halton sequences. He also randomises these sequences in order
to allow the computation of the simulation variance of the model parameters. Hess,
Polak and Daly [25] however show that scrambled Halton methods are very sen-
sitive to the number of draws, and can behave poorly when this number increases.
Recently Hess, Train and Polak [26] have proposed the use of modified Latin hy-
percube sampling and have reported better performance than with any of the Hal-
ton based approaches, while other authors have found mitigated results [2, 37]. By
contrast, the dimensionality problem is irrelevant in pure Monte Carlo methods,
and while computational experiments show that for low dimensional integration
quasi-Monte Carlo techniques outperform Monte Carlo integration, the advantage
is less clear in high-dimension (Deák [15], Morokoff and Caflish [27]). The same
is reported for estimation of mixed logit models, where Monte Carlo methods are
again competitive when high-dimensional problems are considered (Hess, Train
and Polak [26]). Moreover Monte Carlo techniques also benefit from a credible
theory for the convergence of the calibration process, as well as of stronger statis-
tical foundations (see for instance Fishman [17] for a general review, Rubinstein
and Shapiro [32], Shapiro [34, 35] for application to stochastic programming, and
Bastin, Cirillo and Toint [5] for more specific developments in the context of non-
linear programming and mixed logit problems). In particular, statistical inference
on the objective function is possible, while the quality of the results can only be es-
timated in practice, for quasi-Monte Carlo procedures, by repeating the calibration
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process on randomised samples and by varying the number of random draws.
In this paper, we attempt to capitalise on the desirable aspects of pure Monte

Carlo techniques while significantly improving their efficiency. Our approach is to
propose a new algorithm for stochastic programming using Monte Carlo methods,
that is based on the trust-region technique. Trust-region methods are well-known in
nonlinear non-convex/non-concave optimisation, and have been proved to be reli-
able and efficient for both constrained and unconstrained problems. Moreover, the
associated theoretical corpus is extensive (see Conn, Gould and Toint [14]). Our ef-
ficiency objective led us to adapt the traditional deterministic trust-region algorithm
to handle stochasticity and, more importantly, to allow an adaptive variation of the
number of necessary random draws. This technique results in an algorithm that is
numerically competitive with existing tools for mixed logit models, while giving
more information to the practitioner. This underlines the importance of the choice
of optimisation algorithm when looking for numerical performances and shows
that exploitation of statistical inference is valuable. Therefore quasi-Monte Carlo
methods are not the only way to decrease the numerical cost in mixed logit esti-
mation, and future research could benefit from attempts to combine our approach
with quasi-Monte Carlo draws, especially when the integrals dimensionality is not
too high.

Our exposition is organised as follows. We briefly review the mixed logit prob-
lem and some of its properties in Section 2. We then introduce our new algorithm in
Section 3 and analyse its convergence properties in Section 4. Section 5 presents
our numerical experimentation and discusses its results. Some conclusions and
perspectives are finally outlined in Section 6.

2 The Mixed Logit model

2.1 The problem and its approximation

Discrete choice models provide a description of how individuals perform a selec-
tion amongst a finite set of alternatives. Let � be the population size and ������� the
set of available alternatives for individual � , ����������������� . For each individual � ,
each alternative ��� ,  !�"�����������$# ��������# has an associated utility, depending on the
individual characteristics and the relative attractiveness of the alternative, which is
assumed to have the form %'& �(�*) & �,+.- & ��� (1)

where ) & �/�0) & �1��23�4�
5 & �$� is a function of a vector of model parameters 26� and of5 & � , the observed attributes of alternative �(� , while - & � is a random term reflecting
the unobserved part of the utility. Without loss of generality, it can be assumed that
the residuals - & � are random variables with zero mean and a certain probability dis-
tribution to be specified. The parameter vectors 2 � ,  7�8�����������$# ��������# , are assumed
to be constant for all individuals but may vary across alternatives. A model parame-
ter is called generic if it is involved in all alternatives, and has the same value for all
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of them. Otherwise it is said to be (alternative) specific. Since we can decompose
a specific parameter in several parameters taking the same value for a subset of al-
ternatives, and associated to null observations for others, we may assume, without
loss of generality, that all parameters are generic. In order to simplify the notation,
we will hence omit the subscript  for parameters vectors.

The theory assumes that individual � selects the alternative that maximises
his/her utility. Therefore the probability that individual � chooses alternative �9�
is given by : & �(� :<;>=
&@?BAC= & �D+E�F) & ��GH) &I? �J��KJ� ?BL �������FM4�
The particular form of the choice probability depends on the random terms - & � in
(1). If we assume that they are independently Gumbel distributed with mean 0 and
scale factor 1.0, the probability that the individual � chooses alternative  can be
expressed with the logit formulaN & �1��2'�O� P Q�R S�TVU�WXZY [ T & W Y?]\_^ P Q R]` T]UaW � (2)

where we have simplified our notation by dropping the explicit mention of the de-
pendence of

N & � and ) & � on the known observations 5 & � . Formula (2) characterises
the classical multinomial logit model.

In the Mixed Multinomial Logit (MMNL) model, the vectors ) & , �b�Z���������$��� ,
themselves contain random elements, and we will write ) & ���Ecd��2O�
5 & �4�
e & � � . This
formulation can be exploited in two mathematically identical, yet conceptually dif-
ferent ways. In the error-components formulation (see for instance Walker [40]),
the additional vector e & � contains a set of Normally-distributed error-components
that can be used to induce correlation across alternatives and/or heteroscedastic-
ity in the unobserved parts of utilities across the choice-set. In the more popu-
lar random-coefficients formulation (see for example Revelt and Train [31]), the
additional error-term is exploited to introduce taste heterogeneity in some of the
coefficients across decision-makers, such that 2 becomes itself a random vector,
so we can assume that individual parameters vectors 2,����� , �f�g���������$��� , are re-
alizations of a random vector h . Finally, both approaches can be combined, to
simultaneously allow for random taste heterogeneity, inter-alternative correlation,
and heteroscedasticity. Although the applications presented in this paper concen-
trate on the random-coefficients formulation, the issues discussed, as well as the
solutions presented, can be applied to both formulations. We therefore assume
that h is itself derived from a random vector i and a parameters vector j , which
we express hk�g2,��i/��j3� . For example, if h is a K-dimensional normally dis-
tributed random vector, whose components are mutually independent, we may
choose il�"��i ^ �
i9mn���������
i�op� , with q'rfs8tu�wvx�y��� 1, and let j specify the means
and standard deviations of the components of h . The probability choice is then

1 z|{I}�~��x��� stands for the normal distribution with mean } and standard deviation � .
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given by: & �3�wj3�b����� ; N & �O�wi|��j3�FMd� � N & �1��q���j3� : �w�4q,�O� � N & �3��q���j3���b��q,���1q�� (3)

where
:

is the probability measure associated with q and �b���]� is its density func-
tion.

The vector of parameters j is then estimated by maximising the log-likelihood
function, i.e. by solving the program���n�� NDN �wj3�b� ���n�� ����� &�\_^B��� : & � R �wj3��� (4)

where  & is the alternative choice made by the individual � . This involves the com-
putation of

: & � R �wj3� for each individual � , �b�Z������������� , which is impractical since it
requires the evaluation of one multidimensional integral per individual. The value
of
: & � R �wj3� is therefore replaced by a Monte-Carlo estimate obtained by sampling

over q , and given by � :��& � R �wj��b� �� ��� R \_^ N & � R ��q � R ��j���� (5)

where
�

is the number of random draws q � R , taken from the distribution function
of i . As a result, j is now computed as the solution of the simulated log-likelihood
problem ���n��

� NDN � �wj3�b� ���n�� ����� &�\_^B���
� : �&I� R �wj3��� (6)

We will denote by j �� a solution of this last approximate problem (often called the
Sample Average Approximation, or SAA), while j � denotes a solution of the true
problem (4).

2.2 Convergence of approximations and useful estimators

Bastin, Cirillo and Toint [5] have shown that the mixed logit problem can be viewed
as a generalisation of the classical stochastic programming problem, which in turn
implies that the estimators derived from the SAA problem converge almost surely
towards the true maximum likelihood estimators as the sample size

�
tends to

infinity. For a fixed population size (as is the case in most real applications), they
assume that
A.0 the random draws are independently and identically distributed, both for each
individual and across them,
A.1 the solutions j �� of the SAA problems (6) remain in some convex compact set

�
for all

�
sufficiently large,
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A.2 the utilities ) & � ��q����]� , �(� ���������$��� ,  ¡�"���������$��t , are continuously differen-
tiable for almost every q ,
A.3 for �/�k�����������
	 , ¢¢ ��£ ) & �,��q � R ��j¤�
5 & � R � ,  ¥�k���������$��t , is dominated by a

:
-

integrable function.
They deduce in particular that with probability one, as

�
tends to infinity, there

exists some limit point j � of �wj �� ��¦� \_^ that is first-order critical for the true log-
likelihood function under some reasonable assumptions, if j �� (

� �Z��������� ) are first
order critical for the corresponding SAA problem. Second-order criticality can
also be established under additional assumptions.

When the population size tends to infinity (instead of being fixed), it can also
be proved that the SAA estimators j �� are asymptotically equivalent to the estima-
tors associated to the true likelihood if

�
tends to infinity and § ��¨ � tends to 0

(Gouriéroux and Monfort [20]).
It is furthermore possible to estimate the error made by using the SAA problem

(6) instead of the true problem (4). If we consider a fixed population size and
take an independently and identically distributed sample for each individual, it is
possible to show that� mª© NDN �wj��'G � NDN � �wj3��«p¬­t¯®°±vx�*²³³´ �� &@\_^ µ m& � R �¶j3�� � : & � R �wj3�
� mx·¸ � (7)

as
�

tends to infinity, where ¬ means convergence in distribution and where µ & � R
is the standard deviation of

N & � R �wj�� . Therefore,

� NDN � �wj3� is an asymptotically
unbiased estimator of

NDN �wj3� , and the asymptotic value of the confidence interval
radius is given by = �¹ �wj3�b�Eº ¹ �� ²³³´ �� &�\_^ µ m& � R �wj��� � : & � R �wj3�
� m � (8)

where º ¹ is the quantile of a tu�wvx�y��� , associated to some level of signification » .
In practice, one typically chooses ºb¼¾½ ¿�À8���ÂÁnÃ or º_¼¾½ ¿
Ä�ÀZ���ÂÅaÁ and evaluates

= �¹ �wj3�
by replacing µ & � R �wj�� and

: & � R �wj3� by their SAA estimators µ �& � R �wj3� and
: �& � R �wj�� .

Finally, the simulation bias for finite
�

can be approximated byÆ � �wj3�ÈÇ]��� ; � NDN � �wj3�FM6G NDN �wj��b�ZG � © = �¹ �wj3� « mÉ º m¹ � (9)

Details of these derivations can be again found in Bastin, Cirillo and Toint [5].
For a more general discussion about the asymptotic bias, the reader is referred to
Gouriéroux and Monfort [21], Section 3.2.

3 A new algorithm for solving the SAA problem

Solving the SAA problem (6) is very expensive even on modern computers, as
pointed in the introduction, since � , the number of multidimensional integrals in
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the expression of the objective function, can be large. For the reasons previously
discussed, we choose to propose a new, efficient Monte Carlo algorithm that ex-
ploits statistical inference to limit the number of draws needed in the early itera-
tions, away from the solution. The main idea is to generate a sample set prior the
optimisation process, with

��ÊOË�Ì
i.i.d. random draws per individual. At iterationÍ

, only a (possibly small) subset of this sample set will be used, by selecting
� r

of the
�ÎÊOË�Ì

random draws for each individual (for simplicity, the first
� r ). It is

important to observe that

� NDN �
is, in this context, a well defined smooth function

for each choice of
�

, which makes methods for optimising deterministic smooth
functions relevant.

The idea to only use a small number of random draws when the iterate is far
from the solution is not new in stochastic programming. Shapiro and Homem-de-
Mello [36] for instance consider two-stage programs with recourse. They propose
an algorithm using independent samples of increasing sizes, and prove the con-
vergence of the method to a point satisfying a first-order criticality statistical test
for the true problem. In the trust-region framework, other algorithms ensuring in-
creases of the objective greater than the noise on the objective function’s value have
also been proposed (see Conn, Gould, Sartenaer and Toint [13] and Conn, Gould
and Toint [14], Section 10.6). A direct application of such techniques however
usually leads to unmanageable sample sizes, with respect to memory consumption
and computational times. To circumvent that problem, we choose here a max-
imum allowed sample size

�9ÊOË�Ì
prior to the optimisation process, generate the

corresponding sample set and use a sub-sample of this set at each iteration. The
successive sample sets are thus correlated, which allows us to possibly accept in-
creases of the objective smaller than the noise, and to consider a non-monotone
sequence of sample sizes.

3.1 A trust-region algorithm with dynamic accuracy

The proposed algorithm is of the trust-region type (see Conn, Gould and Toint [14]
for details and an extensive bibliography on optimisation methods of this type).
The main idea of a trust-region algorithm is, at a current iterate j�r , to calculate a
trial point jnrÎ+E��r by maximising a model 	Ïr of the objective function inside a
trust region at each iteration. This region is defined asÐ rÎ�ÒÑ�j LÔÓbÕ #×Ö
j�GØj$r�Ö A.Ù r4ÚO�
where

Ù r is called the trust-region radius. The predicted and actual increases in
objective function values are then compared. If the agreement is sufficiently good,
the trial point becomes the new iterate and the trust-region radius is (possibly)
enlarged. If this agreement is poor, the trust region is shrunk in order to improve
the quality of the model. In addition, if the model approximates the objective
function well compared to the accuracy of the objective function itself (which is
dependent on the Monte Carlo sample size), we surmise that we could work with
a less precise approximation and therefore reduce the sample size. On the other
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hand, if the model agreement is poor compared to the precision of the objective
function, we increase the sample size in an attempt to correct this deficiency.

A formal description of our algorithm follows.

Algorithm 1: Trust-region maximisation algorithm

Step 0. Initialisation. An initial point j4¼ and an initial trust-region radius
Ù ¼ are

given. The constants Û ^ , Û m , Ü ^ , and Ü m are also given and satisfyv�Ý.Û ^ A Û m Ý*� and vfÝ.Ü ^ A Ü m Ý*���
Set a minimum number of draws

�9ÊbÞàß � � ¼ÊbÞàß and a sample size
� ¼

satisfying Ö�á � � NDN �ãâ �wj$¼y��ÖHä�åv if
= � â¹ �wj$¼y�æä� v , except if

� ¼!� �pÊOË�Ì
.

Compute

� NDN �6â �wjn¼�� and set
Í ��v , �O��v .

Step 1. Stopping test. Stop if Ö�á � � NDN �ãç �wj$ra��Ö(�Òv and either
� r7� �pÊOË�Ì , or= � ç¹ �wjnrn�O��v . Otherwise go to Step 2.

Step 2. Model definition. Define a model 	 � çr of

� N,N � ç �wj�� in
Ð r . Compute a

new adequate sample size
�7è

(see Algorithm 2 below). Set
��é � � r .

Step 3. Step calculation. Compute a step �ar that sufficiently increases the
model 	 � çr and such that j�rê+.��r L Ð r . Setë 	 �Jçr ��	 �ãçr �wj$r�+u�$r��'G�	 �Jçr �wjnra���

Step 4. Comparison of increases. Compute

� NDN �ãì �wjnrê+í��r�� and defineî r9�
� N,N � ì �wj$r�+.�$r��'G � NDN �ãç �wj$ra�ë 	 �ãçr � (10)

Step 5. Sample size update. If î rïÝEÛ ^ and
� rÏä� � è

, modify
� é

or the can-
didate sample size

�7è
to take account of bias and variance differences (see

Algorithm 3 below). Recompute î r .
Step 6. Acceptance of the trial point. If î r¡ÝðÛ ^ , define jnr è ^ �0jnr , � r è ^ �� é

. Otherwise define j�r è ^ ��jnr_+æ�$r and set
� r è ^ � � è ; increment � by

one.

If
� r è ^ ä� � ÊOË�Ì

, Ö�á � � NDN � ç ì¤ñ �wjnr è ^ ��Öò� v , and
= � ç ì¤ñ¹ �wjnr è ^ ��ä�v , increase

� r è ^ to some size less or equal to
�9ÊOË�Ì

such thatÖ�á � � NDN �ãç ìxñ �wjnr è ^ ��Ö ä� v if
� r è ^ ä� �pÊOË�Ì

, and compute

� NDN � ç ìxñ �wjnr è ^ � .
If
� r¥� � r è ^ or if sufficient decrease has been observed since the last

evaluation of

� N,N �Jç ìxñ
, set

� r è ^ÊbÞàß � � rÊbÞàß . Otherwise define
� r è ^ÊbÞàß"ó

8



� rÊbÞàß (see Algorithm 4 below).

Step 7. Trust-region radius update. SetÙ r è ^ � ôõö õ÷
��ø ��ù ��v m ¼ � ���n� � É ��r3� Ù ra��ú if î r|û.Û1m��Ü m Ù r if î r L¥; Û ^ �
Û m ���Ü ^ Ù r if î r|Ý.Û ^ �

Increment
Í

by 1 and go to Step 1.

In the current implementation, we have set Û ^ ��vx�>v¤� , Û m ��vx�]ü�ý , Ü ^ ��vx�Âý andÜ m �Òvx�Âý . We say that the iteration
Í

is successful if î r�û�Û ^ and very successful
if î ruûòÛ m ; the variable � is used to record the number of successful iterations.
We will refer to Algorithm 1 as the BTRDA algorithm, for basic trust-region with
dynamic accuracy, by analogy with the basic trust-region (BTR) algorithm (Conn,
Gould and Toint [14], Chapter 6). The two algorithms coincide indeed if we fix

� r
to
�pÊOË�Ì

.

3.2 Model choice and trial step computation

We use a quadratic model, defined as	 �r �wjnrê+.���b�þ	 �r �wj$r��B+Eÿ c �r �
� � + �É ÿ¶�4����rn� � �
where 	 �r �wj$ra�b� � N,N � �wj$ra� and c �r �Eá � � NDN � �wjnrn�J� (11)

and where ��r is a symmetric approximation to á m�
� � N,N � �wj$ra� . In our imple-
mentation we use the symmetric BFGS quasi-Newton update to obtain such an
approximation, as described in Nocedal and Wright [28], page 198.

The same Hessian approximation scheme as in the BHHH procedure (Berndt
et al. [7]) could also be used. However while it delivers significant speed gains for
simple cases, its performance and robustness rapidly decreases when dealing with
more complex problems (Bastin, Cirillo and Toint [4]). This however suggests that
a good preconditioning of the problem could be an important point to investigate
in our search for speed efficiency.

The computation of the step ��r is performed using the Steihaug-Toint method
(see for instance Conn, Gould, and Toint [14], section 7.5.1, as well as Nocedal
and Wright [28], page 75).

3.3 The variable sample size strategy

A crucial ingredient to make our algorithm efficient is to design a technique which
adapts the number of draws used to the optimality level of the successive iterates.
We now outline our proposed approach.
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Prior to the optimisation, the user chooses a maximum sample size
� ÊOË�Ì

. A
minimum sample size

� ¼ÊbÞàß is defined to allow estimation of the accuracy; we (ar-
bitrarily) set

� ¼ÊbÞàß to 36 in our simulations. We also define
� ¼�� ���n� Ñ � ¼ÊbÞàß ��vx��� �pÊOË�Ì Ú

if Ö�á � � NDN �6â �wjn¼y��ÖÔä� v and
= �ãâ¹ �wjn¼y�fä� v , � ¼7� �(ÊOË�Ì

otherwise. The choice of� è
in Step 3 of Algorithm 1 is described below.

Algorithm 2: Candidate sample size selection
Define some constants � ^ and � ^ such that � ^ ��� ^ L �wvx�y��� . Use (8) to esti-

mate the size needed to obtain a precision equal to the model increase, that is��� � ���n� ôõö õ÷ � rÊbÞàß �
	



 º m¹�w� ë 	 � çr � m �� &�\_^�� µ �Jç& � R �wj3��
 m� : �ãç& � R �wj3��
 m

�������� õ�õ� �
Compute the ratio between the model improvement and the estimated accuracy,� r^ � ë 	 � çr= � ç¹ �wj$r�� �
and the ratio between the current sample size and the suggested sample size for
the next iteration: � rm � � r��ø � Ñ �pÊOË�Ì � � � Ú �
Then define

��� � ôõõõõö õõõõ÷
��ø � Ñ���� ^ � ÊOË�Ì�� ��� � � � Ú if � r^ û �����ø � ù ��� ^ �pÊOË�Ì � ��� � r^ � � � ú if � r^ Ý � and � r^ û � rm ���� ^ �pÊOË�Ì � if � ^ A � r^ Ý*� and � r^ Ý � rm ��pÊOË�Ì

if � r^ Ý�� ^ and � r^ Ý � rm �
Set

��è � ���n� Ñ � � � � rÊbÞàß Ú .
If � r^ û�� , the model increase is greater or equal to the estimated accuracy,

and we then reduce the sample size to the minimum between
� �

and ��� ^ �pÊOË�Ì � (in
our tests, we set � ^ �lvx�Âý ). The idea to use ��� ^ �(ÊOË�Ì � comes from the practical
observation that enforcing such a decrease in the proposed sample sizes provides
better numerical performance.

If � r^ Ý � the improvement is smaller than the precision. However, since the
sample has been generated before the optimisation process, a sufficient improve-
ment during several consecutive iterations may lead to a significant improvement
compared to the log-likelihood accuracy, while keeping the computational costs
lower than if

�ÎÊOË�Ì
draws were used. We then consider two cases. If � r^ û � rm , the ratio between the current sample size and the potential next
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one is lower than the ratio between the model increase and the estimated
error. If the sample size increases, the error decreases for a similar

ë 	 � S�
( Cû Í

), and therefore � r^ increases. We capitalise on � r^ by computing a
sample size lower than

� �
, such that an increase of order

= � ç¹ �wj$r�� would be
reached in approximately � � r^ � iterations if � �^ is similar to � r^ for  close to

Í
.

We therefore propose to use the minimum between ��� ^ �pÊOË�Ì � and � � r^ � � �
as the new sample size. If � r^ Ý � rm , it may nevertheless be cheaper to continue to work with a smaller
sample size, defined again as ��� ^ �(ÊOË�Ì � . This is why we choose to use this
smaller sample size as long as � r^ is superior to some threshold � ^ ó v (set
to 0.2 in our tests). Below this threshold, we consider that the increase is too
small compared to the log-likelihood accuracy, and we possibly increase the
sample size.

If
� è

is not equal to
� r , the computation of
� N,N �Jì �wj$r�+.�$rn� G � NDN �Jç �wjnra�

in Algorithm 1 is affected by the change in simulation bias and variance. This
can lead to a small or negative ratio î r , even when the model 	 � çr gives a good
prediction for the sample size

� r . In particular,

� NDN � ì �wj3� can be smaller than

� NDN � ç ��j$r�� for all j in a neighbourhood of jar . It is therefore important to avoid
such cases, which motivates the possible redefinition of î r as described in the
algorithm below.

Algorithm 3: Sample size revision when î r|Ý.Û ^ and
� r ä� ��è .

If
� è Ý � r set �"! � 	



 �É ë 	 � çr � �� &@\_^ � µ �ãç& � R �wj3��
 m� : �Jç& � R �wj���
 m

������ �
If
� è Ý � ! Ý � r , set

� è � � ! and recompute î r from (10).
If the (possibly recomputed) î r8Ý Û ^ , compare

��è
and

� r . If
��è ó� r , compute

� N,N � ì �wj$r�� , ë 	 � ìr and
= � ì¹ �wj$r�� , else if

� è Ý � r compute

� N,N � ç �wjnrê+.�$rn� . Set
�/é

to ���n� Ñ � r3� ��è Ú , and redefineî r9�
� N,N �$# �wj$r�+.�$rn� G � NDN �%# �wjnra�ë 	 � #r �

When the number of draws increases (
�/è ó � r ), the bias decreases in absolute

value, but the objective function can still decrease due to the refinement of the
sample average approximations. Therefore, we force the algorithm to evaluate

11



� NDN �Jì �wjnr�� in order to avoid the accuracy difference effect. The case
� è Ý � r is

more subtle since the absolute value of the bias then increases, so that the objective
function is usually lower for a fixed j . If î r is small, we try to circumvent the bias
effect by testing another sample size

� !
, that corresponds to the sample size giving

a bias equal to the predicted increase, using the estimation (9).
While we expect to benefit from smaller sample sizes when we are far from

the solution, we ought to be sure that we use a sample size equal to
�7ÊOË�Ì

during
the final iterations, in order to benefit from the desired accuracy. For this purpose,
we increase the minimum sample size when the variable sample size strategy does
not provide sufficient numerical gains. This is done as follows. We first define
two

�pÊOË�Ì
-dimensional vectors & and ' , and, at iteration

Í � v , we set &d� � ¼��|�� NDN �ãâ �)(�¼�� , '
� � ¼��Î�lv , and for �(�"���������$� �pÊOË�Ì , ��ä� � ¼ 2, &J�����9� G+* , '
�����9�G�� . At the beginning of iteration
Í

, &J�����ª� � NDN & © j-, T & W « where .±����� corresponds
to the index of the last iteration for which

� , T & W � � , and
� , T & W é ^ ä� � , T & W if._����� ó v , or G+* (a trivial lower bound on the objective function) if the size � has

not been used yet. '
����� contains the number of successful iterations until iteration._����� (included), or G�� if the size � has not been used. Recall also that � contains
the total number of successful iterations encountered until the current iteration

Í
(included).

Algorithm 4: Minimum sample size update when
� rïä� � r è ^ .

Let Ü0/ L �wvx�y�¾M be a constant. If
� N,N � ç ì¤ñ �wjnr è ^ �'G1&J� � r è ^ �ÈûuÜ / � ^ ��� G�'
� � r è ^ �
� = �ãç ìxñ¹ �wjnr è ^ ��� (12)

set
� r è ^ÊbÞàß � � rÊbÞàß . Otherwise increase the minimum sample size: if

� r7Ý � r è ^ ,
set � r è ^ÊbÞàß � ��ø �3254 � rê+ � r è ^É 6 � � ÊOË�Ì�7 �
else � r è ^ÊbÞàß L Ñ � r è ^ +����������$� �(ÊOË�Ì Ú1�
Set '
� � r è ^ �O�þ� and &J� � r è ^ �b� � NDN � ç ìxñ �wjnr è ^ � .

Note that we apply a different strategy if the sample size decreases or increases.
In the first case, bias difference and loss of precision can explain a decrease or a
small increase of the SAA objective, but it is numerically cheaper to continue to
use sample sizes as small as possible; in our implementation we then set

� r è ^ÊbÞàß �� r è ^ +þ� . In the second case, we try to avoid poor increases of the SAA objective
for large sample sizes since the associated numerical cost is then important, and
we then use a more conservative approach.

The constant Ü8/ is set to 0.5 in our tests. Note that
� r è ^ÊbÞàß ó � r if (12) is not

2We are in fact only interested in 9�:<; â=8> ? , since the sample size used at iteration @ ( @A:<B ) has
to be greater or equal to ; â=8> ? , but allow 9 to start from 1 for notational convenience.
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satisfied. Moreover, we have that if
� r�ä� � r è ^ , �bGC'
� � r è ^ ��ûZ� . This is clearly

true if '
� � r è ^ �,�lG�� , so without loss of generality, assume that '
� � r è ^ �(û�v . At
the beginning of iteration

Í
, we have '
� � & � A � , �p� ���������$� �pÊOË�Ì . If î r ûZÛ ^ , �

is incremented by � in Step 6 of Algorithm 1, and '
� � r è ^ �ªÝþ� in Algorithm 4. Ifî r7ÝíÛ ^ , from Algorithm 3,
� r7Ý � r è ^ since reductions of sample sizes can only

occur at successful iterations. This also implies that '�� � r è ^ �ÈÝD'
� � r�� A � .
Finally, we note that, if

� r¡ä� �pÊOË�Ì
, we cannot exclude the pathological case

in which jnr is a first-order critical point for

� NDN � ç
. If

= � ç¹ �wjnr��pä�Ev , the algorithm
does not stop, but since the model is quadratic, no increase is achieved if GE� r
is positive definite. The algorithm would then break down. In order to avoid this
situation, we therefore force an increase of

� r è ^ in Step 6 when this situation
occurs. In practice, we have chosen to set

� r è ^ � �(ÊOË�Ì
if the relative gradient

is less than some predefined tolerance (we used ��v éGF ). The relative gradient is
defined as c ��H ? �wj3�JI HLK� ���n�M 2 # ; á �

� NDN � �wj3�FM M # ���n� Ñ�# j M #]�y���>v�Ú���n� Ñ�# � N,N � �wj3��#]�y���>v�Ú 7 �
where & M is the N -th component of the vector & (see Dennis and Schnabel [16],
Chapter 7). We should note that this feature was never triggered in our experiments.
Indeed, the gradient norm usually changes slowly in the vicinity of such a critical
point, and a small gradient typically leads to a small model increase, which itself
then causes the sample size to increase and

��ÊOË�Ì
was always reached before our

safeguard was activated.
Similarly, we check in Step 0 that we do not produce a first-order critical point

associated with a sample size less than
��ÊOË�Ì

, excepted if the simulation error is
equal to zero (and so the bias).

3.4 Stopping tests

The presence of statistical error requires that the classical stopping tests for un-
constrained optimisation, which involve the gradient norm and sometimes the dif-
ference between successive iterates or function values, must be considered with
caution. In particular they usually lead to final iterations that produce insignificant
objective increases compared to the approximation’s accuracy. Numerical simu-
lations revealed however that the algorithm can reach an adequate accuracy for a
subset of the parameters but then produce small improvements at the maximum
sample size during a few iterations, after what good improvements are again ob-
tained, and the desired accuracy achieved on the remaining parameters. This is in
particular true for parameters that are hard to estimate, such as small standard de-
viations since they produce small variations of the simulated likelihood function.
It is therefore important not to stop the algorithm prematurely.

The practical stopping criterion used in Step 1 of Algorithm 1 is a modification
of the classical test based on the relative gradient: the algorithm is terminated as
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soon as c �LH ? �wj3� A ���n� Ñy�LOP'���Q ^ =
�¹ Ú1�
where vÏÝRQ ^ Ý � and

= �¹ �wj3� is the estimated log-likelihood accuracy, and either
the maximum sample size

�9ÊOË�Ì
is used or, in order to consider the multinomial

logit case, the estimated log-likelihood accuracy is sufficiently small. The valueQ ^ � vx��� has revealed to be a good compromise, for a signification level » set
to vx�ÂÅ in the accuracy estimator. We also stop the algorithm if a (user preset)
maximum number of iterations has been reached without convergence, or if the
norm of computed step falls under a user-defined signification threshold (we used��v éGF ).
4 Convergence to solutions of the SAA problem

We now consider the formal convergence properties of our new algorithm (without
the stopping tests of Section 3.4) for the solution of the SAA problem, that is that
we solve the (deterministic) problem (6), with

� ÊOË�Ì
random draws per individual.

We show in particular that the convergence properties can be derived from results
known for general trust-region methods.

4.1 Convergence of the sample size

We start by investigating properties of our variable sample size technique and prove
the crucial property that

� r converges to
�ÎÊOË�Ì

as
ÍTS * , under some regularity

assumptions that we now make explicit.

A.4 The utilities ) & �1��q����]�/���Ô� ���������n��� ,  <� ���������$�VU±� are twice continuously
differentiable for almost every q .

Assumption A.4 implies that for each
�

, the approximation

� NDN �
is almost

surely twice continuously differentiable.

A.5 The Hessian of each SAA objective is uniformly bounded, that is there exists
a positive constant W ^ such that for all j and

� � � ¼ÊbÞàß ��������� �(ÊOË�Ì ,XX á �
� � NDN � �wj3� XX A W ^ �
A.6 The Hessian of the model remains bounded within the trust-region, that is there
exists a positive constant W m such that for all j L Ð r ,XXX á �
� 	 � çr �wj�� XXX A W�m��
Note that the approximating objective is bounded above by zero, since we obtain
from (5) and the logit formula (2) that:� NDN � �wj3�b� �� �� &�\_^ �×�

� :��& � R �wj3� A �� �� &@\_^ ��� ���Evx� (13)
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for
� � � ¼ÊbÞàß �������$� � ÊOË�Ì .

Theorem 1
Suppose that Assumptions A.0, A.4–A.6 hold and that we haveY W ó v such that

= �ãç¹ �wj$ra�ÈûZW � (14)

for all
Í

sufficiently large. Then, either the algorithm converges in a finite number
number of iterations with a final number of random draws equal to

�7ÊOË�Ì
, or the

number of iterations is infinite and there exists some  such that for all iterations� , �DûH , � & is equal to
�ÎÊOË�Ì

.

Proof. Consider the finite case first. From the stopping criteria in Step 1 of Al-
gorithm 1, we cannot stop with a sample size less than

��ÊOË�Ì
as long as (14) is

fulfilled, so the result is immediate.
Consider now the infinite case. We first prove that the sample size cannot stay

fixed at a value
� ^ Ý � ÊOË�Ì

, after what we show that the maximum sample size
must be reached and that the sample size is equal to

��ÊOË�Ì
for
Í

large enough.
Assume, for the purpose of contradiction, thatY�Í ^

such that K Í û Í ^ � � r9� � r ñ Ý � ÊOË�Ì � (15)

For a fixed sample size, Algorithm 1 corresponds to the basic trust-region algo-
rithm (Conn, Gould and Toint [14], Chapter 6). Assume first that there are only
finitely many successful iterations. Let � be the index of the last successful iter-
ation. Then jnr�� j � è ^ for all

Í ó � . From Assumptions A.0, A.4–A.6 and our
model choice, we can apply Theorem 6.4.4 in Conn, Gould and Toint [14] to de-
duce that Ö�á � � N,N �\[ ìxñ �wj � è ^ ��Ö/�0v . From Steps 0 and 6 of Algorithm 1, either
(14) is violated, or

� � è ^ � �(ÊOË�Ì
, and the algorithm stops, violating our assump-

tion that the number of iterations is infinite.
We may therefore assume, without loss of generality, that there is an infinite

number of successful iterations. However, from Algorithms 2 and 3, and (14), a
necessary condition for

�|è Ý �(ÊOË�Ì at iteration
Í

isë 	 �Jçr ûZ� ^ WB�
when � r^ ûZ� ^ , or ë 	 � çr ûZW � rÊbÞàß�(ÊOË�Ì �
when � r^ û � rm . Assume that the iteration is successful. Then

� è � � r è ^ � � r ñ
for

Í
large enough and we have from (15) that� NDN �Jç ñ �wjnr è ^ � G � NDN �ãç ñ �wjnr���û.Û ^ ë 	 �ãç ñr û.Û ^ ��ø �]2 � ^ W �^W � ¼ÊbÞàß�pÊOË�Ì 7 �
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Since there is an infinite number of successful iterations,

� NDN �Jç ñ �wjnrn� converges
to infinity, as

Í5S * , but this contradicts the fact that

� NDN � ç ñ
is bounded above,

as shown in (13). We have therefore that

if
� r ñ Ý �(ÊOË�Ì � then there exists

Í m ó Í ^ such that
� r � ä� � r ñ � (16)

Assume now by contradiction thatK Í � there exists  �û Í such that
� � Ý � ÊOË�Ì � (17)

From Algorithm 4,
� rÊbÞàß monotonically increases and is bounded above by

��ÊOË�Ì
.

Therefore there exists some
�3_ � � ø�� ra` ¦ � rÊbÞàß , with

�b_ A � ÊOË�Ì
. Since

� rÊbÞàß
is finite for all

Í
,
� _

is reached at some iteration
Í _ and

� rÊbÞàß � � rdc Ý �pÊOË�Ì for
all
Í û Í _ . From (16) and (17), there exists an infinite subsequence of iterations

such that
� r è ^ ä� � r . Let 	 û Í _ be the index of such an iteration. From

Algorithm 4 and (14) we have that
� N,N �\e ì¤ñ � � Õ è ^ � G1&d� � Õ è ^ �êûuÜ0/V� ^ ���bG�'
� � Õ è ^ �
� = �Ge ìxñ¹ �wj Õ �ÈûuÜ0/�� ^ W � (18)

otherwise we would have
� Õ è ^ÊbÞàßòó � ÕÊbÞàß . However each SAA objective is bounded

above from (13), and there is a finite number of possible sample sizes. Therefore,
(18) can only be satisfied for a finite number of iterations, so we obtain a contra-
diction if (17) is satisfied. Consequently

� rÎ� �(ÊOË�Ì for all
Í

large enough.

4.2 First-order optimality

Having proved that the sample size must be equal to
��ÊOË�Ì

for
Í

large enough,
we now prove first-order convergence of the proposed algorithm by applying con-
vergence results known for trust-region methods. For this purpose, we impose a
sufficient increase of the model at each iteration:

A.7 For all k	 �Jçr �wj$r�+.�$rn�'G�	 �Jçr �wjnr���ûZW / Ö�á � � N,N �Jç �wjnr���Ö ��ø � 2 Ö�á �
� NDN � ç �wj$r���Öf r � Ù r 7 �

for some constant W\/ L �wvx�y��� and
f rp�Z�,+ ���n�hgPi-j ç XXX á gag 	 � çr ��5Jr�� XXX .

Assumption A.6, a classic in trust-region method analysis, is fulfilled by our choice
of the Steihaug-Toint step since it ensures a model increase at least as much as that
obtained at the approximate Cauchy point (Conn, Gould and Toint [14], page 131).
We then obtain our first convergence result.

Theorem 2 (First-order convergence)
Suppose that Assumptions A.0, A.4–A.7 hold and thatY W ó v such that

= � ç¹ �wj$ra�ÈûZW �
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for all
Í

sufficiently large. Then, either the algorithm converges in a finite number
of iterations to a first-order critical point of

� NDN � =8k)l , or the number of iterations
is infinite and � ø��ra` ¦ Ö�á �

� NDN � ç �wjnra��Öê��vx�
with

� rÎ� �pÊOË�Ì for all
Í

sufficiently large.

Proof. From Theorem 1, we know that
� r9� �pÊOË�Ì for all

Í
sufficiently large. The

first-order convergence then results from the Theorem 6.4.4 in Conn, Gould and
Toint [14] in the finite case, and Theorem 6.4.6 in the infinite case.

From (8), we see that
= �¹ �wj3� is equal to 0 if and only if µ & � R �wj��H� v , for�9�å���������$��� . We then have a multinomial logit model, instead of a mixed logit,

and the simulated likelihood function value is then independent of the sampling.
Consequently, the fact that (14) is not satisfied is merely an indication that the
multinomial logit solution solution is a limit point of the iterates, and that the
mixed logit formulation is probably inappropriate. The algorithm could then be
terminated with a sample size less than its maximum, as described in Step 1 of Al-
gorithm 1. However, the maximum sample size is always reached in our numerical
experimentations, even when testing multinomial logit models. This is explained
by the fact that we approximate the µ & � R �wj3� by µ �& � R �wj3� and that small standard devi-
ations are not easy to recover since their influence in the model is weak. Therefore,
the error term remains positive and

��ÊOË�Ì
is always reached in the final iterations.

4.3 Second-order optimality

We conclude our convergence analysis by briefly indicating that, under some ad-
ditional assumptions, any limit point of the sequence of iterates may be proved to
be second-order critical. We first slightly strengthen the conditions governing the
trust-region update, imposing that the radius actually increases at very successful
iterations:

A.8 If î r7ûíÛ1m and
Ù r A ��v m ¼ , then

Ù r è ^�L¥; Ühm Ù r3��Ü Ä Ù r�M for some Ü Ä ûuÜhm ó � .
We also require that the Hessian of the model and that of the simulated log-likelihood
asymptotically coincide whenever a first-order limit point is approached.

A.9 We assume that� ø��ra` ¦ Ö�á �
�
� N,N � ç �wj3��rpG¥á �
� 	 � çr �wjnrn��Öê��v whenever � ø×�rV` ¦ Ö
c � çr Öê��vx�

Recall that from Theorem 2,
� r is constant for

Í
large enough. The BFGS approx-

imation then satisfies A.9 under reasonable conditions (Ge and Powell [19]).
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Second-order convergence is then ensured if the step uses positive curvature
of the model when present. This is expressed formally by the following theorem,
where n ÊOË�Ì ; ��M denotes the largest eigenvalue of the matrix � .

Theorem 3 (Second-order convergence)
Suppose that Assumptions A.0, A.4–A.9 hold and thatY W ó v such that

= � ç¹ �wj$ra�ÈûZW �
for all

Í
sufficiently large. Let

Í ^
be such that

� r9� �pÊOË�Ì for all
Í û Í ^ . Assume

furthermore that for all
Í û Í ^ , if � r9�Rn ÊOË�Ìpo á �
� 	 �Jçr �wjnr��rq ó v , then	 � çr ��5Jrª+.��r��'G�	 � çr ��5Jr��ÈûDs ^ � r ��ø � Ñ � mr � Ù mr Ú1�

for some constant s ^ L © vx� ^m « . Then any limit point of the sequence of iterates is
second-order critical for

� NDN � =8k)l .
Proof. Directly follows from Theorem 6.6.8 of Conn, Gould and Toint [14].

Note also that the existence of a limit point is ensured if, as is nearly always
the case, all iterates lie within a closed, bounded domain t�u Ó Õ .

5 Numerical assessment

In order to validate our methodology we have developed our own software, called
AMLET (for Another Mixed Logit Estimation Tool), available in open-source at
http://www.grt.be/amlet. AMLET is written in C and is designed to run
in a Linux environment, but it can also be used on Windows 2000 and XP un-
der Cygwin. The package allows the user to solve mixed or multinomial logit
models from existing data, or to set up simulated data corresponding to a user-
defined model structure. AMLET computes parameters estimators, classical tests
for goodness of fit (as described in Ben-Akiva and Lerman [6] and Ortúzar and
Willumsen [29]), and some specific information such as estimation of the simula-
tion bias and log-likelihood accuracy. Reported results have been obtained on a
Pentium 4 2.8Ghz with 1 GB RAM under Linux.

We now discuss the application of our method on a real dataset3 obtained from
the six-week travel diary Mobidrive (Axhausen, Zimmerman, Schönfelder, Rinds-
fúser and Haupt [1]) collected in the spring and fall 1999 in Karlsruhe and Halle
(Germany). In this dataset, we restricted our attention to the observations from

3The application described here has been chosen amongst several for illustration purposes. Other
numerical experiments both for real and simulated data sets can be found, along with more detailed
practical analysis, in Bastin, Cirillo, and Toint [3, 4], Bastin Cirillo and Hess [2], and Pellicanò [30].
All these applications lead to conclusions similar to those discussed here.
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Karlsruhe because level of service variables (i.e. time and cost for various modes)
were available for this location only. The sample then includes approximately 66
households and 145 individuals. After data cleaning, 5799 records (tours) were
retained for calibrating two mixed logit models whose aim is to explain individual
modal choice across five alternatives (car driver, car passenger, public transport,
walk and bike). The framework applied considers the daily activity chain, in that
the individual pattern is divided into tours, which are themselves defined as the
sequence of trips starting and ending at home or at work, both being considered
as fixed locations. Details and motivation for the model structure can be found in
Cirillo and Toint [12]. Note that, as several tours are performed by the same indi-
viduals, the data therefore contains significant correlations. For further details on
mixed logit on the Mobidrive dataset, see Cirillo and Axhausen [10].

The first model contains 14 parameters, of which four are alternative spe-
cific constants (car driver is the base), two describe the household location (ur-
ban/suburban location), four the individual characteristics (female and working
part time, being married with children, annual car mileage), two the LOS (time
and cost) and two represent pattern variables (number of stops and time budget).
We specify a mixed logit model with fixed coefficients except for time, cost and
time budget, which are expected to vary considerably across observations, and are
assumed to be normally distributed4 . We estimate the model with sample sizes
varying form 500 to 4000 random draws per individual, and average the results
over 10 simulations. These are summarised in Table 1, where the values in brackets
correspond to the t-statistics associated to the estimated parameters. The average
value of time is 9.55 DM (about 4.9 euros), which is comparable to that used in
other European studies (see TRACE [38]).

The crucially beneficial effect of the variable sample size strategy is illustrated
in Figure 1, giving the evolution of the sample size

� r with the iteration index
Í

.
The left graph corresponds to a maximum sample size of 1000 while the right graph
has been obtained with a maximum of 4000 random draws. Furthermore, Figure 2
shows that the sample size increases towards its maximum value only when the
objective function’s value is near to its maximum. The graphs correspond again to
1000 (left) and 4000 (right) random draws.

The second model uses the same data set, but is more complex. Its specification
has 33 degrees of freedom, resulting from 19 fixed and 7 randomly distributed coef-
ficients. The dimensionality has increased because time parameter is now specific
to tour types. (A model with ten normally distributed coefficients was also esti-
mated, but some t-statistics were too small to justify the use of random variables
for all coefficients.) The results, obtained (for illustration purposes) by averaging
the estimation results over 10 runs, are reported in Table 2. We refer to Cirillo and
Axhausen [11] for a complete description of this model.

In order to evaluate the numerical potential of the proposed method, we also
estimated both models with the basic trust-region algorithm and with the BFGS

4Trials with lognormal distribution for time have given poor results.
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Variable 500 MC 1000 MC 2000 MC 3000 MC 4000 MC
Car Passenger (CP) v -1.453 (17.18) -1.453 (17.15) -1.453 (17.13) -1.4544 (17.13) -1.452 (17.13)

Public Transport (PT) v -0.932 (6.77) -0.932 (6.77) -0.932 (6.77) -0.934 (6.76) -0.933 (6.77)
Walk (W) v 0.109 (0.73) 0.107 (0.73) 0.109 (0.74) 0.109 (0.74) 0.108 (0.73)
Bike (B) v -0.635 (4.63) -0.636 (4.64) -0.635 (4.63) -0.635 (4.62) -0.636 (4.63)

Urban HH locat. (PT) v 0.562 (5.048) 0.561 (5.04) 0.562 (5.04) 0.563 (5.05) 0.561 (5.04)
Suburban HH locat. (W, B) v 0.346 (4.05) 0.345 (4.05) 0.346 (4.06) 0.345 (4.05) 0.345 (4.05)

Full-time worker (PT) v 0.269 (2.74) 0.270 (2.74) 0.269 (2.73) 0.269 (2.73) 0.269 (2.73)
Female and part-time (CP) v 0.915 (8.65) 0.914 (8.64) 0.915 (8.64) 0.916 (8.64) 0.914 (8.63)
Married with children (CD) v 0.972 (11.59) 0.971 (11.58) 0.972 (11.58) 0.972 (11.57) 0.972 (11.58)
Annual mileage by car (CD) v 0.0520 (15.86) 0.0519 (15.85) 0.0519 (15.87) 0.0519 (15.87) 0.0519 (15.87)

Number of stops (CD) v 0.136 (3.01) 0.136 (3.02) 0.136 (3.02) 0.136 (3.02) 0.136 (3.01)
Time v -0.0269 (9.61) -0.0270 (9.59) -0.0269 (9.55) -0.0270 (9.57) -0.0270 (9.55)
Time w 0.0206 (4.99) 0.0206 (5.01) 0.0207 (4.97) 0.0208 (5.00) 0.0208 (4.99)
Cost v -0.169 (12.63) -0.169 (12.47) -0.169 (12.41) -0.169 (12.48) -0.169 (12.47)
Cost w 0.0452 (2.93) 0.0469 (3.05) 0.0468 (3.01) 0.0461 (2.95) 0.0465 (3.02)

Time budget (CD, CP) v -0.125 (8.09) -0.125 (8.09) -0.125 (8.08) -0.125 (8.08) -0.125 (8.08)
Time budget (CD, CP) w 0.115 (5.89) 0.114 (5.77) 0.114 (5.80) 0.115 (5.84) 0.114 (5.74)

Log-likelihood -1.164617 -1.164667 -1.164724 -1.164690 -1.164738
Bias -0.000186 -0.000092 -0.000046 -0.000031 -0.000023

Accuracy 0.000417 0.000293 0.000208 0.000170 0.000147

Table 1: Mobidrive: simple model
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Variable 500 MC 1000 MC 2000 MC 3000 MC 4000 MC
Car Passenger (CP) v -1.169 (11.77) -1.167 (11.75) -1.169 (11.74) -1.169 (11.74) -1.168 (11.74)

Public Transport (PT) v -0.761 (3.77) -0.758 (3.76) -0.758 (3.75) -0.757 (3.75) -0.757 (3.75)
Walk (W) v 1.378 (7.04) 1.379 (7.04) 1.382 (7.04) 1.382 (7.04) 1.382 (7.04)
Bike (B) v 0.907 (4.74) 0.910 (4.76) 0.912 (4.75) 0.912 (4.75) 0.912 (4.76)

Suburban HH locat. (CD, CP) v 0.430 (4.70) 0.430 (4.70) 0.430 (4.69) 0.430 (4.69) 0.429 (4.68)
Urban HH locat. (PT) v 0.251 (2.23) 0.249 (2.22) 0.252 (2.24) 0.251 (2.23) 0.251 (2.23)

Age 18-25 (PT) v 1.339 (8.50) 1.339 (8.51) 1.340 (8.50) 1.340 (8.50) 1.340 (8.50)
Age 26-35 (CD, CP) v 0.337 (2.02) 0.336 (2.02) 0.341 (2.04) 0.340 (2.04) 0.338 (2.03)

Age 51-65 (PT) v 0.489 (4.29) 0.489 (4.30) 0.488 (4.28) 0.489 (4.28) 0.489 (4.29)
Full time worker (PT) v -0.182 (1.71) -0.181 (1.70) -0.182 (1.70) -0.182 (1.70) -0.181 (1.70)

Female and part-time (CP) v 0.751 (7.02) 0.748 (6.99) 0.751 (7.00) 0.750 (6.99) 0.749 (6.99)
Married with children (CD) v 0.788 (8.85) 0.785 (8.81) 0.788 (8.80) 0.787 (8.79) 0.786 (8.78)

Main car user (CD) v 1.101 (11.75) 1.099 (11.73) 1.101 (11.71) 1.100 (11.70) 1.100 (11.71)
Annual mileage by car (CD) v 0.0266 (7.24) 0.0265 (7.23) 0.0266 (7.25) 0.0266 (7.24) 0.0266 (7.24)

Number of season tickets (CD) v -0.208 (2.17) -0.208 (2.18) -0.207 (2.16) -0.207 (2.16) -0.207 (2.16)
Number of stops (CD) v 0.180 (3.84) 0.179 (3.83) 0.180 (3.84) 0.180 (3.84) 0.180 (3.84)

Time before principal activity v -0.0431 (9.07) -0.0431 (9.03) -0.0433 (9.02) -0.0433 (9.01) -0.043 (9.01)
Time before principal activity w 0.0314 (4.76) 0.0315 (4.77) 0.0317 (4.77) 0.0318 (4.78) 0.0321 (4.81)

Time principal activity v -0.0358 (6.69) -0.0357 (6.67) -0.0358 (6.67) -0.0359 (6.67) -0.0359 (6.679)
Time principal activity w 0.0513 (5.38) 0.0515 (5.39) 0.0516 (5.38) 0.0517 (5.39) 0.0518 (5.40)

Time post principal activity v -0.00776 (1.49) -0.00771 (1.48) -0.00776 (1.49) -0.00780 (1.50) -0.00779 (1.50)
Time before work activity v -0.00726 (1.51) -0.00723 (1.51) -0.00727 (1.52) -0.00726 (1.51) -0.00726 (1.52)

Time work activity v -0.0283 (8.84) -0.0281 (8.81) -0.0283 (8.81) -0.0282 (8.82) -0.0282 (8.82)
Time work activity w 0.00892 (3.27) 0.00887 (3.27) 0.00886 (3.20) 0.00871 (3.14) 0.00875 (3.17)

Time post work activity v -0.0425 (5.70) -0.0424 (5.68) -0.0425 (5.67) -0.0426 (5.68) -0.0426 (5.68)
Time post work activity w 0.0464 (3.22) 0.0461 (3.20) 0.0462 (3.19) 0.0463 (3.20) 0.0463 (3.20)

Cost (CD, PT) v -0.127 (8.73) -0.126 (8.67) -0.127 (8.68) -0.127 (8.65) -0.127 (8.66)
Cost (CD, PT) w 0.0450 (2.23) 0.0449 (2.23) 0.0453 (2.25) 0.0455 (2.21) 0.0452 (2.20)

Time budget (CD, CP) v -0.0398(2.10) -0.0390 (2.05) -0.0395 (2.07) -0.0393 (2.06) -0.0392 (2.06)
Time budget (CD, CP) w 0.0562 (1.96) 0.0540 (1.74) 0.0571 (1.91) 0.0565 (1.85) 0.0555 (1.80)
Sum of travel time (B) v -0.0438 (5.88) -0.0439 (5.86) -0.0441 (5.86) -0.0440 (5.86) -0.0440 (5.86)
Sum of travel time (B) w 0.0448 (4.99) 0.0447 (4.96) 0.0450 (4.97) 0.0449 (4.97) 0.0448 (4.96)

Tour duration (PT) v 0.00405 (16.87) 0.00404 (16.85) 0.00405 (16.84) 0.00405 (16.83) 0.00405 (16.83)
Log-likelihood -1.104536 -1.104654 -1.104555 -1.104560 -1.104513

Bias -0.000221 -0.000109 -0.000056 -0.000037 -0.000028
Accuracy 0.000455 0.000319 0.000228 0.000186 0.000161

Table 2: Mobidrive: complex model
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Figure 1: Variation of sample sizes with iterations
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Figure 2: Variation of sample sizes with log-likelihood value

line-search (the More-Thuente step selection was implemented). The draws in both
cases are those generated for the adaptive strategy. Resulting computational times
are given in Table 3. For the simple model, the trust-region approach and the line-
search techniques are quite similar, BFGS line-search being slightly better. The
BTRDA approach however delivers a significant speed-up (approximately 35%)
compared to both standard techniques. The advantage of the line-search over the
trust-region disappears when we consider the more complex model, since the mean
optimisation time of the trust-region method is then significantly smaller. More-
over, while the trust-region algorithm always converges, the BFGS line-search fre-
quently fails. We indicate in Table 3 the number of success for the BFGS with the
complex model over the 10 runs in brackets, next to the optimisation time. On the
other hand, the BTRDA algorithm exhibits more important gains, since the com-
putational times are less than half of those obtained with BTR. This suggests that
an adaptive strategy is especially efficient when the number of random variables
increases, while it is well known that other techniques, like those based on quasi-
Monte Carlo sequences, are often less efficient in such cases. Quasi-Monte Carlo
methods can however produce the same accuracy with less random draws, at least
in low and medium integration dimensions, but this accuracy is difficult to quan-
tify in practice, while this is easy for Monte Carlo approaches. As our algorithm
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�pÊOË�Ì Simple model Complex model
BTRDA BTR BFGS BTRDA BTR BFGS

500 440s 684s 646s 1093s 2217s 2489s (7)
1000 829s 1403s 1312s 2076s 4310s 4783s (5)
2000 1636s 2753s 2592s 4151s 8500s 10009s (6)
3000 2427s 4089s 3849s 5712s 13146s 15340s (7)
4000 3234s 5581s 5144s 7576s 16741s 21630s (9)

Table 3: Optimisation times

exploits this information, its application to quasi-Monte Carlo techniques is not as
direct as with pure random draws. Moreover usual problems in high-dimensional
integration with quasi-Monte Carlo methods, such as correlations, do not occur in
pure Monte Carlo procedures. Consequently, the latter are often more robust, both
theoretically and numerically. Our procedure can therefore be seen as a compro-
mise between speed and the exploitation of theoretical information, while more
research is needed to apply the same philosophy to (possibly randomised) quasi-
Monte Carlo sequences.

Due to the complexity of the objective function in mixed logit models, the
choice of the optimisation procedure is therefore of crucial importance. First of
all, the speed of convergence can be dramatically increased if the available infor-
mation is exploited. In our case, the estimation of the standard deviation allows
us to speed up the initial iterations by using smaller samples, and often to success-
fully terminate earlier. Secondly, important savings can be achieved by taking the
problem properties into account. In particular, the use of an optimisation algorithm
designed for non-concave problems pays off for mixed logit models. Further com-
putational gains may also be obtained in the detailed organisation of the algorithm,
for instance by evaluating the function and its gradient analytically at the same
time, instead of successively.

6 Conclusion

In this paper, we have developed a new algorithm for unconstrained stochastic pro-
gramming using statistical inference to accelerate computations. Convergence of
the algorithm is ensured to points satisfying first- and second-order optimality con-
ditions. The method has been applied to the mixed logit estimation problem and
we have developed our own package, AMLET, to do so. Numerical experimenta-
tion shows that a strategy for using a variable sample size in the estimation of the
choice probabilities gives significant gains in optimisation time compared to the
classical fixed sample size approach.

This paper opens several further research questions. First of all, comparisons
with complex quasi-Monte Carlo methods remain desirable. Secondly, further im-
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provements to the variable sample size strategy are likely, possibly yielding ad-
ditional computational gains. Finally, more research efforts should be devoted to
better quantify the statistical accuracy of the estimated parameters compared to the
true maximum likelihood estimators.
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