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ABSTRACT This paper presents a hierarchical motion planning approach based on discrete optimization

method. Well-coupled longitudinal and lateral planning strategies with adaptability features are applied for

better performance of on-road autonomous driving with avoidance of both static and moving obstacles.

In the path planning level, the proposed method starts with a speed profile designing for the determination of

longitudinal horizon, then a set of candidate paths will be constructed with lateral offsets shifting from the

base reference. Cost functions considering driving comfort and energy consumption are applied to evaluate

each candidate path and the optimal one will be selected as tracking reference afterwards. Re-determination

of longitudinal horizon in terms of relative distance between ego vehicle and surrounding obstacles, together

with update of speed profile, will be triggered for re-planning if candidate paths ahead fail the safety

checking. In the path tracking level, a pure-pursuit-based tracking controller is implemented to obtain the

corresponding control sequence and further smooth the trajectory of autonomous vehicle. Simulation results

demonstrate the effectiveness of the proposed method and indicate its better performance in extreme traffic

scenarios compared to traditional discrete optimization methods, while balancing computational burden at

the same time.

INDEX TERMS Autonomous driving, motion planning, path generation, obstacle avoidance.

I. INTRODUCTION

The aim of motion planning for autonomous driving is to

find a feasible sequence of control inputs to drive the vehicle

from its initial state to the goal state within environmental and

physical constraints. Considerable emphasis should be paid

on safety as well as driving comfort because of higher speed

in autonomous driving than in the field of mobile robots. The

motion planning problem of autonomous driving is usually

decomposed into a global reference path planning level and

a local motion planning level for computational efficiency in

handling the changing traffic environments in various on-road

scenarios [1].

The task of global path planner is to find a feasible path

to the destination in the perceived environment with a certain

The associate editor coordinating the review of this manuscript and

approving it for publication was Shihong Ding .

update frequency, and a long enough forward prediction hori-

zon of the global path should be achieved for safety guarantee.

A variety ofmethods have been proposed to address this prob-

lem. Potential fields were created for rapid response and easy

execution, but would suffer from local minimal, and variants

of potential fields focus on handling this drawback [2], [3].

Graph-searching-based algorithms such as Dijkstra and A∗

algorithms family have been successfully implemented in

the DARPA Challenge [4], [5] in semi-structured environ-

ments [6], and in parking lots [7]. Sampling-based methods

have also proven to be efficient in path planning, among

them the rapidly exploring random tree (RRT), together with

its variants, is one of the most popular algorithms in the

last decades [8], [9]. Curve interpolation has been proved

a practical technique for reference path generation. Poly-

nomials [10], [11], Bezier curves [12], and B-splines [13]

have all been used by scholars, among them, Clothoids [14]
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FIGURE 1. Typical failure condition of traditional discrete optimization
method. (a) An optimal reference path can be found from the candidate
set, (b) All candidate paths fail for collision checking.

stand out for its easy calculation of curvature. Numerical

optimization based methods aim to minimize or maximize a

function subject to different constrained variables [15], [16],

also is often used to smooth previously computed path [17].

In the local motion planning level, a shorter local path

aligning with the proposed global reference path should be

constructed efficiently and a corresponding control sequence

will be calculated by the tracking controller to drive the

autonomous vehicle. There is actually no clear distinction

between global and local planners in terms of planning algo-

rithms. As the local planners are mainly designed to meet

the real-time planning needs for addressing the planning

problem in the changing traffic environments, we found in

our simulations that decreasing the planning horizon of the

global planner could complete the same task. Among vari-

ous approaches, discrete optimization method is a practical

alternative, which is a modification of numerical optimiza-

tion methods that constructs a finite set of candidate paths,

usually by interpolating curves in discrete time or space

domain, in terms of traffic environments, and the optimal

one will be selected for tracking based on a certain eval-

uation criterion [18], [19]. However, limited by the local

shapes of interpolated curves, it is easy for the planner to

get into trouble when the vehicle is close to the surrounding

obstacles, which we call it a near-obstacle planning trouble,

as is shown in Figure 1. For the path tracking and lateral

stability controller, some advanced control methods have

been developed, such as pure pursuit tracking control and

model predictive control [20], [21], robust control [22]–[24],

fuzzy control [25], sliding mode control [26]–[28], adap-

tive control [28], [29], non-smooth control [30], disturbance

decoupling control [31], other nonlinear control [32], which

have shown promising perspective in vehicle engineering

application. In this study, we consider that our main objective

tends to develop trajectory planning technique for on-road

autonomous driving, hence the path tracking control is sim-

plified, we employ amodified pure pursuit tracking controller

for forward simulation to obtain a feasible control sequence

of the vehicle and further smooth the path simultaneously.

This paper tries to present a local motion planning method

with adaptability features to better handle the near-obstacle

planning trouble. The logical idea of our method to ensure

the success rate of planning lies in that the possibility of

finding a feasible path will be increased when adjusting the

state of ego vehicle in a safe range, where the shapes of

corresponding planned candidate paths could be modified so

as to be feasible. That means the local planning should focus

on handling the nearing obstacles when needed, and the ego

vehicle is expected to slow down for safety guarantee.

The framework of our method includes a global path plan-

ner, a local path planner and a local tracking controller. First,

a global reference path is obtained by an upper level module

based on the traffic environment. Then the local planner

decomposes the trajectory planning problem that, a set of

candidate paths will be generated with different lateral offsets

shifting from the proposed global path for lateral planning

and a speed profile aligning with the aforemen-tioned can-

didate paths will be designed for longitudinal control. After

that an optimal path will be selected for tracking in terms

of the pre-designed cost functions. Finally, a modified pure

pursuit based tracking controller is applied to obtain a feasible

control sequence and further smooth the trajectory of the

autonomous vehicle. The global planner is not discussed in

this paper, the maps and the global reference paths used

in this paper are pre-defined in our simulations as various

structured roads and their centerlines, respectively. The main

contributions of this paper are listed as follows:

1) The adaptability features of our method is achieved by

a well-designed coupling framework of the lateral planning

and longitudinal control strategies. The speed profile design

is first performed in trapezoidal forms, the result of which is

then used for the generation of the spatial candidate paths.

After that, path evaluation will be carried out by pre-defined

cost functions and the optimal one will be selected for track-

ing control to obtain a feasible control sequence. If all current

candidate paths fail, the longitudinal horizon for generating

spatial paths will be re-determined and speed references will

be updated accordingly in two different strategies accord-

ing to the traffic conditions, namely a multi-stage planning

framework is presented here.

2) An efficient Clothoid interpolation method applied for

local smooth candidate paths generation, a lazy collision

checking approach implemented to guarantee safety and the

triggeredmechanism in the multi-stage planning strategies all

contribute to the balance between planning performance and

computational efficiency.

3) Performing better in terms of planning quality and com-

putational burden compared to traditional methods, the excel-

lent coupledmanners in our approachmakes the local planner

adaptively handle both static and moving obstacles in various

on-road driving scenarios without the intervention of a high

level decision module.

The remainder of this paper is organized as follows.

Section II describe the multi-stage planning framework.

Section III presents the simulation results and discussion on
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FIGURE 2. Overall framework of our planning strategies.

the features of our approach. Section IV concludes the paper

and suggests future work.

II. MOTION PLANNING WITH ADAPTIVE STRATEGIES

In similar traditional approaches, spatial local candidate paths

are generated by coupling a set of pre-defined discrete longi-

tudinal horizons and lateral offsets shifting from the global

reference path and velocity references aligning with candi-

date paths will be generated afterwards. Restrictions on geo-

metric shapes and lack of spatial adaptability to the changing

traffic environment make traditional candidate paths perform

poorly especially in complex scenarios. When current plan-

ning fails, ego autonomous vehicle will probably execute

uncomfortable or even unnecessary drastic brake operations

until next feasible planning result occurs, which obviously

impacts the performance of autonomous driving.

Our approach sets apart from traditional ones that the

longitudinal horizon is determined by a pre-designed trape-

zoidal speed profile. By applying our multi-stage planning

strategy, generation of spatial candidate paths, alongwith cor-

responding velocity references, can be performed adaptively

in each planning cycle, which increases the success rate of

planning without bringing much computational burden. The

overall planning strategy of the proposed method is shown

in Figure 2.

A. DETERMINATION OF LONGITUDINAL HORIZON

Different from traditional discrete planning method, our

approach starts with a speed profile designing in time domain.

There is no doubt that speed design has a great influence

on driving safety and comfort. Acceleration limited by path

curvature and vehicle physical constraints, speed limits by

traffic rules and safety should all be considered in designing

the speed profile.

Basically the speed profile used in this paper consist of

a rising line representing acceleration from current speed,

a horizontal line denoting constant-speed driving and a

descending line for deceleration until stopping. We design

our speed reference by first determining current speed vcar ,

speed limit vmax , acceleration limit aacc and deceleration limit

adec of the ego vehicle and planning time horizon Tplanning,

then a trapezoidal speed profile can be constructed into two

fundamental types as shown in Figure 3 (a) and (b). The

main difference between the two speed profile is whether

speed limit is activated because acceleration is terminated

once reaching the speed limit. The speed design shown in

Figure 3 can be described as follows.

v = aacct + vcar , t ∈ [0,Tacc] (1)

v = vmax, t ∈ [Tacc,Tdec] (2)

v = adect − adecTplanning, t ∈
[

Tdec,Tplanning
]

(3)

Equations (1), (2) and (3) describe the acceleration, speed

maintaining and deceleration stage, respectively, where v is

the designed speed reference, Tacc is the acceleration time,

Tdec is the deceleration time. The planned time horizon

Tplanning is a pre-defined parameter. The deceleration stage

is a must in every speed profile for safety guarantee, which

means Tdec can be first calculated by vmax and adec. Then Tacc
can be determined in terms of current speed vcar , speed limit

vmax and deceleration stage (3) if needed. For simplicity, aacc
and adec are set as constants 1m/s2 and -5m/s2, respectively,

both within the vehicle physical performance.

Obviously, the area lies between the speed lines and axis

is the wanted longitudinal horizon to generate the spatial

candidate paths, when applying a series of lateral offsets

aligning with global reference geometry at the same time, in a

planning cycle, and evaluation of paths and collision checking

can be conducted afterwards.

When all the generated candidate paths are judged as

infeasible, the longitudinal horizon will be re-determined in

terms of relative distance between ego vehicle and the nearest

obstacle, and the speed profile will be re-designed accord-

ingly. In this stage, judgement will be first made whether the

proposed relative distance is longer than that of executing a

moderate braking operation to stop from current speed. If not,

the longitudinal planning horizon will be set as the calculated
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FIGURE 3. Speed profiles design. (a) Speed profile design with a small
initial velocity, (b) Speed profile with a bigger initial velocity.

area enclosed by axis and speed curve in Figure 4 (b), and an

adec deceleration operation will be conducted to ensure the

vehicle stop before completely executing the planned trajec-

tory, thus safety is guaranteed. Otherwise, the horizon will

be set as the proposed relative distance and a speed profile

replacing vmax with vcar , as is shown in Figure 4 (a), will be

applied for longitudinal control. The moderate deceleration

profile can be described as follows

v = acomt + vcar , t ∈
[

0,Tplanning
]

(4)

where acom is the moderate deceleration value set as -2 m/s2,

which is thought to be a comfortable braking operation during

driving.

Remark 1: We find the key of getting out of traditional

planning trouble is to choose a proper longitudinal horizon

for the generation of spatial candidate paths. Increasing the

number of discretion of longitudinal horizons in traditional

methods is considered as an easy way to improve the planning

performance, however, computational burden will be consid-

erably increased as more spatial paths will be generated and

evaluated, and the real-time demand for the local planner will

probably be harmed as a result. Thus, we innovatively adjust

the longitudinal horizons by a multi-stage strategy coupling

the speed profile design and relative safety distances between

ego vehicle and obstacles. Compared to traditional methods,

the triggered mechanism in our multi-stage planning strategy

FIGURE 4. Speed profiles re-design. (a) Speed profile re-design when
candidate paths fail in the first stage, (b) Speed profile of moderate
deceleration when candidate paths fail in the second planning stage.

deactivates the re-planning steps when unnecessary, thus the

computational efficiency can be improved.

B. SAFETY GUARANTEE

There is no doubt that safety is a leading demand in motion

planning of autonomous driving. Traditional discrete opti-

mization methods take safety into account by generation

of collision-free spatial reference paths with a set of fixed

forward prediction horizon along with different lateral offsets

shifting from the base references. When the candidate paths

become infeasible, the ego vehicle tends to execute a drastic

deceleration to avoid collision until a feasible reference is

successfully obtained in the next several planning cycles,

guiding the vehicle to its new destination. Obviously, safety

can be guaranteed within the above closed-loop planning

strategy.

In our method, safety is guaranteed by three mecha-

nisms. Firstly, like what is in traditional methods, periodically

updated candidate paths generated by lateral offsets and adap-

tively chosen longitudinal horizons are combined with cost

functions for evaluation to keep a proper distance between

the vehicle and obstacles. Secondly, each speed profile is

designedwith an end speed of zero that guarantees the vehicle

could stop safely at the end if executing one whole feasible

local trajectory. Thirdly, once a judgement is made that the

vehicle is too close to the nearest obstacle according to its
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driving performance, a moderate deceleration that ensures

stopping before colliding into the obstacle will be conducted.

The relative distance threshold can be easily calculated as

follows

Lrelative ≥
1

2
vcarTplanning (5)

where Lrelative denotes the distance between ego vehicle and

the nearest obstacle. The right part of inequality (5) denotes

the expected driving distance in the moderate deceleration

stage described by equation (4) in a local planning cycle, and

the left part of inequality (5) is the changing relative distance

between ego vehicle and nearest obstacle. As is illustrated

in Section II. A, judgement will first be made whether the

relative distance is longer than moderate braking distance,

to determine the planning strategy chosen in next stage, and

inequality (5) gives an easy but practical calculation of this

threshold.

C. LOCAL PATH GENERATION

In this paper we employ an efficient Clothoid interpolation

method for local path generation. The position and heading

angle of ego vehicle and the destination are required to con-

struct the local paths. Another advantage of this interpolation

method is that due to the features of Clothoid curves, curva-

ture of the generated paths is easy to obtain for the following

feasibility checking procedure. The general parametric form

of a Clothoid spiral curve is as follows

x (s) = x0 +

∫ s

0

cos

(

1

2
κ ′τ 2 + κτ + θ0

)

dτ (6)

y (s) = y0 +

∫ s

0

sin

(

1

2
κ ′τ 2 + κτ + θ0

)

dτ (7)

where s is the arc length, (x0, y0) denotes the starting position,

θ0 is the initial heading angle, κ ′t + κ is the linearly varying

curvature, and 0.5κ ′τ 2 + κτ + θ0 is the heading angle at arc

length s. The determination of the parameters θ0, κ and κ ′ are

related to the choice of points and heading angles at both ends

of the curve.

In this paper, the starting point and heading angle are

the current vehicle position and heading angle, respectively.

The end points are determined by the longitudinal planning

horizon and several specified lateral offsets, which may be

modified according to different road width. The end head-

ing angles are the same as that of the forward predicted

destination point on the global reference path. An efficient

method proposed in [14] to calculate a curve satisfying (6)

and (7) with minimum positive length between its two ends

fits well in our approach. Typical resulting paths can be seen

in Figure 5.

D. PATH SELECTION

After the generation of candidate paths, we should choose

the optimal path among them as reference for the track-

ing control. Driving comfort and energy consumption are

the two main concern in our cost function designing. Cur-

vature is applied as a representation of comfortability for

FIGURE 5. Illustration of generated candidate paths based on the end
lateral offsets. Left red circle is the initial position and right red circle is
the predicted goal position on the reference path.

computational efficiency, which is defined as follows

fcom (ri) =

∫

κ2
i (s)ds (8)

here we denote that the number of candidate paths generated

is i, and fcom (ri) is the driving comfort cost for the i-th

candi-date path, κi (s) denotes the curvature of ri at arc

length s.

As fewer steering operations mean less energy consumed,

our second cost function is designed to make the vehicle drive

along the global reference path as much as possible.

fene (ri) = d (ri) (9)

where fene (ri) is the driving comfort cost for the i-th candidate

path, d (ri) denotes the accumulated lateral offsets shifting

from the global reference of i-th path based on lateral plan-

ning and a speed profile aligning for longitudinal control.

In this way, operations that deviate from the global reference

path will be punished to reduce unnecessary steering opera-

tions. It should be mentioned that in some conditions driving

with a moderate deviation from the reference line actually

achieves the best smoothness, which means curvature can

also be an evaluation criterion for energy consumption. The

total cost function is designed as follows

f (ri) = k1fcom (ri) + k2fene (ri) (10)

where f (ri) is the total cost of the i-th candidate path, k1 and

k2 are twoweight factors adjusting the smoothness of resulted

references. Note that weight factor k1 has a greater influence

on path selection than k2, here two weight factors k1 and k2
are set as 0.2 and 0.8 in term of experience and online test,

respectively.

Remark 2: It can be seen that the feasibility is not consid-

ered in the aforementioned cost function designing, because

a lazy collision checking strategy is applied here. Candidate

paths are firstly evaluated and sorted by calculated costs, then

path checking for collision risk and curvature limit is carried

out on the sorted candidates, to make sure the feasibility, and

a candidate path will be selected as final reference path once

passing the checking, leaving the rest ones unchecked. Thus,

the number of execution of path checking procedures can be
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slightly reduced, compared to attach the collision test as part

of the cost functions, so as to obtain better computational

efficiency as well as keep path quality.

E. LOCAL TRACKING CONTROLLER

In this paper, we employ a modified pure pursuit tracking

controller for forward simulation to obtain a feasible control

sequence for the vehicle and further smooth the path at the

same time. The bicycle model simplified from a front-wheel

steering Ackerman vehicle is employed to predict trajectory

in a certain time period and run the forward simulation. The

kinematic model is in the following form




ẋ

ẏ

ϕ̇



 =





cosϕ

sinϕ

tan δf /L



 v (11)

where x and y are the coordinates of the center point of the

rear axle, ϕ denotes the heading angle of vehicle in regard to

the x-axis, L is the vehicle wheelbase and δf denotes the front

wheel steering angle. Longitudinal speed v and front wheel

steering angle δf are the two control inputs to the system.

For the purpose of avoiding abrupt change in the

control input of δf , its incremental form is employed in

calculation.

δf = δf 0 +

∫ t

0

δ̇f dt (12)

where δf 0 denotes the initial steering angle of the front wheel

and t is the simulation time.

The tracking controller for active steering calculation

derived from [9,10] is presented as

δ (t) = tan−1

(

2L sin (α (t))

ld

)

(13)

where ld denotes the look-ahead distance, which is the

Euclidean distance between current state and the excepted

tracking state. L is the wheelbase of the vehicle. α is the

relative angle between current heading angle and the excepted

tracking one. δ is the calculated steering angle of front wheels.

Note that here the tracking controller in equation (13) is

usually used to path tracking control for trajectory planning

researches, the effectiveness of controller has been proved

in theory [9], [10]. The vehicle runs forward at a constant

speed and steering angle is calculated and executed at a

certain frequency. Finally, a feasible control sequence and a

corresp-onding smooth trajectory will be obtained.

III. SIMULATION AND DISCUSSION

To verify the effectiveness of our approach, challenging traf-

fic conditions for static and moving obstacles avoidance sce-

narios are applied. Road shapes and global reference paths are

manually predesigned. In the resulting plots, the ego vehicle

is simplified as a point, static obstacles are described by red

hollow circles, moving obstacles and their trajectories are

shown in filled red circles and red lines, respectively. The

dashed dark lines are the centerline of the road, namely the

global reference path. Road edges are described by black

straight lines or cubic splines. The solid blue curve sets denote

planned local candidate paths when the proposed adaptive

planning horizon method is triggered. The solid green curves

are the trajectories of ego vehicle. The initial speed of ego

vehicle is 6 m/s and the speed limitation is 10 m/s, and the

curvature limit of candidate paths is 0.1 m−1.

A. STATIC OBSTACLES AVOIDANCE

Two simulations with different global references are made

for verification of static obstacles avoidance. A comparison

of simulation results between traditional discrete method

and our approach can be seen in Figure 6. In Figure 6 (a),

the difference in vehicle trajectories between the twomethods

is small, where successful planning is carried out. The ego

vehicle executed a smooth trajectory on a curved road with

avoidance of several static obstacles. It also shows a good

tracking performance that, ego vehicle could quickly return

to the center reference path once completing a lane-change

maneuver for obstacle avoidance. Figure 6 (b) describes the

driving speed during execution, gentle deceleration in our

approach can be seen clearly compared to traditional method.

The blue candidate paths are those generated by our approach

and pink ones are by traditional method, obviously our plan-

ning strategies shows better choice of the planning horizons

and corresponding speed profiles, as a result better driving

comfort can be obtained while successfully completing the

same task with traditional method. It should be noted that the

deceleration stage designed in (1), (2) and (3) will generally

not be activated, because planning failure tends not to mean

there is actually no way for the vehicle to go with application

of discrete optimization-based planning methods. We find

the planning performance largely is limited by the shapes of

candidate paths in every planning cycle, when the vehicle

could safely adjust its location for new planning, feasible

reference paths probably could be found in the next few

new planning cycles. This is actually where the logic of our

planning strategies lies in.

To underline our planning technique characteristic,

Figure 7 shows the simulation result of static obstacle avoid-

ance in a challenging condition. In Figure7(a), (b), (c), we use

the different x-axles of distance and time to describe resulting

trajectory of ego autonomous vehicle, speed statistics of ego

vehicle during execution, and front wheel steering statistics

of ego vehicle respectively. In this scenario, a group of

densely arranged obstacles will make ego vehicle conduct

a zigzag driving, meanwhile the speed should be slowed

down within handling and safety. As expected, traditional

discrete planning fails here without applying of extreme

parameter settings, while our approach performs well. The

trajectory of ego vehicle is described in Figure 7 (a). The solid

blue curves are notations of where the adaptive re-planning

is executed. It can be seen this mechanism is triggered

mainly when the vehicle is close to the static obstacles,

which is just a common dilemma for traditional planners.

By tracking the newly planned shorter reference path while

conducting a moderate brake operation, the ego vehicle could
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FIGURE 6. Simulation result of comparison between traditional discrete method and our approach. (a) Resulting trajectory of ego autonomous
vehicle, traditional method (dashed blue) and our method (solid green), the solid blue curve sets illustrate the reference paths generated when
near-obstacle trouble occurred and our adaptive planning strategies activated, correspondingly the purple ones were generated by traditional
method, (b) Speed comparison of ego vehicle during driving, traditional method (dashed blue) and our method (solid green).

FIGURE 7. Simulation results of challenging static obstacles avoidance. (a) Resulting trajectory (solid green) of ego autonomous vehicle, solid blue
curve sets are candidate path generated by the proposed strategies, (b) Speed statistics of ego vehicle during execution, (c) Front wheel steering
statistics of ego vehicle during execution.

be safely guided to regions where new feasible planning

probably occurs, and autonomous driving thus can be con-

tinued. As is shown in Figure 7 (b) and (c), by applying

our adaptive planning strategies, the ego vehicle handles the

challenging traffic condition with proper speed and steering

operations within physical constraints. After successfully

avoiding all static obstacles, the ego vehicle is able to turn

right in time and continue to drive along the reference

centerline.

B. AVOIDING BOTH STATIC AND MOVING OBSTACLES

Avoiding static and moving obstacles simultaneously would

be a challenging task for autonomous driving. A scenario of

this condition is designed in Figure 8 (a), where the moving
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FIGURE 8. Simulation results of both static and moving obstacles avoidance. (a) Resulting trajectory (solid green) of ego autonomous vehicle, solid blue
curve sets are candidate path generated by the proposed strategies, (b) Speed statistics of ego vehicle during execution, (c) Front wheel steering
statistics of ego vehicle during execution.

FIGURE 9. Simulation results of moving obstacles avoidance. (a) Resulting trajectory (solid green) of ego autonomous vehicle, solid blue curve sets are
candidate path generated by the proposed strategies, (b) Speed statistics of ego vehicle during execution, (c) Relative distance between moving
obstacles and ego vehicle during execution.

and static obstacles happen to block the whole road when

the ego vehicle approaches. Obstacle in the upper lane moves

at a constant speed of 4 m/s, which means a passable space

will occur a few seconds later. It is required that the planning

strategy should make the vehicle slow down to wait for a

left lane-change opportunity. The changing planning horizon
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described by blue solid curves can be seen during execution,

where the ego vehicle was slowed down until a lane-change

room occurred and static obstacle avoidance was successfully

carried out afterwards. Steering statistics in Figure 8 (b) and

speed curve in Figure 8 (c) have confirmed the driving strat-

egy. Trajectory shown in Figure 8 (a) indicates the ego vehicle

easily completed the challenging task.

C. MOVING OBSTACLES AVOIDANCE

In the scenario shown in Figure 9, since the scenario simulates

two obstacles move forward with a constant speed 4 m/s,

steering angle is replaced by relative distance between mov-

ing obstacles and ego vehicle during execution. It is set that

the ego vehicle has no room for overtaking and should slow

down to follow the moving obstacles. As Figure 9 (a) shows,

adaptive planning horizon has continuously been used since

the ego vehicle has been close enough to the moving obsta-

cles. Figure 9 (b) shows the speed statistics, and Figure 9 (c)

describes the relative distance between them. Obviously, the

ego vehicle successfully slowed down to the speed of moving

obstacles while maintaining a rational relative distance of

about 20 m.

D. PERFORMANCE EVALUATION

Simulations were run on a computer with an Intel Core

i7-6700HQ and 16GB RAM. In the simulations above,

17 candidate paths were generated in each planning cycle,

which is a most rational choice balancing success rate and

computational efficiency in our traffic scenarios. The average

execution time of our local motion planner in a cycle is 16ms,

meeting the real-time requirements.

Benefit from the implementation of adaptive planning hori-

zon, our motion planner can actively handle various traffic

scenarios without the intervention of a high-level decision

module. Simulation results also proved that it workswell even

under challenging traffic conditions.

IV. CONCLUSION

This paper presents a hierarchical motion planning method

for autonomous driving on structured roads with avoidance

of both static and moving obstacles. The proposed method

starts from designing a speed profile for the determination of

the planning horizon. Then an efficient Clothoid interpolation

method is applied for the generation of local candidate paths

with a set of end points lateral offsets. After that paths will

be evaluated by cost functions considering driving comfort

and energy consumption and checked for feasibility.When all

candidate paths fail, a re-planning procedure using a changing

horizon in terms of relative distance between ego vehicle

and nearing obstacles will be triggered for higher planning

success rate as well as driving safety. Our approach stands out

for the adaptively determined longitudinal horizon that make

the planning better performance especially in challenging

traffic environments, without the help of a decision module.

Compared to similar traditional planners, our method consid-

erably reduces the number of local candidate paths to obtain

a better computation efficiency. Feasibility constraints are

considered both in the path planning and tracking procedure.

Moreover, since the path tracking control is simplified in

this study, we will further research adaptive motion planning

technique with advanced path tracking control methods such

as adaptive control for on-road autonomous driving vehicle

application.
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