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An adaptive multi-level simulation algorithm for stochastic biological systems

C. Lester,a) C.A. Yates, M.B. Giles, and R.E. Baker

Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter,

Woodstock Road, Oxford, OX2 6GG, UK

(Dated: 2 September 2014)

Discrete-state, continuous-time Markov models are widely used in the modeling of

biochemical reaction networks. Their complexity often precludes analytic solution,

and we rely on stochastic simulation algorithms to estimate system statistics. The

Gillespie algorithm is exact, but computationally costly as it simulates every single

reaction. As such, approximate stochastic simulation algorithms such as the tau-

leap algorithm are often used. Potentially computationally more efficient, the system

statistics generated suffer from significant bias unless tau is relatively small, in which

case the computational time can be comparable to that of the Gillespie algorithm.

The multi-level method (Anderson and Higham, Multiscale Model. Simul. 10:146–

179, 2012) tackles this problem. A base estimator is computed using many (cheap)

sample paths at low accuracy. The bias inherent in this estimator is then reduced using

a number of corrections. Each correction term is estimated using a collection of paired

sample paths where one path of each pair is generated at a higher accuracy compared

to the other (and so more expensive). By sharing random variables between these

paired paths the variance of each correction estimator can be reduced. This renders

the multi-level method very efficient as only a relatively small number of paired paths

are required to calculate each correction term.

In the original multi-level method, each sample path is simulated using the tau-leap

algorithm with a fixed value of τ . This approach can result in poor performance when

the reaction activity of a system changes substantially over the timescale of interest.

By introducing a novel, adaptive time-stepping approach where τ is chosen according

to the stochastic behaviour of each sample path we extend the applicability of the

multi-level method to such cases. We demonstrate the efficiency of our method using

a number of examples.

a)Electronic mail: lesterc@maths.ox.ac.uk
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I. INTRODUCTION

Experimental researchers such as Elowitz et al. 8 , Fedoroff and Fontana 10, Arkin et al. 3

and Barrio et al. 4 have demonstrated the stochastic nature of a range of biological phe-

nomena. In particular, stochastic effects often affect systems characterized by low molecular

populations16, but systems with large molecular populations can also be affected under cer-

tain circumstances9. In this work we will focus on spatially homogeneous population-level

models, which record the numbers of each molecule type within the system over a time in-

terval of interest. The temporal evolution of the probability of finding each combination of

possible ‘molecular abundancies’ can be described by the chemical master equation (CME),

which comprises a system of ordinary differential equations (ODEs)16. Under highly re-

strictive conditions it is possible to derive a closed-form, analytic solution of the CME18.

However, in a more typical setting we are restricted to understanding the behavior of a par-

ticular system computationally by using a stochastic simulation algorithm (SSA) to generate

a large number of sample paths; we then use these paths as a means to calculate ensemble

statistics that describe the quantitative behavior of the system. Such SSAs can either be

exact or approximate. Exact SSAs generate sample paths consistent with the dynamics of

the CME hence give rise to unbiased estimators14, whereas the sample paths generated using

approximate SSAs do not fully comply with the CME and give rise to biased estimators15.

The focus of this paper is on extending the discrete-state multi-level technique first intro-

duced by Anderson and Higham 2. Their approach broadly emulates that of Giles 12 in the

field of stochastic differential equations. The multi-level method uses a clever combination of

sample paths generated using approximate SSAs of different accuracy to estimate a system

statistic of interest in an efficient manner13. The idea of the multi-level method is to compute

many (cheap) sample paths with low accuracy and correct the statistics generated from them

using fewer (expensive) sample paths with high accuracy. Each approximate SSA involves

using a fixed time discretization: paths that use a fine time discretization are more expensive

but display less bias whereas paths with a coarse time discretization are cheap but heavily

biased. If properly implemented, use of the multi-level method can often lead to substan-

tial reductions in simulation time. However, the original formulation of the method places

restrictions on the time-discretizations implemented in the multi-level method. Specifically
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these are:

• that the time discretization be uniform;

• that the time discretizations for sample paths of different accuracy are nested. In

other words, the time step is reduced by some integer factor K ∈ {2, 3, . . . } between

consecutive accuracy levels.

In this work, we will show that such restrictions mean the multi-level method can be ineffi-

cient at simulating systems in which the reaction activity changes significantly over the time

interval of interest. Such systems include those that display stiff behavior, where there are

markedly different timescales displayed over the course of the simulation. We address this

issue with a new adaptive approach to the multi-level method: the time discretization for the

approximate SSA is chosen on the fly, taking into account the reaction within each individual

sample path.

The remainder of this paper is structured as follows. In Section II we briefly recapitulate

the technical construction of stochastic simulations of discrete-state systems; this is followed

by a brief introduction to the multi-level method. Readers seeking a more thorough exposition

may be interested in a number of survey papers13,16,17,20. In Section III we highlight two cases

where the fixed-time-step multi-level method is unable function efficiently and in Section IV

we present a novel adaptive multi-level method as a solution to this problem. The benefits of

our new method are fully explored with reference to the motivating examples in Section V.

We conclude by making sense of these results in Section VI, and provide some possibilities

for directions of future research based on our findings.

II. STOCHASTIC SIMULATION

We consider a reaction network comprising N species, S1,. . . ,SN , that may each be in-

volved in M possible interactions, R1,. . . ,RM , referred to as reaction channels. For the

purpose of this discussion, we will ignore spatial effects. The population size of Si is known

as its copy number and is denoted by Xi(t) at time t, t ≥ 0. The state vector of all species
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numbers is then defined as

X(t) :=




X1(t)
...

XN(t)


 . (1)

With each reaction channel, Rj, we associate two quantities. The first is the stoichiometric

or state-change vector,

νj :=




ν1j
...

νNj


 , (2)

where νij is the change in the copy number of Si caused by reaction Rj taking place. Thus

if the system is in state X and reaction Rj happens, the system jumps to state X + νj.

The second quantity is the propensity function, aj. This represents the rate at which a

reaction takes place. Formally, for small dt, and supposing that X(t) = x, we define aj(x)

as follows20:

• the probability that reaction Rj happens exactly once during the infinitesimal interval

[t, t + dt) is aj(x)dt+ o(dt);

• the probability of more than one reaction Rj during this interval is o(dt).

Our approach to understanding the dynamics of the system comes from considering how the

probability that the system is in a particular state changes through time. Defining

P(x, t | x0, t0) ≡ P [X(t) = x, given X(t0) = x0] ,

then the CME gives16

dP(x, t | x0, t0)

dt
=

M∑

j=1

[P(x− νj, t | x0, t0) · aj(x− νj)− P(x, t | x0, t0) · aj(x)]. (3)

The Kurtz representation19 of a reaction network provides an equivalent, alternative formu-

lation: each reaction channel is described with an inhomogeneous Poisson process, and the

dynamics of the CME are preserved.

The simplest, and perhaps most widely used method for generating sample paths in ac-

cordance with the CME is Gillespie’s Direct Method (DM)14,16,20. Subsequent work has

substantially refined this approach11,21,22,26, and it is against this gold standard that we shall

compare the multi-level method.
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A. Tau leaping

Constraints on computing resources often limit the feasibility of the Gillespie DM as

it simulates each reaction individually. The large costs in doing so come from two main

sources: first is the computational overheads in generating the large quantity of random

numbers required by the algorithm; and second is the search time involved in determining

which reaction occurs at each step.

The tau-leaping method, first proposed by Gillespie 15 , generates approximate sample

paths by taking steps, of length τ , throughout the time-interval of interest and firing several

reactions during each time step. In this way it ‘leaps’ over several reactions at a time. If

the system is in state X and a time step of τ is to be performed, let Kj(τ,X) represent the

number of times that reaction channel Rj fires within that time step. The key, time-saving

assumption of the tau-leaping method is that all reaction rates are assumed to remain con-

stant over each time step of length τ . This means that Kj(τ,X) is Poisson distributed15,

Kj ∼ Poisson(aj(X(t)) · τ). The tau-leaping algorithm proceeds at each time step by gen-

erating Poisson random variates with the correct parameter for each reaction channel, and

then updating each molecular species and propensity function simultaneously:

X(t+ τ) = X(t) +
M∑

j=1

Kj(τ,X(t))νj. (4)

Appropriate choices of τ must be used throughout the construction of a sample path. Smaller

values of τ will lead to point estimates with a lower bias15, but will require more steps to

simulate a path and therefore a higher run-time.

The core algorithm for the tau-leaping algorithm which terminates at time T proceeds as

follows15:

1. set X := X(t0) and t := t0;

2. calculate the leap size, τ . If t+ τ > T then set τ := T − t;

3. calculate the propensity function, aj, for each reaction channel, Rj, j = 1, . . . ,M , based

on X(t), the population vector at time t;

4. generate Poisson random variates, pj, as sample values of Kj(τ,X(t)), j = 1, . . . ,M ;
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5. set X := X +
∑M

j=1 pjνj and t := t+ τ ;

6. if t < T , return to step two.

A range of techniques have been developed to balance the competing priorities of speed and

accuracy in choosing τ in step two5–7,15.

B. The multi-level method

The original multi-level method divides the work done in calculating a system statistic

of interest into parts, known as levels, in an effort to increase computational efficiency13.

On each of the levels point estimates are calculated using the tau-leaping algorithm with

different, fixed values of τ . They are then summed to give the point estimate of interest.

Suppose we wish to estimate the expected value of Xi, the population of the species Si, at

time T . On the base level (level 0), a tau-leaping method with a large and fixed value of τ

(which we denote τ0) is used to generate a large number (n0) of sample paths of the system.

The resulting point estimate for Xi is

Q0 := E [Zτ0] ≈
1

n0

n0∑

r=1

Z(r)
τ0

, (5)

where Z
(r)
τ is the copy number of Si (the species of interest) at terminal time T in path r

generated using the tau-leaping method with time step τ , and nℓ is the number of paths

generated on level ℓ. As τ is large, this estimate is calculated cheaply (O(1/τ) units of time

are required to generate each sample path), with the downside being that it has considerable

bias.

The goal with the next level (level 1) is to introduce a correction term that begins to

reduce this bias. In essence, in order to compute this correction term, two sets of n1 sample

paths are calculated. One set is generated using the tau-leaping method with the same value

of τ as on the base level (τ0). The other set is generated using a smaller value of τ (which we

denote τ1). For the method of Anderson and Higham 2 to work, we require that τ1 = τ0/K,

where K ∈ {2, 3, . . . }. The correction term is the difference between the point estimates

calculated from each set of sample paths:

Q1 := E [Zτ1 − Zτ0] ≈
1

n1

n1∑

r=1

[
Z(r)

τ1
− Z(r)

τ0

]
. (6)
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Adding this correction term to the estimator calculated on the base level reduces the bias of

the resulting estimator. This can be seen by noting that Q0 +Q1 = E [Zτ0] +E [Zτ1 − Zτ0] =

E [Zτ1], so that the sum of the two estimators has a bias equivalent to that of the tau-leaping

method with τ = τ1. The key to the efficiency of the multi-level method is to generate the

two sets of sample paths,
{
Z(r)

τ1
, Z(r)

τ0
: r = 1, . . . , n1

}
, (7)

in a clever way, so that the variance in their difference is minimised. On the next level (level

2), this process is repeated to give a second correction term. Two sets of n2 sample paths

are generated, one set has τ = τ1, and the second has τ = τ2 = τ1/K = τ0/K
2. Again, the

correction term is the estimator of their difference,

Q2 := E [Zτ2 − Zτ1] ≈
1

n2

n2∑

r=1

[
Z(r)

τ2
− Z(r)

τ1

]
, (8)

and it is added to the combined estimator from level 0 and level 1 to give Q = Q0+Q1+Q2 =

E [Zτ2]. Carrying on in this way, the multi-level method forms a telescoping sum,

Q = E [ZτL] = E [Zτ0] +
L∑

ℓ=1

E
[
Zτℓ − Zτℓ−1

]
=

L∑

ℓ=0

Qℓ. (9)

With the addition of each subsequent level the bias of the estimator is reduced further, until

a desired level of accuracy is reached.

Finally, and optionally, by generating two sets of nL+1 sample paths, one set using an

exact SSA and the other using tau-leaping with τ = τL, we can efficiently compute a final

correction term,

Q∗
L+1 = E [Xi − ZτL] ≈

1

nL+1

nL+1∑

r=1

[
X

(r)
i − Z(r)

τL

]
, (10)

where X
(r)
i denotes the copy number of Si at terminal time T in path r generated using the

exact SSA. This final correction term can be added to the telescoping sum in order to make

the estimator unbiased:

Q = E [Xi] = E [Zτ0] +
L∑

ℓ=1

E
[
Zτℓ − Zτℓ−1

]
+ E [Xi − ZτL] =

L∑

ℓ=0

Qℓ +Q∗
L+1. (11)

Importantly, the total time taken to generate the sets of sample paths for the base level,

Q0, and each of the correction terms, Qℓ for ℓ = 1, . . . , L, and Q∗
L+1, can be less than that
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taken to estimate E [Xi] using an exact SSA. In order for these time savings to be realized,

however, the algorithm needs to be carefully calibrated. This involves choosing the number

of levels and the time steps involved (governed by a choice of τ0, a scaling factor K and L);

further details are given in Lester et al. 20.

Having decided on these parameters, we turn to determining the number of sample paths

which need to be simulated for each level ℓ. If each sample path on level ℓ takes cℓ units

of time to produce, then we choose the number of paths, nℓ, such that the total run time

(over all levels),
∑

ℓ≥0 cℓ ·nℓ, is minimized, subject to the constraint that the overall estimator

variance is bounded by some ε. If level ℓ has a sample variance of σ2
ℓ , this makes its estimator

variance σ2
ℓ/nℓ, and the overall estimator variance

∑
ℓ≥0 σ

2
ℓ/nℓ. Hence this constraint can be

expressed as
∑

ℓ≥0 σ
2
ℓ/nℓ < ε. Generally, σ2

ℓ cannot be calculated a priori and estimates

based on a small number of preliminary simulations, which are produced as part of a model

calibration procedure, can be used instead20.

In many circumstances the multi-level method can provide significant computational sav-

ings2,13,20. However, it is possible that for systems in which the reaction activity changes

significantly over the time scale of interest the efficiency of the fixed time step multi-level

approach will be limited. In the next section we consider two reaction systems in which

the fixed-time-step multi-level approach provides only a limited degree of acceleration over

Gillespie’s DM.

III. TWO MOTIVATING EXAMPLES

This section introduces two motivating examples which highlight potential limitations of

the fixed-time-step multi-level method.

A. Case Study I: A dimerization model

This following system has been employed widely as a test of stochastic simulation algo-

rithms15,25 as it exhibits behaviors on multiple timescales. The reaction network is given

by:

R1 : S1
1−→ ∅; R2 : S2

1/50−−→ S3;

R3 : S1 + S1
1/500−−−→ S2; R4 : S2

1/2−−→ S1 + S1.
(12)
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FIG. 1. The temporal evolution of a single sample path of reaction system (12) on two different

time-scales. Reaction rates are give in (12) and initial conditions are as described in the text.

We take the initial conditions to be [X1, X2, X3]
T = [105, 0, 0]T . Using the Gillespie DM14, we

calculate that the expected population of S3 at time T = 30 is E[X3(30)] = 20, 591.6± 1.0.

The ‘±’ term provides a 95% confidence interval for the estimator. This calculation required

36,000 sample paths (this number was chosen on the basis of an initial number of paths

which estimated the sample variance), and took a total of 2,089.3 seconds. The desktop

computer used to generate results throughout this paper is equipped with a 4.2 GHz AMD

FX(tm)-4350 Processor and eight gigabytes of RAM, and code was written in C++.

In order to better understand the dynamics of system (12) we consider a typical sample

path. In Figure 1 the temporal evolution of a single sample path of the system, generated with

the Gillespie DM, is shown on two distinct time scales. A more detailed examination of the

trajectory shows that the initial phase is marked by a rush of reaction activity, but once this

phase has passed, reaction activity slows dramatically. For this particular realization (figures

are broadly similar across all repeats), 613,002 individual reactions were simulated over the

time interval [0, 30]. Of these, 47,610 were in the first 0.03 seconds. This is equivalent to

1,587,000 reactions per unit time. For the remaining 29.97 units of time, reactions happened

at a rate of 19,000 reactions per unit time, which is about 84 times slower.

We now display results of our attempts at applying the fixed-time-step multi-level method

to this problem. Adopting a trial-and-error approach, we present the simulation results of
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K τ0 L Estimate Time

2 30 · 2−14 1 20, 591.6± 1.0 632.4 s

2 30 · 2−14 2 20, 591.4± 1.0 736.3 s

2 30 · 2−14 3 20, 592.3± 1.0 684.8 s

3 30 · 3−9 1 20, 591.5± 1.0 712.1 s

3 30 · 3−9 2 20, 591.2± 0.9 884.4 s

4 30 · 4−8 1 20, 591.5± 1.0 674.1 s

4 30 · 4−8 2 20, 591.1± 1.0 701.5 s

TABLE I. A range of system configurations for the fixed-time-step multi-level method used to esti-

mate E[X3(30)] for system (12). The estimator is unbiased, and we therefore have L+2 components

to each estimator.

a range of possible system configurations. Detailed in Table I, we show that the multi-level

method can give E[X3(30)] = 20591.6±1.0 within 632.4 seconds. This represents a factor 3.3

time saving over the Gillespie DM. Whilst significant, this time saving is substantially lower

than the results which have been demonstrated elsewhere in the literature for other reaction

networks2,23.

B. Case Study II: A growth model

We next consider a test model that involves three species. The reaction network is given

by:

R1 : ∅
1/4−−→ S1; R2 : S1 + S2

1/2−−→ S1 + 2S2;

R3 : 2S2
1/50−−→ S2; R4 : 2S2

1/10000−−−−→ 2S2 + S3. (13)

The reaction rates we will use are indicated in (13) and the initial conditions are [X1, X2, X3]
T

= [1, 5, 0]T . In Figure 2 we present a sample trajectory of this system for t ∈ [0, 100]. This

time reaction activity increases dramatically over the course of the simulation. Suppose we

wish to estimate E[X3(100)]. The DM provides an estimate of this quantity as 1, 535.9± 1.0.

This calculation takes 93,408 seconds (approximately 26 hours) on our PC and uses 1,600,000

sample paths (as with the previous example, a number of preliminary simulations were used

10



FIG. 2. The temporal evolution of a single sample path of reaction system (13) on two different

time-scales. Reaction rates are give in (13) and initial conditions are as described in the text.

K τ0 L Estimate Time

2 100 · 2−9 2 1, 535.7± 1.1 1,966.7 s

2 100 · 2−9 3 1, 535.6± 1.0 2,094.5 s

3 100 · 3−6 1 1, 536.9± 1.0 1,832.2 s

3 100 · 3−6 2 1, 535.3± 1.0 1,977.6 s

4 100 · 4−5 1 1, 536.0± 1.0 2,227.2 s

4 100 · 4−5 2 1, 536.9± 1.0 2,347.0 s

TABLE II. A range of system configurations for the fixed-time-step multi-level method used to

estimate E[X3(100)] for system (13). The estimator is unbiased, and we therefore have L + 2

components to each estimator.

to estimate the sample variance, and hence the total number of simulations required). In

Table II we show that the fixed-time-step multi-level method provides at least a factor 51

saving over the Gillespie DM, as the multi-level method estimates this quantity within 1,832.2

seconds. However, we will demonstrate through the use of an adaptive multi-level algorithm,

even this significant saving can be improved upon.
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C. Disadvantages of fixed-time-step multi-level

Generating trajectories using the tau-leaping method with a fixed choice of τ throughout a

simulation poses inherent difficulties. Firstly, for temporal regions in which species numbers

are changing rapidly we need to be careful not to choose τ too large that the reaction

propensities change considerably over the course of a leap τ 15. At its worst, too large a τ

can render the tau-leap method numerically unstable and therefore non-convergent. With

a fixed choice of τ this means that the temporal region of the path that requires the most

stringent bound on τ determines the overall bound, τcritical. This limits the choices for τ0

and consequently τ1, τ2, . . . in the multi-level method. In particular, it is possible that the

time taken to generate a single tau-leaping path with time step τ < τcritical is greater than

that required generate a single sample path using the DM, rendering the multi-level method

redundant.

Secondly, at different times during the evolution of a sample path, the reaction propensities

will change at different rates. In reaction system (12), within the initial transient phase of a

simulation, reaction propensities change quickly with respect to time and therefore must be

updated frequently in order to maintain accuracy of the tau-leap method. However, in the

slower phase, propensity functions change more slowly and hence larger time-steps can be

tolerated between recalculation. Similarly, in reaction system (13), the reaction propensity

of R4, the reaction propensity associated with the production of S3, is more sensitive to

population changes at higher populations of S2 than at lower populations (as it is proportional

to X2(X2 − 1)).

This means that if we would like to use a fixed number of τ leaps to generate sample

paths over the interval [0, T ] to generate a particular estimator, for example, varying the

lengths of the leaps over the course of each individual sample path may give rise to a more

accurate estimator. As such, we next present a generalization of the multi-level method an

adaptive choice of τ . Although our revised method introduces some additional computational

overheads it can give rise to significantly reduced simulation times.
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IV. A NEW MULTI-LEVEL APPROACH

The key difference between the original multi-level method2 described in Section II and

our improved approach is that the sample paths generated on each level will no longer be

generated using the tau-leap method with constant values of τ . Instead of indexing each set

of sample paths by a choice of τℓ we will work with a control parameter, ξℓ, and the time

steps for each set of sample paths will be determined according to a formula parameterized

by ξℓ. As such, we will use a control parameter ensemble, ξ := (ξ0, ξ1, ξ2, . . . , ξL), to generate

our multi-level estimator. A biased multi-level estimator, Qb, is given by the telescoping sum

of L+ 1 components

Qb = E[Zh(ξL)] = E[Zh(ξ0)] + E[Zh(ξ1) − Zh(ξ0)] + . . .+ E[Zh(ξL) − Zh(ξL−1)], (14)

where h(·) is the function which maps the control parameter to a regime of τ selection. In

addition, an unbiased estimator of L+ 2 terms is given by:

Qu = Qb + E[X − Zh(ξL)], (15)

where X is the value of the random variable of interest generated using an exact SSA.

A. The base level, Q0

The base level estimator

Q0 := E[Zh(ξ0)], (16)

can be estimated with the usual tau-leaping algorithm described in Section II. Details of the

algorithm we use to choose τ in this work are given in Section VA.

B. The tau-leaping correction terms, Qℓ

We now describe an approach for estimating terms of the form Qℓ := E[Zh(ξℓ) − Zh(ξℓ−1)],

where ℓ ∈ {1, 2, . . . L}. We have

Qℓ = E
[
Zh(ξℓ) − Zh(ξℓ−1)

]

≈ 1

nℓ

nℓ∑

r=0

{
Z

(r)
h(ξℓ)

− Z
(r)
h(ξℓ−1)

}
, (17)
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where Z
(r)
h(ξℓ)

represents the population of the i-th species at a time T in the r-th sample path,

where tau-leaping with time steps determined according to rule h(ξℓ) have been used. If we

are able to generate sample paths to estimate (17) so that Qℓ has a low sample variance,

then few sample paths will be required to attain a desired statistical error.

As we are constructing a Monte Carlo estimator, we require each of the bracketed{
Z

(r)
h(ξℓ)

− Z
(r)
h(ξℓ−1)

}
terms in (17) to be independent of the other bracketed terms in (17).

To generate the r-th sample value,
{
Z

(r)
h(ξℓ)

− Z
(r)
h(ξℓ−1)

}
, we will need to simultaneously gen-

erate two sample paths using tau-leaping, but with the reaction propensities updated at

different times. In describing our algorithm we do not need to specify a particular method

for choosing τ , however, the method used to present results in this work is outlined in

Section VA.

As with the fixed-time-step multi-level method, the key point to note is that there is no

need for Z
(r)
h(ξℓ)

and Z
(r)
h(ξℓ−1)

, to be independent of one another. This is because our estimator

Qℓ does not depend on the actual copy numbers within each system, but on the difference

between these random variates. Hence, Qℓ can be determined with a Monte Carlo simulator

taking samples of the difference only. By recalling that

Var[Zh(ξℓ) − Zh(ξℓ−1)] = Var[Zh(ξℓ)] + Var[Zh(ξℓ−1)]

−2 · Cov[Zh(ξℓ), Zh(ξℓ−1)], (18)

we note it is therefore permissible, and in our interests, for Z
(r)
h(ξℓ)

and Z
(r)
h(ξℓ−1)

to exhibit a

strong positive correlation.

We achieve this positive correlation in the species of interest, Si, at time T by keeping the

state vectors of each system as similar to each other as possible over the time-span of the

sample path. Since both systems start with the same initial conditions, one approach is to

aim to have each reaction channel fire a similar number of times in both systems so that the

corresponding population levels are similar. It is, however, crucial that the distributions of the

random variables Z
(r)
h(ξℓ)

and Z
(r)
h(ξℓ−1)

are the same as would be produced by the corresponding

tau-leaping method with the appropriate control parameter.

We briefly mention a lemma required to underpin our theoretical analysis24:

Lemma 1 Suppose P1, P2, and P3 are independent Poisson distributions. Then for param-

14



eters a > 0, b > 0,

P1(a+ b) ∼ P2(a) + P3(b).

This thickening property means that a Poisson random variate with parameter a + b can

be generated by generating two Poisson variates, one with parameter a and the other with

parameter b, and then summing these together.

We now state our general approach to simultaneously calculating the sample paths Z
(r)
h(ξℓ)

and Z
(r)
h(ξℓ−1)

, which we will denote the fine and coarse paths, respectively, up to a terminal

time T :

1. let t denote the current system time. Initially set it to equal t0;

2. let Zc(t) and Zf (t) (resp.) denote the state vectors of the approximate coarse and fine

(resp.) paths, at time t, with time steps determined according to h(ξℓ−1) and h(ξℓ)

(resp.). Set these both to equal the desired initial conditions;

3. for each reaction channel, Rj, define acj to be its propensity function when considering

the coarse resolution path, and, similarly, define afj to be the propensity function for

the fine path. Based on Zc(t) and Zf (t), calculate reaction propensities acj and afj for

each reaction channel, Rj;

4. calculate the next update times (NUTs), Tc and Tf , for the coarse and fine paths,

respectively. Set Tc := t+ h(ξℓ−1,Zf (t)) and Tf := t+ h(ξℓ,Zc(t)): these represent the

times at which the coarse and fine reaction propensities need to be updated, respec-

tively;

5. set η := min{Tc, Tf , T}−t. Our aim is to provide a new state vector for both the coarse

and fine paths at time min{Tc, Tf , T}. Including T in this minimum ensures that we

get an estimated population up until time T but no further. For each reaction channel,

Rj, define:

b1j = min {afj , acj},

b2j = acj − b1j ,

b3j = afj − b1j .

(19)
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We note that by Lemma 1, with a time step of η,

P(acj · η) ∼ P(b1j · η) + P(b2j · η),

P(afj · η) ∼ P(b1j · η) + P(b3j · η);
(20)

6. for r = 1, 2, and 3, and reaction channels indexed by j = 1, . . . ,M , generate Poisson

random numbers, Y r
j , with parameters brj · η, and provide updated state vectors:

Zc(t+ η) := Zc(t) +
M∑

j=1

(Y 1
j + Y 2

j )νk,

Zf (t+ η) := Zf (t) +
M∑

p=1

(Y 1
j + Y 3

j )νk;

(21)

7. set t := t+ η (or, equivalently, t := min{Tc, Tf , T});

8. if t = Tc, then, if required, update acj for each reaction channel, Rj, using Zc(t).

Similarly, if t = Tf update afj if needs be. In each case where an update occurs,

update Tc or Tf to represent the new NUT by setting Tc := Tc + h(ξℓ−1,Zc(t)) or

Tf := Tf + h(ξℓ,Zf (t0)) as required;

9. if t < T return to step five.

Figure 3 provides a visual representation of how the first four iterations of the algorithm might

behave. Our algorithm shows that it is possible to decide on the time steps of the coarse and

fine paths independently, but generate them simultaneously. Perhaps most importantly, it is

clearly true that this algorithm has no need for the increments of the fine path to be nested

within (or, indeed, even to be smaller than) those of the coarse path.

C. The final level, Q∗
L+1

The coupling on the final level to produce the corrector Q∗
L+1 := E[X − Zh(ξL)] can be

done using, for example, a method akin to the Modified Next Reaction Method1 or Gillespie’s

DM20.
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η3︷ ︸︸ ︷

η4︷ ︸︸ ︷

Tf

Tf

Tf

Tf

Tc

Tc

Tc

Tc

1

2

3

4

Increasing Time →

FIG. 3. A diagrammatic representation of a possible first four iterations of the algorithm, shown on

a time axis. The vertical lines represent the discretization of time: the NUT of the fine system is

shown in blue, and the corresponding update times of the coarse path are in red. The green shows

time steps, η1, . . . , η4, that are used for each iteration. For the first iteration, the NUT of the fine

path, Tf , is reached before the NUT of the coarse path, Tc. Consequently, the paths are advanced

to the fine NUT with a time step of η1. We update the propensity values of the fine path only, and

revise the NUT of the fine path. The second iteration starts by noting that the NUT of the fine

path again occurs sooner than the NUT of the coarse path, and so a jump of η2 to reach the fine

NUT is implemented. The propensity values and NUT of the fine path are updated. For iteration

three, Tf is larger than Tc, and so a jump of η3 is taken. In this case, a new set of propensity values

and a new NUT is calculated for the coarse path. The fourth iteration progresses the system to Tc

(as Tc < Tf ) and the appropriate updates are performed.

V. NUMERICAL EXAMPLES

We now return to the motivating examples of Section III and implement an adaptive multi-

level method to demonstrate the efficiency of our approach. In each case, results generated

using the Gillespie DM and a fixed-time-step multi-level implementation are compared. First,

however, we outline our method for adaptive choice of τ .
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A. Adaptive choice of τ

The method of adaptive τ choice we employ in this work is that of Cao, Gillespie and

Petzold6 (the CGP method). It is predicated on the ‘leap condition’: that is, over a time

interval τ , the propensity functions within a system should remain ‘approximately constant’.

In other words, the change in each propensity function should be small in relation to its

magnitude. If the state vector at a time t is given by X(t) = x, then denote the change in

the propensity function for channel Rj from time t to t + τ as ∆τaj(x). In order to achieve

the leap condition with high probability we follow the approach of CGP and insist that

τ ≤ max{ξℓ/gi · xi, ci}
|∑j νijaj(x)|

and τ ≤ max{ξℓ/gi · xi, ci}2∑
j ν

2
ijaj(x)

, (22)

for all reactant species Si (i.e. where Xi is an argument of some propensity function). Here

ξℓ is the control parameter described previously, gi is a weight function which indicates the

relative effect of changes in Xi on the leap condition and ci is the minimum expected change

allowed: it is normally set to unity as this is the minimum possible change in population. In

the original CGP method, special care is taken to mitigate the risk of a negative population

being realized, and certain reaction channels are labeled as ‘critical’ and afforded special

treatment. We temporarily overlook this complication and instead take

τ = min
i∈Ir

{
max{ξℓ/gi · xi, ci}
|∑j νijaj(x)|

,
max{ξℓ/gi · xi, ci}2∑

j ν
2
ijaj(x)

}
, (23)

with the parameters as previously defined, and Ir as the set of reactant species.

1. Case Study I: A dimerization model

We recall that the reaction network (12) is given by:

R1 : S1
1−→ ∅; R2 : S2

1/50−−→ S3;

R3 : S1 + S1
1/500−−−→ S2; R4 : S2

1/2−−→ S1 + S1.

In Table III the results of estimating E[X3(30)] using a range of adaptive multi-level con-

figurations are given. These show unbiased estimates, according to equation (15). In each

case, an ensemble of control parameters is given; these parameters are used to implement our
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Control parameter ensemble Estimate Time

(1, 0.5, 0.25, 0.125, 0.0625) 20, 591.5± 1.0 103.7 s

(0.9, 0.3, 0.1) 20, 591.4± 1.0 84.1 s

(0.9, 0.3, 0.1, 0.03) 20, 591.7± 1.0 93.2 s

(0.8, 0.2, 0.05) 20, 591.5± 1.0 84.2 s

(1, 0.2, 0.04) 20, 591.5± 1.0 86.3 s

(1, 0.1, 0.01) 20, 591.6± 1.0 94.0 s

(1, 0.75, 0.5, 0.25) 20, 592.3± 1.0 107.4 s

(1, 0.75, 0.5, 0.25, 0.01) 20, 590.5± 1.0 111.2 s

TABLE III. A range of control parameter ensembles are tested in order to estimate E[X3(30)] for

reaction system (12).

Level (ξℓ, ξℓ−1) Mean Variance Samples Time

0 0.9 20, 675.9 9, 551.3 72, 968 41.4 s

1 (0.3, 0.9) -61.1 144.9 4,162 11.9 s

2 (0.1, 0.3) -15.6 37.0 1,403 9.1 s

3 (DM, 0.1) -7.8 20.5 312 21.8 s

Total: 20, 591.4± 1.0 - 84.1 s

TABLE IV. The contribution of each term in equation (15) to the overall multi-level estimator of

E[X3(30)] for reaction system (12) with ξ = (0.9, 0.3, 0.1).

chosen method6 of adaptively selecting τ . We used the method outlined in Anderson and

Higham 2 and Lester et al. 20 to determine how many sample paths to generate on each level.

Most impressively, for control parameters ξ = (0.9, 0.3, 0.1) we achieve an estimate of

E[X3(30)] as 20, 591.4 ± 1.0 within 84.1 seconds. This is approximately 25 times faster

than the DM method. In addition, it is over 7.5 times faster than the most efficient results

presented in Table I where the original multi-level method was employed. In Table IV we

show the contribution from each of the four levels to this estimator.
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Control parameter ensemble Estimate Time

(1, 0.5, 0.25, 0.125, 0.0625) 1, 535.3± 1.0 687.7 s

(0.9, 0.3, 0.1) 1, 535.2± 1.0 630.4 s

(0.9, 0.3, 0.1, 0.03) 1, 536.5± 1.0 648.4 s

(0.8, 0.2, 0.05) 1, 536.6± 1.0 638.0 s

(1, 0.2, 0.04) 1, 535.3± 1.0 621.9 s

(1, 0.1, 0.01) 1, 535.9± 1.0 783.1 s

(1, 0.75, 0.5, 0.25) 1, 536.3± 1.0 771.9 s

(1, 0.75, 0.5, 0.25, 0.01) 1, 536.1± 1.0 838.7 s

TABLE V. A range of control parameter ensembles are tested out as a multi-level configurations in

order to estimate E[X3(100)] for reaction system (13).

2. Case Study II: A growth model

The motivating example of interest is restated as:

R1 : ∅
1/4−−→ S1; R2 : S1 + S2

1/2−−→ S1 + 2S2;

R3 : 2S2
1/50−−→ S2; R4 : 2S2

1/10000−−−−→ 2S2 + S3.

In order to demonstrate the efficacy of our adaptive multi-level method a number of algo-

rithm configurations have been tested and the results given in Table V. Note that we have

been able to re-use the control parameter ensembles of Table III and have achieved a similar

optimization profile. For the control parameters ξ = (1, 0.2, 0.04), calculation of E[X3(100)]

was performed in 621.9 seconds, giving an estimator value of 1, 535.3± 1.0, which is compa-

rable with that given by the Gillespie DM in Section III (which took a factor of 150 times

longer to generate). In addition, our calculation was completed 2.95 times quicker that the

most efficient configuration of the original multi-level approach we found. In Table VI we

show the contribution from each of the four levels to this estimator.

VI. DISCUSSION

The multi-level method provides impressive time savings by combining a number of SSAs

in an efficient manner to generate system statistics of interest. However, the original formula-
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Level (ξℓ, ξℓ−1) Mean Variance Samples Time

0 1.0 1, 433.6 355, 662.0 2.09× 106 395.5 s

1 (0.2, 1.0) 93.3 1,743.9 57, 941 80.9 s

2 (0.04, 0.2) 7.8 162.8 5, 868 65.5 s

3 (DM, 0.04) 0.6 39.1 1, 129 80.0 s

Total: 1, 535.3± 1.0 - 621.9 s

TABLE VI. The contribution of each term in equation (15) to the overall multi-level estimator of

E[X3(100)] for reaction system (13) with ξ = (1.0, 0.2, 0.04).

tion of the algorithm required each sample path to be generated using a fixed value of τ , and

each of the levels to be nested, in the sense that τℓ = τℓ−1/K where K ∈ {2, 3 . . .}. In this

work we have shown how to extend the multi-level method to remove these restrictions, and

hence make it applicable to the study of systems where reaction activity varies substantially

on the timescale of interest. We have demonstrated the efficiency of our method using two

example systems, and in each case used the CGP method to define the adaptive choice of τ .

However, our algorithm is general in the sense that it can accommodate almost any method

for choosing τ adaptively. Our future work will be directed towards further exploration of

efficient methods for adaptively choosing τ along each sample path and the construction of

adaptive hybrid multi-level methods which allow one to switch between using approximate

and exact SSAs within the course of a single sample path23.
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