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Two-dimensional nonlinear sloshing of an incompressible fluid with irrotational flow
in a rectangular tank is analysed by a modal theory. Infinite tank roof height and no
overturning waves are assumed. The modal theory is based on an infinite-dimensional
system of nonlinear ordinary differential equations coupling generalized coordinates
of the free surface and fluid motion associated with the amplitude response of
natural modes. This modal system is asymptotically reduced to an infinite-dimensional
system of ordinary differential equations with fifth-order polynomial nonlinearity by
assuming sufficiently small fluid motion relative to fluid depth and tank breadth. When
introducing inter-modal ordering, the system can be detuned and truncated to describe
resonant sloshing in different domains of the excitation period. Resonant sloshing
due to surge and pitch sinusoidal excitation of the primary mode is considered. By
assuming that each mode has only one main harmonic an adaptive procedure is
proposed to describe direct and secondary resonant responses when Moiseyev-like
relations do not agree with experiments, i.e. when the excitation amplitude is not
very small, and the fluid depth is close to the critical depth or small. Adaptive
procedures have been established for a wide range of excitation periods as long as the
mean fluid depth h is larger than 0.24 times the tank breadth l. Steady-state results
for wave elevation, horizontal force and pitch moment are experimentally validated
except when heavy roof impact occurs. The analysis of small depth requires that
many modes have primary order and that each mode may have more than one main
harmonic. This is illustrated by an example for h/l = 0.173, where the previous model
by Faltinsen et al. (2000) failed. The new model agrees well with experiments.

1. Introduction

A partially filled tank in a ship can experience violent fluid cargo loads. The
model of ‘frozen’ fluid and linear theory of sloshing are not applicable in this
case. Very long time simulations are needed to obtain statistical estimates of the
fluid cargo response. Complex transients should be accounted for. Examples of
direct numerical simulations of the fluid motions in a tank have been reported by
Moan & Berge (1997), and EUROSLOSH Report (1995). These methods use various
finite-difference, finite-element and boundary-element approaches but it is difficult to
perform long time simulations. One reason is problems in satisfying volume (energy)
conservation in long time simulations, which then give non-realistic flows. There is
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also the additional problem of describing accurately fluid impact inside the tank (see
Faltinsen & Rognebakke 2000).

Several analytical approaches based on potential theory have been developed to
study nonlinear sloshing. Most of them examine the fluid response to regular harmonic
longitudinal or parametric excitations and use a combined asymptotic and modal
technique. In a modal representation Fourier series with time-dependent coefficients
(generalized coordinates) are used to describe the free surface evolution. The surface
shape is expressed mathematically as

z = f(x, y, t) =

∞
∑

i=1

βi(t)fi(x, y), (1.1)

where the Oxyz coordinate system is fixed relative to the tank and t is time. The
set of functions {fi(x, y):

∫

Σ0
fi dS = 0} is a Fourier basis for the mean free surface

Σ0 satisfying the volume conservation condition. Spectral theorems of linear sloshing
(proved for instance in Feschenko et al. 1969) show that a suitable Fourier basis is the
set of natural modes. There is a limited class of tank shapes where analytical solutions
of the natural modes are known. Examples are two- or three-dimensional rectangular
tanks and vertical circular cylindrical tanks. Otherwise, numerical methods have to
be used to find surface mode shapes as was done by Solaas & Faltinsen (1997). The
expansion of the solution in a series of eigenfunctions is convenient when sloshing
resembles standing waves, namely for finite fluid depth. It is not convenient when
travelling waves matter, i.e. for smaller fluid depth.

If it is assumed that the generalized coordinates βi(t) are sufficiently small within
the known asymptotic inter-modal relationship, the modal presentation (1.1) becomes
the base for an asymptotic approach. It reduces the original free boundary problem
to a finite sequence of asymptotic approximations in βi. The asymptotic procedure
implies typically a single dominant function βk so that 1 ≫ βk ≫ βi, i > 1, i 6= k.
An appropriate inter-modal relationship (detuning procedure) with one dominating
primary mode β1 was proposed by Moiseyev (1958) to describe steady-state (periodic)
resonant sloshing in a two-dimensional rectangular tank. The tank was forced to
oscillate horizontally and sinusoidally with small amplitude in a frequency domain
close to the lowest natural frequency. This made it possible to develop the third-order
theory of steady-state sloshing due to small-amplitude horizontal (angular) excitation
reported by Faltinsen (1974). This theory is not uniformly valid for critical depth
h/l = 0.3374 . . . (l is the tank breadth). The fifth-order fluid response at critical depth
was derived by Waterhouse (1994) in order to cover this case. Moiseyev’s detuning
procedure undergoes a change for small fluid depths. This was reported by for instance
Ockendon, Ockendon & Johnson (1986).

The single dominant asymptotic relations introduced by Moiseyev have also been
used to describe the modulated (unsteady) waves in a two-dimensional rectangular
tank. A Duffing-like equation describes the slowly varying primary mode amplitude
〈β1〉. The derivations of this equation can be found for instance in papers by Shemer
(1990) and Tsai, Yue & Yip (1990). The Moiseyev-like approach was extended to
three-dimensional vertical cylindrical tanks of rectangular (circular) cross-sections
by Miles (1984a, b, 1994), and Henderson & Miles (1991) for both directly and
parametrically excited surface waves.

Non-dominating modes have also been accounted for. For instance, Faltinsen (1974)
and Faltinsen et al. (2000) have considered the contribution of the second and third
(driven) modes for respectively steady-state and unsteady sloshing. Faltinsen et al.
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(2000) derived a modal system of nonlinear ordinary differential equations coupling
nonlinearly β1, β2 and β3. This modal system is consistent with Moiseyev’s asymptotic
assumptions and implies β1 ∼ ǫ1/3, β2 ∼ ǫ2/3, β3 ∼ ǫ, where ǫ is small parameter
characterizing the ratio between the excitation amplitude and the tank breadth.
This modal system was validated for different finite fluid depths, excitation periods
and small excitation amplitudes by experimental studies of sway (surge) sinusoidally
excited sloshing. Time records of wave elevation near the wall starting from an initially
calm fluid up to a time corresponding to 50 forced oscillation periods were studied. It
was shown that the second and third modes contribute considerably. Beating waves
due to nonlinear interactions between natural and forced solutions were important
for a very long time. Steady-state solutions, where the beating disappears, were not
achieved during the time period examined for the cases studied without tank roof
impact. The reason is the very small damping in smooth tanks as long as the water
does not hit the tank roof. Good agreement between theory and experiment was
documented.

Further investigations by this asymptotic model have shown its limitations in
simulating fluid sloshing when maximum free surface elevation is the order of the
tank breadth or fluid depth. This happens if either ǫ is not very small, or the depth
h is close to the critical value h/l = 0.3374 . . . or in shallow water. The numerical
simulations give a non-realistic response in the secondary modes. The assumption
of a single dominant mode is then questionable. A way to solve this problem for
surge- and pitch-excited sloshing in a rectangular tank is proposed in this paper.
The failure of the asymptotic approximations is explained as due to nonlinear fluid
interactions causing energy with frequency content at higher natural frequencies. The
analysis is based on the concept of the secondary resonance predicted for steady-state
solutions by Faltinsen et al. (2000). It suggests that for resonance harmonic excitation
of the primary mode (σ is the excitation frequency and σ → σ1)† nonlinearities can
cause oscillations with frequency mσ so that the mth natural frequency σm of the
fluid is close to mσ. The generalized coordinate βm will be amplified and can be
of the same order as β1. Since the difference between natural frequencies decreases
with decreasing fluid depth, this is more likely to occur at smaller fluid depths.
This is a reason why the single dominant mode theories are invalid for small fluid
depth. In addition, if the excitation amplitude increases, the fluid response becomes
large in an increased frequency domain around the primary natural frequency. The
effective domain of the secondary resonance increases too. The second and third
mode secondary resonance zones can overlap with the primary resonant zone and
each other. Since the amplification of the fluid motion is relatively larger in the vicinity
of the critical depth than at other fluid depths, the upper bound of tank excitation
amplitude where the theory by Faltinsen et al. (2000) is applicable for critical depth
is relatively small.

We will still assume ǫ to be small and that the response is asymptotically larger
than the excitation. The method uses the infinite-dimensional nonlinear modal system
derived by Faltinsen et al. (2000) and Taylor expansion of volume-varying integrals
depending on βi. The derived approximate modal system couples βi and translatory
body motion terms up to fifth-order polynomials in βi. Third-order terms are included
for angular excitation. The procedure is consistent with asymptotic assumptions by
Narimanov (1957). The coefficients of this system depend uniquely on the mean
depth, and can be computed before a time simulation. This infinite-dimensional

† All the frequencies herein mean circular frequencies with dimension [rad s−1].
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system should be detuned (truncated) to obtain a finite-dimensional structure. The
Moiseyev asymptotics by Faltinsen et al. (2000) is a particular case. The secondary
resonance needs two or more modes to have the same order.

The theory is validated by experimental data obtained by Olsen & Johnsen (1975),
Olsen (1970, personal communication), Abramson et al. (1974) and Mikelis, Miller &
Taylor (1984). Comparisons are made for steady-state wave amplitude, hydrodynamic
force and moment on the tank. Some isolated cases of transients are considered for
small fluid depth. Comparisons are made with experimental time records of wave
elevation by Rognebakke (1999). When the mean fluid depth was less than 0.24 times
the tank breadth, it was not possible to find asymptotic relations between βi that
applied for all forced excitation periods near primary resonance.

Our Fourier representation prevents us extending the proposed method to travelling
and run-up wave phenomena. If it has a finite number of dominant modes, the
Fourier series (1.1) can be asymptotically truncated. Both the travelling wave and
run-up need an infinite or too large a number of Fourier approximations to get
satisfactory convergence. In addition, the series (1.1) has only weak convergence in
mean square metrics. The surface modes based on our theory have a right-angled
contact angle between fluid surface and tank wall, and, therefore, (d/dx)fi = 0 at the
wall. However, the real surface shape z = f(x, t) can have a non-right-angled contact
angle during run-up. This means that there is a non-uniform convergence of (1.1) on
the mean free surface [−l/2, l/2], which can be important at smaller fluid depths.

The theory assumes infinite tank roof height, but roof impact is very likely during
realistic sloshing in ship tanks. This can be handled for a horizontal or chamfered tank
roof in a similar way as done by Faltinsen & Rognebakke (1999) and Rognebakke &
Faltinsen (2000). They used the theory by Faltinsen et al. (2000) as an ambient flow. If
roof impact is included, the proposed adaptive multimodal approach can be applied
to sloshing in a smooth rectangular or prismatic tank of a ship in realistic seaways
and allows simulation of coupled motions (see Faltinsen & Rognebakke 2000). But
a strategy has to be established that accounts for simultaneous excitation frequencies
as well as vertical tank motions.

2. Modal sloshing theory

2.1. Statement of the problem

The free boundary problem on sloshing of an incompressible fluid with irrotational
flow has the following form:

∆Φ = 0 in Q(t);
∂Φ

∂ν
= v0 · ν + ω · [r × ν] on S(t),

∂Φ

∂ν
= v0 · ν + ω · [r × ν] −

ξt

|∇ξ|
on Σ(t),

∂Φ

∂t
− ∇Φ · (v0 + ω × r) + 1

2
(∇Φ)2 +U = 0 on Σ(t),

∫

Q(t)

dQ = const.































(2.1)

Here Q(t) is the fluid volume, t is time, Φ(x, y, z, t) is the velocity potential in the fixed
reference frame, ξ(x, y, z, t) = 0 is the equation of the free surface and ν is the outer
normal to Q(t). A moving coordinate, Oxyz, system fixed with respect to the body
is used. v0(t) is the translatory velocity vector of the origin O, ω(t) is the rigid body
angular velocity vector, r is the position vector relative to O and U is the gravity
potential. Further S(t) is the wetted body surface and Σ(t) is the free surface. The
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second condition on the free surface, Σ(t), is the constant pressure requirement, and
the second term in that condition arises from the use of a moving coordinate system.

Faltinsen et al. (2000) have developed a semi-analytical variational approach to
the free boundary problem (2.1). The variational procedure is based on the works
by Miles (1976) and Lukovsky (1976). When a rigid smooth tank has a vertical wall
near the free surface in its equilibrium position and no overturning wave occurs,
the continuum problem is reduced to a discrete conservative mechanical system with
infinite degrees of freedom. The method implies that the free surface z = f(x, t) and
Φ in two-dimensional flows are expressed as

f(x, t) = βi(t)fi(x); Φ(x, z, t) = v0xx+ v0zz + ω(t)Ω(x, z, t) + Rk(t)ϕk(x, z), (2.2)

where the repeated upper and lower indexes mean summation and v0 = {v0x, 0, v0z},
ω = {0, ω, 0}. Further the set {fi(x)} is a Fourier basis for the mean free surface
and {ϕn(x, z)} is a complete set of harmonic functions having zero normal velocity at
the tank boundaries. The completeness of the basis functions is assumed in suitable
Sobolev metrics defined, for example, by Marti (1986) for the Neumann boundary
problem within the Laplace equation. Ω(x, z, t) is the Stokes–Zhukovsky potential
defined by Neumann boundary value problem

∆Ω = 0 in Q(t);
∂Ω

∂ν

∣

∣

∣

∣

S(t)+Σ(t)

= zν1 − xν3, (2.3)

where ν = {ν1, 0, ν3} is the outer normal to Q(t).
The variational procedure gives the following infinite-dimensional system of non-

linear ordinary differential equations coupling βi and Rn:

d

dt
An − AnkR

k = 0, n > 1; (2.4)

Ṙn
∂An

∂βµ
+

1

2

∂Ank

∂βµ
RnRk +

[

ω̇
∂lω

∂βµ
+ ω

∂lωt

∂βµ
−

d

dt

(

ω
∂lωt

∂β̇µ

)]

+(v̇0x − g1 + ωv0z)
∂l1

∂βµ
+ (v̇0z − g3 − ωv0x)

∂l3

∂βµ
−

1

2
ω2 ∂J

1
22

∂βµ
= 0, µ > 1, (2.5)

where gi are the projections of the gravity acceleration vector and the dot means a
time derivative.
An, Ank , lω , lωt, l1, l3 and J1

22 are integrals over the time-dependent domain Q(t), and,
therefore, are functions of βi. Their explicit form is given by Faltinsen et al. (2000) as

An = ρ

∫

Q(t)

ϕn dQ, Ank = ρ

∫

Q(t)

∇ϕn · ∇ϕk dQ, (2.6)

lω = ρ

∫

Q(t)

Ω dQ, lωt = ρ

∫

Q(t)

∂Ω

∂t
dQ,

∂l3

∂βi
= ρ

∫

Σ0

f2
i dSβi;

∂l1

∂βi
= ρ

∫

Σ0

xfi dS,

(2.7)

J1
22 = ρ

∫

Q(t)

(

z
∂Ω

∂x
− x

∂Ω

∂z

)

dQ = ρ

∫

S(t)+Σ(t)

Ω
∂Ω

∂ν
dS, (2.8)

where ρ is fluid density and Σ0 is the mean free surface.
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Figure 1. Coordinate system.

2.2. Derivation of third- ( fifth)-order modal sloshing theory in a rectangular tank

We consider the fluid volume Q(t) in a rectangular tank:

Q(t) = {−l/2 < x < l/2,−h < z < f(x, t)} (2.9)

where l is the tank breadth and h is the mean fluid depth. The mean free surface Σ0 is
at z = 0 in the moving coordinate system Oxz. The origin O is situated in the middle
of the tank (see figure 1).

We associate the modal functions {fi(x)} and {ϕi(x, z)} with natural modes, i.e.

fi(x) = cos ({i(x+ l/2)); ϕi(x, z) = fi(x)
cosh ({i(z + h))

cosh ({ih)
, {i =

πi

l
, i > 1.

(2.10)

They can be obtained from the spectral problem for linear sloshing. fi(x), i > 1 gives
the Fourier basis on (−l/2, l/2) in the mean square metric for a square integrable
function f(x) :

∫ l/2

−l/2 f(x) dx = 0. (The last integral condition follows from the volume

conservation condition.)
The asymptotic procedure requires Taylor expansions of the integrals (2.6), (2.7)

and (2.8) in the Taylor series in βi and excitation components v̇0x, v̇0z , ω. This is only
possible if the resulting free surface elevation with respect to the mean free surface is
sufficiently small relative to tank breadth or fluid depth.

The integrals An, Ank will be expanded up to fifth-order polynomials in βi. Other
integrals depending on Ω will be expanded up to third order, due to mathematical
problems in asymptotic approximations. The zero-order approximation of Ω does not
allow for calculations of high derivatives.

The Taylor series of (2.6) gives

An

ρ
=

∫

Q0

ϕn dQ+

∫ l/2

−l/2

ϕnf dx+
1

2

∫ l/2

−l/2

∂ϕn

∂z

∣

∣

∣

∣

z=0

f2 dx+
1

6

∫ l/2

−l/2

∂2ϕn

∂z2

∣

∣

∣

∣

z=0

f3 dx

+
1

24

∫ l/2

−l/2

∂3ϕn

∂z3

∣

∣

∣

∣

z=0

f4 dx+
1

120

∫ l/2

−l/2

∂4ϕn

∂z4

∣

∣

∣

∣

z=0

f5 dx+ o(f5). (2.11)

By inserting (2.2) into (2.11) we get, correct to fifth order,

An = ρ
l

2
{βn + 1

2
EnΛ

(1)
nijβ

iβj + 1
3
CnnΛ

(2)
nijkβ

iβjβk + 1
12
CnnEnΛ

(3)
nijkpβ

iβjβkβp

+ 1
30
C2
nnΛ

(4)
nijkpqβ

iβjβkβpβq}, (2.12)
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where

En = 0.5{n tanh ({nh) =
πn

2l
tanh ({nh); Cnk = 1

8
{n{k = nk

π
2

8l2
. (2.13)

Here we have introduced the integer tensors Λ, defined in Appendix A. The tensors
Λ are zero when one of the indexes exceeds the sum of the other indexes (for example,
Λ

(4)
nabcdf = 0, when n > a+ b+ c+ d+ f). This leads to finite tensor sums in most of the

formulas below unless the expressions are based on the other set of tensors X and Y

(see their definitions in Appendix A). The summation symbol will then be introduced
to underline that a sum becomes infinite.

Equations (2.4) and (2.5) require dAn/dt and ∂An/∂βµ to be known. The explicit
expressions for these derivatives are

dAn
dt

= ρ
l

2
{β̇n + EnΛ

(1)
nij β̇

iβj + CnnΛ
(2)
nijkβ̇

iβjβk + 1
3
CnnEnΛ

(3)
nijkpβ̇

iβjβkβp

+ 1
6
C2
nnΛ

(4)
nijkpqβ̇

iβjβkβpβq}; (2.14)

∂An

∂βµ
= ρ

l

2
{δnµ + EnΛ

(1)
niµβ

i + CnnΛ
(2)
nijµβ

iβj + 1
3
CnnEnΛ

(n)
nijkµβ

iβjβk

+ 1
6
C2
nnΛ

(4)
nijkpµβ

iβjβkβp}. (2.15)

The tensor products AnkR
k in (2.4) and (∂Ank/∂βµ)R

nRk in (2.5) should be calculated
up to fifth-order polynomials in Rk . The expansion of Ank must therefore be made up
to fourth order. The Taylor series gives

Ank

ρ
=

∫

Q0

∇ϕn · ∇ϕk dQ+

∫ l/2

−l/2

(∇ϕn · ∇ϕk)

∣

∣

∣

∣

z=0

f dx

+
1

2

∫ l/2

−l/2

∂(∇ϕn · ∇ϕk)

∂z

∣

∣

∣

∣

z=0

f2 dx+
1

6

∫ l/2

−l/2

∂2(∇ϕn · ∇ϕk)

∂z2

∣

∣

∣

∣

z=0

f3 dx

+
1

24

∫ l/2

−l/2

∂3(∇ϕn · ∇ϕk)

∂z3

∣

∣

∣

∣

z=0

f4 dx+ o(f4). (2.16)

It follows that

Ank = ρ
l

2
(δnk2E

k +Π
(1)
nk,iβ

i +Π
(2)
nk,ijβ

iβj +Π
(3)
nk,ijpβ

iβjβp +Π
(4)
nk,ijpqβ

iβjβpβq), (2.17)

where the comma separates symmetric sets of indexes. The tensors Π are

Π
(1)
nk,i = 4CnkΛ

(−1)
nk,i + 2EnEkΛ

(1)
nki,

Π
(2)
nk,ij = 2Cnk(En + Ek)Λ

(−2)
nk,ij + 2(CnnEk + CkkEn)Λ

(2)
nkij ,

Π
(3)
nk,ijp = 2

3
[2Cnk(Cnn + Ckk + EkEn)Λ

(−3)
nk,ijp + (EnEk(Cnn + Ckk) + 4C2

nk)Λ
(3)
nk,ipq],

Π
(4)
nk,ijpq = 1

3
[Cnk(En(Cnn + 3Ckk) + Ek(Ckk + 3Cnn))Λ

(−4)
nk,ijpq

+(EkCnn(Cnn + 3Ckk) + EnCkk(Ckk + 3Cnn))Λ
(4)
nk,ijpq].











































(2.18)
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The partial derivatives of Ank by βµ have the form

∂Ank

∂βµ
= ρ

l

2
[Π (1)

nk,µ + 2Π (2)
nk,iµβ

i + 3Π (3)
nk,ijµβ

iβj + 4Π (4)
nk,ijpµβ

iβjβp]. (2.19)

Furthermore (2.4) is considered as a linear system of algebraic equations with
respect to functions Rk , i.e.

AnkR
k =

dAn
dt

. (2.20)

Here Rk can be expressed correct to fifth-order polynomials in βi and β̇i as

Rk =
β̇k

2Ek
+ V

2,k
i,j β̇

iβj + V
3,k
i,j,pβ̇

iβjβp + V
4,k
i,j,p,qβ̇

iβjβpβq + V
5,k
i,j,p,q,rβ̇

iβjβpβqβr . (2.21)

Tensors V are found by substituting (2.21) into (2.20) and collecting similar terms
in βi. The tensors V have no symmetry between the index i and other indexes (i
corresponds to the summation by β̇i and other indexes by βk). The structure of (2.20)
combined with (2.17) does not guarantee symmetry between indexes jpqr, which is
why the commas between i, j, p, q and r are introduced.

The asymptotic technique gives

V
2,n
a,b = 1

2
Λ

(1)
nab − (4EnEa)

−1Π
(1)
na,b,

V
3,n
a,b,c = (2En)

−1CnnΛ
(2)
nabc − (4EnEa)

−1Π
(2)
na,bc − (2En)

−1V
2,k
a,bΠ

(1)
nk,c,

V
4,n
a,b,c,d = 1

6
CnnΛ

(3)
nabcd − (4EnEa)

−1Π
(3)
na,bcd − (2En)

−1V
2,k
a,bΠ

(2)
nk,cd

−(2En)
−1V

3,k
a,b,cΠ

(1)
nk,d,

V
5,n
a,b,c,d,f = 1

12
E−1
n C2

nnΛ
(4)
nabcdf − (4EnEa)

−1Π
(4)
na,bcdf − (2En)

−1V
2,k
a,bΠ

(3)
nk,cdf

−(2En)
−1V

3,k
a,b,cΠ

(2)
nk,df − (2En)

−1V
4,k
a,b,c,dΠ

(1)
nk,f .



















































(2.22)

The time derivative of Rk is

Ṙk = (2Ek)
−1β̈k + β̈i(V 2,k

i,j β
j + V

3,k
i,j,pβ

jβp + V
4,k
i,j,p,qβ

jβpβq + V
5,k
i,j,p,q,rβ

jβpβqβr)

+β̇iβ̇j(V 2,k
i,j + 2V̄ 3,k

i,jpβ
p + 3V̄ 4,k

i,j,p,qβ
pβq + 4V̄ 5,k

i,j,p,q,rβ
pβqβr), (2.23)

where

V̄
3,k
i,jp = 1

2
(V 3,k

i,j,p + V
3,k
i,p,j), V̄

4,k
i,j,p,q = 1

3
(V 4,k

i,j,p,q + V
4,k
i,p,j,q + V

4,k
i,q,p,j),

V̄
5,k
i,j,p,q,r = 1

4
(V 5,k

i,j,p,q,r + V
5,k
i,p,j,q,r + V

5,k
i,q,p,j,r + V

5,k
i,r,p,q,j).







(2.24)

The solution of (2.3) in the time-varying domain Q(t) is required to calculate
the integrals lω , lωt and inertia tensor component J1

22. This problem will be solved
asymptotically in accordance with Narimanov’s (1957) procedure. Since the angular
velocity is assumed small, he proposed keeping only the polynomial terms depending
on angular position, velocity and acceleration up to third order. The mixed polynomial
terms like ω,ωβi, ω

2βi and ωβiβj are accounted for by Narimanov’s theory. Since
Narimanov assumed a third-order polynomial theory, these mixed terms agree with
the general assumption. In accordance with polynomial expansion of An and Ank
some additional terms should be added for considering the fifth-order approximation.
However, this is not possible due to mathematical limitations of the asymptotic
procedure, discussed in some detail below.
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When starting Narimanov’s asymptotic expansion, we get the following Neumann
boundary problem in the mean fluid domain as a zero-order approximation:

∆Ω0 = 0 in Q0;
∂Ω0

∂z
= −x (z = −h, z = 0);

∂Ω0

∂x
= z (x = ± 1

2
l). (2.25)

It has the exact analytical solution in a Fourier series

Ω0 = xz − 2aif
i(x)Fi(z); ai =

2l2

(iπ)3
X

(0)
i ; Fi(z) =

sinh ({i(z + h/2))

cosh ({ih/2)
, (2.26)

where X(0)
i is the primary tensor of the X -tensor set defined in Appendix A. Ω0 is

an infinite differentiable function in domain Q0. But the series (2.26) allows only first
and second derivatives on the mean free surface Σ0 due to asymptotics of coefficients
ai for large i. The third derivative can be considered as a generalized function. Simple
analysis shows that the second-order approximation needs the third derivatives of
Ω0, while the third-order approximation requires the fourth derivatives. The general
theory of the Neumann boundary problem (see Marti 1986) shows that the third-order
approximation problem is incorrect. The recursive problems up to the second-order
approximation have a solution in the usual sense.

We pose an asymptotic solution of (2.3) as

Ω = Ω0 + Ω1 + Ω2; Ωk(x, z, t) = χ
(k)
i (t)fi(x)Gi(z); Gi(z) =

cosh ({i(z + h))

cosh ({ih)
,

k = 1, 2, (2.27)

where χ(k)(t), k = 1, 2 are respectively linear and quadratic in βi(t) and index i implies
summation from 1 to infinity.

The expression (2.27) satisfies the Laplace equation and all the boundary conditions
except the Neumann boundary condition on the free surface. This condition is in a
linear approximation

∂Ω1

∂z

∣

∣

∣

∣

z=0

= −
∂2Ω0

∂z2

∣

∣

∣

∣

z=0

f +
Ω0

∂x

∣

∣

∣

∣

z=0

fx. (2.28)

By substituting (2.27) into (2.28) we get

Ω1 = O
(1)
µ,kβ

k(t)fµ(x)Gµ(z),

where

O
(1)
µ,k =

{
iaiT i({iΛ

(1)
kiµ − {kΛ

(−1)
ki,µ )

2Eµ
, T i = tanh

(

{i

h

2

)

. (2.29)

Ω2 satisfies the following boundary condition on Σ0:

∂Ω2

∂z

∣

∣

∣

∣

z=0

= −
1

2

∂3Ω0

∂z3

∣

∣

∣

∣

z=0

f2 +

(

∂2Ω0

∂x∂z

∣

∣

∣

∣

z=0

− 1

)

ffx +
∂Ω1

∂x

∣

∣

∣

∣

z=0

fx −
∂2Ω1

∂z2

∣

∣

∣

∣

z=0

f. (2.30)

This means that

Ω2 = O
(2)
µ,k,pβ

k(t)βp(t)fµ(x)Gµ(z),

where

O
(2)
µ,k,p =

X
(0)
i (l{i)−1({iΛ

(2)
ikpµ − 2{kΛ

(−2)
ik,pµ) + {

iO
(1)
i,k ({pΛ

(−1)
pi,µ − {iΛ

(1)
piµ))

4Eq
. (2.31)



176 O. M. Faltinsen and A. N. Timokha

We can then write

Ω = Ω0 + (O(1)
µ,iβ

i(t) + O
(2)
µ,k,pβ

k(t)βp(t))fµ(x)Gµ(z). (2.32)

When substituting (2.8) into (2.5), we find formally that the cubic approximation
of Ω is needed to derive the terms with ωβiβ

j in the square brackets of (2.5). The
following consequence of integral formulas show that (2.32) contains all the required
terms. We can write

[

ω̇
∂lω

∂βµ
+ ω

∂lωt

∂βµ
−

d

dt

(

ω
∂lωt

∂β̇µ

)]/

ρ

= ω̇
∂

∂βm

∫

Q

Ω dQ− ω̇
∂

∂β̇µ

∫

Q

∂Ω

∂t
dQ+ ω

∂

∂βµ

∫

Q

∂Ω

∂t
dQ− ω

d

dt

∂

∂β̇µ

∫

Q

∂Ω

∂t
dQ

= ω̇

[

∫ l/2

−l/2

Ω

∣

∣

∣

∣

z=f

fµ dx+

∫

Q

∂Ω

∂βµ
dQ−

∫

Q

∂2Ω

∂β̇m∂t
dQ

]

+ω

[

∫ l/2

−l/2

∂Ω

∂t

∣

∣

∣

∣

z=f

fµ dx+

∫

Q

∂2Ω

∂βµ∂t
dQ−

d

dt

∫

Q

∂Ω

∂βm
dQ

]

= ω̇

∫ l/2

−l/2

Ω

∣

∣

∣

∣

z=f

fµ dx+ ω

∫ l/2

−l/2

∂Ω

∂t

∣

∣

∣

∣

z=f

fµ dx− ω

∫ l/2

−l/2

∂Ω

∂βµ

∣

∣

∣

∣

z=f

ft dx, (2.33)

where we used that Ω0 does not depend on βµ and the following differential relations:

∂Ω

∂βµ
=

∂2Ω

∂β̇µ∂t
,

∂2Ω

∂βµ∂t
=

∂2Ω

∂t∂βµ
.

The last three integrals of (2.33) can be expanded in power series. This gives

ρ
l

2
[ω̇(L(0)

µ + βiL
(1)
i,µ + βkβpL

(2)
k,p,µ) + ω(β̇iL(3)

i,µ + β̇kβpL
(4)
k,p,µ)], (2.34)

where

L(0)
µ = −4X(0)

µ l
−1({µ)

−3Tµ, L
(1)
i,µ = O

(1)
µ,i − lπ−2X

(1)
iµ , (2.35)

L
(2)
k,p,µ = O

(2)
µ,k,p + EmO

(1)
m,kΛ

(1)
mpµ − TmX(0)

m (2πm)−1Λ
(2)
mkpµ, (2.36)

L
(3)
i,µ = O

(1)
µ,i − O

(1)
i,µ ; L

(4)
k,p,µ = 2(Ō(2)

µ,kp − Ō
(2)
k,µp) + Em(O(1)

m,kΛ
(1)
mpµ − O(1)

m,µΛ
(1)
mkp). (2.37)

Tensors X are defined in Appendix A.
The scalar function J1

22 (the component of the inertia tensor introduced by Faltinsen
et al. 2000) should be expanded in βi up to quadratic terms, i.e.

J1
22 = ρl(J (0) + βkJ

(1)
k + βkβpJ

(2)
k,p). (2.38)

Direct asymptotic expansion gives

J (0) =
h

3
(h2 − 0.25l2) −

∞
∑

i=1

4

l2{5
i

(X(0)
i )2[h{i − 4Ti], (2.39)

J
(1)
k = ({k)

−2X
(−0)
k −

∞
∑

i=1

O
(1)
i,k

4

l{i
X

(0)
i TiEi, (2.40)
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J
(2)
k,p =

∞
∑

i=1

(

lTi

π
3i2
X

(0)
i [iX(2)

ikp − Y
(2)
i,kp] − O

(1)
i,k Eilπ

−2X
(1)
ip − 4l−1O

(2)
i,k,p{

−3
i X

(0)
i TiEi

)

,

(2.41)

where Y -tensors are calculated in Appendix A.
The inertia term in (2.5) can be expressed as

−ω2 1

2

∂J1
22

∂βµ
= −ρω2 l

2
(J (1)
µ + 2J̄ (2)

µp β
p), J̄ (2)

µp = 1
2
(J (2)
µ,p + J (2)

p,µ). (2.42)

Now we can substitute (2.15), (2.19), (2.21), (2.24), (2.34), (2.38) and (2.42) into
(2.5). We get, correct to fifth order in βi and third order for terms containing angular
position and angular velocity, that

β̈a(δaµ + d
1,µ
a,bβ

b + d
2,µ
a,b,cβ

bβc + d
3,µ
a,b,c,dβ

bβcβd + d
4,µ
a,b,c,d,fβ

bβcβdβf)

+β̇aβ̇b(t0,µa,b + t
1,µ
a,b,cβ

c + t
2,µ
a,b,c,dβ

cβd + t
3,µ
a,b,c,d,fβ

cβdβf) + σ2
µβµ

+Pµ(v̇0x + ωv0z − g sinψ) + Qµβµ(v̇0z − ωv0x − g(1 − cosψ)) − ω2Qµ(J
(1)
µ + βp2J̄ (2)

µp )

+ω̇Qµ(L
(0)
µ + βiL

(1)
i,µ + βkβpL

(2)
k,p,µ) + ωQµ(β̇

iL
(3)
i,µ + β̇kβpL

(4)
k,p,µ) = 0, µ > 1, (2.43)

where

σ2
µ = 2Eµg, µ > 1; P2i−1 = −

8E2i−1l

π
2(2i− 1)2

, P2i = 0, i > 1, Qµ = 2Eµ. (2.44)

Here σµ is the natural frequency of the µth mode, ψ is the angular position and g is
the acceleration due to gravity.

Further

d
1,µ
a,b = 2Eµ(

1
2
Λ

(1)
abµ + V

2,µ
a,b ), (2.45)

d
2,µ
a,b,c = 2Eµ((2Ea)

−1CaaΛ
(2)
abcµ + EnΛ

(1)
ncµV

2,n
a,b + V

3,µ
a,b,c), (2.46)

d
3,µ
a,b,c,d = 2Eµ(

1
6
CaaΛ

(3)
abcdµ + CnnΛ

(2)
ncdµV

2,n
a,b + EnΛ

(1)
ndµV

3,n
a,b,c + V

4,µ
a,b,c,d), (2.47)

d
4,µ
a,b,c,d,f = 2Eµ(

1
12
C2
aaE

−1
a Λ

(4)
abcdfµ + 1

3
CnnEnΛ

(3)
ncdfµV

2,n
a,b + CnnΛ

(2)
ndfµV

3,n
a,b,c

+EnΛ
(1)
nfµV

4,n
a,b,c,d + V

5,µ
a,b,c,d,f), (2.48)

t
0,µ
a,b = 2Eµ(V

2,µ
a,b + (8EaEb)

−1Π
(1)
ab,µ), (2.49)

t
1,µ
a,b,c = 2Eµ(2V̄

3,µ
a,b,c + V

2,n
a,bEnΛ

(1)
ncµ + (4EaEb)

−1Π
(2)
ab,µc + (2Ea)

−1V
2,n
b,cΠ

(1)
an,µ), (2.50)

t
2,µ
a,b,c,d = 2Eµ(3V̄

4,µ
a,b,c,d + 2V̄ 3,n

a,b,cEnΛ
(1)
ndµ + V

2,n
a,bCnnΛ

(2)
ncdµ + 3

8
Π

(3)
ab,cdµ(EaEb)

−1

+Π (2)
bn,cµE

−1
b V

2,n
a,d + (2Eb)

−1V
3,n
a,c,dΠ

(1)
bn,µ + 1

2
Π

(1)
nk,µV

2,k
a,c V

2,n
b,d ), (2.51)

t
3,µ
a,b,c,d,f = 2Eµ(4V̄

5,µ
a,b,c,d,f + 3V̄ 4,n

a,b,c,dEnΛ
(1)
nfµ + 2V̄ 3,n

a,b,cCnnΛ
(2)
ndfµ + 1

3
V

2,n
a,bCnnEnΛ

(3)
ncdfµ

+ 1
2
Π

(4)
ab,µcdf(EaEb)

−1 + 3
2
Π

(3)
na,cdµE

−1
a V

2,n
b,f +Π

(2)
na,fµE

−1
a V

3,n
b,c,d

+Π (2)
nk,fµV

2,k
a,c V

2,n
b,d +Π (1)

an,µ(2Ea)
−1V

4,n
b,c,d,f +Π

(1)
nk,µV

3,n
a,c,dV

2,k
b,f ). (2.52)
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2.3. Hydrodynamic force and moment on the tank

The formulas below use coordinates (xC , zC) of the fluid centre of mass in a tank with
infinite roof height, i.e.

xC = −
l

π
2h

∞
∑

i=1

βi(t)
1

i2
(1 + (−1)i+1), zC = −

h

2
+

1

4h

∞
∑

i=1

β2
i (t). (2.53)

Our force calculations are based on the formula derived by Lukovsky (1990):

F = mg − m[v̇0 + ω × v0 + ω × (ω × rC) + ω̇ × rC + 2ω × ṙC + r̈C]. (2.54)

Here m is the fluid mass, rC is the radius-vector of the centre of mass in the moving
coordinate system and mg is the fluid weight. The terms in square brackets are: v̇0

the acceleration of the origin O, ω × v0 the tangential acceleration, ω × (ω × rC) the
centripetal acceleration, 2ω × ṙC Coriolis acceleration, r̈C the relative acceleration.

The force (Fx, 0, Fz) in two-dimensional flow can then be written as

Fx = mg1 − m(v̇0x + ωv0z − ω2xC + ω̇zC + 2ωżC + ẍC), (2.55)

Fz = mg3 − m(v̇0z − ωv0x − ω2zC − ω̇xC − 2ωẋC + z̈C), (2.56)

where the coordinates xC , zC are defined by (2.53) and the projections g1, g3 of the
gravity vector on the Oxz axes are

g1 = g sinψ, g3 = −g cosψ. (2.57)

The hydrodynamic moment relative to axis Oy can also be calculated by the
formula derived by Lukovsky (1990)

M 0 = mrC×(g−ω×v0 − v̇0)−J
1
·ω̇− J̇

1
·ω−ω×(J1

·ω)− l̈ω+ l̇ωt−ω×(l̇ω−lωt), (2.58)

where J
1 is the inertia tensor, the scalar components of which were defined by

Faltinsen et al. (2000). For two-dimensional flows we need only one scalar component
J1

22 given by (2.8).
To calculate the hydrodynamic moment relative to the other axis through point P

we can use

MP = rPO × F + M 0, (2.59)

where the hydrodynamic force is given by (2.54).
The formula (2.58) does not have a simple structure because of the term l̈ω − l̇ωt.

By using the derivations above we find

l̇ω − lωt = ρ
l

2
(β̇mL(0)

m + β̇mβpL(1)
p,m + β̇mβnβpL

(2)
k,p,m), (2.60)

where L(0), L(1), L(2) are calculated by (2.35)–(2.36). The pitch moment about O in
two-dimensional flow, M 0 = (0,M, 0), can be written as

M =m(xC(−g3 − v0xω + v̇0z) − zC(−g1 + ωv0z + v̇0x)) − ρlω̇(J (0) + βkJ
(1)
k + βkβpJ

(2)
k,p)

−ρl(β̇kJ (1)
k + 2J̄ (2)

kp β̇
kβp)ω − ρ

l

2
(β̈mL(0)

m + β̈mβpL(1)
p,m + β̈mβkβpL

(2)
k,p,m

+L(1)
p,mβ̇

mβ̇p + 2L̄(2)
kp,mβ̇

mβ̇kβp), (2.61)

where J (0), J (1), J (2) are given by (2.39)–(2.41) and

L̄
(2)
kp = 1

2
(L(2)

k,p + L
(2)
p,k).
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3. Surge- and pitch-excited resonant sloshing

3.1. Modal system for resonant sloshing

For resonant sloshing with small forced excitation amplitude the magnitudes of ω,ψ,
and v̇0x are formally associated with the small parameter ǫ. Terms o(ǫ) will be omitted.
Modal system (2.43) then takes the form

β̈µ +

∞
∑

a,b=1

d
1,µ
a,bβ̈

aβb +

∞
∑

a,b,c=1

d
2,µ
a,b,cβ̈

aβbβc +

∞
∑

a,b,c,d=1

d
3,µ
a,b,c,dβ̈

aβbβcβd

+

∞
∑

a,b,c,d,f=1

d
4,µ
a,b,c,d,fβ̈

aβbβcβdβf +

∞
∑

a,b=1

t
0,µ
a,bβ̇

aβ̇b +

∞
∑

a,b,c=1

t
1,µ
a,b,cβ̇

aβ̇bβc

+

∞
∑

a,b,c,d=1

t
2,µ
a,b,c,dβ̇

aβ̇bβcβd +

∞
∑

a,b,c,d,f=1

t
3,µ
a,b,c,d,fβ̇

aβ̇bβcβdβf

+ σ2
µβµ + Pµ(v̇0x − gψ) + ω̇QµL

(0)
µ = 0, µ > 1. (3.1)

The terms associated with J1
22 have higher order in this approximation. However,

inertia terms are present in formulas for lateral force and pitch moment. These
formulas are, correct to O(ǫ),

Fx = mgψ − m(v̇0x + ω̇z
(0)
C + ẍC); Fz = −mg − m(v̇0z + z̈C), (3.2)

M = m(xCg − z
(0)
C (v̇0x − gψ)) − ρlω̇J (0)

−ρ
l

2
(β̈mL(0)

m + β̈mβpL(1)
p,m + β̈mβkβpL

(2)
k,p,m + L(1)

p,mβ̇
mβ̇p + 2L̄(2)

kp,mβ̇
mβ̇kβp), (3.3)

where z(0)
C = −h/2 is the vertical coordinate of the centre of gravity of ‘frozen’ fluid

mass.
Modal system (3.1) does not set up a preference relation for a single dominant βi.

All the modes have been formally incorporated with the same order. The system has
a simple polynomial structure and many coefficients d and t of this system are zero.
However, a strategy (truncating procedure) is required to reduce the system to finite-
dimensional form prior to numerical simulations. The direct implementation of this
uniformly structured system is questionable if the truncating procedure is based on
simple limitation of the sum by a finite number N (see Appendix B). The number of
non-zero coefficients can be large even for a small number of equations. The system
(B 1) has for instance more than 1000 non-zero coefficients for N = 5. Another
difficulty is due to high harmonics in primary modes caused by the response of high
modes. So, for example, a term proportional to β̈1β

4
5 can appear in the first equation

of (3.1); β1 and β5 have respectively σ and 5σ as main harmonics. This gives an
oscillatory term with frequency 21σ in β1 and leads to a very stiff nonlinear system of
ordinary differential equations. The numerical time integration is then inefficient and
easily becomes unstable. It was only possible to calculate a few seconds of real time
with our numerical integrator. This unrealistically stiff system is caused by neglecting
a series of physical phenomena and real asymptotic inter-modal relations. Surface
tension and damping can be important in avoiding high harmonics. Since energy
dissipation is not present in our theoretical model, additional coefficients associated
with damping of different modes have to be incorporated. The effect of damping
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due to viscosity and surface tension should be further investigated. The studies by
Keulegan (1959), Miles (1990), Cocciaro et al. (1991) and Miles & Henderson (1998)
are useful in this context. In addition, when using the polynomial approximation
we implicitly assume both smallness and relations between the βi of polynomial
type. High-order or transcendental inter-modal interactions are neglected even if they
are important. This means that our fifth-order system cannot be considered as an
approximate modal system but only as the base for various asymptotic theories. Such
asymptotic theories assume a finite number of dominating modes and need a detuning
procedure by introducing appropriate relations between the βi.

3.2. Detuning procedure for a single dominant model

One way to tune the system is to give the summations of (3.1) an analytical condition
coupling the indexes of summations. In particular, if the sum of indexes does not
exceed 3 (order of the theory), we arrive at the modal system by Faltinsen et al. (2000)
describing the sloshing with dominating lowest primary mode

β̈1(1 +D11(1, 2)β2 + D21(1, 1, 1)β2
1 ) + D11(2, 1)β̈2β1 + T01(1, 1, 1)β̇1β̇1β1

+T01(2, 1)β̇1β̇2 + σ2
1β1 + P1(v̇0x − gψ) + ω̇Q1L

(0)
1 = 0,

D12(1, 1)β̈1β1 + β̈2 + T02(1, 1)β̇1β̇1 + σ2
2β2 = 0.















(3.4)

The coefficients of (3.4) (see Appendix B) coincide with the ones derived by Faltinsen
et al. (2000). This is an explicit verification of these theories. A third equation, which
contains β3 linearly and β1, β2 nonlinearly, can be added to the system (3.4). This
means that the third mode is considered as driven by primary and secondary modal
functions. The modal system of the fifth-order theory by Waterhouse (1994) can be
derived in a similar way from (3.1).

3.3. Detuning procedure for a secondary resonance

In a rectangular tank excited by surge and pitch we can predict direct resonance for
odd modes. This is due to P2i = Q2i = 0 in the modal equation. Secondary resonance
is explained by the nonlinear terms and can occur for any mode. The single dominant
model obtained by Faltinsen et al. (2000) gives a prediction of secondary resonance
for the secondary mode in steady-state motion. When the excitation amplitude is
sufficiently small, this happens for an excitation period domain in the neighbourhood
of

T

T1
=
σ1

σ
→

√

2 tanh (πh/l)

tanh (2πh/l)
= i(2, h/l). (3.5)

Here T1 is the highest natural period of fluid oscillations. Similarly, if we expect the
harmonic mσ to be dominating in each mth mode we can derive from modal system
(3.1) that

T

T1
=
σ1

σ
→ i(m, h/l) =

√

m tanh (πh/l)

tanh (mπh/l)
. (3.6)

Note that the position of secondary resonance does not depend on the excitation
amplitude and wave amplitude response of the primary mode in this approximation.
The theory does not give the value of the effective domain for primary and secondary
resonance, which grows with excitation amplitude. For a sufficiently small resonance
response the effective domains do not overlap each other. But overlapping can happen
for sufficiently large wave amplitude. In addition, the effective domains can undergo
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a downshift or upshift. This also leads to overlapping of these domains. Two or more
modes having the same order are then involved in resonant sloshing.

Our system has a general multidimensional structure, which can be adapted to a
multimodal resonant excitation. A preliminary analysis is required to start the simu-
lation of steady-state solutions. The analysis is connected with an a priori prediction
of inter-modal resonances. In simplified form it can be treated with the following
adaptive procedure. We consider a series of natural frequencies σ1, σ2, σ3, . . . and a
set of possible frequencies σ, 2σ, 3σ, . . . caused by the main excitation frequency σ.
If σ is close to one of the natural frequencies of the odd modes and far from the
other modes, this mode is a primary excited one. In order to add the most dangerous
secondary resonance we should find the mode (even or odd) for which the natural
frequency is close to 2σ.

Let us assume as an example that these two modes correspond to β1 and β2. The
two first nonlinear equations of the general system give a kernel of this interaction.
Any other mode βm can be considered as having lower order or driven (they are
linear in βm and nonlinear in dominating modes). The secondary resonance implies
β2 ∼ β1. This means that additional nonlinear terms in β1 and β2 should be included.
Two of the equations take then the following form:

β̈1(1 + D11(1, 2)β2 + D21(1, 1, 1)β2
1 + D21(1, 2, 2)β2

2 ) + β̈2(D11(2, 1)β1

+D21(2, 2, 1)β2β1) + T01(1, 1, 1)β̇1β̇1β1 + T11(2, 2, 1)β̇2β̇2β1

+β̇1β̇2(T01(2, 1) + T11(2, 1, 2)β2) + σ2
1β1 + P1(v̇0x − gψ) + ω̇Q1L

(0)
1 = 0,

β̈1(D12(1, 1)β1 + D22(1, 2, 1)β1β2) + β̈2(1 + D22(2, 1, 1)β2
1 + D22(2, 2, 2)β2

2 )

+β̇1β̇1(T02(1, 1) + T12(1, 1, 2)) + T12(2, 2, 2)β̇2β̇2β2

+T12(2, 1, 1)β̇1β̇2β1 + σ2
2β2 = 0.



















































(3.7)

This system is of third polynomial order in β1 and β2. It contains all the necessary
terms of Faltinsen–Moiseyev theory and a theory considering β1 ∼ β2 = O(ǫ1/2). In
addition, the third-order terms similar to β3

2 , β
2
2β1 are included to describe a ‘switch’

between these asymptotics during transients when β1 ∼ β2 = O(ǫ1/3) in the framework
of a third-order theory. The responses of third and fourth modes are not included
in the equations presented. They can be considered as driven and follow from (3.1)
when no corresponding high-mode secondary resonance occurs. Four equations for
β3, β4, β5 and β6 are nonlinear in β1 and β2 and linear in β3, β4, β5 and β6 respectively.

When the three modes β1, β2 and β3 have the same order, the corresponding
nonlinear system of differential equations can be derived in a similar way. It couples
three modal functions up to terms of third order. A similar procedure can also be
followed for the primary excited non-lowest natural mode.

Although we derived (3.7) to describe steady-state solutions, it can be used for
simulation of beating waves. These waves appear at the initial phase due to nonlinear
interaction between natural and forced solutions.

3.4. Adaptive detuning procedure

Modal functions in the general case can be associated with an order βi = O(ǫpi/K),
where K is the order of the theory and pi 6 K . The analytical conditions in summa-
tions should couple pi instead of indexes i. In order to keep only terms of O(ǫ) in
(3.1) we use the condition

∑

pi 6 K . For example,
∑∞

a,b,c,d=1 should be accompanied
by condition pa + pb + pc + pd 6 K . These conditions allow us to avoid analytical
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manipulations to derive particular cases of the uniformly valid system detuned for
different sets of pi.

4. Comparison between theory and experiments

Some series of experiments on resonant surge- and pitch-excited nonlinear sloshing
are used for validation. Olsen & Johnsen (1975) and Olsen (1970, personal communi-
cation) presented results for a tank with rectangular cross-sectional shape (see figure
2a). Abramson et al. (1974) and Mikelis et al. (1984) (see also Delft University Report
1983) used in their experimental studies the prismatic tanks shown in respectively
figures 2(b) and 2(d). These experimental series give the measured wave amplitude
near the wall, longitudinal force and pitch moment for large-amplitude steady-state
sloshing. We cannot therefore validate the adaptive procedure for large-amplitude
sloshing during the initial phase by using these experimental data. However, the
experiments by Faltinsen et al. (2000) in a surge-excited rectangular tank (see figure
2c) provide a recording of the wave amplitude when violent sloshing starts from
an initially unperturbed planar surface. They will be used to validate our adaptive
method for a case with small fluid depth where the modal theory by Faltinsen et al.
(2000) failed.

Although our theory assumes a rectangular tank, it will be applied to prismatic
tanks. The error in doing so will be assessed by examining the eigenvalues. A rough
estimate of eigenvalues σ̃2

i relative to eigenvalues σ2
i of a virtual rectangular tank with

the same fluid depth and maximum tank breadth as a prismatic tank can be made
by using the Rayleigh–Kelvin variational formula

σ̃2
i = g

∫

Q̃0

(∇ϕi)
2 dQ

∫

Σ0

ϕi dS

(see Feschenko et al. 1969). Here Q̃0 is the mean volume of fluid in the prismatic tank
and the ϕi are natural modes in the rectangular tank. The result is

σ2
i − σ̃2

i

σ2
i

= 2
πi

tanh (iπh/l)

(

sin2(iπδ1/l) + sinh2(iπδ2)

cosh2(iπh/l)

)

δ1δ2

l2
,

where δ1 and δ2 are respectively the breadth and height of the corners (see figure 3).
If this is applied to the lowest mode of the tank in figure 2(b) when h/l = 0.4, it gives
(σ2

1 − σ̃2
1)/σ

2
1 = 0.0081 . . . . When applied to the tank in figure 2(d) with h/l = 0.246,

it gives (σ2
1 − σ̃2

1)/σ
2
1 = 0.03. The error decreases with increasing mode number. The

reason is simply that the higher modes are affected to a much less extent by the tank
bottom.

We use as a basis for our studies the theoretical prediction of steady-state solutions
given by the single dominant theory by Faltinsen et al. (2000). The theory gives
the wave amplitude response A of the lowest primary mode versus excitation period
coupled by a cubic secular equation ((T/T1)2 − 1)(A/l) + m1(h/l, T/T1)(A/l)3 =P1H ,
where P1H is a dimensionless excitation amplitude. This secular equation was derived
by Faltinsen (1974) through the Moiseyev procedure and by Faltinsen et al. (2000)
in the context of modal approximation (3.4). (We should note that in the modal
approximation the coefficient m1 is a function of excitation period unlike the sec-
ular equation derived by a Moiseyev-like asymptotic procedure. This is extensively
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Figure 2. (a) Rectangular tank used by Olsen & Johnsen (1975) and Olsen (1970, personal
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Figure 3. Dimensions of the lower corner in a prismatic tank.

discussed by Faltinsen et al. (2000). The equations coincide when T = T1 in m1.)
This and many other papers using the single dominant asymptotic approach (see,
for example, Ockendon & Ockendon 1973; Shemer 1990 and Tsai et al. 1990) report
the existence of at least one stable steady-state solution as T → T1, introduce two
types of branches in the (T/T1, A/l)-plane showing these solutions and discuss the
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Figure 4. The ‘soft spring’-type amplitude response in accordance with the modal theory by
Faltinsen et al. (2000). The fluid depth exceeds the critical value h/l = 0.3374 . . . .

hysteresis in the steady-state fluid response, the dependence of branches on excitation
amplitude, the downshift (upshift) of the maximum amplitude response and so on.

Figure 4 shows schematically these theoretical predictions in accordance with
theoretical results by Faltinsen et al. (2000) for a ‘soft spring’-type response (the
classification ‘soft spring’ (‘hard spring’) solutions is adopted from characteristics of
the Duffing equation). The first (upper) branch in figure 4 implies stable solutions. The
second (lower) branch displays stable and unstable steady-state solutions with a turn-
ing point between them. The set of turning points for different excitation amplitudes
H can be found from the equation ((T/T1)2 − 1) + 3m1(h/l, T/T1)(A/l)2 = 0. The
ordinate T/T1 of the turning point defines a jump from the lower to upper branch.
Another jump from the upper to lower branch occurs as A/l increases along the upper
branch. It occurs for sufficiently large sloshing amplitudes (breakdown is caused by
various physical mechanisms including roof impact, viscous damping etc. forcing the
sloshing to unsteady regimes) and defines a downshift (‘hard spring’) or upshift (‘soft
spring’) of maximum wave amplitude response versus T/T1 relative to the exact
linear response T/T1 = 1. This pair of jumps constitutes the hysteresis between two
stable solutions. In accordance with the single dominant model by Faltinsen et al.
(2000) the maximum downshift (upshift) is always restricted by vertical asymptote
T/T1 = T∗/T1 found from the equation m1(h/l, T∗) = 0. This bound is consistent
with the fifth-order approximation by Waterhouse (1994) made for the near-critical
depth case m1(h/l, 1) ≈ 0. However, there is no downshift (upshift) for the critical
fluid depth case, where m1(h/l, 1) = 0. The third- and fifth-order single dominant
theories give then the maximal response for linear resonance T/T1 = 1.

The single dominant theory assumes the excitation amplitude and amplitude re-
sponse to be very small and gives the trend of amplitude response with increasing
the excitation amplitude. In particular, it shows that the intersection of the branches
increases with excitation amplitude. For the ‘soft-spring’ (even if m1(h/l, 1) is very
small) the turning point drifts up to the vertical asymptote T∗/T1 in the effective
domain of the secondary resonance i2 = i(2, h/l). Since single dominant theory does
not account for secondary resonance, the boundary T∗/T1 of the maximal upshift
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becomes questionable. We can instead use i2 as boundary i2 for maximal upshift. We
expect the effect of the secondary resonance even for the lower fluid depths (‘hard
spring’ response) when amplitudes are sufficiently large. It is then difficult to show
the downshift (upshift).

Our calculation strategy for steady-state solutions is based on solving the initial
Cauchy problem for adaptive modal system (3.1). A very small linear damping term
ασiβ̇i is incorporated into each ith modal equation, where α was varied from 0.005
to 10−6–10−7. The long time series will therefore give an approximation of steady-
state solutions due to damping effects. Our estimate of the damping is based on the
theory by Keulegan (1959) (maximal value α = 0.005 is consistent with his prediction
for the primary mode). The time integration normally started from zero initial
conditions unless we expected two steady-state solutions in the hysteresis domain.
The time integration procedure was then continued with initial conditions obtained
from the previous simulation. This makes it possible to follow the branches using our
computational scheme and, therefore, describe the hysteresis. Some discussion on that
is given below. The maximum damping coefficient was used for the first time series.
When the numerical solution attained a periodic structure, the damping coefficient
was decreased by a factor of 10. The time to reach this periodical solution increases
exponentially with decreasing α. This limits us to use uniformly small α. Only some
isolated cases near turning points predictions were tested with α = 10−8–10−10.

The mean time to reach a steady-state solution via our calculation scheme amounts
to 30 min of real sloshing time on the model scale and depends on the excitation
amplitude and frequency. An Adams–Bashforth–Moulton Predictor–Corrector inte-
grator of varied order (from one to twelve) was used. The simulations were made
on a Pentium-II 266 computer. The simulation time depends on the excitation par-
ameters and damping and varied between 1/2 and 1/50 of real sloshing time in the
experiments. This combined with Froude scaling of time implies that the simulations
for full-scale conditions can be achieved in a considerably less time than the real time.

4.1. Surge-excited resonant sloshing

Surge-excited resonant sloshing in a rectangular tank with mean fluid depth close to
the critical value h/l = 0.3374 was studied experimentally by Olsen & Johnsen (1975).
Steady-state fluid response was compared with the third-order Moiseyev theory by
Faltinsen (1974). This theory predicts infinite response as T → T1 at the critical depth.
If the higher-order Moiseyev-like theory by Waterhouse (1994) is used, the response
will be finite. But the predicted amplitudes are much larger and unrealistic relative
to the experiments by Olsen & Johnsen (1975) for the fluid depth/tank breadth ratio
h/l = 0.35 presented in figure 5. We have tested third- and fifth-order asymptotic
relations by Faltinsen (1974) and Waterhouse (1994) in our calculations to validate
them with experimental data. Corresponding modal systems give a very large response
in higher modes as T → T1 in the case of figure 5. Large damping coefficients are
then required to damp transients and to achieve a steady-state numerical solution.
When decreasing these coefficients even small numerical error leads to a new series
of large-amplitude transients. This means the hydrodynamic instability instead of the
stable sloshing found in experiments. Since the response of higher modes becomes
of the same order as the primary mode, it also means that the secondary resonance
effective domain overlaps with the lowest mode resonance zone. We have therefore
applied an adaptive method to this problem.

The numerical results from our calculation method are shown in figure 5. The
calculation procedure has several stages. The first stage of the analysis was to locate
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T/T1. Rectangular tank in figure 2(a) with h/l = 0.35, H/l = 0.025. H is the surge excitation
amplitude.

four possible resonances for T/T1 between 0.45 and 1.65. The primary resonances
of the first and third mode occur at respectively T/T1 = 1 and T/T1 = 0.55. The
secondary resonance of the second mode is predicted at T/T1 = 1.28. The secondary
resonance of the third mode is at T/T1 = 1.55. Three models applicable for domains
of different period were used. They are called Model I, II and III (it was ensured
that the models overlap with each other in a small domain). Model I was used for
0.5 6 T/T1 6 0.65. The expected resonances are due to primary excitation of the
third and first mode. They have the same main frequency response σ. No secondary
resonance is expected. This leads to the relations β1 ∼ β3 = O(ǫ1/3), and means that
the secondary modes have the main harmonic 2σ. Such modes are β2 ∼ β6 = O(ǫ2/3).
Other modes (up to 9th) are considered as driven and of O(ǫ). The modal system
based on (3.7) (Model II) was used for 0.6 6 T/T1 6 1.28. The modes β3, β4, β5, β6

were included as driven. If response is not too large, the modal system (3.7) gives the
same results as for the third-order response by Faltinsen (1974) or by (3.4). When
T/T1 > 1.28, the third-mode response was assumed to have the same order as β1

and β2 (Model III). The reason is the influence of the secondary resonance of the
third mode at T/T1 = 1.55. Model III was used for 1.28 < T/T1 < 1.65.

The calculations accounting for secondary resonances are in good agreement with
experiments. They improve on the single dominant theoretical prediction between
0.9 < T/T1 < 1.11 (primary resonance) and 1.21 < T/T1 < 1.32 (secondary
resonance of the second mode). In accordance with our calculations the maximum
response is at T/T1 = 1.11 instead of the preliminary prediction T/T1 = 1. This gives
an upshift of the maximum amplitude response in good agreement with experimental
data. A local maximum is found experimentally and numerically at T/T1 = 1.3.
This maximum response is caused by the secondary resonance phenomenon. Note
that the computation strategy allows the upper branch to be followed up to very
large amplitudes in the cases T/T1 = 1.11 and T/T1 = 1.3 when using the results of
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previous calculations as initial Cauchy conditions in new time series. Only numerical
instability and the involvement of many secondary modes in resonance prevents us
continuing the branch to infinity. For the case in figure 5 (Model II) these difficulties
appear as wave amplitude tends to 1m, corresponding to T/T1 = 1.21. On the
other hand, we cannot move leftwards of T/T1 = 1.11 along the lower branch.
The turning point limits us from doing this. The simulations then give a series of
transients resulting in the stable steady solution on the upper branch. This means
we cannot avoid a hysteresis effect occurring around T/T1 = 1.11 and T/T1 = 1.3
in the simulations. The increment periods in the experiment were probably too large
to detect this hysteresis. In addition, the transient wave amplitudes will in reality
cause a series of heavy roof impacts, which damp the system and eliminate large-
amplitude steady-state waves for excitation periods higher than T/T1 = 1.11. The
model presented does not account for roof impact.

Since the excitation amplitude is small in the case of figure 5, the local maximum
at secondary resonance T/T1 = 1.3 is not too large. However, it increases with
excitation amplitude H . Figures 6 and 7 present comparisons between experiments
and calculations for larger excitation amplitudes. The tank and fluid depth is the same
as used for figure 5. Both wave elevation near the tank wall and lateral fluid force are
examined. (The symbol b used in the expression for dimensionless force is the tank
length.) The simulation strategy in using Models I, II and III did not change. Our
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calculations show that the effective domain of secondary resonance increases with
increasing excitation amplitude. It covers the range from 0.6 to 1.28 in figure 7. The
jump in wave elevation response also increases at T/T1 = 1.3. The experiments and
our calculations show that increasing the amplitude in figures 5 and 6 results in a
small change of the upshift caused by the main resonance, but sufficient upshift near
secondary resonance. Both upshifts become larger with increasing amplitude in the
case of figure 7.

The effective domain of the secondary resonance by the third mode also increases.
Since only odd modes contribute to the lateral force, the secondary resonance of the
second mode is generally more important for wave elevation than for lateral force.
However, for sufficiently large excitation amplitude the effect of secondary resonance
also becomes important for lateral force. The reason is the inter-modal interaction
between nearest odd modes β1 and β3 which, due to secondary resonance of the third
mode, interact nonlinearly with each other and have the same order.

Our theory was also compared with experimental results for steady-state sloshing
in the prismatic tank shown in figure 2(b). Figures 8 and 9 present the calculated
and measured values of lateral force for small and non-small excitation amplitude
respectively. This tank has a chamfered roof. Water impact on the tank roof was
experimentally observed. We give therefore, as well as lateral force, the calculated
wave elevation response. Two horizontal lines illustrate respectively the heights above
the mean free surface of the lower point of the upper corner and the horizontal tank
roof. Experiments for two different fluids are presented. This shows that viscosity is
unimportant for horizontal forces.

The third-order steady-state theory by Faltinsen (1974) gave unrealistic predictions
for both cases. The predicted force amplitudes in resonant conditions could for
instance be 13 times larger than experiments in the case of figure 9. Our predictions
are far more reasonable, especially for the small-amplitude excitation in figure 8.
The single dominant theory by Faltinsen et al. (2000) gave unrealistic predictions for
the largest amplitude responses. Fair agreement was obtained only for the smaller
excitation amplitude in figure 8 away from the maximum response period domain.

The experiments as well as our theory predict that fluid hits the horizontal tank
roof. This happens in small vicinity of the linear resonance for the case in figure 8
and in the period range 0.85 < T/T1 < 1.25 for the case in figure 9. Rognebakke &
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Faltinsen (2000) included tank roof impact in the single dominant theory by Faltinsen
et al. (2000). They were able to simulate only the smaller excitation amplitude case.
Their maximum predicted dimensionless force was 120, which is clearly larger than
the prediction given by the adaptive method in this paper. However, the adaptive
method clearly disagrees with experiment for the case in figure 9 when the horizontal
fluid motion is in the opposite direction to forced tank motion, i.e. for T/T1 < 1.14.
The detailed calculations by these adaptive models for ambient flows accounting for
roof impact are given by Faltinsen & Rognebakke (2000). These studies have shown
that damping due to impact improves the simulations. The disagreement shown in
figure 9 then disappears.

4.2. Pitch-excited resonant sloshing

The experiments by Olsen & Johnsen (1975) and Olsen (1970) were used to validate
the theory with pitch resonant excitation of steady-state sloshing. The experiments
presented in figures 10, 11 and 12 were made with the rectangular tank shown in figure
2(a). Figure 10 gives computed and measured maximum wave amplitudes of steady-
state sloshing for angular amplitude ψ0 = 0.1 rad. Since the excitation amplitude
is sufficiently small, the wave elevation never hits the roof in steady-state motion.
However, the calculations show that ‘beating’ waves during transients sometimes have
amplitude up to 1.6 times the breadth. Such transients can cause heavy roof impact.
Our computational strategy did not differ from the previous cases. The domains of
Models I, II and III are indicated for all the examples considered.

The theory is in good agreement with experiments in figure 10. The secondary
resonance of the second mode is also well predicted. A jump between two branches
occurs at T/T1 = 1.111. This value is the position of the turning point in our
calculations. Since experiments show a value between these branches (point J1), it
is believed that this is due to inaccurate modelling of damping. This will be more
evident for a larger excitation amplitude. One could of course also state, by looking
at this as an isolated case, that the error in predictions at the jump period is small
and not larger than at other periods.

The minimum at T/T1 = 0.74 is not consistent with the minimum at T/T1 = 0.6
shown in figure 5 for the same fluid depth. The reason is the difference in the type of
excitation. The modal approach gives the inhomogeneous periodic terms PmHσ

2 cos σt
in the mth modal equation for surge excitation. The corresponding periodic term is
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Figure 11. Wave elevation near the wall, dimensionless lateral force 1000Fx/(ρgl
2b) and dimension-

less pitch moment M/(ρgl3b) with respect to rotation axis vs. T/T1. Rectangular tank in figure
2(a) with h/l = 0.5, ψ0 = 0.1 rad. The measurements of lateral force and pitch moment were made
by Olsen (1970, personal communication).
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Figure 12. Wave elevation near the wall and dimensionless lateral force 1000Fx/(ρgl
2b) with

respect to rotation axis vs. T/T1. Rectangular tank with l = 1.0 m, h/l = 0.5, ψ0 = 0.2 rad. The
measurements of lateral force were made by Olsen (1970, personal communication).

Pmψo(z0 − (2l/πm) tanh ((mπ/2l)h)+(g/σ2))σ2 cos σt for pitch excitation, where Pm is a
function of fluid depth. The expression in the parentheses depends on z0 (z-coordinate
of rotation axis), σ (excitation frequency), fluid depth h and tank breadth l. There
exist values of z0 and σ that can cancel this periodic term in the modal equation for
the first mode (m = 1). Then this mode is not excited and we should consider the
sloshing as due to inter-modal interaction with other modes.

Figure 11 presents calculated and measured values of steady-state wave elev-
ation, lateral force and pitch moment, for h/l = 0.5 which is far from the critical
depth. Faltinsen (1974) also compared steady-state wave elevation with experimental
recordings for this case and showed good predictions for selected periods. A priori
we might have expected the largest response close to critical depth, i.e. in figure 10.
But the theoretical and experimental amplitude responses are larger in figure 11. The
reason is the increase of angular excitation due to increased distance between rotating
axis and mean free surface. This leads to larger values of the pitch excitation term
Pmψ0σ

2(z0 − (2l/πm) tanh ((mπ/2l)h) + (g/σ2)) cos σt in the mth modal equation of
(3.1).

The theory agrees well with experiments in the case of figure 11. But the calculations
do not predict the experimental response found at the jump period T/T1 = 1.111
(point J1). This is believed to be due to damping. The calculations describe the effect
of secondary resonance of the second mode on the lateral force. This influence is
very small in figure 10. When the excitation amplitude is increased to 0.2 rad, this
secondary resonance gives an additional jump (point J2) at T/T1 = 1.45 (see figure
12). We note that the experimental values J1 and J2 are not predicted well. The
reason has been previously discussed.

We also tried to validate the theory for a pitch-excited prismatic tank. An ap-
propriate example was found in the paper by Mikelis et al. (1984) (see also Delft
University Report 1983). This prismatic tank is presented in figure 2(d). Figure 13
gives calculated and measured hydrodynamic pitch moments. Models I, II and III
were used in different forced excitation frequency domains as indicated in the figure
caption. They are in good agreement with experiments except in the frequency range
where the calculated wave elevation indicates roof impact. The response is presented



192 O. M. Faltinsen and A. N. Timokha

D
im

en
si

o
n
le

ss
 m

o
m

en
t

0.030

0.020

0.015

0.010

0.005

0 0.5 1.0 1.5 2.0

Roof impact

0.025

Model test
Calculations

r (l/g)1/2

Figure 13. Dimensionless pitch moment M/(ρgl3b) with respect to rotation axis vs. dimensionless

forced excitation frequency σ
√

l/g, where σ has dimension [rad s−1]. Prismatic tank in figure
2(d) with h/l = 0.182, ψ0 = 0.1 rad. Models I, II and III were respectively used in domains

1.75 < σ
√

l/g < 2.5, 1.19 < σ
√

l/g < 1.75 and 0.6 < σ
√

l/g < 1.19.

as function of σ
√

l/g instead of T/T1. This is convenient when studying asymptotic
moment values for σ → 0, caused by the hydrostatic moment on the inclined tank.
Our computations for σ → 0 give the dimensionless value 0.005 compared to the
experimental value 0.00518. (The calculations for small σ were done with a model of
seven nonlinearly coupled modes based on (3.1).) The reason for this small difference
is simply our modal presentation of the free surface, which means that a static inclined
tank in our approximation has non-planar free surface.

4.3. Sloshing in a tank with small fluid depth

We tested the above adaptive procedure for different values of fluid depth by compar-
ing with experiments by Rognebakke (1999). Models I, II and III gave well predicted
values of wave responses in the period domain of the primary mode for fluid depth
h/l > 0.24. When h/l < 0.24, these models could not cover this period domain com-
pletely if excitation amplitude is sufficiently large. That is why we do not present the
comparison with experiments by Olsen & Johnsen (1975) for pitch-excited resonant
sloshing with h/l = 0.2, ψ0 = 0.1 rad in the rectangular tank in figure 2(a). This fluid
depth is not sufficiently small to use shallow water theory. However, in the framework
of our adaptive method we have speculatively tested some different possible shallow
water asymptotics including asymptotics given by Ockendon et al. (1986) (βi = O(ǫ1/2)
or βi = O(ǫ1/4)). Test calculations were made with six modes in (3.1). In both cases
there exist some excitation period domains where either calculated responses were
not consistent with experiments or the modal system (3.4) gave only a few seconds of
real time integration before numerical problems occurred. The reason is believed to
be the weak convergence of the modal expression for the free surface. A small change
of excitation needs a new ordering between modes and gives different dominating
harmonics in each mode. One way to explain this is by the change of wave patterns
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Figure 14. Measured surface elevation near the wall. Rectangular tank in figure 2(c) with
h/l = 0.173, H/l = 0.029, T/T1 = 0.8508. H is the surge excitation amplitude.
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Figure 15. Calculated free surface elevation near the wall. (a) Model of Faltinsen et al. (2000). (b–d)
Modal system (3.4): contributions from modes 1, 2 and 3 respectively. Rectangular tank in figure
2(c) with h/l = 0.173, H/l = 0.029, T/T1 = 0.8508.

relative to the finite fluid depth case with h/l > 0.24. When the fluid depth is small,
wave patterns associated with ‘travelling’ waves and ‘run-up’ phenomena occur. Many
modes are required to approximate such wave profiles in a Fourier series expressing
standing wave-type solutions (1.1). Damping due to run-up may also matter.

An example below illustrates the main difficulties associated with modelling sloshing
for small fluid depth. It is based on resonant sloshing experiments in the rectangular
tank shown in figure 2(d). The free surface elevation recording at wave probe FS3 is
presented in figure 14. The modal system (3.4) gives wave elevation as shown in figure
15. The contribution to wave elevation from each mode is also presented in figure
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Figure 16. Calculated free surface elevation near the wall. Rectangular tank in figure 2(c) with
h/l = 0.173, H/l = 0.029, T/T1 = 0.8508. H is the surge excitation amplitude. Modal system
includes β1 = O(ǫ1/3), β2 = O(ǫ1/3), β3 = O(ǫ1/3), β4 = O(ǫ2/3). (a) Adaptive model, no damping.
(b) Damping is based on the theory by Keulegan (1959).

15. Similar results were presented by Faltinsen et al. (2000). These numerical results
suggest that inter-modal resonances between the primary resonance at T/T1 = 1,
the secondary resonance of the second mode at T/T1 = 1.1446, the direct resonance
of the third mode at T/T1 = 0.56 and the secondary resonance of the third mode at
T/T1 = 1.32275 are important. Since these resonance periods are very similar, they
should all be accounted for.

Harmonic analysis of the contributions gives the main harmonic H1 cos σt in
the primary mode and the main harmonic H2 cos 2σt in the second mode. The
graph ‘Mode 3’ in figure 15(d) shows that direct and secondary resonance give two
main harmonics, H3 cos σt and H4 cos 3σt, for the third mode. The reason is that
T/T1 = 0.8508 is equally close to 0.56 and 1.32275. Thus, three modes should be
considered having the same order, O(ǫ1/3). One of the modes has two main harmonics.
This contradicts our previous assumption in finite fluid depth cases, and means that
three nonlinear modal equations give three equations with four unknown variables
H1, H2, H3 and H4 in a steady-state analysis. A way to avoid this contradiction is
to add a mode at O(ǫ2/3) that interacts with dominant modes. This mode will be
of included nonlinearly in the equations but its main harmonics will be of higher
order than the dominant β1, β2, β3. We used for time simulation an adaptive system
with β1 ∼ β2 ∼ β3 = O(ǫ1/3), β4 = O(ǫ2/3). The calculated wave elevation is shown in
figure 16(a). It gives a realistic approximation for both minimum and maximum wave
elevation and ‘beating’ period. However, the higher modes have ‘high harmonics’
noise. This causes numerical problems in very long time simulations. However, these
high modes are believed to be highly damped due to energy dissipation. We have
therefore incorporated in the modal system some additional linear damping terms
ασβ̇µ. The damping coefficient α introduced was not high, since it was based on
the theory by Keulegan (1959) for the primary mode. Damping improves numerical
integration. The calculated wave elevation is presented in figure 16(b).

A detailed study of the experiments for this fluid depth shows that wave run-up
near the vertical wall occurs for all excitation periods in the effective domain of
primary resonance. A typical wave profile is presented in figure 17. The maximum
length and thickness of the vertical wall jet depends on excitation period. This jet
cannot be described in the context of Fourier approximation (1.1). Mathematical
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Figure 17. Run-up phenomenon. Resonant sloshing in the rectangular tank in figure 2(d).
Surge excitation. Experiments by Rognebakke (1999).

singularity will occur at the body-fluid system contact point. This implies that a
matching with a local solution at the contact point may be necessary.

5. Conclusions

Two-dimensional nonlinear sloshing in a rectangular tank is analytically studied.
Irrotational flow of incompressible fluid, infinite tank roof height and no overturning
waves are assumed.

The basis of the theory is an infinite-dimensional system of nonlinear ordinary
differential equations coupling generalized coordinates βi of a modal system. This
is derived from a variational procedure by Faltinsen et al. (2000). By assuming the
fluid response to be small relative to fluid depth and tank breadth this modal system
is asymptotically reduced to an infinite-dimensional system of ordinary differential
equations with polynomial nonlinearity of fifth order in βi. It also contains third-
order terms coupling βi and time-varying functions describing rigid body motion. No
ordering among the βi is assumed. The coefficients of this system are unique functions
of fluid depth. However, the number of non-zero coefficients increases drastically with
increasing dimensions.

The surge and pitch excitation of the tank is considered. The tank is forced to
oscillate with period in the vicinity of the highest natural period of fluid motion. By
introducing asymptotic relations between the βi the system derived can be detuned
to particular cases of nonlinear sloshing occurring due to direct and secondary
resonances. Secondary resonance is taken to mean that higher harmonics in the
fluid motion cause resonant motion at natural periods other than primary resonance
periods.

The theory based on Moiseyev-like inter-modal relations by Faltinsen et al. (2000)
is a special case. This asymptotic theory is invalid when the excitation amplitude
is not very small, and the fluid depth is close to critical or shallow. This is caused
by the large-amplitude response in both the primary and a few higher modes. It is
demonstrated that inter-modal relations depend on excitation amplitude, period and
fluid depth. If each mode has only one lowest-order harmonic, the rational choice of
these relations is motivated by locating primary and secondary resonance periods. The
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method has been validated by comparing with model tests. Adaptive procedures have
been established for all excitation periods as long as the mean fluid depth is larger
than 0.24 times the tank breadth. Steady-state results for wave elevation, horizontal
force and pitch moment due to forced surge and pitch excitation are validated except
when heavy roof impact occurs. Different stable branches of the analytical solutions
are located.

When h/l < 0.24 and depth is not shallow, good agreement with experiments has
been achieved for isolated excitation periods. An example for h/l = 0.173, where the
previous model by Faltinsen et al. (2000) failed, demonstrated this. When the fluid
depth is small, many modes have the same order and each mode may have more than
one main harmonic. Then the convergence of modal presentation (1.1) can fail and a
pure modal technique using the natural modes is questionable.

The authors are grateful to H. Olsen for providing the unpublished measured data
on lateral force and pitch moment in figures 11 and 12. A. N. T. is supported by the
Strong Point Centre on Hydroelasticity at NTNU/SINTEF in Trondheim, Norway.

Appendix A. The tensors introduced

The set of tensors Λ is given by

Λ
(0)
ij =

{

2 i = j = 0
δij otherwise

(A 1)

where

δij =

{

1, i = j
0, i 6= j

is the Kronecker symbol. The following recurrence formulas have been obtained:

Λ
(1)
nkj = Λ

(0)
|n−k|j + Λ

(0)
|n+k|j , Λ

(2)
nkjp = Λ

(1)
|n−k|jp + Λ

(1)
|n+k|jp,

Λ
(3)
nkjpq = Λ

(2)
|n−k|jpq + Λ

(2)
|n+k|jpq , Λ

(4)
nkjpqi = Λ

(3)
|n−k|jpqi + Λ

(3)
|n+k|jpqi;







(A 2)

and

Λ
(−1)
nk,i = Λ

(0)
|n−k|i − Λ

(0)
|n+k|i, Λ

(−2)
nk,ij = Λ

(1)
|n−k|ij − Λ

(1)
|n+k|ij ,

Λ
(−3)
nk,ijp = Λ

(2)
|n−k|ijp − Λ

(2)
|n+k|ijp, Λ

(−4)
nk,ijpq = Λ

(3)
|n−k|ijpq − Λ

(3)
|n+k|ijpq .







(A 3)

The sets of X and Y tensors are defined by

X
(0)
i = (−1)i − 1, X(−0)

µ = (−1)µ + 1, (A 4)

X
(1)
ik =

X
(0)
|i+k|

(i+ k)2
+

X
(0)
|i−k|

(i− k)2

∣

∣

∣

∣

i−k 6=0

, X
(2)
ikp = X

(1)
i|k−p| +X

(1)
i|k+p|; (A 5)

Y
(1)
i,k =

X
(0)
i+k

i+ k
+
X

(0)
i−k

i− k

∣

∣

∣

∣

i−k 6=0

, Y
(2)
i,kp = Y

(1)
i,|k−p| + Y

(1)
i,k+p. (A 6)

Appendix B. The modal system in symmetric form

The d and t tensors are not symmetric for the complete set of indexes. It is important
to note that d are not symmetric in b c d f and t in c d f, since these coefficients are
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near the products in β and their derivatives. In order to obtain analytical symmetric
structure we rewrite (3.1) in the form

N
∑

a=1

β̈a(δam +

N
∑

b=1

βbD1m(a, b) +

N
∑

b=1

b
∑

c=1

βbβcD2m(a, b, c)

+

N
∑

b=1

b
∑

c=1

c
∑

d=1

βbβcβdD3m(a, b, c, d)

+

N
∑
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b
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c=1

c
∑

d=1

d
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βbβcβdD4m(a, b, c, d, f)βf) +
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+
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+ Pm(v̇0x − gψ) + ω̇QmL
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m = 0, (B 1)

where
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