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ABSTRACT

Subsurface-offset extended full-waveform inversion (FWI)

may converge to kinematically accurate velocity models with-

out the low-frequency data accuracy required for standard

data-domain FWI. However, this robust alternative approach

to waveform inversion suffers from a very high computational

cost resulting from its use of nonlocal wave physics: The

computation of strain from stress involves an integral over the

subsurface offset axis, which must be performed at every

space-time grid point. We found that a combination of data-

fit driven offset limits, grid coarsening, and low-pass data

filtering can reduce the cost of extended inversion by one

to two orders of magnitude.

INTRODUCTION

Full-waveform inversion (FWI), that is, model-driven least-

squares data fitting, has shown a remarkable ability to identify sub-

surface structure with the maximum resolution attainable from

seismic data (Vigh et al., 2010, 2013). However, the lack of data

energy at low frequencies relative to other scales may cause iterative

gradient-based algorithms to stagnate at uninformative model esti-

mates (Gauthier et al., 1986; Plessix et al., 2010). At such estimates,

small changes in the model fail to yield a substantially better data

fit. Among the remedies suggested for this malady are various

model extensions, which add parameters to the model to provide an

avenue for improved data fit and suppress these additional param-

eters as the inversion progresses via a penalty term incorporated into

the extended FWI objective function (Symes, 2008). One of these

model extensions allows nonlocal stress-strain relations — in the

acoustic case, by adding dependence on a fictitious subsurface-off-

set axis to the bulk modulus. It has been shown that this subsurface-

offset extension makes the data fit attainable by local optimization,

at least in some cases (Stolk et al., 2009; Symes, 2014). Several

studies have suggested that the subsurface-offset extension may

be used as the basis for successful approaches to FWI, convergent

over a much larger region of model space than is standard in least-

squares FWI (Shen et al., 2003, 2005; Albertin et al., 2006; Shen

and Symes, 2008; Symes, 2008, 2014; Fei and Williamson, 2010;

Vyas and Tang, 2010; Biondi and Almomin, 2012; Shen, 2012;

Shan and Wang, 2013; Weibull and Arntsen, 2013; Biondi and Al-

momin, 2014; Liu et al., 2014; ten Kroode, 2014; Fu and Symes,

2015; Lameloise et al., 2015). Much of this work uses linearization

(the Born approximation) to simplify the formulation of extended

inversion, as do we in the work reported below. Linearized extended

waveform inversion is closely related to wave-equation-based mi-

gration velocity analysis (Symes, 2008).

A major drawback of the subsurface-offset extension is the com-

putational burden of the nonlocal constitutive law: In terms of time-

stepping algorithms, it calls for a full matrix multiplication over at

least one spatial axis at every time step (Mulder, 2014). The purpose

of this paper is to propose a straightforward strategy to reduce the

cost of this class of algorithm, combining frequency continuation

and grid coarsening, and reduction of the subsurface-offset axis

with control of the penalty parameter in a variable projection for-

mulation (Golub and Pereyra, 1973, 2003; van Leeuwen and

Mulder, 2009; Rickett, 2012; Li et al., 2013). Our algorithm relies

on two simple observations: (1) improved kinematic accuracy of

data-fitting extended models results in improved focus, that is, it

moves the extended model closer to a nonextended or physical

model concentrated at zero-subsurface offset, and (2) low-pass fil-

tered data have enough kinematic content to drive velocity improve-

ment, so long as the filtered data span an octave or more. We show

that the extent of the active interval on the subsurface-offset axis

may be shortened, subject to a data-fit criterion because the inver-

sion improves the kinematic accuracy of the model, in concert with

refinement of the grid, in such a way that the number of offset grid

points is nonincreasing. That is, the cost premium of subsurface-off-

set inversion iterates over ordinary FWI iterates remains constant or

decreases, even as the resolution of the model increases. From an-

other point of view, the adaptive concept introduced in this paper

provides a way that naturally brings an extended model back to a

physical model by progressively reducing the subsurface-offset
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range throughout the inversion. In our 2D examples, the cost of this

adaptive multiscale extended inversion is a few percent of the cost

of the same sequence of iterations applied to a globally adequate

fixed offset range and grid. The cost reduction in 3D would be even

more dramatic.

This paper is organized as follows: We first explain the theory of

subsurface-offset extended waveform inversion based on linearized

acoustic modeling (Born or single-scattering approximation). We

describe three adaptative parameter adjustments — of maximum

subsurface offset, variable projection penalty parameter, and com-

putational grid — and we show how to combine them to dramati-

cally enhance the computational efficiency. We end with two 2D

numerical examples, demonstrating that this adaptive multiscale

modification can reduce the computational cost of subsurface offset

extended waveform inversion by an order of magnitude or more.

THEORY

Although the algorithm to be explained here applies to many

models and can be posed abstractly, we choose to explain it in the

context of a particular model of wave propagation, linearized con-

stant density acoustics, and inverse problems posed in terms of

this model.

Acoustic Born modeling

An abstract setting for seismic waveform inversion problem con-

sists of the model space M, which is a set of physical model of the

subsurface structure; the data space D, which denotes a set of the

seismic data; and the forward map F, which connects the two spaces

M and D (F∶M → D).

We base our study on linearized (“Born”) 2D constant-density

acoustics: M consists of pairs ðv; rÞ of (background) velocity field

vðx; zÞ and reflectivity field rðx; zÞ. The reflectivity is the perturba-

tion of squared velocity: r ¼ 2vδv. Parameter D consists of primar-

ies-only (single-scattering) seismic traces dðxr; xs; tÞ for source

positions fðxs; zsÞg and receiver positions fðxr; zrÞg. Source and

receiver depths are idealized as the same for all traces, so they

are ignored in the notation for the data traces. The pressure field

pðx; z; t; xsÞ solves the acoustic-wave equation:

�

∂2

∂t2
− v2∇2

�

pðx; z; t; xsÞ ¼ wðtÞδðx − xs; z − zsÞ;

p ¼ 0; t ≪ 0: (1)

The right side is a simple source representation, an isotropic point

radiator with time dependence (pulse) wðtÞ located at ðx; zÞ ¼
ðxs; zsÞ. The perturbational pressure field δpðx; z; t; xsÞ solves

the linearized acoustic-wave equation:

�

∂2

∂t2
− v2∇2

�

δpðx; z; t; xsÞ ¼ rðx; zÞ∇2pðx; z; t; xsÞ;

δp ¼ 0; t ≪ 0; (2)

where F is defined in terms of δp by

F½v�rðx; zÞ ¼ δpðxr; zr; t; xsÞ; (3)

where F produces predicted primary (single-scattering) data traces

for the model ðv; rÞ. Note that we have used a notational convention
suggesting that the action of F on r is linear, rather than writing

F½v; r�: When v is fixed, the action of F on r (after discretization)

could be represented by a matrix multiplication.

Extended acoustic Born modeling

Waveform inversion asks that the model be adjusted, so that the

predicted data traces approximate observed data traces, in the mean

square sense. As mentioned in the “Introduction” section, this is a

very hard optimization problem. For the acoustic Born problem just

described, a satisfactory solution is obtained by gradient-descent

methods only if the velocity v predicts the times of significant arriv-

als to within a half-wavelength (Gauthier et al., 1986; Virieux and

Operto, 2009). Extended modeling seeks to create an easier optimi-

zation problem by enlarging the model space. Extended waveform

inversion involves the additional ingredients:

1) an extended model space M̄

2) an extension operator χ: M → M̄

3) an extended modeling operator F̄: M̄ → D

4) an annihilator operator A∶M̄ → M̄.

The operator F̄ is an extension of F in the sense that F̄½E½m�� ¼
F½m�. The annihilator identifies the “physical” space χM as its

null space: Am̄ ¼ 0 if and only if m̄ ¼ χm for a physical model

m ∈ M.

The extended Born acoustic model used here introduces a hori-

zontal subsurface-offset axis, denoted h, and allows the reflectivity

to depend on it: r̄ðx; z; hÞ. Because r is (up to a scale factor) the

perturbation in the compliance, one can think of the extended re-

flectivity as representing a nonlocal perturbation in the acoustic

constitutive relation (we are indebted to S. Morton for this obser-

vation). The extended pressure perturbation δp̄ðx; z; t; xsÞ solves a
modification of the linearized wave equation 2,

�

∂2

∂t2
− v2∇2

�

δp̄ðx; z; t; xsÞ

¼
Z

H

−H

dhr̄ðx − h; z; hÞ∇2pðx − 2h; z; t; xsÞ;

δp ¼ 0; t ≪ 0: (4)

The extended model space for horizontal subsurface offset consists

of pairs M̄ ¼ fðvðx; zÞ; r̄ðx; z; hÞÞg. Note that only the reflectivity

depends on the additional coordinate h — the velocity is non-

extended or physical. The extension operator is χrðx; z; hÞ ¼
rðx; zÞδðhÞ. Note that if r̄ ¼ χr, then equation 4 reduces to

equation 2.

The extended Born forward modeling operator is defined by

F̄½v�r̄ðx; z; hÞ ¼ δp̄ðxr; zr; t; xsÞ: (5)

Because of the previous remark, this operator has the extension

property F̄½v�χr ¼ F½v�r. Note also that we have continued to use

the convention that the predicted data are the value of a v-dependent

linear operator acting on a reflectivity field.

Many choices of annihilator A have the required relation to the

physical model subspace χM. Among the earliest suggested was

R184 Fu and Symes
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multiplication by h∶Arðx; z; hÞ ¼ hrðx; z; hÞ (Stolk and De Hoop,

2001; Shen et al., 2003), which we also use here.

The dynamics expressed in equation 4 are closely related to

Claerbout’s survey-sinking image construction (Claerbout, 1985):

ðx; zÞ are the coordinates of the sunken receiver, ðx − 2h; zÞ those
of the sunken source (where the source wavefield p is evaluated), so

the sunken midpoint is ðx − h; zÞ and the space shift h plays the role

of half-offset, as one would expect.

Note that the integration over h on the right side of equation 4

translates into a full-matrix multiply in a finite-difference discreti-

zation, and must be performed at every time step. The cost of this

integration can easily overwhelm cost of ordinary time-stepping

(Mulder, 2014). In 2D, this additional integral in dimension of h

increases the computational cost by a factor of Nh, number of grid

points in h, Nh ¼ 2H∕dh, in which dh is the grid size in h. Note

that in 3D, another space-shift dimension is needed, making the

subsurface-offset extension even more expensive.

Extended waveform inversion

In the extended model, the data dðxr; xs; tÞ and the model

ðvðx; zÞ; rðx; z; hÞÞ depend on the same number of parameters, so

you might guess that there would be a 1-1 relation between the

two, at least to some extent. Stolk and De Hoop (2001) and Stolk

et al. (2009) offer theoretical verification for this guess. We will also

show by numerical example that for any “reasonable” data d and

velocity model v, there exists an reflectivity r̄ for which F̄½v�r̄≈
d, provided that the subsurface-offset limit H is large enough. This

observation is in sharp contrast to the case for nonextended model-

ing: As noted above, v must predict arrival times within a half-

wavelength in order that there exist a nonextended reflectivity for

which F½v�r ≈ d.

Extended waveform inversion couples a measure of data misfit

(usually mean square) to a measure of model nonphysicality, and it

drives both measures toward zero. A simple objective function cap-

turing this concept is

J½v; r̄; α� ¼ 1

2
kF̄½v�r̄ − dk2 þ α

2
kAr̄k2: (6)

The penalty weight α controls the balance between penalties on the

data misfit and the model extension: When α → 0, the model has

little constraint on energy distribution in the extended dimension h,

and it can always achieve a good data fit. As noted above; when

α→ ∞, Ar̄must→ 0, so r̄must approximate a physical reflectivity.

For model-consistent (noise-free) data, the global minimum is

J ¼ 0. Close to the global minimizer, so both summands are close

to zero, data are fit, and r̄ is approximately physical.

Variable projection method

The objective J½v; r̄; α� is very ill conditioned; that is, its gradient
tends to change very rapidly in response to small model changes,

making minimization by the gradient-based method very

difficult (Kern and Symes, 1994; Huang and Symes, 2015). How-

ever, the subproblem of estimating r̄ by minimizing J½v; r̄; α�, given
d and v, is quadratic and relatively well-conditioned. Define r̄½v; α�
to be an approximate minimizer of J½v; r̄; α�, that is, a solution of the
normal equation:

ðF̄½v�TF̄½v� þ αATAÞr̄ ¼ F̄½v�Td: (7)

The normal equation is equivalent to vanishing of the r̄ gradient of

J½v; r̄; α�. Because the J is positive semidefinite quadratic in r̄; that is,

it is sufficient to guarantee that r̄½v; α� is an approximate minimizer.

Having chosen the optimal r̄½v; α�, substitute it into J to obtain an
objective function in v alone:

~J½v; α� ¼ J½v; r̄½v; α�; α�: (8)

A minimizer of ~J is also the v component of a minimizer of J. This

is the variable projection principle introduced by Golub and Pereyra

(1973, 2003). Moreover, ~J has a reasonably well-conditioned Hes-

sian and can be minimized effectively with Newton-related tech-

niques, unlike J (Kern and Symes, 1994; Huang and Symes,

2015). Its gradient may be expressed as

∇v
~J½v; α� ¼ SðDF̄½v�ÞTðr̄½v; α�; F̄½v�r̄½v; α� − dÞ; (9)

where ðDF̄½v�ÞT is the so-called tomographic or WEMVA operator.

Because F̄½v� is actually the linearization, that is, the derivative of

the basic acoustic modeling operator,DF̄½v� is its second derivative.
The adjoint DF̄½v�T is computable by a variant of the adjoint-state

method (Gauthier et al., 1986; Plessix, 2006) used to compute F½v�T
(Symes and Santosa, 1988; Kern and Symes, 1994). Parameter S is

a smoothing operator, or low-pass filter, designed to keep the scales

of v and r̄ separated after updates using the Hessian. In our work,

we used for S a negative power of the spatial Laplace operator.

Adaptive subsurface offset

As explained above, the additional dimension h adds a significant

computational cost, so determining the maximum subsurface offset

H becomes a crucial problem. Shen (2004) shows some exemplary

calculations to identify the relevant ray fields with subsurface space

shift, but that does not address the distribution of energy in the

space-shift extended model. Mulder (2014) gives formulas to cal-

culate the amplitude in the space-shift extended model for 2D and

3D by stationary phase approximation, provided that the model and

migration velocities are constant. In that case, a good estimate for

the maximum subsurface offset may be expressed in terms of the

maximum surface offset L and the ratio ρ ¼ v∕vtrue of the migration

velocity to the model velocity, as H ¼ Lð1 − ρ2Þ. However, in gen-
eral, there is no simple direct rule to calculate an appropriate value

of H.

Nonetheless, the generic relation between the migration (or inver-

sion) velocity accuracy and the maximum subsurface offset holds

more generally, in a qualitative sense. When the migration velocity

model is inaccurate, a long offset is needed for a good data fit; when

the velocity model becomes closer to the correct one after updates,

then the observed data can be predicted by an extended reflectivity

model with a shorter offset. This relation will be illustrated below,

and it follows for the example from the theoretical analysis by Stolk

et al. (2009).

A simple method to estimate appropriate values of H takes ad-

vantage of this observation. To explain this method, note that the

solution r̄½v; α� of the normal equation 7 depends on H, through

the right side of the extended linearized wave equation 4. To track

this dependence, we add it to the notation and rename the solution

r̄½v; α; H�. Similarly, we add H to the argument lists of J, ~J and

introduce the abbreviations e and p for the data misfit and penalty

summands in the definition of ~J:

Subsurface offset R185
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~J½v; α; H� ¼ e½v; α; H� þ αp½v; α; H�;

e½v; α; H� ¼ 1

2
kF̄½v�r̄½v; α; H� − dk2;

p½v; α; H� ¼ 1

2
kAr̄½v; α; H�k2: (10)

Our approach uses the zero-weight residual eðv; 0; HÞ, and it esti-

mates the corresponding residual for offset range ½−H∕2; H∕2� by
computing

eH∕2 ¼
1

2
kF̄½v�ΠH;H∕2r½v; 0; H� − dk2; (11)

in which ΠH;H∕2r̄ denotes the restriction operator that sets r̄ ¼ 0

for jhj > H∕2.

Note that e½v; 0; H� depends on r̄½v; 0; H�, and therefore it re-

quires the (approximate) solution of the normal equation 7 with zero

penalty weight by iteration. However, once e½v; 0; H� is computed,

eH∕2 simply reuses r̄½v; 0; H�, so it requires just a forward-modeling

step. Therefore, eH∕2 represents minimal added expense over

e½v; 0; H�.
Algorithm 1 adapts H to keep the data-fit error e, with zero pen-

alty below a prescribed bound. According to the data-fit property of

extended modeling, mentioned above, for any (reasonable) v and

tolerance E, a corresponding r̄ exists for which e < E, provided that

H is large enough. At the beginning of the v update cycle, nothing is

known about the proper value of H, so increasing it may be neces-

sary. However, as the velocity improves, H should decrease mono-

tonically; an increase of H is necessary only at the beginning of the

velocity update cycle. The data fit must be calibrated: We choose an

arbitrary relative value X, intended to be eventually a nominal upper

bound on actual data noise. We also choose a fudge factor μ > 1, the

detection level for reducingH because eH∕2 is not precisely the same

as e½v; α; H∕2�. In the following, we will use E ¼ ð1∕2ÞX2kdk2 as

the relative error measure appropriate for comparison with eð : : : Þ.

Adaptive penalty weight

The penalty parameter α is essential in driving the extended

waveform inversion toward a solution of the (nonextended) wave-

form inversion problem. Because p should vanish at a physical sol-

ution, one would expect that α should increase as the inversion

proceeds. Fu and Symes (2016) show how to systematically in-

crease α to accelerate the convergence of iterative solution for prob-

lems with the properties of extended Born waveform inversion. For

completeness, we repeat the algorithm of Fu and Symes (2016) as

Algorithm 2.

Typical values for the parameters appearing in Algorithm 2 might

be γ− ¼ ð0.7Þ2; γþ ¼ ð1.2Þ2; β− ¼ 0.667; βþ ¼ 2.0 (we use these

values in the experiments reported below).

Note that the update formula used above, and the corrections that

follow are guaranteed to yield α, for which γ−E ≤ e½v; α; H� ≤ γþE.
This range condition is a version of the discrepancy principle as

explained by Fu and Symes (2016). Unlike normal applications

of this principle, Algorithm 2 is designed to increase α system-

atically.

Adaptive variable projection algorithm

Optimization of ~J½v; α; H� may be accomplished by any of the

commonly used continuous optimization methods, described, for

instance, by Nocedal and Wright (1999). However, updating α

and/or H actually changes the objective function, so an algorithm

that includes such updates is outside the scope of standard optimi-

zation theory.

We do not attempt to create a conceptual framework for such

“multifunction optimization” here. We merely note that many algo-

rithms include provision for a so-called “warm start”; that is, vari-

ous parameter values, including solution estimates, may be carried

over from one iteration to the next, and a change of objective func-

tion may be simply ignored in some cases. For example, a descent

algorithm globalized by line search may use the final step length

from the previous iteration as the initial step length for the current

one. This carryover can be retained even if the objective function

changes between iterates. Other auxiliary information may be better

discarded; for example, the low-rank inverse Hessian approxima-

tion built up in some quasi-Newton methods may lose so much

Algorithm 1. The H update.

Require: X > 0; μ > 1; E ¼ 1
2
X2kdk2

Hþ ¼ H

if initialize then

while e½v; 0; Hþ� > E do

Hþ←2Hþ
end while

else

while eHþ∕2 < μE do

Hþ←Hþ∕2

end while

end if return Hþ

Algorithm 2. The α update.

Require:
X > 0; E ¼ 1

2
X2kdk2; 0 < γ− < 1 < γþ; 0 < β− < 1 < 1∕β− < βþ

if initialize then

α ¼ 0

end if

αþ ¼ α

if e½v; αþ; H� < γ−E then

αþ←αþ þ γþE−e½v;αþ ;H�
2p½v;αþ;H�

while e½v; αþ; H� ∈= ½γ−E; γþE� do
if e½v; αþ; H� < γ−E then

αþ←βþαþ
end if

if e½v; αþ; H� > γþE then

αþ←β−αþ
end if

end while

end if return αþ

R186 Fu and Symes

D
o
w

n
lo

ad
ed

 0
4
/2

6
/1

7
 t

o
 1

2
8
.4

2
.2

3
6
.5

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



accuracy in a change of objectives that it should be recomputed ab

initio. In view of such possibilities, α and H updates must be visible

to the optimization algorithm.

A general approach to this issue remains to be worked out. In our

experiments, we have used a very simple continuous optimization

algorithm, steepest descent with line-search globalization, and we

defined the term warm start in the obvious way. Assuming that the

notion of warm start is properly chosen, a suitable algorithm struc-

ture incorporating the α and H adaptations is given in Algorithm 3.

Adaptive grid

The previous two subsections explained adaptations that pertain,

in principle, to the continuum extended waveform inversion prob-

lem. This subsection addresses the discrete level, after gridding. The

idea is simple and familiar from the FWI literature: Use lower fre-

quency (less resolved) information when the model is further from

kinematic data fidelity, and increase the frequency content as the

inversion progresses. In the context of extended waveform inver-

sion, the reason is not to enhance the tendency to converge —

use of the model extension and appropriate penalty largely decou-

ples the frequency content from convergence (Symes, 2008, 2014).

Instead, the point is purely to reduce the computational cost of a

majority of the iterations.

As long as Algorithm 3 improves kinematic fidelity enough that

the initial H is at least halved by each execution, the number of h

grid points Nh will never exceed its initial value. Under this con-

dition, which we have observed in examples, the cost ratio of ex-

tended to nonextended inversion steps stays constant or decreases as

the iterations of Algorithm 4 proceed.

Cost

It is straightforward to analyze the cost of Algorithm 4 when the

numbers of iterations involved in Algorithm 3 are the same for all

refinement steps. The cost of each iteration is approximately pro-

portional to number of grid points in space, subsurface offset, and

time. The cost of carrying out n steps of Algorithm 4 is

a ¼
X

n

k¼0

sk � C � Nh;k � ðNt;kÞ3; (12)

in which sk is the number of velocity updates at grid level k; Nt;k is

the number of time steps for modeling at grid level k; Nh;k is the

number of active grid points on the offset axis; and C is a garbage

collection factor that contains the ratio of time to spatial grid sizes,

the number of floating point operations per velocity update, and the

average cost (in time or cycles) per floating point operation. Sim-

ilarly, the cost of a nonadaptive algorithm, using the finest grid and

largest offset axis with Nh ¼ 2nNh;n grid points, is

c ¼
�

X

n

k¼0

sk

�

� C � Nh � N3
t;0; (13)

with the same fudge factor C.

Assume that at each grid-refinement step of the loop in Algo-

rithm 4, the offset range has been halved at least once, then as noted

above Nh;k ≤ Nh;0 for k ¼ 0; : : : ; n. Because Nt;k ¼ 2k−nNt;0, the

cost ratio is

r ¼ a∕c ¼ 2−n
�

X

n

k¼0

sk � 8k−n
�

∕

�

X

n

k¼0

sk

�

: (14)

This ratio is easy to evaluate under the assumption that the same

number of velocity updates occurs at each scale. Then, the ratio

becomes

¼ 2−n∕nð1 − 8−nÞ∕ð1 − 8−1Þ ≈ 2−n∕n: (15)

For n ¼ 1 (two data octaves), r ≈ 1∕2, for n ¼ 2 (three octaves),

r ≈ 1∕8, and for n ¼ 3 (four octaves), r ≈ 1∕24.

It should be noted however that, in our experience, the

assumption of uniform iterations over grid refinements is unrealis-

tic: In both examples to be presented in the next section, the bulk of

the iterations occurred at coarser grid scales, which substantially

decreases the cost of the adaptive algorithm, as will be noted below.

EXAMPLES

In this section, we illustrate the performance of the proposed adap-

tive multiscale approaches by solving a velocity estimation problem

modeled on reflection seismology. The simulations are performed

Algorithm 3. Adaptive variable projection method.

Require: choose initial velocity v, α, H, parameters for
Algorithms 1 and 2, continuous optimization step OPTSTEP,
improvement tolerance ϵ.

repeat

execute Algorithm 1 to compute Hþ
execute Algorithm 2 to compute αþ
execute OPTSTEP with warm start to compute vþ; compute

relative improvement

δ ¼ ð~J½v; α; H� − ~J½vþ; αþ; Hþ�Þ∕ ~J½v; α; H�
v←vþ; α←αþ; H←Hþ

until δ < ϵ

Algorithm 4. Adaptive multiscale variable projection method.

Require: Determine data passband ½fmin; fmax�, initial discretization
parameters dt0, dx0, dz0, dh0 suitable for accurate simulation at
fmax

n ¼ floor log2ðfmax∕fminÞ
for k ¼ 0; : : : ; n do

dt←2n−kdt0

dx←2n−kdx0

dz←2n−kdz0

dh←2n−kdh0

apply band-pass filter ½fmin; fmin þ 2−nþkðfmax − fminÞ� to
data, source pulse, resample

execute Algorithm 3 with discretization parameters dt, dx,
dz, dh

end for

Subsurface offset R187

D
o
w

n
lo

ad
ed

 0
4
/2

6
/1

7
 t

o
 1

2
8
.4

2
.2

3
6
.5

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



using a 2D constant-density acoustics, time domain, and finite-differ-

ence method (second order in time and eighth order in space).

We use the method of steepest descent with a quadratic backtrack

line search to search for the minimum of the objective function. The

gradient of the objective function is computed using equation 9. We

perform a line-search method to determine the optimal step length.

The line search evaluated the objective function for different back-

ground velocity models, which were generated by adding multipli-

cation of different step length and search direction to the current

model. The optimal step length is estimated by assuming that the

objective function is quadratic.

Throughout this section, we refer to the solution of the normal

equation 7 with α ¼ 0 as extended least-squares reverse time migra-

tion (ELSRTM). This calculation is carried out at every velocity

update, as part of the H update substep (Algorithm 1). We will

display the reflectivity (image) volumes that result from ELSRTM

because they clearly indicated the degree of focus toward h ¼ 0,

that is, the kinematic correctness of the velocity, attained by our

algorithm.

Increased computational cost

To illustrate the relation between computational cost and subsur-

face-offset extension, we perform a simple numerical experiment.

The grid dimension for velocity is 1000 × 1000, and the extended

reflectivity grid is 1000 × 1000 × Nh. Note that the computing time

is normalized by the time of the nonextended case. The relative com-

puting time is a linear function of the number of grid pointsNh in the

subsurface-offset axis (see Figure 1). Because the solution of the nor-

mal equation consists of iteration over extended Born modeling and

RTM, longer subsurface offset directly increases the cost of each

iteration.

Single reflector model

The purpose of this experiment is to investigate the behavior of

the extended reflectivity model in the subsurface-offset axis with

different levels of velocity errors. This experiment illustrates one

of the main observations underlying our adaptive algorithm (and

extended waveform inversion): The extent of the subset offset axis

necessary for accurate data fit increases with the velocity error.

The background velocity model measures 3.0 × 2.4 km with the

20 m cell size uniformly distributed in each dimension. The true

background velocity v is constant (v ¼ 3.0 km∕s). Shown in Fig-

ure 2a, in the extended reflectivity model, there is a horizontal

velocity perturbation at the depth of 1.6 km. The 61 sources

(0.3–2.7 km) and 151 receivers (0–3.0 km) are placed on the sur-

face. Note that the background velocity model vðx; zÞ is nonex-

tended, whereas the extended perturbation model r̄ðx; z; hÞ has a

nonzero value only at h ¼ 0 m. The observed data of shot 31

are depicted in Figure 2b.

The ELSRTM image with correct velocity after 20 CG iterations

is shown in Figure 3a. The energy is focused at a zero-subsurface

offset. The image with the wrong velocity is depicted in Figure 3b.

In the vertical slices at x ¼ 1500 m, the reflector is imaged as an

upward curve, symmetrical in the h direction. Compared with the

correct velocity case, the energy is scattered along h-axis. As the

0 100 200 300 400
0

2

4

6

8

10

12

14

N
h

R
e
la

ti
v
e
 t

im
e

Extended Born modeling

Extended RTM

Figure 1. The relative computing time of extended modeling and
RTM as a function of the number of grid pointsNh in the subsurface-
offset axis. The reflectivity grid size is 1000 × 1000 × Nh.

a)

b)

Figure 2. (a) Extended reflectivity r̄ at h ¼ 0 m and (b) the data of
shot 31 at the center.
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velocity error decreases, the energy tends to focus toward the center

h ¼ 0 (shown in Figure 4a–4f).

To fit the observed data well, the extended reflectivity model

must have adequate subsurface extension (see Figure 5a and 5b).

On the other hand, the required amount of the subsurface extension

decreases with the error of the velocity model, which suggests that

as the velocity model updates toward the correct one in the inver-

sion, a shorter subsurface offset is needed (see Figure 6).

Lens model

In this example, the reflectivity model contains numbers of hori-

zontal layers with various thickness (shown in Figure 7a). The back-

ground velocity model contains a Gaussian low-velocity anomaly

sitting on constant velocity (v ¼ 3.0 km∕s). Acquisition and model

geometry parameters are listed in Table 1.

The data are generated with a 3–30 Hz band-pass filter (see

Figure 8a), or approximately three octaves. Accordingly, n ¼ 2

and the observed data and the source function are filtered by three

band-pass filters (3–7.5, 3–15, and 3–30 Hz). Correspondingly, the

spatial decomposition is implemented in three steps with grid size

50, 25, and 12.5 m. The grid size in each stage is determined to

fulfill the rule ðvmin∕fmaxÞ > 5dx to avoid numerical dispersion.

The spatial grid size is the same in all dimensions (dx¼dz¼dh).

The time-step intervals (dt ¼ 8; 4; 2 ms) in each stage are chosen

to fulfill the Courant-Friedrichs-Lewy condition (ðvdt∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx2 þ dz2
p

Þ
< 1) in 2D.

In this example, we executed the α update step in Algorithm 3

only once, for the first velocity update at the coarsest grid level, and

we left α constant thereafter.

For this example, we choose a target relative misfit level of

X ¼ 0.1.

Stage 1

We start with a grid size of 50 m, frequency band of 3–7.5 Hz

(see Figure 8b), and the time-step interval of 8 ms. The initial back-

ground velocity is constant (3.0 km∕s). Assuming that the relative

velocity error is 10%, then j1 − ρ2j ≈ 0.2. Based on equation

H ¼ Lð1 − ρ2Þ, the homogeneous medium estimates mentioned in

the last section, the initial offset range is estimated as (H≈

6 × 0.2 ¼ 1.2 km). On the other hand, dh ¼ 50 m, according to the

relation H ¼ 2i � dh, we choose i ¼ 4, so we start with subsurface-

offset range H ¼ 800 m. The data misfit satisfies the tolerance level

X ¼ 0.1 (10%) of the original data after 10 iterations of CG. Mean-

while, the reflectivity model with only a half-extension H ¼ 400 m

fails to fit the data to its satisfactory level μX ¼ 12% even after 20

iterations (whereas with the full offset range, the iteration achieves a

5% misfit in 20 iterations), so the offset range of H ¼ 800 m is an

optimal choice for the initial velocity model. With low-frequency

data, only several thick layers are visible in the inverted image

(see Figure 9a). Due to the existence of the low-velocity anomaly, the

reflectors beneath it have been imaged to deeper positions. The gather

is barely focused in the h-direction.

Here, we have run 20 iterations of CG, far more iterations than

are necessary, but only because we would like to emphasize that the

data misfit would not decrease further to the tolerance level even

with more iterations, when the subsurface offset is inadequate.

We will stop iterating when the data misfit satisfies the tolerance

level in the following test.

With the inverted r̄ shown in Figure 9a and the corresponding

data residual F̄½v�r̄ − d, we update the background velocity model

by computing the gradient according to equation 9.

In Figure 10a, the velocity model after first update already reveals

the correct location of the top of the anomaly. With the first updated

velocity, the linearized inverse problem (equation 7) is solved again.

In Figure 10b, the reflector is shifted upward to a shallower position

and is more focused in the h-direction. As the velocity model be-

comes closer to the correct one, the energy is more focused toward

h ¼ 0 m, which suggests that a shorter subsurface-offset range is

needed. As a result, even half of the subsurface-offset range (400 m)

is sufficient to predict the observed data well with a data misfit of less

than 12%, shown in Figure 10c. After the second velocity update

because the half-offset range H ¼ 200 m is not able to provide a

good data fit,H ¼ 400 m is still the optimal choice (see Figure 11c).

In the next three velocity updates (iterations 3–5), we are able to re-

duce the extended offset range by half (see Figures 12, 13, and 14).

After the sixth velocity update, the reflectivity model even without

extension is able to predict the observed data within the tolerance

level (see Figure 15). And, the velocity update satisfies the conver-

gence condition as the ninth step shown in the previous algorithm

a)

b)

Figure 3. Inverted extended reflectivity r̄ after 20 iterations of CG:
(a) the correct background velocity (v ¼ vtrue) and (b) the wrong
background velocity (v ¼ 1.3vtrue).
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(see Figure 16), so a higher frequency and a finer grid can be used,

leading the algorithm to the second stage.

Stage 2

The source wavelet and observed data are filtered by a low-pass

filter (3–15 Hz). At the same time, the spatial grid size and the time-

step interval are reduced by a factor of two. With the help of the

updated velocity model (see Figure 17a) after two iterations, a higher

frequency content and a finer spatial grid and time step, the ELSRTM

image shows more structural details after seven

CG iterations (shown in Figure 17b). The data

residual is shown in Figure 17c.

Stage 3

The original source wavelet and observed data

are used. At the same time, the spatial grid size

12.5 m and the time-step interval 2 ms is used.

After one velocity update (Figure 18a), the reflec-

tivity is inverted and illustrated in Figure 18b.

With the help of the updated velocity model,

the higher frequency content, and the finer spatial

grid and time step, the background velocity and

layered structure are successfully recovered.

For comparison, the inversion results without

a model extension are shown in Figure 19a and

19b without the multiscale approach and Figure 20a and 20b with

the multiscale approach. Here, without the extended dimension h,

the objective function is defined with a different model space (M,

not M̄) and it only contains the data misfit term 1∕2kF̄½v�r − dk2.
For both cases, we use the same optimization algorithm — the

steepest descent with a quadratic backtrack line search. Both experi-

ments are performed by using the same number of velocity itera-

tions at each refinement stage as the extended case. And the

reflectivity model is estimated by 20 iterations of CG, which equals

a) b) c)

d) e) f)

Figure 4. Inverted extended reflectivity r̄ in z-h plane after 20 iterations of CG: (a) v ¼ 0.9vtrue, (b) 0.8vtrue, (c) 0.7vtrue, (d) 1.1vtrue,
(e) 1.2vtrue, and (f) 1.3vtrue.
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Figure 5. Relationship between the maximum subsurface offset H and the data residual
ΔdH . The background velocity is 30% slower than the true velocity (v ¼ 0.7vtrue).
(a) The ELSRTM image r̄ after 20 iterations of CG and (b) H versus relative ΔdH .
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20 modeling/migration pairs. As a result, the total numbers of mod-

eling/migration pairs in these two nonextended experiments are the

same as in the previous extended example. In both cases, the inver-

sion fails to correctly recover the accurate background velocity.

The layers beneath the low-velocity anomaly are imaged at the

wrong depth.
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H=800 m
X=10%
H=400 m
X=12%

Figure 10. (a) The first velocity update, (b) the ELSRTM image by
using the first updated velocity, and (c) the relative data residual
with different offset ranges.
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Figure 9. Step 1: Use the initial velocity, spatial grid size
dh ¼ dx ¼ dz ¼ 50 m, band-pass filter f∶3–7.5 Hz, time-step in-
terval dt ¼ 8 ms. (a) The ELSRTM result of 20 CG iterations and
(b) the relative data residual with different offset ranges.

a) b)

Figure 8. (a) Data of shot 61 at the center (3–30Hz) and (b) band-
pass low-frequency data (3–7.5 Hz).
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Figure 6. After 20 iterations of CG, the relative data misfit is plot-
ted as a function of maximum subsurface offset H. Different colors
represent the different levels of velocity error.

Table 1. Parameters for the lens model example.

Parameters Measurements

Source wavelet Band-pass 3–30 Hz

Source position xs x∶0–6 km every 50 m, z ¼ 0 m

Receiver position xr x∶0–6 km every 50 m, z ¼ 0 m

Space and time x ¼ 6 km, z ¼ 2.2 km, t ¼ 2.4 s

Grid size dx ¼ dh ¼ dz ¼ 12.5 m, dt ¼ 2 ms

Initial velocity v ¼ 3.0 km∕s

Maximum iterations
of the inner loop

20

b)

a)

Figure 7. (a) The extended velocity perturbation δv̄ at h ¼ 0 m and
(b) the background velocity.
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Overthrust model

This example is modified from the SEG/EAGE 3D overthrust

model (Aminzadeh et al., 1997). In the reflectivity model, horizon-

tal layers are distorted by several thrust (reverse) faults (see Fig-

ure 21). The background velocity increases with the depth. The

velocity is higher in the center, where the anticline structure sits.

The basic information is listed in Table 2.

In this example, a band-pass source wavelet (5–20 Hz) is used,

thus n ¼ 2 (octaves) of data are available. The inversion is divided

into two refinement stages. The observed data and the source func-

tion are filtered by two band-pass filters (5–10 and 5–20 Hz).

Correspondingly, the space decomposition is implemented with a

grid size of 40 and 20 m, whereas the time-step intervals are 4

and 2 ms.

In this example, we used the full Algorithm 4, including the update

for α, which resulted in increases of α at four steps (α ¼ 1.1 × 10−6;

3.2 × 10−5; 1.1 × 10−4; 2.4 × 10−4 at iterations 1, 2, 4, and 13). More

details can be found in Fu and Symes (2016). The target relative mis-

fit level for this experiment is once again 10%.

Stage 1

We use grid size 40 m, frequency band 5–10 Hz, and the time-step

interval 4 ms. The initial background velocity is constant (1.5 km∕s)

(see Figure 22a). The optimal subsurface-offset rangeH ¼ 1.6 km is

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Iteration number

R
e

la
ti
v
e

 m
is

fi
t

H=100 m
X=10%
H=50 m
X=12%

c)b)

a)

Figure 14. (a) The fifth velocity update, (b) the ELSRTM image by
using the fifth updated velocity, and (c) the relative data residual
with different offset ranges.
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Figure 13. (a) The fourth velocity update, (b) the ELSRTM image
by using the fourth updated velocity, and (c) the relative data
residual with different offset ranges.
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Figure 12. (a) The third velocity update, (b) the ELSRTM image by
using the third updated velocity, and (c) the relative data residual
with different offset ranges.
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Figure 11. (a) The second velocity update, (b) the ELSRTM image
by using the second updated velocity, and (c) the relative data residual
with different offset ranges.
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determined by measuring the data misfit during the initialization step

in our proposed algorithm. Because the initial velocity is far away

from the correct one, the structures can barely be observed from

the ELSRTM image (see Figure 22b). In the subsurface-offset gather,

the downward curves indicate slow velocity. After the first velocity

update (see Figure 23), the energy becomes more focused toward

h ¼ 0. Actually, only half of the extension (0.8 km) would have pro-

vided a good data fit. With the second velocity update (see Figure 24),

the layer structures are imaged closer to their correct positions.

Although the energy is more focused in the gather, the half-subsur-

face offset is not adequate to provide a good data fit. However, as the

background velocity continues to be updated, after the eighth itera-

tion, offset H ¼ 0.4 km is long enough (see Figure 25). At iterations

15 and 23, we are able to reduce the offset range by half. Because the

convergence condition is satisfied at iteration 26, the inversion pro-

ceeds to the second stage.

Stage 2

The source wavelet and the observed data are filtered by a low-

pass filter (5–20 Hz). At the same time, the spatial grid size and the

time-step interval are decreased by a factor of two. With the inverted

background velocity model from the 28th iteration, the extended re-

flectivity is shown in Figure 26a. The anticline and reverse fault struc-

tures can be clearly observed. Furthermore, even the reflector beneath

the anticline is positioned correctly (at approximately x ¼ 4 km;
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Figure 15. (a) The sixth velocity update, (b) the ELSRTM image by
using the sixth updated velocity, and (c) the relative data residual
with different offset ranges.
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Figure 16. (a) The ninth velocity update, (b) the ELSRTM image by
using the ninth updated velocity, and (c) the relative data residual.
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Figure 18. Stage 3: (a) The inverted background velocity model,
(b) the ELSRTM image, and (c) the relative data residual.
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Figure 17. Stage 2: (a) The second velocity update, (b) the
ELSRTM image, and (c) the relative data residual.

Subsurface offset R193

D
o
w

n
lo

ad
ed

 0
4
/2

6
/1

7
 t

o
 1

2
8
.4

2
.2

3
6
.5

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

E
G

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 T
er

m
s 

o
f 

U
se

 a
t 

h
tt

p
:/

/l
ib

ra
ry

.s
eg

.o
rg

/



z ¼ 2 km). The true velocity model is mostly recovered. The velocity

error is mostly at the edges, which is a result of illumination. The

energy is well-focused in the h-direction.

DISCUSSION

A useful point of view on the range of subsurface offsetH, kindly

suggested by reviewer M. Vyas, relates the subsurface offset to the

angle domain (Sava and Fomel, 2003): Angle gathers are (essen-

tially) Radon tranforms of subsurface-offset gathers. It follows that

the maximum offset H determines (nonaliased) the angle sampling,
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Figure 20. (a) The inverted background velocity model by using
multiscale approach but without model extension, (b) the reflectivity
model, and (c) the relative data residual.
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Figure 19. (a) The inverted background velocity model without
model extension and multiscale approach, (b) reflectivity model,
and (c) relative data residual.
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Figure 22. (a) The initial background used in inversion, (b) the
ELSRTM image by using the initial background velocity, and
(c) the relative data residual with different offset ranges.

a)

b)

Figure 21. (a) The extended velocity perturbation δr̄ at h ¼ 0 m
and (b) the true background velocity.

Table 2. Parameters for the overthrust model example.

Parameters Measurements

Source wavelet Band-pass 5–20 Hz

Source position xs x∶1–7 km every 40 m, z ¼ 0 m

Receiver position xr x∶0–8 km every 40 m, z ¼ 0 m

Space and time x ¼ 8 km, z ¼ 2 km, t ¼ 3 s

Grid size dx ¼ dh ¼ dz ¼ 20 m, t ¼ 2 ms

Initial velocity v ¼ 1.5 km∕s

Maximum iterations
of the inner loop

20
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and vice versa. When the velocity is nearly correct, the angle gathers

are nearly flat, and they can be reliably sampled with a coarse angle

step, corresponding to a small H. For a substantially incorrect veloc-

ity, the angle gathers are far from flat in angle, implying the need for

finer sampling for nonaliased representation, corresponding to larger

maximum H. Thus, the angle-offset correspondence provides an al-

ternate view of the relation between the velocity correctness and H.

In all the numerical examples, most of the computational effort is

spent on solving the normal equation 7. As a result, the total number

of modeling/migration pairs is really the cost in these experiments.

The total computational time for the Gaussian example is approx-

imately 1% of the original problem by using the finest gird and a full

offset al. along, if we assume the convergence rates are the same for

both cases. For the overthrust example, although there are only two

stages, the offset range is dramatically reduced at the first stage with

the adaptive approach and the cost is also greatly reduced (approx-

imately 2% of the original problem). Although there are only two

refinement stages, the subsurface offset is greatly reduced at the first

few iterations. Note that with more refinements and more iterations

for the inner and outer loops, the computational performance of the

adaptive algorithm will be further improved in comparison with the

nonadaptive case. More velocity updates in early stages (coarse

grids) will improve the computational efficiency significantly.

As is clear from the discussion in the “Theory” section, from the

point of view of our adaptive algorithm, the data misfit tolerance level

X is somewhat arbitrary. In our examples, we chose it based on the

lowest data misfit achievable with a small number of CG iterations to

solve the ELSRTM problem (equation 7 with α ¼ 0). However,

ideally, this tolerance should approximate the least root-mean-
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Figure 23. (a) The first updated background velocity, (b) the
ELSRTM image by using the first updated background velocity,
and (c) the relative data residual with different offset ranges.
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Figure 24. (a) The second updated background velocity, (b) the
ELSRTM image by using the second updated background velocity,
and (c) the relative data residual with different offset ranges.

b)

a)

Figure 26. Stage 2: (a) The ELSRTM image and (b) the inverted
background velocity.
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Figure 25. (a) The eighth updated background velocity, (b) the
ELSRTM image by using the eighth updated background velocity,
and (c) the relative data residual with different offset ranges.
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square (rms) error attainable with a physical (nonextended) model.

With one more level of adaptation, our algorithm could attain this

goal as well. Because driving the penalty term (pðv; α; HÞ in the

“Theory” section) toward zero is equivalent to approaching the space

of physical models, adjusting X so that α can become sufficiently

large, or H can become sufficiently small, will assure that X actually

approximates the least attainable rms error. How to define “suffi-

ciently” and how to organize an efficient algorithm based on these

observations remain a topic of research.

Note that the extended inversion example converges to a good

kinematic solution, whereas nonextended FWI may not (see the lens

example) provided the same number of modeling/migration pairs.

There are more ways to reduce the number of iterations. In solving

normal equation 7 by the CG iteration, we have used multiplication

by “z2” as a preconditioner, to accelerate convergence. However, bet-

ter methods are available (Hou and Symes, 2016) and could poten-

tially further reduce the cost of the inner iteration. Similarly, we used

steepest descent with quadratic backtrack line search as the optimi-

zation method for updating v. More efficient gradient-based optimi-

zation methods can potentially be used to further improve the

convergence rate of the outer iteration.

Evidently, the major motivation for the modifications of extended

inversion presented in this paper is to bring it closer to practicality

for 3D applications. In the “Introduction” section, we reminded the

reader that subsurface-offset modeling and inversion involve (at the

discrete level) a full-matrix multiply at each time step, the cost of

which can easily overwhelm the cost of an ordinary time-domain sol-

ution of the wave equation. This additional cost has been a serious

impediment to the adoption, or even exploration, of 3D subsurface-

offset extended waveform inversion. The techniques introduced in

this paper certainly reduce this cost premium, by orders of magnitude

for frequency ranges and length scales typical of seismic exploration.

However, a definitive assessment of practical feasibility awaits tests

with a 3D implementation.

Apart from cost, many other questions about 3D subsurface-off-

set extended waveform inversion remain to be answered. For exam-

ple, with a 2D subsurface-offset plane, should the active region be a

square of side 2H, or a rectangle with independently adapted sides,

or some more complex region? In dealing with highly refractive sub-

surface structures, such as salt, gas chimneys, and the like, will ver-

tical offsets be needed to supplement the horizontal (Biondi and

Shan, 2002) (the answer is almost certainly “yes,” and in 2D as well)?

What is the impact of the difference between the inline and crossline

sampling typical of wide-azimuth streamer surveys and of the sparse

sampling of nodes in ocean bottom seismic surveys? Is 3 Hz even a

low enough frequency such that the 5D extended model space is

computationally tractable at the necessary sample rates? All of these

questions remain to be addressed in future work.

CONCLUSION

The objective of this study is to address one of the central prob-

lems of subsurface offset extended waveform inversion, namely, its

computational cost, which greatly hinders any practical application

of this promising new technique. Adaptive determination of a suf-

ficient offset range to assure data fit, in concert with grid coarsen-

ing, yields a significant improvement in computational efficiency.

The adaptive concept progressively reduces the subsurface-offset

range throughout inversion, which can naturally bring extended

model toward physical model. The 2D synthetic experiments with

a version of this algorithm based on linearized (Born) constant den-

sity acoustics suggests that cost reduction of one or two orders of

magnitude is attainable, with recovery of short- and long-scale fea-

tures of the velocity model.
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