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Abstract

This work is devoted to an adaptive multiscale finite element method
(MsFEM) for solving elliptic problems with rapidly oscillating coefficients.
Starting from a general version of the MsFEM with oversampling, we de-
rive an a posteriori estimate for the H

1-error between the exact solution
of the problem and a corresponding MsFEM approximation. Our esti-
mate holds without any assumptions on scale separation or on the type of
the heterogeneity. The estimator splits into different contributions which
account for the coarse grid error, the fine grid error and the oversampling
error. Based on the error estimate we construct an adaptive algorithm
that is validated in numerical experiments.

1 Introduction

We consider the following elliptic problem: find u with

−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω.

Here, Ω ⊂ R
n is a bounded domain, f is a source term and A is a rapidly oscillat-

ing, highly heterogeneous matrix, i.e. a rough coefficient function. Problems of
this type have various applications in hydrology and industrial engineering. Ex-
amples are Darcy flow in porous media or heat transport in composite materials.
Solving problems of the above type numerically is typically rather problematic.
Standard methods require a computational grid that resolves the fine-scale. This
leads to an enormous computational demand which easily exceeds the capabil-
ities of available computers. To overcome these difficulties various approaches
have been proposed and discussed within the last two decades. Just to name
some of them, there is the variational multiscale method (VMM) initially pro-
posed by Hughes et al. [30, 32], the heterogeneous multiscale finite element
method (HMM) by E and Engquist [11, 12, 13], the two-scale finite element
method by Matache and Schwab [37, 38, 43] or the mortar multiscale methods
by Arbogast, Peszyńska and others [41, 40, 4]. The method that we focus on
is the multiscale finite element method (MsFEM) that was introduced by Hou
and Wu [28]. The idea of MsFEM is to construct a set of conforming multi-
scale basis functions. These basis functions are determined by adding fine scale
information to the original (low dimensional) set of Lagrange basis functions
of a finite element space. The MsFEM approximation is then defined as the
Galerkin approximation of the original problem in the discrete space that is
spanned by the multiscale basis. Once the multiscale basis is computed, the
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remaining problem is low dimensional and therefore cheap to solve. The Ms-
FEM approach can be combined with various oversampling strategies (to reduce
the effect of possible boundary layers). In such approaches the multiscale basis
functions are constructed in a sampling domain that is larger than the support
of the original basis function. The information close to the boundary of the
sampling domain is ignored and the remaining relevant ’inner’ information is
used to construct a new set of conforming basis functions (c.f. [28, 15, 16]). In
our contribution we do not specify the explicit realization of the oversampling
strategy, instead we work with a general conforming projection operator that
might be specialized to realize specific strategies. The multiscale finite element
method has been successfully applied to a large variety of applications. For
linear elliptic equations, we refer to the works of Hou et al. [28, 29, 16], for
nonlinear elliptic equations we refer to [15], two phase flow in porous media was
treated in [14], stochastic porous media flow in [1] and problems of uncertainty
quantification were approached in [10]. Convergence of MsFEM approximations
in general homogenization settings were e.g. treated in [17, 18, 19, 23, 45], ex-
plicit a priori error estimates in periodic or stochastic scenarios were obtained
in [28, 29, 20, 15, 7]. However, so far we do not know of any a posteriori error
estimate for MsFEM approximations. In this paper we wish to close this gap.

A posteriori error estimates for other types of multiscale methods are already
available. For the HMM we refer to [3, 2, 22, 25, 24, 39] for L2−, H1− and
energy-norm estimates. However, the results in these contributions only hold up
to a remaining modeling error which vanishes in periodic or stochastic scenar-
ios. Furthermore, the estimates do not include oversampling control. Adaptive
versions of the VMM have been extensively studied by Larson and Målqvist. In
[34, 36] they introduce an adaptive VMM based on energy norm estimates and
the method in [33, 35] makes use of a duality based a posteriori error represen-
tation formula. However, these approaches are based on a partition of unity by
means of a coarse grid (finite element) Lagrange basis. This partition is used to
split the global fine scale problem into localized (decoupled) fine scale problems.
One local problem for each basis function, where the corresponding solution has
fast decay to 0 outside of the support of the basis function. As this strategy
is only possible if the considered problem is linear, there is no straightforward
possibility to generalize it to nonlinear problems.

Our basic ansatz to error estimation is similar to the one proposed in [34]
for the VMM, but with several new ingredients.

For instance, as already mentioned, for the variational multiscale method in
[34] every solution of a localized fine scale problem rapidly decays outside of
the support of the associated coarse grid basis function (i.e. partition of unity
function). The local problems for the MsFEM do not have such a decay, since
the corresponding right hand sides have global support in the whole domain
Ω. Larson and Målqvist use conservative fluxes to determine the computational
domain for the local problems of the VMM. When the conservative flux over
the boundary of the local domain is small enough, this computational domain
seems to be large enough. For the MsFEM, the fluxes need to be first splitted
into macro and micro contributions. Then the jump in the flux of the micro
contributions is used as an indicator for the size of the computational domain.
An additional advantage of our approach is the straightforward extension to
nonlinear problems which is not possible in the VMM setting. We show in
Section 5 how a nonlinear problem can be treated.
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Outline: In Section 2 we motivate and propose a general version of the multiscale
finite element method. In Section 3 we discuss the role of conservative fluxes and
we present our final a posteriori error estimate and a corresponding adaptive
algorithm. A proof of the main a posteriori error estimate is given in Section 4.
In Section 5 we sketch how we transfer our results to a nonlinear scenario and
in Section 6 we present detailed numerical experiments to validate the method,
the error estimate and the adaptive algorithm.

2 A Multiscale Finite Element Method

In this and the next two sections, we consider a linear multiscale diffusion equa-
tion with homogeneous Dirichlet boundary condition. We choose this model
problem to develop our method, but we emphasize that all the subsequent con-
siderations can be generalized to other types of elliptic multiscale problems. We
develop a similar a posteriori error estimate for a strongly monotone nonlinear
problem in Section 5. The linear model problem is the following:

find u ∈ H̊1(Ω) :

∫

Ω

A∇u · ∇Φ =

∫

Ω

fΦ ∀Φ ∈ H̊1(Ω). (1)

Here, Ω ⊂ R
n, n ∈ N>0 denotes a domain with a polygonal boundary and we

define H̊1(Ω) := C∞
c (Ω)

‖·‖
H1(Ω) . Furthermore, we assume that A ∈ (L∞(Ω))

n×n

and f ∈ L2(Ω). For A, we also suppose ellipticity, i.e. there exists some α ∈ R>0

with

A(x)ξ · ξ ≥ α|ξ|2 ∀ξ ∈ R
n and for a.e. x ∈ Ω.

We recall that we are interested in the case that A (and hence also u) exhibits
microscopic features.

2.1 Motivation

In order to motivate the multiscale finite element method that we propose in
Definition 2.2, we start to rewrite problem (1) in the style of a MsFE method.
This helps to understand the final formulation of the method and to identify
the relevant parameters, that we need to ’tune’ to improve the approximation.
Let Vc

H denote a finite dimensional ’coarse scale’ subspace of H̊1(Ω). Let Ic :

H̊1(Ω) → Vc
H denote a projection operator. We define the continuous fine-scale

space Vf by:

Vf := {φ ∈ H̊1(Ω)|Ic(φ) = 0}.

This space is a Hilbert-space with theH1-scalar-product and we can accordingly
decompose the full space with some complementary space Vc

H as

H̊1(Ω) = Vf ⊕ Vc
H .

Our next tool is a reconstruction operator R : Vc
H → H̊1(Ω). We define this

operator with the help of a corrector operator Q : Vc
H → Vf ⊂ H̊1(Ω) as
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R = id+Q. For each basis function Φj ∈ Vc
H we define the corrector Q(Φj) ∈ Vf

as the solution of
∫

Ω

A (∇Φj +∇Q(Φj)) · ∇φ =

∫

Ω

fφ ∀φ ∈ Vf . (2)

Equation (2) is solvable by the Lax-Milgram Theorem. With this construction,
the J :=dimVc

H functions {R(Φj)|j ≤ J} form a multiscale basis for the multi-
scale space V M :=span{R(Φj)|j ≤ J}. In this space, we consider the following
MsFEM-like problem:

find ū ∈ V M :

∫

Ω

A∇ū · ∇ΦH =

∫

Ω

fΦH ∀ΦH ∈ Vc
H . (3)

We emphasize that, at least formally, problem (3) is a low-dimensional problem.
Nevertheless, we claim that (3) is actually equivalent to the original problem,
i.e. that we obtain the original solution ū = u. To verify this claim, we first use
the definition of V M and write ū ∈ V M as ū = R(uc) for some uc ∈ Vc

H . Let

now Φ ∈ H̊1(Ω) be an arbitrary test function. According to the decomposition
of H̊1(Ω) we can write this function as Φ = ΦH +φ with ΦH ∈ Vc

H and φ ∈ Vf .
We have

∫

Ω

A∇ū · ∇ΦH =

∫

Ω

fΦH

by (3) and

∫

Ω

A∇R(uc) · ∇φ =

∫

Ω

fφ

by the definition of Q in (2). Adding the two equations yields that ū = R(uc)
solves

∫

Ω

A∇ū · ∇Φ =

∫

Ω

fΦ,

the original problem. Since the solution is unique, there holds ū = u.

Our result is that an MsFEM can be formulated as follows.

find uc ∈ Vc
H :

∫

Ω

A∇R(uc) · ∇ΦH =

∫

Ω

fΦH ∀ΦH ∈ Vc
H .

The reconstruction is defined as R(ΦH) := ΦH + Q(ΦH), where Q(ΦH) ∈ Vf

solves
∫

Ω

A (∇ΦH +∇Q(ΦH)) · ∇φ =

∫

Ω

fφ ∀φ ∈ Vf . (4)

In the above setting, the reconstruction R(uc) provides the true solution u.
Starting from this formulation of the problem, we can construct a fully discrete
MsFEM: we replace Vf by a discrete space Wh. We replace f by 0 on the right
hand side of the fine scale problem (4). We localize the fine scale problem by
replacing Ω by smaller domains. These three steps are performed in the next
subsection.



5

2.2 Formulation of the Method

In order to formulate the method in a general way, we assume that TH is a regular
partition of Ω with elements T . The coarse space VH ⊂ H̊1(Ω) is a discrete
function space associated to TH . The fine scale space Wh denotes a subspace of
VH that is obtained from a partition Th, which is supposed to be a refinement
of TH . We assume that Wh is sufficiently accurate to capture oscillations, i.e.
we have a condition infvh∈Wh

‖u − vh‖H1(Ω) ≤ TOL. Furthermore, in order to

impose boundary conditions on subdomains, we define W̊h(ω) := Wh ∩ H̊1(ω)
for ω ⊂ Ω. By Ah we denote an approximation of A.

Definition 2.1 (Admissible environment). For T ∈ TH , we call U(T ) an ad-
missible environment of T , if it is connected, if T ⊂ U(T ) ⊂ Ω and if it is the
union of elements of Th, i.e.

U(T ) =
⋃

S∈T ∗
h

S, where T ∗
h ⊂ Th.

Note that the extreme choices U(T ) = T and U(T ) = Ω provide admissible
environments. Intermediate choices are useful for oversampling.

We can now introduce the MsFEM in a Petrov-Galerkin formulation with
oversampling. The typical construction of an explicit multiscale finite element
basis is already incorporated in the method.

Definition 2.2. Let VH ,Wh ⊂ H̊1(Ω) be finite function spaces as above and let
UH = {U(T )| T ∈ TH} be a family of admissible environments of the elements
of TH . We call Rh(uH) ∈ Wh the MsFEM-approximation of u, if uH ∈ VH

solves

∑

T∈TH

∫

T

Ah∇Rh(uH) · ∇ΦH =

∫

Ω

fΦH ∀ΦH ∈ VH . (5)

For every ΦH ∈ VH , the reconstruction Rh(ΦH) is defined as Rh(ΦH) := ΦH +
Q̃h(ΦH), where Q̃h(ΦH) is a corrector. We first define, for each simplex T ∈ TH
the local corrector Qh,T (ΦH) ∈ W̊h(U(T )) as the solution of

∫

U(T )

Ah (∇ΦH(xT ) +∇Qh,T (ΦH)) · ∇φh = 0 ∀φh ∈ W̊h(U(T )). (6)

In order to define Q̃h from the local correctors Qh,T , we must use a conforming
projection PH,h which maps piecewise continuous functions on TH to elements
of Wh,

PH,h : {φh ∈ L2(Ω)| φh ∈ Wh(T ) ∀T ∈ TH} −→ Wh .

With such a projection, we set

Q̃h(ΦH) := PH,h

(
∑

T∈TH

χT Qh,T (ΦH)

)

,

where χT is the indicator function of the simplex T .
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Remark 1. The projection PH,h can be constructed by using a local average
on the edges of T . For instance in the case of piecewise linear functions: let Nh

denote the set of nodes for the fine mesh Th and let TH(xh) := {T ∈ TH | xh ∈ T}
denote the set of coarse elements that share the node xh ∈ Nh. Then the
projection Q̃h(ΦH) ∈ Wh is uniquely defined by the following values of Q̃h(ΦH)
in these nodes

Q̃h(ΦH)(xh) := PH,h

(
∑

T∈TH

χTQh,T (ΦH)

)

(xh) (7)

:=
1

♯TH(xh)

∑

T∈TH(xh)

Qh,T (ΦH)(xh) ∀xh ∈ Nh.

A more sophisticated way of defining PH,h is to formulate new micro prob-
lems on an environment U(E) of each macro edge E = T1 ∩ T2. Boundary
conditions for these problems are obtained by using the values of Qh,T1 and
Qh,T2

. However the standard numerical experiments in Section 6 indicate that
this is not necessary. The averaging operator is extremely cheap and reaches a
high accuracy. Also note that we might exchange the projection of the noncon-
forming part and the solving of the discrete macro problem (5), i.e. first we solve
(5) with the (nonconfirming) operator Rh(ΦH) := ΦH +

∑

T∈TH
χTQh,T (ΦH)

and then use the conforming function uH + PH,h(
∑

T∈TH
χTQh,T (uH)) as your

final approximation of u. In particular in nonlinear scenarios (or if the projec-
tion operator is nonlinear) this might be a reasonable strategy. Furthermore,
such procedure does not change the final a posteriori error estimate in Theo-
rem 3.5 below. We still get the same error contributions, where only the term
‖Ah∇(Qh,T −PH,h(Qh,T ))(uH)‖L2(T ) must be replaced by the slightly different
term ‖A∇(Qh,T − PH,h(Qh,T ))(uH)‖L2(T ). This is an easy observation when
looking at the proof of Theorem 3.5 in Section 4.

Remark 2. For the choice U(T ) = T , Definition 2.2 provides the typical
formulation of the MsFEM without oversampling. In this case we also get
Rh(uH) ∈ Wh without any projection.

Let us make a heuristic consideration. If h → 0, if U(T ) → Ω and if we
replace the right hand side in the local problems (6) by

∫

Ω
fφ and ∇ΦH(xT ) by

∇ΦH(x), we obtain the exact method of Section 2.1, and therefore Rh(uH) = u.
This implies that we can tune three parameters: h (accuracy with which we solve
the micro-scale equations), U(T ) (the computational domains for the micro-
scale equations), and H (since we ignore the influence of f for the micro-scale
equations). In the following, we present an a-posteriori error estimate which
can be used to decide how to tune these three quantities.

3 The a posteriori error estimate

In this section, we restrict ourselves to the special case that the partition TH
is simplicial and that the discrete spaces consist of piecewise linear functions.
These restrictions simplify calculations, but are not crucial for the method. The
estimate that we present in this section can be generalized to other cases.

Assumption 3.1. Let TH denote a regular partition of Ω with elements T and
let Th be a refinement of TH with elements S. The barycenter of T shall be
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denoted by xT . The set of the inner (coarse) faces is defined by

Γ(TH) := {E|E = T ∩ T̃ , T, T̃ ∈ TH and codim(E) = 1}.

Γ(Th) is defined analogously. The discrete spaces of piecewise polynomials of
degree 1, are given by

VH := {ΦH ∈ H̊1(Ω) ∩ C0(Ω) |ΦH|T
∈ P

1(T ) ∀T ∈ TH} and

Wh := {φh ∈ H̊1(Ω) ∩ C0(Ω) |φh|S
∈ P

1(S) ∀S ∈ Th}.

The local restriction of Wh to ω ⊂ Ω is given by Wh(ω) := {(φh)|ω| φh ∈ Wh}.
Ah denotes an approximation of A, which is constant on every S ∈ Th.

To analyze the method of Definition 2.2 further, we next introduce a local
corrector basis (wi

h,T )T,i. The definition of these functions is analogous to the
construction of the cell problem basis functions in homogenization theory. The
basis functions wi

h,T will later provide an indicator for the oversampling error.

Definition 3.2 (Local corrector basis). For vi(x) := xi we define wi
h,T :=

Qh,T (vi). We note that the corrector functions {wi
h,T |i = 1, ..., n} allow to write

Qh,T (ΦH)(x) =
n∑

i=1

∂xi
ΦH(xT ) w

i
h,T (x). (8)

Remark 3. Working with the functions (wi
h,T )T,i instead of using Qh,T (ΦH)

has also advantages in the implementation and concerning run time. To illus-
trate this, let us consider the 2d-case. In the original formulation, Qh,T (ΦH)
has to be computed for each macroscopic basis function ΦH with support on T .
In general, these are three local problems to solve for each triangle T . Using
the local corrector basis, we only need to solve two problems for each T (one
for v1 and one for v2). Additionally, the a-posteriori error estimate below uses
expressions that depend on wi

h,T .

3.1 Conservative Corrector Flux

In the discrete scheme, the local correctors Qh,T (ΦH) are glued together in order
to obtain a global corrector Qh(ΦH). This will not provide the ’exact corrector’
Q(ΦH) of Section 2.1. Therefore, one of the errors of the discrete scheme can be
determined by checking how well two local correctors Qh,T1(ΦH) and Qh,T2(ΦH)
can be glued together. We hence study the jump in the flux over interfaces E.

When doing this, we must consider two aspects. The first aspect is that we
should not look at the jump [Ah∇Qh,T (ΦH)]E , because this jump contains a
macroscopic contribution due to the jump of ∇ΦH over E. This jump cannot be
reduced by increasing the admissible environments U(T1) and U(T2). The right
strategy is to first remove the influence of the jump of ∇ΦH over E and then
concentrate on the jump of the corrector flux. With this purpose, we introduced
the local corrector basis {wi

h,T |1 ≤ i ≤ n}. We will evaluate [Ah∇wi
h,T ]E instead

of [Ah∇Qh,T (ΦH)].
The second aspect is the choice of an adequate flux measure. We will use a

conservative corrector flux. This flux is defined according to the results obtained
in the work of Hughes et al. [31]. In the mentioned work, the main finding is
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that the Continuous Galerkin method is locally conservative with respect to
subdomains consisting of a union of grid elements. The conservative flux is a
variational approximation of the numerical flux over the boundary of such a
subdomain. This suggests that the conservative flux is a good indicator for
oversampling in the sense that: the closer the sum of the conservative fluxes
over a macro edge E comes to zero, the more the method behaves like a global
finite element method on the fine grid. In this case we get the best possible
approximations. Note that we should not use the numerical flux as an indicator
(i.e. the gradient jumps of the numerical approximations over the individual
micro edges that contribute to E), since this is not mass conservative and since
it typically does not accurately approximate the real flux. For further details and
experiments on the differences between the numerical flux and the conservative
flux, we refer to the work of Hughes et al. [31].

Given the basis functions wi
h,T , we define flux functions qh,T,i as follows.

Regarding the name we note that the property of mass conservation can be
verified by choosing φh = 1 in the definition of qh,T,i.

Definition 3.3 (Conservative Corrector Flux). We define the conservative cor-
rector flux qh,T,i ∈ Wh(∂T ) of wi

h,T as the unique solution (continuous and
piecewise linear on ∂T ) of:

(−qh,T,i, φh)L2(∂T ) =

∫

T

Ah

(
ei +∇wi

h,T

)
· ∇φh ∀φh ∈ Wh(T ). (9)

The a posteriori error estimate will depend on the flux functions qh,T,i. Us-
ing the error estimate in an adaptive numerical scheme leads to the following
strategy: If the jump of the conservative corrector flux over a face E = T1 ∩ T2

is too large, we increase the admissible environments U(T1) and U(T2). The
jump is measured by the quantities of the next definition.

Definition 3.4 (Flux and flux jump measures). For any simplex T ∈ TH ,
we denote the outer normal function by νT : ∂T → R

n. For two simpleces
T1 and T2, with E := T̄1 ∩ T̄2 and for a function g ∈ (L∞(T1 ∪ T2))

n
with

g|Tj
∈
(
C0(Tj)

)n
, j = 1, 2, we define the jump [g]E : E → R of g over E by

[g]E(x) := lim
δ→0

g(x− δνT1
) · νT1

(x) + lim
δ→0

g(x− δνT2
) · νT2

(x).

With the conservative corrector fluxes qh,T,i of Definition 3.3 we set

[qh,i]E(x) := qh,T1,i(x) + qh,T2,i(x).

For ΦH ∈ VH (which has a piecewise constant gradient), we define

[qE(ΦH)](x) :=

∣
∣
∣
∣
∣

n∑

i=1

lim
δ→0

(∂xi
ΦH(x− δνT1

)) [qh,i]E(x)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

n∑

i=1

lim
δ→0

(∂xi
ΦH(x− δνT2

) [qh,i]E(x)

∣
∣
∣
∣
∣
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and

[γE(ΦH)](x) :=

∣
∣
∣
∣
∣

n∑

i=1

lim
δ→0

(∂xi
ΦH(x− δνT1)− ∂xi

ΦH(x− δνT2)) qh,T1,i(x)

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

n∑

i=1

lim
δ→0

(∂xi
ΦH(x− δνT1

)− ∂xi
ΦH(x− δνT2

)) qh,T2,i(x)

∣
∣
∣
∣
∣
.

3.2 Main Result and Adaptive Algorithm

In this section we present the a-posteriori error estimate and the associated
adaptive algorithm. The proof is given in Section 4. The notation f - g is used
if f ≤ Cg, where C > 0 does not depend on the discretization.

Theorem 3.5 (A posteriori error estimate). Let u be the solution of the original
problem (1) and let Rh(uH) be the solution of the discrete scheme of Definition
2.2. We want to investigate the error e := u−Rh(uH) ∈ H̊1(Ω). For the error,
we have the following a-posteriori error estimate.

‖e‖H1(Ω) -

(
∑

T∈TH

H2
T ‖f‖2L2(T )

) 1
2

+

(
∑

S∈Th

‖(A−Ah)∇Rh(uH)‖2L2(S)

) 1
2

+




∑

ES∈Γ(Th)

hES
‖[Ah∇Rh(uH)]ES

‖2L2(ES)





1
2

+

(
∑

T∈TH

‖Ah∇(Qh,T − PH,h(Qh,T ))(uH)‖2L2(T )

) 1
2

+




∑

E∈Γ(TH)

HE‖[qE(uH)]‖2L2(E)





1
2

+




∑

E∈Γ(TH)

HE‖[γE(uH)]‖2L2(E)





1
2

.

Let us consider the six terms on the right hand side of the error estimate.
The first and the last term account for the discretization error in the macro
grid. The second term is due to the approximation of the diffusion matrix A.
The third term is a measure for the discretization error in the local problems,
and the fourth term for the enforcement of global continuity. The fifth term
accounts for the error that occurs if U(T ) is not large enough, i.e. the error
contribution which can be decreased with larger oversampling.

Remark 4 (Effectivity of the estimate). It currently seems out of reach to derive
a general effectivity result for the above estimate including the projection and
the oversampling errors. If we increase the size of each environment U(T ) to
converge to the whole domain Ω, the projection part vanishes as well and we are
in a known scenario. However, we cannot forecast the interaction of projection
and oversampling in a general manner so that these parts can be bounded by
the local H1-error itself. Beside these, all the other error contributions (i.e. the
macro and micro grid residuals) are effective in the typical sense and can be
treated in the standard way using localization with bubble functions (c.f. [46]).
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Remark 5 (Effectivity of the conservative fluxes). Let wi
T denote the exact

solution of a certain local problem (i.e. wi
h,T → wi

T for h → 0) and let qT,i

denote the corresponding exact flux. Then, effectivity of the conservative flux
was shown by Brezzi, Hughes and Süli [6] in simple cases (Poisson problem and
certain geometrical assumptions on Ω). Here, efficiency is in the sense that the
accuracy of qh,T,i approximating qT,i is of the same order as ∇ξh approximating
∇ξ in L2. More general results are not available, even though they seem to hold
true due to [6].

Based on the a posteriori result of Theorem 3.5 we formulate an adaptive
algorithm. The contributions from fine grid residual and approximation error
are used for locally refining Th, the contributions from the coarse grid residual
are used for an adaptive refinement of TH and contributions that depend on
the conservative fluxes are used to determine the sizes of the admissible envi-
ronments U(T ). In order to formulate the algorithm properly, we need some
additional definitions.

Definition 3.6. The local error indicators for macro-, micro-, approximation-,
projection- and oversampling errors are given by:

ηmacro
T := HT ‖f‖L2(T ) +

1√
2

∑

E∈Γ(TH)

E⊂T

√

HE‖[γE(uH)]‖L2(E),

ηmicro
T :=

∑

ES∈Γ(Th)

ES⊂T

√

hES
‖[Ah∇Rh(uH)]ES

‖L2(ES),

η
approx
T :=

∑

S∈Th

S⊂T

‖(A−Ah)∇Rh(uH)‖L2(S),

η
proje
T := ‖A∇(Qh,T − PH,h(Qh,T ))(uH)‖L2(T ),

ηoversT :=
1√
2

∑

E∈Γ(TH)

E⊂T

√

HE‖[qE(uH)]‖L2(E),

Accordingly we define the global indicators:

η∗ :=

(
∑

T∈TH

(η∗T )
2

) 1
2

,

where ’*’ stands for either ’macro’, ’micro’, ’approx’, ’proje’ or ’overs’. The
total estimated error ηtotal is defined as the sum of all the global indicators.
The set of admissible environments is denoted by U := {U(T )|T ∈ TH}. By
’increasing U(T ) ∈ U ’ we mean that we add another layer of elements of Th to
the corresponding subgrid.

The input for the algorithm is a coarse grid triangulation TH , a fine grid
triangulation Th, a set of admissible environments U , a positive number σ de-
scribing the permissible deviation from a given average and a positive integer
k describing how many layers of fine grid elements are added to a certain en-
vironment. Adding one layer to T means that we add all fine grid elements to
U(T ) that share at least one node with a fine grid element in T . We put this
into a definition:
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Algorithm: adaptiveRefine( TOL, TH , Th, U , σ, k )

Let ci ∈ (0, 1), 1 ≤ i ≤ 4 with
∑4

i=1 ci = 1.

while ηtotal > TOL do
Compute Rh(uH) with TH , Th and U .
Compute ηtotal.
if ηtotal < TOL then

break.
end

Compute ηmacro, ηmicro, ηapprox, ηovers.
if ηmicro > c1 η

total or ηapprox > c2 η
total then

foreach T ∈ TH do

if ηmicro
T ≥ 1

|TH |η
micro then

refine Th in T .
end

end

end

if ηovers > c3 η
total then

foreach T ∈ TH do

if ηoversT ≥ 1
|TH |η

overs then

increase U(T ) ∈ U by k layers.
end

end

end

if ηmacro > c4 η
total then

foreach T ∈ TH do

if ηmacro
T ≥ σ 1

|TH |η
macro then

mark T for two refinements.
else

do nothing.
end

end

end

Refine grid.
end
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Definition 3.7. Let K ⊂ Ω denote a set that consists of elements of Th, i.e.

K =
⋃

S∈T ∗
h

S, where T ∗
h ⊂ Th.

We say U(K) is created by enriching K by one layer if

U(K) =
⋃

{S ∈ Th| S ∩K 6= ∅}.

We denote U(K) to be an oversampling region with k layers if this procedure is
iteratively applied k times.

We note that, during the run of the algorithm, Th needs to remain a re-
finement of TH . This means that changing TH might also mean to add some
elements to Th. The algorithm is validated in the numerical experiments in
Section 6.

4 Proof of the a posteriori Error Estimate

In this section we proof the a posteriori error estimate in Theorem 3.5. We
note that the strategy of the proof could be also generalized to other multiscale
methods such as the heterogeneous multiscale method (HMM). However, that
case, one would need to define a suitable extension operator instead of a projec-
tion operator in order to glue the local solutions Qh,T together. One possibility
would be to extent the local parts by periodicity and then using a projection
to again glue them together. In comparison to the MsFEM case it seems to be
more reasonable that such a projection should involve additional local problems
around the interfaces where the local solutions are connected.

Proof of Theorem 3.5. Let IH : H̊1(Ω) → VH and Ih : H1(Ω) → Wh denote
Clément interpolation operators. For these operators we have the following
estimates (c.f. [8]):

‖φ− IH(φ)‖L2(T ) ≤ C1HT |φ|H1(ωT ) ∀φ ∈ H1(Ω), ∀T ∈ TH , (10)

‖φ− IH(φ)‖L2(E) ≤ C2H
1
2

E |φ|H1(ωE) ∀φ ∈ H1(Ω), ∀E ∈ Γ(TH), (11)

‖φ− Ih(φ)‖L2(S) ≤ C3hS |φ|H1(ωS) ∀φ ∈ H1(Ω), ∀S ∈ Th, (12)

‖φ− Ih(φ)‖L2(ES) ≤ C4h
1
2

ES
|φ|H1(ωES

) ∀φ ∈ H1(Ω), ∀ES ∈ Γ(Th). (13)

In these estimates we used the notation

ωT :=
⋃

K∈TH ,K∩T 6=∅

K, and ωE := T1 ∪ T2 where T1 ∩ T2 = E,

and ωS and ωES
accordingly for the fine grid.

The estimate is based on an L2-approach, exploiting a testing procedure and
Galerkin orthogonality. We use the positive constant cP > 0 from the Poincaré
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inequality to calculate

cPα‖e‖2H1(Ω) ≤
∫

Ω

A∇e · ∇e

=

∫

Ω

A∇u · ∇e−
∫

Ω

A∇Rh(uH) · ∇e

(1)
=

∫

Ω

fe−
∫

Ω

(A−Ah)∇Rh(uH) · ∇e−
∫

Ω

Ah∇Rh(uH) · ∇e

(5)
=

∫

Ω

f(e− IH(e))−
∑

T∈TH

∫

T

Ah∇Rh(uH) · ∇(e− IH(e))

−
∫

Ω

(A−Ah)∇Rh(uH) · ∇e

=

∫

Ω

f(e− IH(e))−
∫

Ω

(A−Ah)∇Rh(uH) · ∇e

−
∑

S∈Th

∫

S

Ah∇Rh(uH) · ∇ ((e− IH(e))− Ih(e− IH(e)))

−
∑

T∈TH

∫

T

Ah∇Rh(uH) · ∇ (Ih(e− IH(e)))

=

∫

Ω

f(e− IH(e)

︸ ︷︷ ︸

=:I

−
∫

Ω

(A−Ah)∇Rh(uH) · ∇e

︸ ︷︷ ︸

=:II

−
∑

S∈Th

∫

∂S

(Ah∇Rh(uH) · νS) ((e− IH(e))− Ih(e− IH(e)))

︸ ︷︷ ︸

=:III

+
∑

T∈TH

∫

T

Ah∇(uH +Qh,T (uH)−Rh(uH)) · ∇ (Ih(e− IH(e)))

︸ ︷︷ ︸

=:IV

−
∑

T∈TH

∫

T

Ah(∇uH +∇Qh,T (uH)) · ∇ (Ih(e− IH(e)))

︸ ︷︷ ︸

=:V

.

It remains to estimate the terms I to V. For I we obtain with (10)

|I| ≤
∑

T∈TH

‖f‖L2(T )‖e− IH(e)‖L2(T )

≤ C
∑

T∈TH

‖f‖L2(T )HT ‖e‖H1(ω(T ))

≤ C

(
∑

T∈TH

‖f‖2L2(T )H
2
T

) 1
2

‖e‖H1(Ω).

Term II can be estimated directly by

|II| ≤
∑

S∈Th

‖(A−Ah)∇Rh(uH)‖L2(S)‖∇e‖L2(S)
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≤
(
∑

S∈Th

‖(A−Ah)∇Rh(uH)‖2L2(S)

) 1
2

‖e‖H1(Ω).

For III we use (13) and the fact that the Clément interpolation operator is H1-
stable. Furthermore, note that (e− IH(e))− Ih(e− IH(e)) vanishes on all faces
that intersect with the boundary of Ω. We obtain

|III| =

∣
∣
∣
∣
∣
∣

∑

ES∈Γ(Th)

∫

ES

[Ah∇Rh(uH)]ES
((e− IH(e))− Ih(e− IH(e)))

∣
∣
∣
∣
∣
∣

≤ C




∑

ES∈Γ(Th)

‖[Ah∇Rh(uH)]ES
‖2L2(ES)hES





1
2

‖e‖H1(Ω).

Again, using the H1-stability of the Clément operator, we get for IV

|IV| =
∣
∣
∣
∣
∣

∑

T∈TH

∫

T

Ah∇ (uH +Qh,T (uH)−Rh(uH)) · ∇ (Ih(e− IH(e)))

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

T∈TH

∫

T

Ah∇(Qh,T − Q̃h)(uH) · ∇ (Ih(e− IH(e)))

∣
∣
∣
∣
∣

≤ C

(
∑

T∈TH

‖Ah∇(Qh,T − Q̃h)(uH)‖2L2(T )

) 1
2

‖e‖H1(Ω)

It remains to estimate V. We abbreviate the second factor as φh := Ih(e−IH(e)).
Furthermore, for an edge E ∈ Γ(TH), let us denote by TE,1 and TE,2 the two
elements of TH that share E, i.e. E = TE,1 ∩ TE,2. With this notation, we get

V = −
∑

T∈TH

∫

T

Ah(∇uH +∇Qh,T (uH)) · ∇φh

(8)
= −

∑

T∈TH

n∑

i=1

∂xi
uH(xT )

∫

T

Ah

(
ei +∇wi

h,T

)
· ∇φh

(9)
=
∑

T∈TH

n∑

i=1

∂xi
uH(xT )(qh,T,i, φh)L2(∂T )

=
1

2

∑

E∈Γ(TH)

n∑

i=1

(

∂xi
uH(xTE,1

)

∫

E

qh,TE,1,i φh + ∂xi
uH(xTE,2

)

∫

E

qh,TE,2,i φh

)

=
1

2

∑

E∈Γ(TH)

(
n∑

i=1

(

∂xi
uH(xTE,1

)

∫

E

(qh,TE,1,i + qh,TE,2,i)φh

)

−
n∑

i=1

(

(∂xi
uH(xTE,1

)− ∂xi
uH(xTE,2

))

∫

E

qh,TE,2,iφh

))
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With Definition 3.4 we can write

|V| ≤ 1

2

∑

E∈Γ(TH)

∫

E

[qE(uH)]|φh|+
1

2

∑

E∈Γ(TH)

∫

E

[γE(uH)]|φh|

≤ 1

2

∑

E∈Γ(TH)

∫

E

[qE(uH)]|Ih(e− IH(e))|+ 1

2

∑

E∈Γ(TH)

∫

E

[γE(uH)]|Ih(e− IH(e))|

≤ C




∑

E∈Γ(TH)

HE‖[qE(uH)]‖2L2(E)





1
2

‖e‖H1(Ω)

+ C




∑

E∈Γ(TH)

HE‖[γE(uH)]‖2L2(E)





1
2

‖e‖H1(Ω).

Adding the estimates for I to V and dividing by ‖e‖H1(Ω) yields the desired
result.

5 A strictly monotone nonlinear problem

In comparison to the adaptive variational multiscale method proposed by Larson
and Målqvist [33, 34], our method directly generalizes to nonlinear problems.
The VMM in [33, 34] is based on a partition of unity which is used to localize the
fine scale computations. The big advantage of this strategy is that this yields a
natural, globally continuous fine scale approximation of the exact solution. No
projection is necessary and the homogeneous Dirichlet boundary condition for
the local problems is close to the correct boundary condition. On the other hand,
this strategy does not carry over to the nonlinear setting since we can no more
split the problem linearly into local problems by means of a partition of unity.
Our method does not have such a restriction. Let us sketch the method and the
estimate in the case of monotone operators, i.e. we assume A(·, ξ) ∈ (L∞(Ω))

n

and that there exist two constants 0 < α ≤ β < ∞ such that uniformly for
almost every x in Ω:

(A(x, ξ1)−A(x, ξ2), ξ1 − ξ2) ≥ α|ξ1 − ξ2|2, (strong monotonicity)

|A(x, ξ1)−A(x, ξ2)| ≤ β|ξ1 − ξ2|, (Lipschitz continuity)

A(x, 0) = 0.

We then consider the problem to find u ∈ H̊1(Ω) with
∫

Ω

A (x,∇u) · ∇Φ(x) dx =

∫

Ω

f(x)Φ(x) dx ∀Φ ∈ H̊1(Ω). (14)

There is a unique solution of (14) due to the Browder-Minty theorem (c.f. [42]).
In the following Ah denotes a piecewise x-independent strictly monotone oper-
ator (with respect to the fine grid Th). The formulation of the multiscale finite
element method is identical to the linear case, i.e. Rh(uH) ∈ Wh ⊂ H̊1(Ω) is
the MsFEM-approximation of u, if uH ∈ VH solves:

∑

T∈TH

∫

T

Ah (·,∇Rh(uH)) · ∇ΦH =

∫

Ω

fΦH ∀ΦH ∈ VH .
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Here, for each simplex T ∈ TH and for ΦH ∈ VH the local corrector Qh,T (ΦH) ∈
W̊h(U(T )) is the solution of

∫

U(T )

Ah (·,∇ΦH(xT ) +∇Qh,T (ΦH)) · ∇φh = 0 ∀φh ∈ W̊h(U(T )).

We define the reconstruction by Rh(ΦH)|T := ΦH + Qh,T (ΦH). With a suit-
able projection PH,h, the final (continuous) approximation of u is given by
PH,h(Rh(uH)).

The arising nonlinear equations can be solved with the Newton scheme
framework for multiscale methods as proposed in [26].

There is only one difference in this nonlinear setting if a posteriori error esti-
mates are considered. Due to the nonlinearity, it is not possible to separate the
flux into its macro- and micro-scale parts (which we established with a local
corrector basis). Therefore, the conservative corrector flux needs to be defined
in a more general manner so that we determine the flux for the whole correction
of uH : for ΦH ∈ VH , we define the conservative corrector flux in the nonlinear
case qh,T (ΦH) ∈ Wh(∂T ) of Qh,T (ΦH) as the unique solution of:

(−qh,T (ΦH), φh)L2(∂T ) =

∫

T

Ah (·,∇ΦH +∇Qh,T (ΦH)) · ∇φh ∀φh ∈ Wh(T ).

In addition we set

[qnlE (ΦH)]E(x) := qh,T1
(ΦH)(x) + qh,T2

(ΦH)(x).

With this modification, the a-posteriori error estimate can be derived in analogy
to the preceeding section.

Theorem 5.1. Let u denote the exact solution of problem (14) and Rh(uH)
the corresponding MsFEM approximation. Then we obtain for the total error
e := u− PH,h(Rh(uH)) ∈ H̊1(Ω):

‖e‖H1(Ω) -

(
∑

T∈TH

H2
T ‖f‖2L2(T )

) 1
2

+

(
∑

S∈Th

‖(A−Ah)(·,∇Rh(uH))‖2L2(S)

) 1
2

+




∑

ES∈Γ(Th)

hES
‖[Ah (·,∇Rh(uH))]ES

‖2L2(ES)





1
2

+

(
∑

T∈TH

‖A (·,∇(Qh,T − PH,h(Qh,T ))(uH)) ‖2L2(T )

) 1
2

+




∑

E∈Γ(TH)

HE‖[qnlE (uH)]‖2L2(E)





1
2

.

With Theorem 5.1 we have an a posteriori error estimate that allows to deal
numerically with strictly monotone nonlinear problems. Regarding limitations
of the above results we mention that in relevant applications in hydrology, the
nonlinear multi-scale problems are degenerate, see e.g. [27] and [44]. For such
a setting, the construction of an adaptive MsFEM has yet to be developed.
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Table 1: Model problem 1. The table contains L2- and H1 errors between the
exact solution and different MsFEM approximations. The MsFEM approxima-
tions are obtained for different coarse grid and fine grid resolutions H and h.
The grids are uniformly refined. Each coarse element T ∈ TH is enriched by
10 layers to create the oversampling set U(T ). We also list the total estimated
error, the coarse grid error indicator ηmacro and fine grid error indicator ηmicro.

H h ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal ηmacro ηmicro ηapprox

2−2 2−4 0.1669 2.4887 5.6398 4.2013 0.7787 0.2236
2−3 2−5 0.0810 1.9847 4.8033 3.2779 0.6314 0.1773
2−4 2−6 0.0243 1.0391 2.8838 1.7292 0.3177 0.0947
2−5 2−7 0.0074 0.5629 1.8501 0.8714 0.1689 0.0489

Table 2: Model problem 1. MsFEM computations for fixed fine grid resolution
with h = 2−7 and fixed number of 10 oversampling layers. We see a listing of
the errors, the total estimated error ηtotal and its coarse grid error contribution
ηmacro.

H ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal ηmacro

2−3 0.0625 1.7719 4.1246 3.4181
2−4 0.0196 0.9231 2.5679 1.7652
2−5 0.0074 0.5629 1.8501 0.8714

6 Numerical Experiments

In this section we validate the a posteriori error estimate and the adaptive
MsFEM in various numerical experiments. All implementations are made in
C++ using the dune-fem module [9] and the dune-subgrid module [21] of the
software toolbox DUNE (c.f. [5]). We apply the method to two model problems
with increasing complexity. The first model problem involves a periodically
oscillating coefficient function. Here, the exact solution is available and we can
state quantitative results such as explicit L2− and H1-errors. The second model
problem involves a periodic structure that is locally perturbed by stripes of high
conductivity within a patch of low conductivity. Here, the exact solution is not
available and we can only evaluate our adaptive MsFEM approximations by
comparing them qualitatively with standard finite element computations on a
highly resolved grid. To recall what we mean by ’k oversampling layers’, we refer
to Definition 3.7. In this section, the error indicators (obtained from Theorem
3.5 and stated in Definition 3.6) are multiplied with a factor of order β

α
which

is a typical scaling of the stability constants for these types of error estimates.
In particular, for model problem 1 we use the factor 10.

Model Problem 1. Let Ω :=]0, 1[2 and ǫ = 5 · 10−2. We define

u(x1, x2) := sin(2πx1)sin(2πx2) +
ǫ

2
cos(2πx1)sin(2πx2)sin(2π

x1

ǫ
),
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Figure 1: Model problem 1. MsFEM computation for H = 2−5, h = 2−7

and 10 oversampling layers. Figure: comparison of the isolines of the MsFEM
approximation with the isolines of the exact solution. The black lines beneath
are from the MsFEM solution.

Figure 2: Model problem 1. MsFEM computation for H = 2−5, h = 2−7 and
10 layers (c.f. Table 1). The left figure shows the total MsFEM approximation
Rh(uH) and the middle figure the coarse part uH of the MsFEM approximation
(isolines, colorshading for both: blue (-1.0) to red (1.0)). The right figure shows
the fine scale part Q(uH) of MsFEM approximation (colorshading: blue (-0.029)
to red (0.029)).

which is the exact solution of the problem

−∇ · (A∇u) = f in Ω

u = 0 on ∂Ω,

where A is given by

A(x1, x2) :=
1

8π2

(
2(2 + cos(2π x1

ǫ
))−1 0

0 1 + 1
2cos(2π

x1

ǫ
)

)

and f by

f(x) := −∇ · (A(x)∇u(x)) ≈ sin(2πx1)sin(2πx2).

In Table 1 we can see a listing of various L2-, H1 and estimated errors.
Here, the number of layers (for oversampling) is fixed with 10 but H and h
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Table 3: Model problem 1. MsFEM computations for fixed coarse grid with
H = 2−4 and fixed fine grid with h = 2−8, but with different sizes for the
oversampling domains U(T ). If k denotes the number of layers, the coarse
grid element T has been enriched by k layers of fine grid elements to create
U(T ). We depict the L2-error, the H1-error, the total estimated error ηtotal, the
oversampling indicator ηovers (size of corrector flux jumps) and the projection
error indicator ηproje.

Num. of layers ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal ηovers ηproje

0 0.0332 1.2085 3.4370 1.3754 0.0
1 0.0296 1.0878 3.0868 0.9920 5.4 ·10−3

2 0.0265 1.0652 2.8130 0.6468 9.9 ·10−3

3 0.0242 1.0599 2.6324 0.4576 1.1 ·10−2

4 0.0223 1.0227 2.5404 0.4069 9.6 ·10−3

5 0.0208 0.9720 2.4848 0.4063 7.1 ·10−3

10 0.0172 0.9524 2.4320 0.3532 7.0 ·10−3

15 0.0186 0.9305 2.4143 0.3369 5.7 ·10−3

20 0.0182 0.9161 2.3821 0.3166 4.2 ·10−3

Table 4: Model problem 1. MsFEM computations for increasing coarse and
fine grid resolution and for an increasing number of oversampling layers. We
see a listing of the errors and the total estimated error ηtotal and corresponding
averaged EOC’s.

H h Num. of layers ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal

2−3 2−5 6 0.1101 2.1897 5.6399
2−4 2−6 8 0.0259 1.0437 2.8856
2−5 2−7 10 0.0074 0.5629 1.8501

Average EOC 1.95 0.98 0.81

are coupled by the factor 2−2. 10 layers are sufficient so that the oversampling
error only takes a minor role. We ignore the first row of computations (for 2−2

and 2−4) since these values are not yet representative. We obtain an average
experimental order of convergence (EOC) of 1.72 for the L2-error and 0.91
for H1-error. Note, that we can not expect optimal orders of convergence for
the errors, since we do not solve the local problems globally but only in local
sampling domains U(T ). However, we still observe a very nice reduction of the
error. The estimated error show an average experimental order of convergence
of 0.7. Again, the error contributions of the conservative flux jumps (i.e. the
indicator for the size of the oversampling error) prevent an optimal order of
1.0. Still, the reduction of the estimated error is adequate and reasonable. On
the other hand, the error indicators for the coarse grid residual (EOC 0.96),
the fine grid residual (EOC 0.95) and approximation error (EOC 0.93) show, as
expected, almost optimal order. Similar results are obtained if we only regard
convergence in the macro mesh sizeH. The MsFEM computations in Table 2 are
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Figure 3: Model problem 1. MsFEM computation for H = 2−4, h = 2−8 and
10 layers. The figure depicts the corrector basis element w1

h,T (recall Defini-
tion 3.2) for an arbitrary inner coarse grid element T . Left hand side: coarse
grid triangulation. Right hand side: fine grid triangulation with T and U(T )
indicated by black lines.

Figure 4: Model problem 1. MsFEM computation for H = 2−4, h = 2−8, 10
layers and for an arbitrary inner coarse grid element T . Left figure: correc-
tor basis element w1

h,T := Qh(v1)|T with v1(x) := x1 (recall Definition 3.2).

Colorshading: min −3.58 · 10−3 (blue) to max 6.18 · 10−3 (red). Right figure:
corresponding conservative corrector flux qh,T,1 (recall Definition 3.3). Color-
shading: min −1.09 · 10−2 (blue) to max 1.58 · 10−2 (red).

for a fixed fine grid resolution with h = 2−7. Here, the effect of a reduced EOC
is even more ponounced due to the constant micro mesh contributions. The
experimental order of convergence for the L2-error is between 1.67 and 1.41, the
EOC for the H1-error is between 0.94 and 0.71 and the EOC for the estimated
H1-error is between 0.68 and 0.47. However, again the pure contribution of
the coarse grid residual converges with an average order of 0.99. These first
experiments indicate that the various contributions of the error (coarse grid,
fine grid and oversampling) interact with each other and that they all have a
significant influence on the final approximation. The total convergence of the
method can be improved and comes close to the optimal order if we combine
the macro and micro refinements with an increasing size of the oversampling
region. This is depicted in Table 4 where we can see that the L2-error converges
with order 1.95 and the H1-error with order 0.98.

Furthermore, the overall accuracy obtained with the method is really high.
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Figure 5: Model problem 1. MsFEM computation for H = 2−4 and h = 2−8,
10 layers. The figure depicts two corrector basis elements w1

h,T1
and w1

h,T2
(see

Definition 3.2) for two adjacent coarse grid elements T1 and T1.

Figure 6: Model problem 1. MsFEM computation for H = 2−4, h = 2−8 and
10 layers. The figure depicts two conservative corrector fluxes qh,T1,1 and qh,T2,1

for two adjacent coarse grid elements T1 and T1. Left figure, colorshading: min
−1.5759 · 10−2 (blue) to max 1.09188 · 10−2 (red). Right figure, colorshading:
min −1.09188 · 10−2 (blue) to max 1.57587 · 10−2 (red).

This becomes clear when we look at Figure 1 where we can see a comparison
between the isolines of the exact solution and the MsFEM approximation for
H = 2−5, h = 2−7 and 10 oversampling-layers. Except for a small discrepancy
near the maximum and the minimum, the isolines match each other perfectly.
Even fine scale fluctuations are captured nicely. For the same computation, the
explicit effect of the correction operator is depicted in Figure 2. Here, we see
the smooth coarse part uH that does not resolve the oscillations of u and the
corresponding fine scale correction Q(uH) which adds significant information
about the oscillations to the coarse part.

The influence of the size of the oversampling set is illustrated in Table 3.
In these computations, we fix the coarse grid and the fine grid with (H,h) =
(H = 2−4, 2−8). The number of layers increased step by step. We see that,
solely by using oversampling, the L2-error is almost halved and the H1-error is
reduced by about 25%. Comparably, the estimated error is reduced by 30.7%
which suggests that the oversampling indicator ηovers does a reliable job. The
largest reduction of the error appears when we add the first oversampling layer.
We see the same effect for the estimated error. After this first step, we still have
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Table 5: Model problem 1. MsFEM computations obtained with the adaptive
algorithm proposed in Section 3.2. We start with a uniformly refined coarse and
fine grids with H = 2−2 and h = 2−4. We also start with 0 layers, i.e. U(T ) = T

for all T ∈ TH . During the algorithm, the number of layers is only increased
uniformly for all elements at once (with k = 5). The permissible deviation σ is
1.1 and we have equal weighting of the components by c1 = c2 = c3 = c4 = 1

4 .
In the first column we depict the number of the cycle of the algorithm.

run ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal

1 0.16709 2.4884 5.9112
2 0.04536 1.5138 4.9976
3 0.00954 0.6406 1.8942

Figure 7: Model problem 1. Adaptively refined coarse grid and correspond-
ing MsFEM approximation obtained after the third cycle of the algorithm as
indicated in Table 5.

a permanent reduction, but the respective reductions get smaller. Nevertheless,
without a visible stagnation. The oversampling error indicator shows a similar
behavior. All in all, we see that the jump in the conservative fluxes virtually
signals whether the used oversampling sets UH are really large enough. From
Table 3, we also see that the contribution of the projection error can be ignored.
We do not have to perform expensive fine scale computations to improve the
quality of the projection operator. Simple averaging as proposed in (7) produces
very convenient results. It is obvious from the results that the projection error
itself is a bad indicator for the size of an oversampling set, since it takes its
minimum for 0 layers, then it increases for several steps while the real error
decreases.

In Figure 3 we fixed an inner coarse grid element T . We see a corresponding
corrector basis element w1

h,T (see Definition 3.2) with support U(T ). U(T ) is
equal to T enriched by 10 layers. On the left side of the figure we can see the
location of w1

h,T in the coarse grid (i.e. we see how much we oversample) and
on the right side of the figure we see its location within the fine grid (i.e. we can
see the resolution with which we solve the local problems). In Figure 4 we can
also see the corresponding conservative flux which is almost constant along the
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Figure 8: Left figure: plot of the diffusion coefficient A used in model problem 2.
The colorshading is from red (0.05) to blue (0.0005). The micro structure outside
the inner patch is periodic and given by (8π2)−2

(
1 + 2−1cos(2π x0

ǫ
)sin(2π x1

ǫ
)
)

with ǫ = 5 ·10−2. The transition is smooth. Right figure: Approximation of the
exact solution of Model problem 2. Approximation obtained with a standard
FEM fine scale computation with h = 2−8.

edges of T , even though w1
h,T is oscillating. Figure 5 shows a good agreement

between the correctors of two adjacent coarse grid elements. Both correctors
might be easily glued together at the common edge of the two coarse elements.
This matching becomes even clearer if we have a look at Figure 6. Here, we see
the conservative fluxes for the correctors w1

h,T1
and w1

h,T2
of two adjacent coarse

elements T1 and T2. The flow over the interface from the left (almost constant
with value 0.0157587) is about the negative of the flow from the right (almost
constant value -0.015759). This implies that the jump in the flux is very close
to zero and, therefore, the oversampling sets are chosen large enough. Hence,
the usage of conservative fluxes seems to be a good choice.

In Table 5 we show results of the adaptive algorithm that we suggested in
Section 3.2. In the first cycle, we start without oversampling and with uniformly
refined grids with H = 2−2 and h = 2−4. After three cycles of the algorithm we
already get a very accurate approximation of the exact solution. The maximum
resolution of the (adaptively refined) coarse grid corresponds with H = 2−4,
the maximum resolution of the fine grid corresponds with h = 2−7 and the
coarse elements were enriched by only 5 layers for oversampling. Nevertheless,
the errors are already quite close to the errors for a uniform computation with
(H,h) = (2−5, 2−7) and an enrichment by 10 layers (as depicted in Table 1).
The error reduction after each cycle is significant. The algorithm produces very
good results. The coarse grid and the final MsFEM approximation after the
third cycle is depicted in Figure 7. We observe the strongest refinement close to
the maximum values of the solution, where we also have a strong curvature of
the solution. The grid remains quite coarse in most regions where the solution
tends to be constant.

Model Problem 2. Let us define Ω :=]0, 1[2. Find u ∈ H̊1(Ω) with

−∇ · (A∇u) = 1 in Ω,

u = 0 on ∂Ω.



24

Figure 9: Model problem 2. MsFEM computations obtained with the adaptive
algorithm proposed in Section 3.2. We start with a uniformly refined coarse and
fine grids with H = 2−2 and h = 2−4 and we start with 0 layers, i.e. U(T ) = T

for all T ∈ TH . The permissible deviation σ is 1.1 and we have c1 = c2 = c3 =
c4 = 1

4 (equal weighting of the components). The figure depicts the adaptively
refined coarse grid (3044 elements) and the MsFEM approximation after the
third cycle of the algorithm.

Here, the synthetic scalar coefficient A is depicted on the left side of Figure 8. A
is rapidly oscillating in an outer region. In an inner region, the the conductivity
is very low (5 · 10−4) but still contains layers of constant high conductivity
(5 · 10−2).

For model problem 2, we do not have access to the exact solution. However,
on the right side of Figure 8 we can see an approximation that was obtained
with a finite element computation with a uniformly refined grid with h = 2−8.
We observe small fine scale fluctuations outside the inner patch and a dominant
oval shaped region in the middle. Obviously, this middle region must be resolved
by the coarse grid, otherwise this part cannot be captured. Due to the absence
of a reliable approximation of u we only compare the solutions qualitatively.

As for model problem 1, we apply the algorithm stated in Section 3.2.
We start with a uniform coarse grid and a uniform fine grid, where (H,h) =
(2−2, 2−4). No oversampling is used in the first cycle and the permissible devi-
ation σ is 1.1. By choosing c1 = c2 = c3 = c4 = 1

4 we get an equal weighting of
the components. After 3 cycles we obtain an adaptively refined coarse grid (with
3044 elements) and a corresponding fine grid. The coarse grid reaches a maxi-
mum resolution of H = 2−4 whereas the fine grid resolves up to h = 2−7. The
number of oversampling layers reaches 10 for every coarse element T . The final
approximation and the associated coarse grid can be seen in Figure 9. Indeed, as
expected, we observe strong refinements around the problematic middle patch.
The grid is also refined around the corners and in the areas where the gradient
of the coarse part ∇uH becomes relatively large. The MsFEM solution shows
visible fine scale fluctuations outside the inner patch just like the detailed FEM
approximation in Figure 8 (right side). This becomes even clearer when we have
a look at Figure 10 where we depict the fine scale part of MsFEM approxima-
tion and where the oscillating structure is clearly perceptible. The behaviour
of the MsFEM solution in the inner patch is also close to the behaviour of the
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Figure 10: Model problem 2. Adaptively computed MsFEM approximation
as already depicted in Figure 9. The left figure shows the coarse scale part
(colorshading identical to the right side of Figure 8). The middle figure shows
the fine scale part with a maximum/minimum colorshading from blue (-1.72) to
red (3.52). The right figure also depicts the fine scale part but (to see the micro
structure) with a scaled and clamped colorshading from blue (0.0) to red (0.6).

detailed FEM approximation and we conclude that every characterizing feature
seems to be captured by the MsFEM solution. Note that the FEM approxima-
tion was obtained on a grid with almost 150 000 elements in comparison to the
MsFEM coarse grid with only 3 044 elements. Finally, in Figure 11 we can see
the number of oversampling layers for each coarse grid element after the second
cycle of the algorithm. Due to the heterogeneity we modified the algorithm in
the following way: We define ωT := ηoversT ( 1

|TH |η
overs)−1 (i.e. ωT describes the

deviation of the local oversampling error from the average oversampling error).
If ωT ∈ [m5 ,

m+1
5 ), m ∈ N, increase U(T ) ∈ U by m+ 1 layers. This strategy is

more flexible with regard to significantly different oversampling errors depend-
ing on the location of the coarse grid element. We observe that the most layers
are added to the elements located outside the inner patch. The coarse grid ele-
ments located in the inner patch do not receive a lot of layers. This behaviour
completely resembles what we expect. In the inner patch, the behaviour is
primarily macroscopic and the microscopic behaviour is almost constant. This
yields solutions of the local problems which must be close to zero. But the zero
solutions are already accurately approximated without a large oversampling set.
Therefore, we only need few layers in this region. One the other hand, outside
the inner patch we are dealing with fast fine scale oscillations. The solutions of
the local problems are highly variable and must not be forced to a zero bound-
ary condition. To reduce the effect of this wrong boundary condition, several
oversampling layers are required. The algorithm and oversampling error esti-
mator perfectly adapt to this situation. Again, the advantage of conservative
fluxes used as oversampling error indicators can be confirmed.

7 Conclusion

In this contribution, we derived the first rigorous a posteriori error estimate for
multiscale finite element approximations in a general scenario with no further
assumptions on the micro structure. Based on this estimate we were able to
derive an algorithm for oversampling control and adaptive mesh refinement. We
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Figure 11: Model problem 2. Results for the adaptive MsFEM computation
described in Figure 9, after the second cycle of the algorithm. In both figures,
we see a visualization of the number of layers for each coarse grid element. The
colorshading is from yellow (2 layers) to red (11 layers). On the right hand side
we also see the coarse grid beneath.

showed how to transfer our results to the nonlinear case and we demonstrated
the applicability of the adaptive method in numerical experiments.
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Well-balanced Lévy Driven Ornstein-Uhlenbeck Processes

2010-14 Lorenz J. Schwachhöfer
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