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aInstitute of Structural Mechanics, Bauhaus Univesity of Weimar, 99423 Weimar, Germany

bDepartment of Civil and Environmental Engineering, University of Waterloo, Canada
cInstitute of Mechanics and Advanced Materials, Cardiff University, Wales, UK

§Professor, School of Civil, Environmental and Architectural Engineering, Korea University, 136-701 Korea.
∗Corresponding author: Timon Rabczuk, email: timon.rabczuk@uni-weimar.de

Received: date /Accepted: date

Abstract

This paper proposes an adaptive atomistic-continuum numerical method for quasi-static
crack growth. The phantom node method is used to model the crack in the continuum region
and a molecular statics model is used near the crack tip. To ensure self-consistency in the bulk,
a virtual atom cluster is used to model the material of the coarse scale. The coupling between
the coarse scale and fine scale is realized through ghost atoms. The ghost atom positions are
interpolated from the coarse scale solution and enforced as boundary conditions on the fine
scale. The fine scale region is adaptively enlarged as the crack propagates and the region behind
the crack tip is adaptively coarsened. An energy criterion is used to detect the crack tip loca-
tion. The triangular lattice in the fine scale region corresponds to the lattice structure of the
(111) plane of an FCC crystal. The Lennard-Jones potential is used to model the atom-atom
interactions. The method is implemented in two dimensions. The results are compared to pure
atomistic simulations; they show excellent agreement.

keywords: multiscale, adaptivity, refinement, coarsening, phantom node method, molecular
statics, virtual atom cluster.

1 Introduction

Understanding the microscopic processes behind material failure is critical for engineers and sci-
entists developing new materials with higher strength and toughness, developing robust designs
against failure, or for those concerned with an accurate estimate of a component’s design life.
Atomistic simulations are important tools to achieve this. They have been used extensively, for ex-
ample, to model plastic deformations at the nanoscale [1]. Since the atomistic dimensions are of the
order of Angstroms (Å), approximately 85 billion atoms are required to model a 1 µm3 volume of
material. Hence, pure atomistic models are incompatible with everyday engineering computations,
as they are prohibitively expensive. To reduce the computational effort, multiscale methods are
required, which are able to couple a continuum description of the structure with an atomistic de-
scription. In such paradigms, cracks and dislocations are explicitly modeled at the atomistic scale,
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whilst a self-consistent continuum model elsewhere. We present an adaptive continuum-atomistic
numerical method based on the phantom node method (a variant of the extended finite element
method) for quasi-static crack growth. We name this method the Adaptive Multiscale Method
(AMM). The atomistic subdomain is denoted the “fine scale region” and to the continuum subdo-
main is denoted the “coarse scale region”.

Multiscale models are the subject of significant interest since the popular work of Tadmor et al. [2]
on the Quasi-Continuum Method (QCM). In the QCM, the continuum degrees of freedom need
to be located at the positions of the atoms at the interface. Hence to match with the atomistic
dimensions, a very fine grading of the continuum mesh is required around defects. Note that the
QCM has also been very successful at linking two continuum scales, for example, for fibrous ma-
terials in [3] and is readily capable of including quantum effects through density functional theory
(QCDFT) [4].

Belytschko et al. [5] have proposed the Bridging Domain Method (BDM) which is based on a
domain decomposition technique. The BDM relies upon a linear energy weighting in the bridging
domain. Compatibility of the displacement field between the continuum domain and the atomistic
domain, in the bridging domain, is enforced by Lagrange multipliers. An advantage of the BDM is
that the nodes on the “continuum-atomistic” region need not coincide with the atoms. The method
was extended to dynamic problems by Xiao et al. [6]. Guidault et al. [7, 8] enhanced the BDM
by also enforcing the strain compatibility between the “atomistic” and continuum in the bridging
domain. Such a coupling can be useful for the development of error estimators to drive the adaptive
refinement of the coarse scale.

Gracie et al. [9,10] have extended the bridging domain method (XBDM) to effectively account for
dislocations and cracks. The extended finite element method was used to model the crack surfaces
and slip planes in the continuum. A close agreement of the energies and energy distributions of the
bridging domain model with the direct numerical solutions are reported.

Liu et al. [11–13] and Wagner et al. [14] have developed the Bridging Scale Method that is based
on the projection of the molecular dynamics (MD) solution onto the coarse scale shape functions
and effectively addresses spurious wave reflections in dynamic settings.

There are two main differences between the XBDM and the proposed AMM. First, in the AMM,
the coarse scale domain exists everywhere whereas in the XBDM, the continuum region does not
exist in the atomistic domain. Secondly, in the XBDM, coupling between the atomistic and con-
tinuum regions is based on a linear energy weighting in the bridging domain, and is enforced by
Lagrange multipliers. In the AMM, the coupling is realized by enforcing displacement boundary
conditions on the ghost atoms so that they follow the motion of the continuum. The ghost atom
positions can be obtained by interpolation from the coarse scale solution. Hence for quasi-static
problems, in contrast to the XBDM, the coarse scale and fine scale problems can be solved indepen-
dently. We use the Virtual Atom Cluster (VAC) model [15] proposed by Qian et al. [16] combined
with the Phantom node method [17] to model the crack in the coarse region.

The VAC is based on the symmetry in atomic arrangement in a periodic crystal lattice. In
a periodic crystal every atom possess similar neighbours. Therefore, an atom surrounded by its
neighbours can be considered as a representative atom cluster of the crystal lattice. As a result,
the representative atom cluster can be used in all the calculations. Hence, a coarse scale equivalent
to the fine scale can be developed using the VAC, by equating the energies of the fine scale and
the coarse scale regions. Further details of the methodology are discussed in section 2.2. The VAC
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Figure 1: (a) Multiscale partition of a cracked atomistic lattice. The solid circles represent the
atoms from the cracked atomistic model. The coarse scale nodes are denoted by squares. (b) A
zoom around the crack tip.

based continuum does not involve a stress update scheme employing the Cauchy-Born hypothesis,
since there is no continuum measure in the VAC model. Qian et al. [16] studied the carbon nan-
otubes using the VAC model. Yang et al. [18] extended the method to dynamic crack propagation.

The arrangement of the article is as follows: the AMM is introduced in section 1. Details of the
fine scale model, the coarse scale model, the phantom node method and the coupling conditions
are explained in section 2. Section 3 is dedicated to the algorithms and other details of adaptive
refinement and coarsening. The method is verified through three examples. In the first example, a
very small displacement is prescribed on an edge crack model so that the crack does not propagate.
Displacements and energies for selected atoms around the crack tip from the Molecular Statics
(MS) model, the Multiscale model with the Fine scale region containing the whole Crack (MFC)
and the AMM are compared. In the second example, sufficiently large displacements are applied
so that the crack propagates. The displacements and the energies of the MS, MFC and the AMM
models are compared. In the final example kinked crack propagation is studied by prescribing a
displacement on the right edge of a cantilever beam with a pre-notch. The numerical examples are
presented in section 4. Section 5 concludes the article.

2 The Adaptive Multiscale Method

We present in this paper a multiscale method for the adaptive simulation of fracture. Consider an
atomistic model with an initial crack as shown in Fig. 1(a). The solid circles represent the atoms
from the cracked atomistic model. The shaded area corresponds to the coarse scale approximation.
The squares denote the nodes of the phantom node discretization. A close up of the crack tip is
shown in Fig. 1(b). The elements with edges in dotted lines denote the split elements and the edges
of the normal elements are shown in solid lines. The AMM consisting of the coarse and fine scale
regions along with the crack is shown in Fig. 2(a). The coarse scale model with the crack is shown
in Fig. 2(b), the fine scale model is shown in Fig. 2(c). The material behaviour at the crack tip is
expected to be highly non-linear and/or non-homogeneous, and away from the tip it is expected to
be homogeneous.
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Figure 2: (a) Schematic diagram of a coupled continuum-atomistic model. (b) Coarse scale domain
with the crack. (c) Fine scale region containing the crack tip. The crack in the coarse scale region
is modeled using the VAC model and the fine scale model is embedded at the crack tip.

The crack atoms are defined as the atoms on the ’surface’ of the crack or at the “crack tip”.
The initial crack in the fine scale region is created by removing the bonds between the crack atoms
and updating the neighbor list accordingly. The neighbour list is generated based on a radius of
influence. In the present work, a brittle material is modeled. To model the brittle nature of the
material the neighbour list is not updated at each load step and only immediate neighbours are
considered while evaluating the potential energy. Nodal displacements in the coarse scale region
are estimated using the VAC model. The phantom node method [19], explained in section 2.3, is
used to model the crack surfaces in the coarse scale region. Ghost atoms are located in the coarse
region but within the cutoff radius of the atoms in the fine region. Their positions are interpolated
from the coarse scale solution and enforced as the boundary conditions for the fine scale solution.
The crack originates from the coarse scale region with the crack tip in the fine region. The fine
scale region is adaptively enlarged as the crack propagates and the model behind the crack tip is
coarsened to reduce the size of the fine scale model [10, 20]. An energy criterion [10] as explained
in section 3.2, is used to detect the crack tip location.

In the two scale model, the total displacement field uα of an atom α is decomposed into coarse
and fine scale components:

uα = uC
α + uA

α (1)

where uC
α is the coarse scale component and uA

α is the fine scale component, whose projection onto
the coarse scale is zero. The fine scale component uA

α , is the difference between the actual position
of an atom α and the interpolated position of the coarse scale. In other words, uA

α is insignificant
in the regions far away from the crack tip, and hence, uC

α is sufficient to model the deformation
in the coarse scale region. On the other hand, in the fine scale region, both coarse and fine scale
components are required. Let the coarse scale displacement uC

α of an atom α be represented by a
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set of FEM basis functions defined over a set of nC nodal points,

uC
α =

nC
∑

I=1

NI(Xα)u
C
I (2)

where NI(Xα) is the shape function defined at node I, estimated at the αth atom with the material
coordinate Xα, and uC

I is the continuum displacement vector at node I.
The notation adopted is as follows: Greek indices refer to atoms and capital subscripts (such

as I, J, K) will refer to the computational nodes. Quantities in the reference configuration are
denoted by the same symbol but with a naught. For example, the reference configurations of the
coarse scale domain ΩC and the fine scale domain ΩA are denoted by ΩC

0 and ΩA
0 , respectively. n

C

are the total number of nodes in the coarse scale region ΩC; the number of atoms in the fine scale
region ΩA is given by nA and the number of ghost atoms by nGh. Ghost atoms are located in the
coarse scale region ΩC that are within the cut off radius of the atoms in ΩA. The total number of
Gauss points in the coarse scale region is given by nG. The material coordinates of a point in ΩC

0

are denoted by X and the spatial coordinates by x. The motion is defined as x = φ(X) with u(x)
= φ(X)−X = x−X. The position vector of an atom in ΩA is given by r.

2.1 Fine scale model

In molecular statics (MS) the objective is to determine the positions of the atoms for the given
boundary conditions, by minimizing the system’s potential energy. The total potential energy of
the system is given by

Π = W int −W ext (3)

where W int represents the internal energy of the system and W ext is the external work done on
the system. Consider the simplest atom-atom interactions in which the potential energy is only
a function of the distance between two atoms, the total internal energy of the system is given by
summing the energies of all the atomic bonds over all the atoms, as given below:

W int =
1

2

nA
∑

α=1

nA
∑

β 6=α

V (rαβ) (4)

where V (rαβ) is the bond potential between the atoms α and β, separated by distance rαβ . The
system potential energy will be minimum, when the first derivative of the potential function with
respect to the positions of the atoms goes to zero. Therefore, for any given atom λ, the first
derivative of the system potential energy with respect to the position vector rλ is

∂
(

1
2

∑nA

α=1

∑nA

β 6=α V (rαβ)
)

∂rλ
− ∂W ext

∂rλ
= 0 (5)

where the internal forces acting on atom λ are given by

Fint
λ =

1

2

nA
∑

α=1

nA
∑

β 6=λ

−∂V (rαβ)

∂rαβ

∂rαβ
∂rλ

(6)
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and the external forces acting on atom λ are

Fext
λ = −∂W ext

∂rλ
. (7)

The residual forces on each atom is

R = Fint − Fext. (8)

The distance rαβ in (6) is defined as

rαβ = |rα − rβ | =

√

√

√

√

3
∑

j=1

(rαj − rβj)2. (9)

where j is the free index. Substituting equation (9) into equation (6) yields

Fint
α = −

nA
∑

β 6=α

∂V (rαβ)

∂rαβ

(

rα − rβ

rαβ

)

. (10)

The details of the derivation are given in appendix A.1. We use the Lennard-Jones potential given
by

V (rαβ) = 4ǫ

[

(

σ

rαβ

)12

−
(

σ

rαβ

)6
]

(11)

where σ and ǫ are the specific Lennard-Jones parameters. The energy minimization is carried out
using the conjugate gradient method and so a tangent stiffness matrix is not required.

2.2 Coarse scale model

A periodic face centered cubic (fcc) crystal structure can be described in terms of a unit cell, as
shown in Fig. 3. The unit cell of an fcc crystal is shown in Fig. 3(a). The space lattice of the fcc
crystal can be obtained by stacking the unit cells in three dimensional space, as shown in Fig. 3(b).
The resulting crystal structure when stacked in ABC layers, using the atoms in the close packed
directions, as shown in Fig. 3(c), possess symmetry in three dimensions. The two dimensional
projection of the atomic arrangement in ABC layers is shown in Fig. 3(d). The geometric parameters
of the fcc crystal lattice are expressed using the lattice constant a, with reference to the atoms on
the (111) and (100) planes, as shown in Fig. 3(e) and Fig. 3(f), respectively. Because of the
symmetry of the crystal structure, a cluster of atoms can be taken as a representative model of the
whole lattice structure [16]. As a result, all the calculations can be performed with reference to the
cluster, which improves the computational efficiency.

Since the locations of atoms in the cluster do not represent the exact locations of the atoms, it
is called a Virtual Atom Cluster (VAC). The same inter atomic potential as in the full scale MS
model is used in the VAC model. The coarse scale displacement uC

α of an atom α in the VAC can
be estimated using equation (2).
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Figure 3: Atomic arrangement in an fcc crystal; (a) in the unit cell (b) in the space lattice and (c)
in the ABC layers. The atoms in the ABC layers when projected onto a two dimensional space;
(d) and (e) onto the (111) plane and (f) onto the (100) plane.

The total potential energy of a fine scale system as shown in Fig. 4(a) is given by the sum of
all bond potentials φα, estimated using equation (11). Consider an equivalent coarse scale model
based on the VAC, illustrated in Fig. 4(b). Since we want the fine scale and coarse scale models to
be equivalent, their potential energy must be equal. Hence, we define φρ as the distributed energy
density function from the VAC model. The discrete summation of the potential energy defined in
the original molecular structure, can now be replaced with an integral based on the VAC model,
i.e.

W int =
nA
∑

α=1

φα =

∫

Ω0

φρdΩ0 ≈
∑

G

wGφ
G
ρ (12)

where φα is the potential energy associated with atom α, as defined below

φα =
1

2

nA
∑

β 6=α

V (rαβ). (13)

Due to the periodic nature of the lattice, we can define φρ as the potential energy of a VAC
divided by the volume of the VAC. For a homogeneous lattice, as considered in this article, each
VAC consists of a single atom and its volume is that of the unit cell of the lattice. The volume

of the VAC for a triangular lattice is V0 =
√
3
2
a2. When only nearest neighbour interactions

are considered, each atom in the triangular lattice interacts with six neighbouring atoms, refer
Fig. 4(a). The energy attributed to a central atom involves summing the contributions from each
bond with neighbouring atoms. The energy of the central atom is the energy of the VAC. The
number of neighbours that the central atom has does not influence the volume/area attributed to
the atom and therefore does not effect the volume/area attributed to the VAC. In other words,
the volume/area of the VAC do not increase if more neighbours are considered in the computation
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Figure 4: A demonstration of VAC coarse scale model in two dimensions. (a) Atomistic model with
triangular lattice as on the (111) plane of an fcc material. (b) Equivalent continuum model with
the VAC being placed at a particular Gauss point. (c) Details of the VAC

.

of the potential energy of the central atom. Using the numbering scheme shown in Fig. 4(c), the
potential energy of the VAC is given by

φVAC =
1

2

7
∑

β=2

V (r1β). (14)

Therefore, the distributed energy density function φρ can be defined as

φρ =
φVAC

V0

=
1

2

7
∑

β=2

V (r1β)√
3a2/2

=
1

2

7
∑

β=2

φ1β (15)

where

φ1β =
V (r1β)√
3a2/2

. (16)

Therefore, the energy density function φρ becomes

φρ =
1

2
(φ12 + φ13 + φ14 + φ15 + φ16 + φ17). (17)

in which φ1β are the bonding energy densities. wG denote the quadrature weight and φG
ρ is the

corresponding energy density function evaluated at a quadrature point. The internal forces on
node ’I’ in the coarse scale region, can be estimated by taking the derivative of equation (12) with
respect to the nodal displacements uC

I

Fint
I = −∂W int

∂uC
I

=

∫

Ω0

− ∂φρ

∂uC
I

dΩ0 =

∫

Ω0

−∂φρ

∂u

∂u

∂uC
I

dΩ0 ≈ −
∑

G

wG

∂φG
ρ

∂u

∂u

∂uC
I

. (18)

Therefore, the internal forces are calculated from the potential energy density of the VAC, which
is placed at each Gauss point. As shown in Fig. 4(c), there are 7 atoms including the central VAC
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atom and its neighbours. Therefore, the energy density function φG
ρ = φG

ρ (r1, r2, r3, r4, r5, r6, r7).

Since the VAC model is used in the coarse scale equation which assumes uα = uC
α , for α = 1–7.

Therefore,

Fint
I ≈ −

∑

G

wG

∂φG
ρ

∂u

∂u

∂uC
I

≈ −
∑

G

wG

7
∑

α=1

∂φG
ρ

∂uC
α

∂uC
α

∂uC
I

. (19)

Using the definition of uC
α from equation (2), the second term on the right hand side of equation

(19) can be reduced to

∂uC
α

∂uC
I

= NI(Xα). (20)

Therefore, after substituting equation (20) into equation (19), the nodal internal forces in the coarse
scale domain are given by

Fint
I = −

nG
∑

G=1

wG

7
∑

α=1

∂φG
ρ

∂uC
α

NI(Xα). (21)

The term
∂φρ

∂uC
α

in equation (21) can be evaluated for each α as given below:
α = 1

∂φρ

∂uC1i
=

∂φ12

∂r12

r12i
r12

+
∂φ13

∂r13

r13i
r13

+
∂φ14

∂r14

r14i
r14

(22)

+
∂φ15

∂r15

r15i
r15

+
∂φ16

∂r16

r16i
r16

+
∂φ17

∂r17

r17i
r17

α = 2

∂φρ

∂uC2i
= −∂φ12

∂r12

r12i
r12

(23)

α = 3

∂φρ

∂uC3i
= −∂φ13

∂r13

r13i
r13

(24)

α = 4

∂φρ

∂uC4i
= −∂φ14

∂r14

r14i
r14

(25)

α = 5

∂φρ

∂uC5i
= −∂φ15

∂r15

r15i
r15

(26)

α = 6

∂φρ

∂uC6i
= −∂φ16

∂r16

r16i
r16

(27)
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α = 7

∂φρ

∂uC7i
= −∂φ17

∂r17

r17i
r17

(28)

where i is the index of the coordinate axes. In equations (22) to (28) rαβi is the component of rαβ
in the ith direction, which is defined as

rαβi = rαi − rβi. (29)

The detailed derivation of the term
∂φρ

∂uC
α

is given in appendix A.2. Equations (22) to (29) are

substituted into equation (21) to calculate the internal nodal forces. The minimization problem
can be solved for the coarse scale solution by minimizing the potential energy for the given boundary
conditions.

2.3 The Phantom node method

In the phantom node method, when an element is completely cut by a crack, the displacement field
is continuous on each part of the cracked element, but discontinuous across the crack. Therefore,
the crack kinematics can be obtained by overlapping elements [19]. The theoretical framework
for the above idea was given by Hansbo and Hansbo [21], and was implemented by Mergheim
et al. [22, 23] for statics and dynamics by Song et al. [17], who called the method the Phantom
node method. The advantages of the phantom node method are: First, the displacement field is
discontinuous across the crack but independently continuous on each part of the cracked element.
Hence, the discontinuous element is replaced by two elements with the additional phantom nodes,
which requires only a small modification in existing finite element codes. Secondly, the associated
shape functions in a cracked element are the same as the shape functions of an intact element.
Finally, the elements adjacent to the cracked elements do not require any modification. Because of
the above advantages, the computer implementation of the phantom node method is particularly
easy. The phantom-node method was extended by Rabczuk et al. [19] to model crack tips within
an element, for triangular and quadrilateral elements. Chau–Dinh et al. [24] applied the phantom
node method to shell models with arbitrary cracks.

Consider a cracked body as shown in Fig. 5, and the corresponding finite element discretization;
Ω0 is the real domain, i.e. the domain to be cut by the crack and Ωp is the phantom domain,
Ωp = Ω+

p

⋃

Ω−
p . The part of the cracked elements which belong to the real domain Ω0 are extended

to the phantom domain Ωp, so that the interpolation basis is full. Now the displacement in the real
domain Ω0 can be interpolated using the degrees of freedom for the nodes in the phantom domain
Ωp. The nodes in the phantom domain are called the phantom nodes and denoted by empty circles
in Fig. 5(a). In other words, the approximation of the cut element is the superposition of the
two approximations (Ω+

0

⋃

Ω−
p and Ω−

0

⋃

Ω+
p ) over the cracked elements, as shown in Fig. 5(b).

Defining f as the signed distance measured from the crack, W+
0 ,W

−
p ,W

−
0 and W+

p as the nodes

belonging to Ω+
0 ,Ω

−
p ,Ω

−
0 and Ω+

p , respectively; H as the Heaviside function, the approximation of
the displacement field is then given by [19]:

u(X, t) =
∑

I∈{W+
0 ,W−

p }

uI(t)NI(X)H(f(X)) +
∑

J∈{W−

0 ,W+
p }

uJ(t)NJ(X)H(−f(X)). (30)
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Figure 5: The principle of the phantom node method where the hashed region is integrated to build
the energy equation (12). (a) Crack opening and propagation after the phantom nodes are placed
on the cracked elements. (b) Equivalence of a cracked element in the real domain to, two elements
with phantom nodes.

The cracked elements have both real nodes and phantom nodes as shown in Fig. 5(b). The
discontinuity in the displacement field is realized by simply integrating only over the area from the
side of the real nodes up to the crack, i.e. the hashed areas in element 1 and element 2, Ω−

0 and
Ω+
0 , respectively.
The initial phantom nodes are created on the completely cracked elements. The crack tip location

is captured at every load step, from the fine scale model. Based on the location of the crack tip,
the elements are checked for complete fracture. If an element is completely cracked, the crack is
propagated in the coarse scale domain. To do so, the new phantom nodes are created on the newly
cracked element, and their positions are initialized by interpolation from the coarse scale solution.
The nodal connectivity table is updated with the phantom nodes, for the next load step.

2.4 Coupling the coarse and fine scales

The positions of the ghost atoms are interpolated from the coarse scale solution, as illustrated in
Fig. 6. Let β be the index of the ghost atoms; the corresponding ghost atom displacements are
given by

uC
β =

nC
∑

I=1

NI(Xβ)u
C
I . (31)

The ghost atom positions estimated from equation (31) are applied as the boundary conditions
for the fine scale model. The estimation of the ghost atom positions using only the coarse scale
component of the displacement will impose a constraint that does not exist in the original problem,
as explained in [16]. However for quasi-static problems, such an error can be controlled by properly
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Figure 6: Schematic of the AMM for two dimensional problems. (a) The coarse and fine scale
discretization along with the ghost atoms and the coupling boundary. (b) A zoom around the
coupling boundary.

choosing the interface of the coupling region. Additionally, care must be taken while calculating
the nodal forces in the coarse scale region. At the interface region there are two sets of atoms. The
first set from the underlying VAC and the second set from the fine scale region. Hence, both sets
of atoms within the radius of influence Rdoi (Fig. 6) must be considered while estimating the nodal
forces in the coupling region.

3 Adaptivity

We adopt the adaptivity scheme from Gracie et al. [10]. The crack tip is contained within the fine
scale region ΩA, while the fine scale regions are coarse-grained when the crack propagates. The
adaptivity scheme consists of the following steps:

1. Identify the coarse region ΩC to be refined. Refine the model by expanding the atomistic
region ΩA, i.e by converting the estimated coarse scale region into a fine scale region.

2. Identify the fine region ΩA to be coarse grained. Coarsen the model by shrinking the atomistic
region ΩA, i.e by converting the estimated fine scale region into a coarse scale region.

The details of refinement and coarsening algorithms are discussed below.

3.1 Preliminaries

In this project, the fine scale region is embedded within the ’boundaries’ of elements around the
crack tip. The initial size of the fine scale region in the AMM boundaries is decided based on the
following conditions: The refinement algorithm is activated sufficiently often such that a buffer
layer of elements is always maintained between the crack tip and the coupling boundary. Secondly,
to ensure that the refinement operation is not activated in the first load step itself, at least one
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element layer is considered between the crack tip and the buffer element layer. Finally, the crack
tip element layer is sandwiched by at least one element layer. In other words, the minimum initial
fine scale region is embedded within a 3×3 element mesh.

In the AMM, the fine scale contains the crack tip. The initial crack in the coarse scale is modeled
by introducing the phantom nodes. The length of the initial crack contained in the fine scale is
calculated based on the dimensions of the fine scale region. Therefore, the initial crack in the fine
scale is modeled by removing the bonds between the crack atoms. The crack atoms possess the
highest energy in the entire lattice. Hence, we use the high energy atoms and elements as discussed
in section 3.2, to carry out the adaptivity operations. When the crack tip reaches the boundary
of the buffer elements, the adaptive refinement and/or coarsening schemes are activated. As a
first step, adaptive refinement operation is carried out by creating the atoms in the elements to be
refined, identified based on algorithm 1. The newly created atoms are initialized by interpolation
from the coarse scale solution using equation (2). In the next step, the crack is propagated in
the coarse scale. In the present work, whenever a refinement operation is activated the crack is
incremented by an element length in the coarse scale. Therefore a new element is created along
with two new phantom nodes. The elements to be coarsened are identified based on algorithm 2.
In the adaptive coarsening operation the atoms in the elements to be coarsened are deleted. The
neighbourlist is regenerated after an adaptivity operation.

Let E be the total number of elements in the AMM. The load step just before an adaptive
operation is denoted with subscript n, and subscript n + 1 indicates the load step just after an
adaptive operation. Therefore, EC

n is the set of elements in the coarse scale domain and EA
n is the

set of fine scale elements, in load step n just before an adaptive operation; where EA
n ⊂ E and EA

n

∩ EC
n = ∅. And the sets ErefA

n+1 , ErefC
n+1 and EcoaA

n+1 , EcoaC
n+1 represent the fine scale and coarse scale

elements at load step n+1, just after adaptive refinement and coarsening operations, respectively.
The set EminA

n+1 is the minimum set of elements in the fine scale domain after refinement, required
to accurately capture the physics of the defects in the fine scale region.

3.2 Detection of the crack tip

The refinement/coarsening of an element in the coarse scale region is governed by an energy cri-
terion. To do so, the position of the crack tip in ΩA needs to be determined beforehand. Since
the energies of the atoms around the crack tip are significantly higher than the other atoms, the
potential energy provides an indication of the location of the crack tip. The energy criterion has
been successfully applied to detect the locations of dislocations in dynamic propagation [10]. Here
we implemented the same criterion to identify the crack tip location. Let EHE

n be the set of elements
containing at least one atom with high potential energy, i.e.

EHE
n = {e ∈ EA

n | energy of an atom in e > tolE} (32)

where tolE is the specified energy tolerance. As a guideline, tolE can be specified in the range of
15 and 30% higher than the energy of an atom in equilibrium in a perfect lattice. The potential
energy of an atom can be estimated from equation (4). In the present work 20% and 30% tolE

values are considered in the MFC and AMM, respectively.
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Elements to be refined

(a)                                                                       (b)

Ω
A

Figure 7: Sketch of the adaptive refinement operation. (a) Flagged elements to be refined are
hatched in red color. (b) Increased atomistic region after the refinement operation.

3.3 Adaptive refinement

The major steps of the refinement operation (Fig. 7) are:

1. Identify the elements to be refined.

2. Create and initialize the atoms in the elements to be refined.

3. Create and initialize the phantom nodes on the newly cracked elements.

4. Update the fine and coarse scale regions.

Figure 7(a) shows the elements containing high energy atoms flagged for refinement and the enlarged

atomistic region after the refinement operation is shown in Fig. 7(b). Let Esplit
n be the set of

completely cracked elements in the fine scale region, where Esplit
n ⊂ EA

n and Etip
n be the element

containing the crack tip, before refinement. Let ErefA
n+1 be the set of elements in the fine scale

region and let ErefC
n+1 be the set of elements in the coarse scale region, immediately after an adaptive

refinement operation.
In the current work, the crack is to be propagated in both the coarse scale and the fine scale

regions. Hence, first the newly cracked elements in the coarse scale region are identified based on
the position of the crack tip. The phantom nodes are created on the newly cracked elements. Crack
propagation in the fine scale region depends on the number of broken bonds, identified based on
the bond distance. The newly created atoms in the refined elements are initialized using equation
(2).

The detailed algorithm of selecting the elements to be refined, initializing the newly created
atoms in the elements identified for refinement and propagating the crack in the coarse scale region
is explained in algorithm 1 in appendix A.3. The process is:

1. Store the fine scale elements in the element set EA
n , the coarse scale elements in the element

set EC
n and the completely cracked elements in the fine scale region into the element set Esplit

n .
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2. Calculate the high energy elements in the fine scale region using equation (32) and store in
the element set EHE

n .

3. Estimate the neighbours of the high energy elements in EHE
n and store them in EminA

n+1 .

4. Calculate the elements to be refined, Erefine
n+1 by removing the atomistic elements EA

n from the
element set EminA

n+1 .

5. Flag the elements to be refined and increase the atomistic domain by creating the atoms in
the flagged elements.

6. Initialize the positions of the newly created atoms using equation (2).

7. Update the fine scale elements (ErefA
n+1 ) after the refinement operation, by including the element

set Erefine
n into the set EA

n .

8. Update the coarse scale element set (ErefC
n+1 ) after the refinement operation by deducting the

atomistic elements ErefA
n+1 from the total elements E .

9. Update the neighbour list (nlistn+1) of the fine scale atoms in the element set ErefA
n+1 .

10. Identify the newly cracked elements in the fine scale region (Ensplit
n+1 ) by removing the split

(Esplit
n ) and tip (Etip

n ) elements from the high energy element set EHE
n .

11. Place the phantom nodes on the newly cracked elements (Ensplit
n+1 ) and initialize their positions

by interpolation.

12. Update the nodal connectivity table.

13. Update the split (Esplit
n+1 ) and tip (Etip

n+1) elements.

Now the atomistic domain is enlarged to handle the elongated crack. To improve the computational
efficiency, the atomistic elements behind the crack tip can be coarsened as explained in section 3.4.

3.4 Adaptive coarsening

The fine scale region is only needed close to the crack tip, the region away from the crack tip
is coarse-grained. This reduces the size of the atomistic region and improves the computational
efficiency. The major steps of an adaptive coarsening operation are:

1. Identify the elements to be coarsened.

2. Delete the atoms in the elements to be coarsened.

3. Update the fine and coarse scale regions.
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Elements to be coarsened Ω
A

(a)                                                                  (b)

Figure 8: Sketch of the adaptive coarsening operation. (a) Flagged elements to be coarsened are
hatched in red color. (b) Reduced atomistic region after the coarsening operation.

The process of the adaptive coarsening operation is explained in Fig. 8. Figure 8(a) shows the
elements containing low energy inactive atoms being flagged and the elements after coarsening
are shown in Fig. 8(b). The algorithm explaining the coarsening steps is shown in algorithm 2 in
appendix A.4.

Let ELE
n be the set of elements not containing any high energy atoms in the load step n, ELE

n ⊂ EA
n .

Let EBA
n be the set of elements which are in the fine scale domain and are attached to the coupling

’boundary’, EBA
n ⊂ EA

n . The elements to be coarsened are the elements which are in both set ELE
n

and set EBA
n in front of the crack tip, Ecoarsen

n = ELE
n ∩ EBA

n . The process of adaptive coarsening
operation is given below:

1. Store the atomistic elements in EA
n and the coarse scale elements in EC

n .

2. Calculate the high energy elements in the fine scale region using equation (32) and store them
in the element set EHE

n .

3. Estimate and store the elements which do not contain at least one high energy atom in ELE
n .

4. Find the fine scale elements attached to the coupling boundary and store them in EBA
n .

5. The elements to be coarsened (Ecoarsen
n+1 ) are given by ELE

n ∩ EBA
n .

6. Flag the elements to be coarsened and decrease the atomistic domain by deleting the atoms
in the flagged elements.

7. Update the element set in the fine scale region after the coarsening operation EcoaA
n+1 by de-

ducting the element set Ecoarsen
n from the element set ErefA

n+1 .

8. Update the element set in the coarse scale region after the coarsening operation EcoaC
n+1 by

deducting the atomistic elements EcoaA
n+1 from the total elements E .

9. Update the neighbour list of the fine scale atoms in the element set EcoaA
n+1 .

16



 Input: L, D, lattice - 

parameters, load and

    the initial crack.
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3. Update the nodal connectivity table.
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Figure 9: Flow chart indicating the computer implementation steps for solving the crack propaga-
tion problem in the MFC and AMM.
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Figure 10: Schematic diagram of the edge crack model used in examples 1 and 2. A triangular
displacement load is applied on the top and bottom boundaries.

10. Update the fine scale, coarse scale and the split elements for the next iteration.

The computer implementation steps for solving the crack propagation problem in the MFC and
AMM are explained in Fig. 9.

4 Numerical Examples

4.1 Example 1: Edge crack simulations

Consider a two dimensional atomistic model with dimensions 295.11Å×191.96Å as shown in Fig. 10.
The triangular lattice corresponding to the (111) plane of the copper crystal with lattice constant
3.645Å is adopted to model the fine scale region. The ghost atoms are created all along the four
edges. The LJ potential as given in equation (11) is used to model the atomistic interactions with
σ = 2.29621Å and ǫ = 0.467 eV.

The full MS model consists of 10005 active atoms and 408 ghost atoms. The ghost atoms are
placed all along the four edges just on the top of the coupling boundary in the MFC and the AMM.
In this example, we do not consider crack propagation. Hence, a small triangular displacement
load of 0.875Å with maximum amplitude on the left boundary is applied on the top and bottom
edges, in the y direction. Both the top and bottom edge atoms are fixed in the x and y directions,
and the left and right edge atoms are fixed in the x direction. The initial crack in the MS model is
created by breaking the bonds. The initial crack is created at 95.98Å from the bottom edge with
a length of 99.23Å along the x direction. In order to achieve a brittle fracture, the neighbours are
not updated after each load step. Also only immediate neighbors are considered for the atom to
atom interaction.
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(a) MS model.
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(b) MFC model.
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(c) AMM.
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(d) Comparison of atom positions around the crack tip.

Figure 11: Deformed configurations of the (a) MS (b) MFC (c) AMM after the final load step and
(d) comparison of atom positions around the crack tip, from the MS, MFC and AMM.
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(a) Comparison of potential energy.
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(b) Comparison of potential energy, zoom around the crack tip.

Figure 12: (a) Comparison of the LJ potential energy from the MS, MFC and AMM for the atoms
around the crack tip, see Fig. 11(d); after the final load step. The bottom picture shows the LJ
potential energy in eV and the ratio PE

PE0
is plotted in the top picture. (b) A zoom around the crack

tip. 20



(a) Percentage displacement error. (b) Percentage energy error.

Figure 13: Percentage errors in (a) displacement and (b) the potential energy, between the MS and
AMM.

Next, consider a coarse scale model with dimensions 295.11Å×191.96Å. The initial crack of
length 99.23Å in the x direction located at 95.98Å in the y direction, is created in the coarse scale
model. The model is discretized with the 12×8 elements in the x and y directions, respectively. The
crack in the coarse scale domain is modeled by the phantom node method. Therefore, the phantom
nodes are created on the completely cracked elements. In the current model there are three cracked
elements with six phantom nodes. The fine scale regions measuring 163.66Å×84.82Å with 2294
active atoms and 202 ghost atoms, refer to Fig. 11(b) and 112.11Å×84.82Å with 1554 active atoms
and 162 ghost atoms, refer to Fig. 11(c), have been created for the MFC and the AMM, respectively.
A triangular displacement load of 0.875Å is applied on the top and bottom edge nodes. Both the
top and bottom edge nodes are fixed in the x and y directions, whereas the left and right edge
nodes are fixed in the x direction. Figure 11(d) compares the atom positions around the crack tip
from the MS, MFC and AMM after the final load step. Six rows, on either side of the crack around
the tip are captured from the three models for comparison. There are 360 atoms in total in twelve
equal rows. The Lennard-Jones potential energy and the ratio of the potential energy (PE) to the
initial potential energy (PE0) of the three models, for the atoms in Fig. 11(d) are compared in
Fig. 12(a). Fig. 12(b) shows a zoom of Fig. 12(a), around the crack tip. The numbering of atoms
in Fig. 12, is mentioned in Fig. 11(d). Let the results from the MS model are the accurate results.
The error of a quantity is defined as the difference with respect to the accurate results. And the
percentage error is 100 times the ratio of the error to the accurate results. The percentage error
in the displacement and the potential energy are shown in Fig. 13(a) and Fig. 13(b), respectively.
We notice that the maximum displacement percentage error is 0.208 and the maximum energy
percentage error is 0.824, occurs around the crack tip. The normalized computational times are
calculated as the ratio of the computational time with respect to the MS model. The normalized
computational times for the MS, MFC and AMM are mentioned table 1. From the first row of the
table, the computational cost of the AMM is 13% of the MS model.

4.2 Example 2: Crack propagation studies

In this example, we consider the mode I crack propagation of an edge crack, Fig. 10. Therefore,
the displacement loads are applied in small increments. In order to propagate the crack in a
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(a) MS model after the first LS
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(b) MFC model after the first LS
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(c) AMM after the first LS
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(d) MS model after the final LS
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(e) MFC model after the final LS
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(f) AMM after the final LS
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(g) zoom of MS model after the final LS
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(h) zoom of MFC model after the final LS
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(i) zoom of AMM after the final LS

Figure 14: Atom positions at the end of the simulation, from the MS, MFC and AMM with ghost
atoms in red color. The first row corresponds to deformed configurations of the MS, MFC and
AMM at the end of the first load step. Figures (d–i) correspond to the deformed configuration at
the end of the simulation.
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Normalized time
Example MS MFC AMM

1 1.0 0.19 0.13
2 1.0 0.79 0.39

Table 1: Computational times of the MS model, MFC model and AMM in examples 1 and 2.
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Figure 15: Comparison of the atom positions around the crack tip from the MS, MFC and AMM.
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(a) Comparison of potential energy.
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(b) Comparison of potential energy, a zoom around the crack tip.

Figure 16: (a) Comparison of the LJ potential energy from the MS, MFC and AMM for the atoms
around the crack tip, see Fig. 15; after the final load step. The bottom picture shows the LJ
potential energy in eV and the ratio PE

PE0
is plotted in the top picture. (b) A zoom around the crack

tip.
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(a) Percentage displacement error. (c) Percentage energy error.

Figure 17: Percentage errors in (a) displacement and (b) the potential energy, between the MS and
AMM.

brittle fashion, the neighbours are not updated after each load step. Only immediate neighbors are
considered for the atom to atom interaction.

A triangular displacement load of 5.892Å is applied in the y direction, on the top and bottom
rows of atoms/nodes, in 8 equal load steps. The coarse scale solution is in turn transferred to the
fine scale model in 8 equal load steps. The same initial models as described in the MFC and AMM
of example 1 are used. The fine scale region in the AMM is adaptively refined (refer to section 3.3)
in the MFC model and adaptively refined and coarsened (refer to section 3.4) in the AMM. At the
end of the final load step, it was observed that the refinement operations are carried out three times
for the MFC model and the final atomistic model consists of 4305 atoms with 290 ghost atoms. In
the AMM, the refinement and coarsening operations are carried out three times as well and there
is no change in the number of atoms of the fine scale model.

Atom positions in the deformed configuration after the final load step from the MS, MFC and
AMM are plotted in Fig. 14. The first row in Fig. 14 corresponds to the deformed configuration
after the first load step. Fig. 14(d−i) show the deformed configuration at the end of the simulation.
The ratio of PE to PE0 is plotted in the top picture of Fig. 16(a), and the bottom picture shows
the absolute value of the potential energy. The two peaks in the energy distribution in Fig. 16(a)
corresponds to the energies of the crack tip atoms immediately on either side of the crack, indicating
that the crack tip atoms possess the highest energy in the entire lattice. Figure 16(b) shows a zoom
of Fig. 16(a), around the crack tip. The numbering of atoms in Fig. 16, is mentioned in Fig. 15.
Figure 15 compares the atom positions from the three models. Six rows, on either side of the crack
around the tip, are captured from the three models for comparison. There are 360 atoms in total
in twelve equal rows. The percentage displacement error between the MS and the AMM is shown
in Fig. 17(a). Similarly the percentage potential energy error is plotted in Fig. 17(b). From the
results, a close agreement among the three models can be observed.

25



0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

Load step

C
h
a
n
g
e
 
i
n
 
a
v
e
r
a
g
e
 
p
o
t
e
n
t
i
a
l
 
 
 

 
 
e
n
e
r
g
y
 
p
e
r
 
a
t
o
m
 
(
e
V
)
 
 
 
 
 
 
 
 

 

 

MS

AMM

VAC

Figure 18: Change in average potential energy per atom with the load step.

The change in average potential energy per atom for the MS, VAC and AMM at each load step
is plotted in Fig. 18. The change in average potential energy per atom is defined as the difference
of the potential energy per atom, in the current load step to the undeformed configuration. The
average potential energy is calculated by dividing the total potential energy with the number of
atoms. To generate a smooth curve, the displacement load is applied in 50 equal steps. The total
potential energy decreases as the crack starts to propagate. Therefore, a jump in potential energy
can be observed during load step 35. In other words, the crack starts to propagate from load step
35. A second jump was occured during load step 42. The displacement field of the VAC model
does not contain the fine scale component (uA

α ). Hence, a deviation of the VAC model with the
MS and AMM can be observed as the crack started to propagate, whilst the AMM and MS models
always agree with each other. From the results, a close agreement among the three models can be
observed. From the second row of table 1, the computational cost of the AMM is 39% of the MS
model.

4.3 Example 3: Kinked crack propagation

The final example is a problem involving a kinked crack propagation. In this problem, the crack
is not propagated in the fine scale region. Consider a 440Å×180Å beam with an initial pre-notch
of 35Å in length at the center as shown in Fig. 19.A displacement load of 24.789Å at a 60◦ angle
to the horizontal is applied on the right edge of the beam in 30 equal steps. The MFC and AMM
are compared. The coarse scale solution at each load step is in turn transferred to the fine scale
in 9 equal load steps. A 12×8 rectangular mesh is used to discretize the continuum. In the MFC
model, initially the fine scale region is created between the 3rd and 10th nodes in the x direction and
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Figure 19: Schematic of the cantilever beam with the pre-notch, considered for the third example.

from the 1st to the 7th node in the y direction, with a domain size of 280Å×154.28Å as shown in
Fig. 20(a) so that the crack is completely immersed in the fine scale region. In the AMM, initially
the fine scale region is created between the 5th and 8th nodes in the x direction and from the 1st

to the 4th nodes in the y direction, with a size of 120Å×77.14Å as shown in Fig. 20(b).
The load is quasi-statically incremented at each load step and the crack starts propagating in

the y direction. After the 18th load step the crack takes a kink at an angle of 33.12◦ degrees to
the horizontal axis towards the left boundary. The deformation pattern of the AMM model after
the 18th and 24th load steps are plotted in Fig. 20(c) and Fig. 20(e), respectively. The adaptive
refining and coarsening operations are carried out in the x and y directions based on the location
of the crack tip. The atoms around the crack and the kink from the MFC and AMM models after
the 18th and 24th load steps are plotted in Fig. 20(d) and Fig. 20(f), respectively. The percentage
error in displacement for the the atoms around the crack tip after the 18th and the 24th load step,
are plotted in Fig. 20(g) and Fig. 20(h), respectively. The results between the MFC and the AMM
models closely agree with each other.

5 Conclusions

The continuum based phantom node method was coupled with a molecular statics (MS) model to
generate a multiscale framework for the simulation of fracture. The framework was developed to
perform energy minimization of a triangular lattice which contains stably propagating fractures.
Coupling of the continuum and atomistic models was realized through the use of a Bridging Scale
Method (MFC) and a Virtual Atom Cluster (VAC) method. The MFC is enhanced so that ar-
bitrary cracks are admissible at the coarse scale using the phantom node method leading to an
Adaptive Multiscale Method (AMM). The crack was incorporated into the fine scale model by
breaking atomic bonds. The phantom node method was used to incorporate the crack in the coarse
scale model. The fine scale and coarse scale models are coupled by enforcing the displacement
boundary conditions on the ghost atoms.

The AMM was used to study the crack propagation in three examples. In the first example,
a small displacement was prescribed to a domain containing an edge crack. The value of the
prescribed displacement was chosen small enough that the crack does not propagate. The atom
positions around the crack tip from the MS, MFC and AMM were compared. The error in displace-
ment and the potential energy between the MS and AMM was found to be 0.208% and 0.824%,
respectively. In the second example, the crack was made to propagate in the horizontal direction.
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Figure 20: Deformation plots of the MFC and AMM models with angular loading. (a) and (b)
shows the initial configuration of the MFC and AMM models. (c) and (e) shows the deformed
configuration of the AMM model after the 18th and 24th load steps. Atom positions around the
crack tip, after the the 18th and 24th load steps from the MFC and AMM models are compared in
figures (d) and (f), respectively. The percentage displacement errors for the atoms in (d) and (f)
are shown in (g) and (h), respectively.
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Adaptive refinement and coarsening schemes were implemented during crack propagation. Very
close agreement in the atom positions and the potential energy is observed across the three mod-
els. In the final example, the AMM was used to simulate the propagation of a kinked crack in a
cantilever beam. The positions of atoms around the crack tip were compared between the MFC
and AMM. The AMM was between 3 and 9 times more computationally efficient than the other
methods to which it was compared.

The multiscale framework has been here introduced; it serves as a sound basis for future studies
of more complex crack patterns and other material defects.

Acknowledgements

The support provided by the DeutscheForschungsgemeinschaft(DFG) is gratefully acknowledged.
The financial support from the IRSES is thankfully acknowledged. Dr. Gracie’s research was
supported by a Discovery Grant from the Natural Sciences and Engineering Research Council
(NSERC) of Canada. Technical inputs from Prof. Stéphane Bordas of Cardiff University are
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A Appendix

A.1 Derivation of the internal forces: fine scale

The internal forces in equation (6) can be further simplified using the chain rule to split the partial
derivative with respect to rαβ , as explained below

∂Wint

∂rλ
=

1

2

nA
∑

α=1

nA
∑

β 6=α

∂V (rαβ)

∂rαβ

∂rαβ
∂rλ

. (33)

Substituting equation (9) into the second term on the right hand side of equation (33)

∂rαβj
∂rλk

=
∂
√

∑3
j=1(rαj − rβj)2

∂rλk
=

∑3
j=1(rαj − rβj)

√

∑3
j=1(rαj − rβj)2

(δαλ − δβλ) =
rαβ

rαβ
(δαλ − δβλ) (34)

Further, we will drop the summation symbol in equation (34). Lets consider two possible cases for
λ. First, when λ = α and λ 6= β

∂rαβj
∂rαk

=
(rαj − rβj)

rαβ
(1) (35)

and secondly, when λ = β and λ 6= α

∂rαβj
∂rβk

=
(rαj − rβj)

rαβ
(−1). (36)
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Since α and β are interchangeable, after exchanging β with α and vice-versa, equation (36) becomes,

∂rβαj
∂rαk

=
(rβj − rαj)

rβα
(−1) =

(rαj − rβj)

rαβ
. (37)

Combining both cases in equations (35) and (37) for any arbitrary atom λ, yields

∂rαβ
∂rλ

= 2
(rα − rβ)

rαβ
. (38)

Therefore, substituting equation (38) into equation (33) using equation (6), the internal forces on
an atom α are defined as

Fint
α = −

nA
∑

β 6=α

∂V (rαβ)

∂rαβ

(

rα − rβ

rαβ

)

. (39)

A.2 Derivation of the internal forces: coarse scale

The term
∂φρ

∂uC
α

in equation (21) can be evaluated for any arbitrary atom λ as given below:

∂φρ

∂uC
λ

=
∂φρ

∂rαβ

∂rαβ

∂uC
λ

. (40)

Substituting the the expression for rαβ from equation (9) into equation (40) yields

∂rαβj

∂uC
λk

=
∂
(
√

∑3
j=1 (rαj − rβj)2

)

∂uC
λk

=

∑3
j=1 (rαj − rβj)

rαβ

(

∂rαj

∂uC
λk

− ∂rβj

∂uC
λk

)

. (41)

The position of atom α in the current configuration rα is given by

rαj = Rαj + uC
αj . (42)

where Rα denote the initial atom positions. Similarly for the atom β

rβj = Rβj + uC
βj . (43)

Using equations equations (42) and (43) in equation (41)

(

∂rαj

∂uC
λk

− ∂rβj

∂uC
λk

)

= δαλδjk − δβλδjk = (δαλ − δβλ)δjk. (44)

Hence, after dropping the summation symbol over the free index j, equation (41) becomes

∂rαβj

∂uC
λk

=
(rαj − rβj)

rαβ
(δαλ − δβλ)δjk. (45)
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Lets consider two possible cases for λ. The first case, when λ = α and λ 6= β

∂rαβj

∂uC
αk

=
(rαj − rβj)

rαβ
(1) (46)

and the second case, when λ = β and λ 6= α

∂rαβj

∂uC
βk

=
(rαj − rβj)

rαβ
(−1). (47)

Since α and β are interchangeable, after exchanging β with α and vice-versa, equation (47) becomes,

∂rβαj

∂uC
αk

=
(rβj − rαj)

rβα
(−1) =

(rαj − rβj)

rβα
. (48)

Combining both the cases in equations (46) and (48) for any arbitrary atom λ, yields

∂rαβj

∂uC
λk

= 2
(rαj − rβj)

rαβ
(49)

Substituting equation (49) into equation (40)

∂φρ

∂uC
λi

=
∂φρ

∂rαβ

∂rαβ

∂uC
λi

= 2
∂φρ

∂rαβ

(rαi − rβi)

rαβ
= 2

∂φρ

∂rαβ

rαβi
rαβ

(50)

where rαβi is defined in equation (29). For the VAC configuration shown in Fig. 4(c), α is always
set to 1 and β varies from 2 to 7. Therefore, using the definition of φρ from equation (17) in
equation (50) and considering the case where λ = α and λ 6= β, equation (50) becomes

∂φρ

∂uC
αi

=

7
∑

β=2

∂φαβ

∂rαβ

rαβi
rαβ

α=1
=⇒ ∂φρ

∂uC
1i

=

7
∑

β=2

∂φ1β

∂r1β

r1βi
r1β

. (51)

Second part of equation (51) is nothing but equation (22). Equations (23) to (28) can be obtained
by interchanging α and β and considering the case λ = β and λ 6= α in the first part of equation
(51). Since α is always set to 1 and β varies from 2 to 7, the summation in equation (51) can be
removed. Therefore,

∂φρ

∂uC
βi

=
∂φβ1

∂rβ1

rβ1i
rβ1

. (52)

Now equations (23) to (28) can be obtained by varying β from 2 to 7 and accepting the following
equalities: φβ1 = φ1β , rβ1 = r1β and rβ1i = −r1βi.

A.3 Refinement algorithm

The refinement algorithm is explained in algorithm 1.
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input : EA
n , EC

n , Esplit
n , Etip

n , nlistn, nconnn

output: EA
n+1, EC

n+1, Esplit
n+1 , E

tip
n+1, r

refA
n+1, nlistn+1, nconnn+1

EHE
n = ∅

for each atom α do

if energy > tolE then

e = element containing α in ΩA
0

add e to EHE
n

end

end

EminA
n+1 = EHE

n

for each element e in EHE
n do

add neighbours of e to set EminA
n+1

end

Erefine
n = EA

n �EminA
n+1

Create the atoms in the element set Erefine
n .

for each element e in Erefine
n do

for each atom α in element e do

Initialize the positions (rrefAn+1) using equation (2).
end

end

ErefA
n+1 = EA

n ∪ Erefine
n

ErefC
n+1 = ErefA

n+1�E
for each element e in ErefA

n+1 do

for each atom α in element e do
Update the neighbour list (nlistn+1)

end

end

Ensplit
n+1 = (Esplit

n ∪ Etip
n )�EHE

n

for each element e in Ensplit
n+1 do

Create the phantom nodes
end

Esplit
n+1 = Esplit

n ∪ Ensplit
n+1

Update the crack tip element Etip
n+1.

Initialize the positions of the new phantom nodes by interpolation.
Update the nodal connectivity (nconnn+1) table.
if coarsening then

EA
n = ErefA

n+1

EC
n = ErefC

n+1

Esplit
n = Esplit

n+1

else

EA
n+1 = ErefA

n+1

EC
n+1 = ErefC

n+1

end

Algorithm 1: Steps to model refinement, n is the load step indicator.32



input : EA
n , EC

n , EBA
n , Esplit

n

output: EA
n+1, EC

n+1, Esplit
n+1 , nlistn+1

EHE
n = ∅

for each atom α do

if energy > tolE then
e = element containing α in Ω0

add e to EHE
n

end

end

ELE
n = EHE

n �EA
n

Ecoarsen
n = ELE

n ∩ EBA
n

for each element e in Ecoarsen
n do

Delete the fine scale atoms.
end

EcoaA
n+1 = Ecoarsen

n �EA
n

EcoaC
n+1 = EcoaA

n+1 �E
Esplit’
n = Esplit

n ∩ Ecoarsen
n

Esplit
n+1 = Esplit’

n �Esplit
n

for each element e in EcoaA
n+1 do

for each atom α in element e do
Update the neighbour list (nlistn+1)

end

end

EA
n+1 = EcoaA

n+1

EC
n+1 = EcoaC

n+1

Algorithm 2: Steps to model coarsening, n is the load step indicator.
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A.4 Coarsening algorithm

The coarsening algorithm is explained in algorithm 2.
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