
An Adaptive Nearest Neighbor Classification
Algorithm for Data Streams

Yan-Nei Law and Carlo Zaniolo

Computer Science Dept., UCLA, Los Angeles, CA 90095, USA
{ynlaw, zaniolo}@cs.ucla.edu

Abstract. In this paper, we propose an incremental classification algo-
rithm which uses a multi-resolution data representation to find adaptive
nearest neighbors of a test point. The algorithm achieves excellent per-
formance by using small classifier ensembles where approximation error
bounds are guaranteed for each ensemble size. The very low update cost
of our incremental classifier makes it highly suitable for data stream ap-
plications. Tests performed on both synthetic and real-life data indicate
that our new classifier outperforms existing algorithms for data streams
in terms of accuracy and computational costs.

1 Introduction

A significant amount of recent research has focused on mining data streams
for applications such as financial data analysis, network monitoring, security,
sensor networks, and many others [3,8]. Algorithms for mining data streams
have to address challenges not encountered in traditional mining of stored data:
at the physical level, these include fast input rates and unending data sets,
while, at the logical level, there is the need to cope with concept drift [18].
Therefore, classical classification algorithms must be replaced by, or modified
into, incremental algorithms that are fast and light and gracefully adapt to
changes in data statistics [17,18,5].

Related Works. Because of their good performance and intuitive appeal, deci-
sion tree classifiers and nearest neighborhood classifiers have been widely used in
traditional data mining tasks [9]. For data streams, several decision tree classi-
fiers have been proposed—either as single decision trees, or as ensembles of such
trees. In particular, VFDT [7] and CVFDT [10] represent well-known algorithms
for building single decision tree classifiers, respectively, on stationary, and time-
changing data streams. These algorithms employ a criterion based on Hoeffding
bounds to decide when a further level of the current decision tree should be
created. While this approach assures interesting theoretical properties, the time
required for updating the decision tree can be significant, and a large amount of
samples is needed to build a classifier with reasonable accuracy. When the size of
the training set is small, the performance of this approach can be unsatisfactory.

Another approach to data stream classification uses ensemble methods. These
construct a set of classifiers by a base learner, and then combine the predictions

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 108–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Adaptive Nearest Neighbor Classification Algorithm for Data Streams 109

of these base models by voting techniques. Previous research works [17,18,5] have
shown that ensembles can often outperform single classifiers and are also suitable
for coping with concept drift. On the other hand, ensemble methods suffer from
the drawback that they often fail to provide a simple model and understanding
of the problem at hand [9].

In this paper, we focus on building nearest neighbor (NN) classifiers for data
streams. This technique works well in traditional data mining applications, is
supported by a strong intuitive appeal, and it rather simple to implement. How-
ever, the time spent for finding the exact NN can be expensive and, therefore,
a significant amount of previous research has focused on this problem. A well-
known method for accelerating the nearest neighbor lookup is to use k-d trees
[4]. A k-d tree is a balanced binary tree that recursively splits a d-dimensional
space into smaller subregions. However, the tree can become seriously unbal-
anced by massive new arrivals in the data stream, and thus lose the ability of
expediting the search. Another approach to NN classifiers attempts to provide
approximate answers with error bound guarantees. There are many novel algo-
rithms [11,12,13,14] for finding approximate K-NN on stored data. However, to
find the (1 + ε)-approximate nearest neighbors, these algorithms must perform
multiple scans of the data. Also, the update cost of the dynamic algorithms
[11,13,14] depends on the size of the data set, since the entire data set is needed
for the update process. Therefore, they are not suitable for mining data streams.

Our ANNCAD Algorithm. In this paper, we introduce an Adaptive NN
Classification Algorithm for Data-streams. It is well-known that when data is
non-uniform, it is difficult to predetermine K in the KNN classification [6,20].
So, instead of fixing a specific number of neighbors, as in the usual KNN algo-
rithm, we adaptively expand the nearby area of a test point until a satisfactory
classification is obtained. To save the computation time for finding adaptive NN,
we first preassigning a class to every subregion (cell). To achieve this, we decom-
pose the feature space of a training set and obtain a multi-resolution data rep-
resentation. There are many decomposition techniques for multi-resolution data
representations. The averaging technique used in this paper can be thought of
Haar Wavelets Transformation [16]. Thus, information from different resolution
levels can then be used for adaptively preassigning a class to every cell. Then
we determine to which cell the test point belongs, in order to predict its class.
Moreover, because of the compact support property inherited from wavelets, the
time spent updating a classifier when a new tuple arrives is a small constant,
and it is independent of the size of the data set. Unlike VDFT, which requires a
large data set to decide whether to expand the tree by one more level, ANNCAD
does not have this restriction.

In the paper, we use grid-based approach for classification. The main char-
acteristic of this approach is the fast processing time and small memory usage,
which is independent of the number of data points. It only depends on the num-
ber of cells of each dimension in the discretized space, which is easy to adjust
in order to fulfill system constraints. Therefore, this approach has been widely
employed in clustering problem. Some examples of novel clustering algorithms

110 Y.-N. Law and C. Zaniolo

are STING [19], CLIQUE [1] and WaveCluster [15]. However, there is not much
work using this approach for classification.

Paper Organization. In this paper, we present our algorithm ANNCAD and
discuss its properties in §2. In §3, we compare ANNCAD with some existing algo-
rithms. The results suggest that ANNCAD will outperform existing algorithms.
Finally, conclusions and suggestions for future work will be given in §4.

2 ANNCAD

In this section, we introduce our proposed algorithm ANNCAD, which includes
four main stages: (1) Quantization of the Feature Space; (2) Building classifiers;
(3) Finding predictive label for a test point by adaptively finding its neighboring
cells; (4) Updating classifiers for newly arriving tuples. This algorithm only read
each data tuple at most once, and only requires a small constant time to process
it. We then discuss its properties and complexity.

2.1 Notation

We are given a set of d-dimensional data D with attributes X1, X2, ..., Xd. For
each i = 1, ..., d, the domain of Xi is bounded and totally ordered, and ranges
over the interval [Li, Hi). Thus, X = [L1, H1)× ...× [Ld, Hd) is the feature space
containing our data set D.

Definition 1. A discretized feature space is obtained by dividing the domain of
each dimension into g open intervals of equal length. The discretized feature space
so produced consists of gd disjoint rectangular blocks, of size ∆xi = (Hi − Li)/g
in their ith dimension.

Let Bi1,...,id
denote the block:

[L1 + (i1 − 1)∆x1, L1 + i1∆x1) × ... × [Ld + (id − 1)∆xd, Ld + id∆xd).

Alternatively, we denote Bi1,...,id
by Bi, with i = (i1, ..., id) the unique identifier

for the block. Then, two blocks Bk and Bh, k �= h, are said to be adjacent if
|ki −hi| ≤ 1, for each i = 1, ..., d. In this case, Bk is said to be a neighbor of Bh.
CtrBi denotes the center of block Bi, computed as the average of its vertices:

CtrBi = (L1 + (i1 − 1/2)∆x1, ..., Ld + (id − 1/2)∆xd).

Definition 2. Let x be a point and Bi be a block in the same feature space. The
distance between x and Bi is defined as the distance between x and CtrBi .

Note that the distance in Def. 2 can be any kind of distance. In the following,
we use Euclidean distance to be the distance between a point and a block.

An Adaptive Nearest Neighbor Classification Algorithm for Data Streams 111

2.2 Quantization of the Feature Space

The first step of ANNCAD is to partition the feature space into a discretized
space with gd blocks as in Def. 1. It is advisable to choose different sizes of grid
according to system resource constraints and desirable fineness of a classifier.
For each nonempty block, we count the number of training points contained in
it for each class. Now we get the distribution of the data entities in each class. To
decide whether we need to start with a finer resolution feature space, we then
count the number of training points that do not belong to the majority class
of its block as a measure of the training error. We then calculate the coarser
representations of the data by averaging the 2d corresponding blocks in the next
finer level. We illustrate the above process by Example 1.

Example 1. A set of 100 two-class training points in the 2-D unit square is
shown in Fig. 1(a). There are two classes for this data set, where a circle (resp.
triangle) represents a training point of class I (resp. II). First we separate the
training points of each class, discretize them using a 4 × 4 grid and count the
number of training points for each block to get the data distribution of each class
(see Fig. 1(b)). Moreover, Fig. 1(c)-(d) show the coarser representations of the
data.

8 0 0 8

10 9 0 0

10 2 1 0

0 0 0 0

6.75 2

3 0.25

3

0 1
0

1

2 0 0 0

0 2 0 15

0 16 17 0

0 0 0 0

0.5 4.25

4 4.25

3.25

(a) (b) (c) (d)

I

II

Fig. 1. Multi-resolution representation of a two-class data set

Due to the problem of the curse of dimensionality, the storage amount is ex-
ponential in the number of dimensions. To deal with this, we store the nonempty
blocks in the leaf nodes of a B+-tree using their z-values [21] as keys. Thus the
required storage space is much smaller and is bounded by O(min(N, gd)) where
N is the number of training samples. For instance, in Fig. 1, we only need to
store information for at most 8 blocks even though there are 100 training points
in the 4 × 4 blocks feature space. To reduce space usage, we may only store the
data array of the finest level and calculate the coarser levels on the fly when
building a classifier. On the other hand, to reduce time complexity, we may pre-
calculate and store the coarser levels. In the following discussion, we assume that
the system stores the data representation of each level.

112 Y.-N. Law and C. Zaniolo

2.3 Building a Classifier and Classifying Test Points

The main idea of ANNCAD is to use a multi-resolution data representation for
classification. Notice that the neighborhood relation strongly depends on the
quantization process. This will be addressed in next subsection by building sev-
eral classifier ensembles using different grids obtained by subgrid displacements.
Observe that in general, the finer level the block can be classified, the shorter
distance between this block and the training set. Therefore, to build a classi-
fier and classify a test point (see Algorithms 1 and 2), we start with the finest
resolution for searching nearest neighbors and progressively consider the coarser
resolutions, in order to find nearest neighbors adaptively.

We first construct a single classifier as a starting point (see Algorithm 1).
We start with setting every block to have a default tag U (Non-visited). In the
finest level, we classify any nonempty block with its majority class label. We
then classify any nonempty block of every lower level as follows: We label the
block by its majority class label if the majority class label has more points than
the second majority class by a threshold percentage. If not, we use a specific tag
M (Mixed) to label it.

Algorithm 1. BuildClassifier({x, y}|x is a vector of attributes, y is a class label.)

Quantize the feature space containing {x}
Label majority class for each nonempty block in the finest level
For each level i = log(g) downto 1

For each nonempty block B
If |majority ca| − |2nd majority cb| > threshold %, label class ca

else label tag M
Return Classifier

Algorithm 2. TestClass(test point: t)

For each level i = log(g) + 1 downto 1
If label of Bi(t) <> U /*Bi(t) is nonempty */

If label of Bi(t) <> M , class of t = class of Bi(t)
else class of t = class of NN of Bi+1(t) /*Bi+1(t) contains t in level i + 1*/
Break

Return class label for t, Bi(t)

Example 2. We build a classifier for the data set of Example 1 and set the
threshold value to be 80%. Fig. 2(a), (b) and (c) show the class label of each
nonempty block in the finest, intermediate and coarsest resolution respectively.

An Adaptive Nearest Neighbor Classification Algorithm for Data Streams 113

(a) (b) (c)

I I

I I II

I II II

I M

 M II

M

Fig. 2. Hierarchical structure of classifiers

For each level i, a test point t belongs to a unique block Bi(t). We search
from the finest to the coarsest level until reaching a nonempty block Bi(t). If
the label of Bi(t) is one of the classes, we label the test point by this class.
Otherwise, if Bi(t) has tag M , we find the nearest neighbor block of Bi+1(t)
where Bi+1(t) is a block containing t in level i + 1. To reduce the time spent,
we only consider the neighbors of Bi+1(t) which belong to Bi(t) in level i. It is
very easy to access these neighbors as they are also neighbors of Bi+1(t) in the
B+-tree with their z-values as keys. Note that Bi+1(t) must be empty, otherwise
we should classify it at level i+1. But some of the neighbors of Bi+1(t) must be
nonempty as Bi(t) is nonempty. We simply calculate the distance between test
point t and each neighbor of Bi+1(t) and label t by the class of NN.

Example 3. We use the classifier built in Example 2 to classify a test point
t = (0.6, 0.7). Starting with the finest level, we found that the first nonempty
block containing t is [0.5, 1) × [0.5, 1) (see Fig. 3(b)). Since it has tag M , we
calculate the distance between t and each nonempty neighboring block in the
next finer level ([0.75, 1) × [0.5, 0.75), [0.5, 0.75) × [0.75, 1)). Finally, we get the
nearest neighboring block [0.75, 1)× [0.5, 0.75) and label t to be class I (see Fig.

(a) (b) (c)

I I

I I II

I II II

I M

 M II

I I

I I II

I II II

Fig. 3. Hierarchical classifier access

 I I I I II

 I I I II II

 I II II II

 I II II II

Fig. 4. The combined classifier

114 Y.-N. Law and C. Zaniolo

3(c)). When we combine the multi-resolution classifier of each level, we get a
classifier for the whole feature space (see Fig. 4).

2.4 Incremental Updates of Classifiers

The main requirement of a data stream classification algorithm is that it is
able to update classifiers incrementally and effectively when a new tuple arrives.
Moreover, updated classifier should be adapt to concept drift behaviors. In this
subsection, we present incremental update process of ANNCAD for a station-
ary data, without re-scanning the data and discuss an exponential forgetting
technique to adapt to concept drifts.

Because of the compact support property, arrival of a new tuple only affects
the blocks of the classifier in each level containing this tuple. Therefore, we only
need to update the data array of these blocks and their classes if necessary.
During the update process, the system may run out of memory as the number
of nonempty blocks may increase. To deal with this, we may simply remove the
finest data array, multiple the entries of the remaining coarser data arrays by 2d,
and update the quantity g. A detailed description of updating classifiers can be
found in Algorithm 3. This solution can effectively meet the memory constraint.

Algorithm 3. UpdateClassifier(new tuple: t)

For each level i = log(g) + 1 downto 1
Add δt/2d×(log(g)+1−i) to data array Φi

/*δt is a matrix with value 1 in the corr. entry of t and 0 elsewhere.*/
If i is the finest level, label Bi(t) with the majority class
else if |majority ca| − |2nd majority cb| > threshold %, label Bi(t) by ca

else label Bi(t) by tag M
If memory runs out,

Remove the data array of level log(g) + 1
For each level i = log(g) downto 1, Φi = 2d · Φi

Label each nonempty block of the classifier in level log(g) by its majority class
Set g = g/2

Return updated classifier

Exponential Forgetting. If the concept of the data changes over time, a
very common technique called exponential forgetting may be used to assign less
weight to the old data to adapt to more recent trend. To achieve this, we multiply
an exponential forgetting factor λ to the data array, where 0 ≤ λ ≤ 1. For each
level i, after each time interval t, we update the data array Φi to be:

Φi|(n+1)t ← λΦi|n·t

where Φi|n·t is the data array at time n · t. Indeed, if there is no concept change,
the result of classifier will not be affected. If there is a concept drift, the classifier

An Adaptive Nearest Neighbor Classification Algorithm for Data Streams 115

can adapt to the change quickly since the weight of the old data is exponentially
decreased. In practice, an exponential forgetting technique is easier to implement
than a sliding window because we need extra memory buffer to store the data
of the most current window for implementing the sliding window.

2.5 Building Several Classifiers Using Different Grids

As mentioned above, the neighborhood relation strongly depends on the quan-
tization process. For instance, consider the case that there is a training point u
which is close to the test point v but they are located in different blocks. Then
the information on u may not affect the classification of v.

To overcome the problem of initial quantization process, we build several
classifier ensembles starting with different quantization space. In general, to build
nd different classifiers, each time we shift 1

n of the unit length of feature space
for a set of selected dimensions. Fig. 5 shows a reference grid and its 3 different
shifted grids for a feature space with 4 × 4 blocks. For a given test point t,
we use these nd classifiers to get nd class labels and selected blocks Bi(t) of t
in each level i, starting from the finest one. We then choose the majority class
label. If there is tie, we calculate the distance between each selected block Bi(t)
with majority class label and t to find the closest one. Algorithm 4 shows this
classifying process using nd classifiers.

Fig. 5. An example of 4 different grids for building 4 classifiers

Algorithm 4. TestndClass(objects: t)

For each level i = log(g) + 1 downto 1
Get the label of t for each classifier
If there is a label <> U, choose the majority label

If there is a tie, label t by class of Bi(t) with closest center to t
Break

Return class label for t

The following theorem shows that the approximation error of finding nearest
neighbors decreases as the number of classifier ensembles increases.

Theorem 1. For d attributes, let x be the test point and Y be the set of training
points which are in blocks containing x of those nd classifiers. Then, for every
training point z /∈ Y , dist(x, y) < (1 + 1

n−1)*dist(x, z) for every y ∈ Y .

116 Y.-N. Law and C. Zaniolo

Proof. For simplicity, we consider the case when d = 1. This proof works for
any d. For d = 1, we build n classifiers, where each classifier i use the grid that
is shifted i

n unit length from the original grid. Let ε be the length of a block.
Consider a test point x, x belongs to an interval Ik for classifier k. Note that
[x − n−1

n ε, x + n−1
n ε] ⊂

⋃
Ik ⊂ [x − ε, x + ε]. Hence, the distance between x and

its nearest neighbor that we found must be less than ε. Meanwhile, the points
that we do not consider should be at least n−1

n ε far away from x. If z /∈ Y ,
dist(x,y)
dist(x,z) < ε

(n−1)ε/n = (1 + 1
n−1) for every y ∈ Y .

The above theorem shows that the classification result using one classifier
does not have any guarantee about the quality of the nearest neighbors that it
found because the ratio of approximation error will tend to infinity. When n is
large enough, the set of training points selected by those classifier ensembles are
exactly the set of training points with distance ε from the test point. To achieve
an approximation error bound guarantee, theoretically we need an exponential
number of classifiers. However, in practice, we only use two classifiers to get a
good result. Indeed, experiments in §3 show that few classifiers can obtain a
significant improvement at the beginning. After this stage, the performance will
become steady even though we keep increasing the number of classifiers.

2.6 Properties of ANNCAD

As ANNCAD is a combination of multi-resolution and adaptive nearest neigh-
bors techniques, it inherits both their properties and their advantages.

– Compact support: The locality property allows a fast update. As a new tuple
arrival only affects the class of the block containing it in each level, the
incremental update process only costs a constant time (number of levels).

– Insensitivity to noise: We may set a threshold value for classifying decisions
to remove noise.

– Multi-resolution: This algorithm makes it easy to build multi-resolution clas-
sifiers. Users can specify the number of levels to efficiently control the fineness
of the classifier. Moreover, one may optimize the system resource constraints
and easy to adjust on the fly when the system runs out of memory.

– Low complexity: Let g, N and d be the number of blocks of each dimension,
training points and attributes respectively. The time spent on building a
classifier is O(min(N, gd)) with constant factor log(g). For the time spent on
classifying a test point, the worst case complexity is O(log2(g) + 2d) where
the first part is for classifying a test point using classifiers and the second
part is for finding its nearest neighbor which is optional. Also, the time spent
for updating classifiers when a new tuple arrives is log2(g) + 1. Comparing
with the time spent in VFDT, our method is more attractive.

3 Performance Evaluation

In this section, we first study the effects on parameters for ANNCAD by using
two synthetic data sets. We then compare ANNCAD with VFDT and CVFDT

An Adaptive Nearest Neighbor Classification Algorithm for Data Streams 117

on three real-life data sets. To illustrate the approximation power of ANNCAD,
we include the results of Exact ANN, which computes ANN exactly, as controls.
Exact ANN: For each test point t, we search the area within 0.5 block side length
distance. If the area is nonempty, we classify t as the majority label of all these
points in this area. Otherwise, we expand the searching area by doubling the
radius until we get a class for t. Note that the time and space complexities of
Exact ANN are very expensive making it impractical to use.

3.1 Synthetic Data Sets

The aim of this experiment is to study the effect on the initial resolution for
ANNCAD. In this synthetic data set, we consider a 3-D unit cube. We randomly
pick 3k training points and assign those points which are inside a sphere with
center (0.5, 0.5, 0.5) and radius 0.5 to be class 0, and class 1 otherwise. This
data set is effective to test the performance of a classifier as it has a curve-like
decision boundary. We then randomly draw 1k test points and run ANNCAD
starting with different initial resolution and 100% threshold value. In Fig. 6(a),
the result shows that a finer initial resolution gets a better result. This can be
explained by the fact that we can capture a curve-like decision boundary if we
start with a finer resolution. On the other hand, as discussed in last section, the
time spent for building a classifier increases linearly for different resolutions. In
general, we should choose a resolution according to system resource constraints.

The aim of this experiment is to study the effect on number of classifier
ensembles for ANNCAD. As in the previous experiment, we randomly pick 1k
training examples and assign them labels. We then randomly draw 1k test points
and test them based on the voting result of these classifiers. We set 16 × 16 × 16
blocks for the finest level and 100% threshold value. In Fig. 6(b), the result
shows that having more classifiers will get a better result in the beginning. The
performance improvement becomes steady even though we keep increasing the
number of classifiers. It is because there is no further information given when
we increase the number of classifiers. In this experiment, we only use 2 or 3
classifiers to obtain a competitive result with the Exact ANN (90.4%).

2 3 4 5 6
65

70

75

80

85

90

95

blocks per dim. (Power of 2)

A
cc

ur
ac

y
(%

)

5 10 15
85

86

87

88

89

90

Classifier Ensembles

A
cc

ur
ac

y
(%

)

ANNCAD
Exact ANN

(a) (b)

Fig. 6. Effect on initial resolutions and number of classifiers

118 Y.-N. Law and C. Zaniolo

3.2 Real Life Data Sets

The aim of this set of experiments is to compare the performance of AN-
NCAD with that of VFDT and CFVDT on stationary and time-changing real-
life data sets respectively. We first used a letter recognition data set from the
UCI machine learning repository web site [2]. The objective is to identify a
black-and-white pixel displays as one of the 26 English alphabet. In this data
set, each entity is a pixel display for an English alphabet and has 16 numeri-
cal attributes to describe its pixel displays. The detail description of this data
set is provided in [2]. In this experiment, we use 15k tuples for training set
with 5% noise added and 5k for test set. We obtain noisy data by randomly
assigning a class label for 5% training examples. For ANNCAD, we set g for
the initial grid to be 16 units and build two classifiers. Moreover, since VFDT
needs a very large training set to get a fair result, we rescan the data sets
up to 500 times for VFDT. So the data set becomes 7,500,000 tuples. In Fig.
7(a), the performance of ANNCAD dominates that of VFDT. Moreover, AN-
NCAD only needs one scan to achieve this result, which shows that ANNCAD
even works well for a small training set.

The second real life data set we used is the Forest Cover Type data set which
is another data set from [2]. The objective is to predict forest cover type (7 types).
For each observation, there are 54 variables. Neural network (backpropagation)
was employed to classify this data set and got 70% accuracy, which is the highest
one recorded in [2]. In our experiment, we used all the 10 quantitative variables.
There are 12k examples for training set and 90k examples for testing set. For
ANNCAD, we scaled each attribute to the range [0, 1). We set g for the initial
grid to be 32 units and build two classifiers. As the above experiment, we rescan
the training set up to 120 times for VFDT, until its performance becomes steady.
In Fig. 7(b), the performance of ANNCAD dominates that of VFDT. These two
experiments show that ANNCAD works well in different kinds of data sets.

We further tested ANNCAD in the case when there are concept drifts in
data set. The data we used was extracted from the census bureau database [2].
Each observation represents a record of an adult and has 14 attributes includ-
ing age, race etc. The prediction task is to determine whether a person makes
over 50K a year. Concept drift is simulated by grouping records with same
race (Amer-Indian-Eskimo(AIE), Asian-Pac-Islander(API), Black(B), Other(O),
White(W)). The distribution of training tuples of each race is shown in Fig. 7(c).
Since the models for different races of people should be different, concept drifts
are introduced when n = 311, 1350, 4474, 4746. In this experiment, we used the 6
continuous attributes. We used 7800 examples for learning and tested the classi-
fiers for every 300 examples. For ANNCAD, we build two classifiers and set λ to
be 0.98 and g for the initial grid to be 64 units. We scaled the attribute values as
mentioned in the previous experiment. The results are shown in Fig. 7(c). The
curves show that ANNCAD keeps improving in each region. Also, as mentioned
in §2.6, computations required for ANNCAD are much lower than CVFDT.

Moreover, notice that ANNCAD works almost as well as Exact ANN on these
three data sets, which demonstrates its excellent approximation ability.

An Adaptive Nearest Neighbor Classification Algorithm for Data Streams 119

0 100 200 300 400 500
0

20

40

60

80

100

Rescans

A
cc

ur
ac

y
(%

)

ANNCAD
VFDT
Exact ANN

0 20 40 60 80 100 120
45

50

55

60

65

70

75

Rescans

A
cc

ur
ac

y
(%

)

ANNCAD
VFDT
Exact ANN

(a) (b)

0 2000 4000 6000
0.7

0.75

0.8

0.85

0.9

Training Examples

A
cc

ur
ac

y
(%

)

ANNCAD
CVFDT
Exact ANN

AIE API B O W

(c)

Fig. 7. Three real-life data sets:(a) Letter Recognition (b) Forest Covertype (c) Census

4 Conclusion and Future Work

In this paper, we proposed an incremental classification algorithm ANNCAD
using a multi-resolution data representation to find adaptive nearest neighbors
of a test point. ANNCAD is very suitable for mining data streams as its update
speed is very fast. Also, the accuracy compares favorably with existing algorithms
for mining data streams. ANNCAD adapts to concept drift effectively by the
exponential forgetting approach. However, the very detection of sudden concept
drift is of interest in many applications. The ANNCAD framework can also be
extended to detect concept drift–e.g. changes in class label of blocks is a good
indicator of possible concept drift. This represents a topic for our future research.

Acknowledgement. This research was supported in part by NSF Grant No.
0326214.

120 Y.-N. Law and C. Zaniolo

References

1. R. Agrawal, J. Gehrke, D. Gunopulos and P. Raghavan. Automatic Subspace Clus-
tering of High Dimensional Data for Data Mining Applications. SIGMOD 1998:
94–105.

2. C. L. Blake and C. J. Merz. UCI Repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

3. B. Babcock, S. Babu, R. Motawani and J. Widom. Models and issues in data
stream systems. PODS 2002: 1–16.

4. J. Bentley. Multidimensional binary search trees used for associative searching.
Communication of the ACM 18(9): 509–517 (1975).

5. F. Chu and C. Zaniolo. Fast and light boosting for adaptive mining of data streams.
PAKDD 2004: 282–292.

6. C. Domeniconi, J. Peng and D. Gunopulos, Locally adaptive metric nearest-
neighbor classification, IEEE Transactions on Pattern Analysis and Machine In-
telligence 24(9): 1281–1285 (2002).

7. P. Domingos and G. Hulten. Mining high-speed data streams. KDD 2000: 71-80.
8. L. Golab and M. Özsu. Issues in data stream management. ACM SIGMOD 32(2):

5–14 (2003).
9. J. Han and M. Kamber. Data Mining – Concepts and Techniques (2000). Morgan

Kaufmann Publishers.
10. G. Hulten, L. Spence and P. Domingos. Mining time-changing data streams. KDD

2001: 97–106.
11. P. Indyk, R. Motwani. Approximate nearest neighbors: towards removing the curse

of dimensionality. STOC 1998: 604–613.
12. P. Indyk. Dimensionality reduction techniques for proximity problems. ACM-SIAM

symposium on Discrete algorithms 2000: 371–378.
13. P. Indyk. High-dimensional computational geometry. Dept. of Comput. Sci., Stan-

ford Univ., 2001.
14. E. Kushilevitz, R. Ostrovsky, Y. Rabani. Efficient Search for Approximate Nearest

Neighbor in High Dimensional Spaces. SIAM J. Comput. 30(2): 457–474 (2000).
15. G. Sheikholeslami, S. Chatterjee and A. Zhang. WaveCluster: A Multi-Resolution

Clustering Approach for Very Large Spatial Databases. VLDB 1998: 428–439.
16. G. Strang and T. Nguyen. Wavelets and Filter Banks (1996). Wellesley-Cambridge

Press.
17. W. Street and Y. Kim. A streaming ensemble algorithm (SEA) for large-scale

classification. SIGKDD 2001: 377–382.
18. H. Wang, W. Fan, P. Yu and J. Han. Mining concept-drifting data streams using

ensemble classifiers. SIGKDD 2003: 226–235.
19. W. Wang, J. Yang and R. Muntz. STING: A Statistical Information Grid Approach

to Spatial Data Mining VLDB 1997: 186–195.
20. D. Wettschereck and T. Dietterich. Locally Adaptive Nearest Neighbor Algorithms.

Advances in Neural Information Processing Systems 6: 184–191 (1994).
21. C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V. Subrahmanian and R. Zicari.

Advanced Database Systems (1997). Morgan Kaufmann Press.

	Introduction
	ANNCAD
	Notation
	Quantization of the Feature Space
	Building a Classifier and Classifying Test Points
	Incremental Updates of Classifiers
	Building Several Classifiers Using Different Grids
	Properties of ANNCAD

	Performance Evaluation
	Synthetic Data Sets
	Real Life Data Sets

	Conclusion and Future Work

